
Chapter 9

The approXQL Query Engine

The approXQL query engine is a prototypical implementation of the theoretical concepts

introduced throughout this thesis. Each of the three query-evaluation methods proposed in

Chapters 6 and 7 has been implemented: The direct method, which uses the indexed data tree

to evaluate a query; the schema method, which uses the path-tree (schema) of the data tree

to find the best k transformed queries (second-level queries); and the hybrid method, which

is similar to the schema approach, but merges second-level queries with similar substructures.

However, the approXQL query engine is more than an implementation of the three query-

evaluation methods. It consists of all components necessary to load, store, index, and display

XML documents. Moreover, it supports the generation of concise abstracts based on the

logical documents selected by a query. The system also provides a graphical query editor.

Figure 9.1 on the following page shows the architecture of the system and the data flow

between the modules. On the server side, there are six main modules: The database kernel,

the document loader on top of the XML parser, the indexer, the query parser, the query

processor, and the abstract generator. On the client side there is a graphical query editor

controlled by a World Wide Web (WWW) browser. We describe the server-side modules in

the following section, and introduce the query editor in Section 9.2.

9.1 The Server-Side Modules

The server-side modules of the approXQL system belong to two separate application programs:

The db-loader is a command-line application that reads XML documents from the file system

or via the HyperText Transfer Protocol (HTTP) protocol, and stores them in the database. It

145



Chapter 9 The approXQL Query Engine

costs

path tree
data tree

postings

represent.
query

generator
abstract

results

query
processor

abstracts

basic

costs postings

FastCGI server

database kernel

indexer

documents

XML
documents

loader

XML parser

events

query

postings

query
parser

HTTP server

query

server side client side

abstracts

documents
logical

basic
costs

www browser

query editor

n

n

Figure 9.1: Architecture of the approXQL query engine. The arrows show the data flow be-
tween the modules; dashed lines with empty arrowheads indicate the flow of con-
trol data. The letter n denotes the number of requested results.

consists of the modules XML parser, loader, and indexer. The db-query application runs as

a background process and communicates with the FastCGI server. It consists of the modules

query parser, query processor, and abstract generator. Both application programs, as well

as several auxiliary tools, share a common database kernel. All server-side modules are

implemented in C++. We first describe the kernel module, then continue with the modules

of the two application programs.

9.1.1 Database Kernel

The database kernel is implemented on top of the Berkeley Database toolkit [BER02]. The

toolkit provides fundamental database-access methods including sequential files with fixed

and variable-length records, queues, B-trees, and extended linear hashing [Lit80]. It also

provides subsystems used in building a transactional data store: a logging subsystem, a

locking subsystem, and a transaction subsystem on top of both of them. A memory pool

subsystem allows shared and cached access to the database files.

All indexes of the approXQL query engine are implemented as B-trees. The leaves of the

B-trees store the postings, which are transfered into a memory area managed by the caching

subsystem of the Berkeley toolkit. The LRU (least recently used) strategy provided by the

cache ensures that only frequently used postings are in the cache; all other postings remain

on disc. By analyzing the logs and by varying the cache size, the Berkeley toolkit can be

adapted so that the ratio of cache misses is minimal, given a fixed memory size.

146



9.1 The Server-Side Modules

To display results and to generate abstracts (see Section 9.1.5), the kernel also manages the

data tree built from the XML documents passed by the loader. The documents are passed

as sequences of nodes, where each node is annotated with its preorder number and its bound

(the preorder number of the rightmost leaf of the subtree rooted at this node). The preorder-

bound pair indicates the position of the node in the data tree. Given the preorder number

of a result node, the logical document rooted at this node can be retrieved quickly using a

B-tree. The last node in the document is indicated by the bound of the root.

In addition to the indexes and the data tree, the kernel also manages the path tree of the data

tree. The nodes in the path tree are annotated with their insertion costs and path costs (see

Section 8.1). For performance reasons, the path tree is read completely into memory during

the initialization of the kernel. At this time, the kernel also builds the in-memory indexes to

quickly access all path-tree nodes with a certain type and value.

The interface of the database kernel consists of four parts: the loader interface, the query-

processor interface, the costs interface, and the document interface. The loader interface is

event oriented. It provides methods to manage transactions and to successively write the

constituents of serialized XML documents into the database. The query-processor interface

provides access to the primary index of the path tree and to the primary and secondary indexes

of the data tree. The costs interface allows to define and access the basic costs. Currently,

all cost definitions are specified in a file; the interactive definition of costs is not supported.

The document interface allows to access logical documents with given preorder-bound pairs.

9.1.2 Loader and Indexer

The loader and indexer are on top of the kernel module. The loader uses the Xerces XML

parser [XER02] to import XML files. It implements the SAX [Meg98] interface to the parser.

The SAX interface provides callback methods that are triggered by the parser if certain XML

content types (like elements or character data) have been read.

The loader splits up sequences of character data into tokens, assigns data types to them,

and stems tokens of type text using the Porter algorithm [Por80]. It immediately passes all

words, numbers, attribute values, and attribute names to the indexer. Whenever the loader

gets an event indicating a start-tag of an element, it passes the name of the element to the

indexer. The indexer first identifies the posting belonging to the name. Next, it adds both

the preorder number of the element and its distance from the root of the data tree to the

end of the posting. At this point, the bound of the element is not yet known. Therefore, the

147



Chapter 9 The approXQL Query Engine

loader pushes a pointer to the posting entry on a stack. If the end-tag of the element has

been announced, then the loader passes the bound and the pointer to the indexer; which adds

the bound to the entry the pointer refers to. Note that —despite of the use of an additional

stack —the time to construct the index is linear in the number of elements, attributes, and

tokens in a document.

The loader also updates the data tree by sequentially writing the nodes created for a parsed

document into the database. The preorder numbers of the nodes are inserted into a B-tree

to allow the reconstruction of logical documents, as described in the previous subsection.

To speed up the loading-process, the indexer manages a write cache with adjustable capacity.

The cache holds all recently extended postings, and thus avoids the slow one-by-one writing

of single posting entries. Whenever the cache space is exhausted, the postings are written to

the database as large blocks.

9.1.3 Query Parser

The query parser maps an approXQL query to the basic form of its expanded representation

(see Section 6.2.1). If restrictions or relaxation are defined for the query, then the module

annotates the nodes in the expanded representation with sets of transformation modifiers (see

Section 4.4).

9.1.4 Query Processor

The query processor is the main module of the approXQL system. It implements the direct,

the schema, and the hybrid query-evaluation method. Figure 9.2 on the next page shows the

submodules of the query processor and the data flow between the submodules. Dashed lines

with empty arrowheads indicate the flow of control data.

The expander submodule derives the expanded query representation from the basic form

supplied by the query parser. To encode the permitted deletions, permutations, and value

changes, it accesses the basic-costs index of the database kernel via the costs interface. Given

the type and value of an s-node, the index returns the deletion cost and the set of value-cost

pairs representing all permitted value changes. Given a pair of values of type struct, it returns

the cost of permuting nodes carrying these values.

The expanded query representation is passed to the plan generator, which creates a query-

execution plan as described in Section 6.4. Depending on the evaluation mode (direct or

148



9.1 The Server-Side Modules

represent.
query
basic

query
represent.

exp.

index
secondarypath−tree

index
basic−costs

index
data−tree

index

database kernel

evaluator
second−level

plan
evaluatorplanoptimizer

plan
plan

plan
generatorexpander

deletion and permutation costs, value−cost pairs insertion costs postings postingspostings

best k second−
level queries

221
2

2

2

buffer monitor

2

1

loop
control

best n

best n
results

results

query processor
n

1

2

Figure 9.2: The query-processor module and the indexes of the database kernel. The arrows
show the data flow between the submodules; dashed lines with empty arrowheads
indicate the flow of control data. The numbers assigned to the arrows refer to
the query-evaluation methods (1 for direct evaluation, 2 for schema or hybrid
evaluation). Arrows without numbers show data flows common to all methods.

schema-driven), the generated plan consists either of basic list operators or of k-operators for

extended lists (see Section 7.2.3).

The subsequent plan optimizer tries to rearrange the plan operators in order to lower the

evaluation times. Note that this submodule does not implement a fully fledged cost-based

optimizer. Rather, it uses a simple heuristics to minimize the number of operators using the

equivalences of Lemma 6.1 on page 81.

The plan evaluator evaluates the query-execution plan. Depending on the evaluation mode,

it passes either the indexes of the data tree (direct evaluation, indicated by number 1) or of

the path tree (schema or hybrid evaluation, number 2) to the selection operators within the

plan. In both cases, the insertion and path costs for data-tree or path-tree nodes are fetched

from the basic-costs index. The result of the evaluation is either a sorted list of n node-cost

pairs, where n is the number of requested results, or a sorted list of k second-level queries.

If one of the schema-driven evaluation methods is used, then the second-level queries created

by the plan evaluator are passed to the second-level evaluator, which accesses the secondary

index of the database kernel in order to find the results for those queries. The sorting order of

the second-level queries produced by the hybrid query-evaluation method does not necessarily

reflect the sort order of the results selected by the queries. Therefore, the submodule also

implements an algorithm that inserts new results into the result list and determines the prefix

of “save” results, which are then passed to the abstract generator.

149



Chapter 9 The approXQL Query Engine

The adaptive buffer stores intermediate results in order to implement dynamic programming

(see Section 6.6.2). For the schema and the hybrid query-evaluation method, this submodule

also stores the results of partially evaluated second-level queries, in order to use them for the

evaluation of subsequent second-level queries with identical parts.

The loop control submodule controls the submodules for the creation and evaluation of second-

level queries. A user-definable function estimates the parameter k based on the parameter n.

The submodule triggers the creation of second-level queries. If the first k queries did not

retrieve n results, then k is increased using another user-definable function, and the next

iteration cycle starts. The incremental evaluation ends if either all results are found, or if

subsequent iteration steps do not increase the number of second-level queries.

The plan evaluator is controlled by a resource monitor. It ensures that both the maximum

evaluation time and the buffer size are not exceeded. The monitor also triggers the termination

of the evaluation process if the maximum number of second-level queries are created, or if the

second-level queries consume too much memory.

9.1.5 Abstract Generator

Recall that the query processor produces result lists in which each entry represents the root

of a query embedding. The query processor additionally tracks the image of the cheapest

transformed query tree for each entry. The images are used by the abstract generator. For

each entry in the result list, this module selects the logical document rooted at the data-tree

node represented by the entry, and produces an abstract of it. The abstract consists of all

nodes that are part of the embedding image, together with a match context for each node. The

match context of a keyword consists of the m preceding and m following keywords, where m

is a number specified by the database administrator. The match context of an attribute name

consists of the attribute value, and of the name of the element to which the attribute belongs.

For each matching element name, some or all attributes are included in the match context.

If a query leaf maps to an element name, then a part of the character data included in the

element is added to the match context. All abstracts belonging to entries in a predefined list

segment are created and displayed to the users.

The abstract generator is not restricted to a predefined output format. Instead, it provides

an interface that can be implemented to produce abstracts in arbitrary formats. Currently,

the system supports the output of plain text, HTML documents, and XML documents.

150



9.2 The Graphical Query Editor

Figure 9.3: The graphical query editor.

9.2 The Graphical Query Editor

Our prototype provides a graphical query editor implemented as a Java applet (see Figure 9.3).

The editor displays a list of all element and attribute names that may be used in a query.

In the simplest case, the list consists of all different element and attribute names found in

the indexed documents. The database administrator can modify this list in order to ease

query formulation: First, they can remove all names from the list which are not useful for

typical user queries. For instance, they may drop list and table constructors, or elements that

emphasize text sequences. Second, the administrator can replace element or attribute names

by more descriptive labels. For instance, they may replace the label cd by compact disc. The

query processor maps the synonyms to the original names using zero-cost value changes.

To construct a query, the user selects a name from the list. The editor displays the selected

name as a labeled node in the tree panel. Depending on the construction mode (“add parent”

or “add child”), the list of names is adapted so that all names not reachable from the selected

name are disabled. The reachability information is provided by the path tree, which is

requested from the database kernel. Fields for data input can be added to the query whenever

the currently active query selector matches a path-tree node that has a descendant of type

data. The constructed query—which is additionally displayed in approXQL syntax— is then

submitted to the query engine.

The query editor can handle the path trees of several XML document collections. The user

151



Chapter 9 The approXQL Query Engine

can freely switch between the collections and formulate a query for each. When the user

selects a collection a second time, the editor restores the graphical representation built for

that collection.

Currently, the graphical query editor only supports the basic syntax of approXQL introduced

in Section 3.1. We plan to extend the editor so that the user can specify restrictions and

relaxations of query transformations (see Section 3.2). Furthermore, in addition to the alpha-

betical listing of element and attribute names, we plan to add a second list that displays only

those names that have been used most frequently during the previous sessions. The selection

frequency of a name may be counted either globally or separately for each user.

152


