
Chapter 8

Efficient Algorithms for Plan Operators

In the previous two chapters, we defined five operators that perform operations on sets of

node-cost tuples. In this chapter, we present algorithms and associated data structures for

implementing these operators. We adopt a well-known numbering scheme that allows to test

whether two nodes in a tree have an ancestor-descendant relationship. We extend this scheme

in such a way that it allows to calculate the sum of the insertion costs of nodes on a path,

without actually traversing the path. Because the numbers assigned to the nodes provide all

of the information required for verifying the relationships between nodes in a tree, we can

finally ignore the tree itself. Instead, we use lists in which each entry stores the numbers

assigned to a particular node. We show how standard indexes like inverted files or B-trees

can be used to initialize lists so that they store information about all nodes that have a given

type and fulfill a given selection predicate. The list-oriented view of trees allows very efficient

algorithms for the implementation of our operators: The selection operator makes use of

the indexes to initialize the lists passed to other plan operators. The join and the outerjoin

operators establish the ancestor-descendant relationships between nodes stored in the operand

lists. The union operator merges the operand lists and adds the costs of corresponding nodes;

the intersection operator intersects the lists and calculates the minimum of the costs. All

operators compute the results in almost linear time with respect to the lengths of the operand

lists.

The chapter is organized as follows: In Section 8.1, we review and extend a numbering scheme

for trees. In Section 8.2, we show how the numbers for a particular selection of nodes can be

retrieved from a standard index. The numbers assigned to nodes are collected in lists, which

we introduce in Section 8.3. In Section 8.4, we present the algorithms for the operators,

which make use of node information stored in lists. In Section 8.5, we analyze the complexity

127

Chapter 8 Efficient Algorithms for Plan Operators

bounds of the algorithms and also of the query-execution plans assembled from the operators.

Finally, in Section 8.6, we review related work. Throughout the chapter, we use the term

target tree if the introduced concepts are applicable for both data trees and path trees.

8.1 Compacting and Encoding a Target Tree

The compacting and encoding of a target tree is an intermediate step during the creation of

index structures. Note that in practice, the explicit construction (and subsequent compacting

and encoding) of a target tree is not necessary, because the encoding of the nodes added to

the indexes can be successively constructed during the import of XML documents.

In a compacted target tree, sibling leaves with equal types are merged into a single leaf. Each

merged leaf is annotated with a set consisting of the values of the original leaves. The merging

of leaves is admissible for the following reasons: First, all merged leaves are cost-equivalent,

which means that they have the same distances from each of their ancestors. Second, an

embedding is a function that is not injective. Therefore, sibling leaves of a query tree can

be mapped to a single leaf of the target tree, provided that the target leaf is annotated with

the values of both query leaves. Consequently, each query tree that can be embedded into a

target tree can also be embedded into its compacted version.

Given a compacted target tree, we adopt the preorder-bound numbering scheme of trees,

which has proven to be useful for the evaluation of containment queries [Nav95, ZND+01].

The numbering scheme is based on nested regions within a continuous text. Each region

is identified by its start and end offsets within the text. The application for XML data

is straightforward: Each element delimited by a start-tag and an end-tag defines a region;

nested elements define nested regions. There is a simple correspondence between text regions

and nodes in the target tree: Each inner node u spans a region consisting of the leaves of

the subtree rooted at u. Nested subtrees represent nested elements, and therefore represent

nested regions. The start offset of a region is equal to the preorder number of the node u

covering the region; the end offset (called the bound) of the region is equal to the preorder

number of the rightmost leaf of the subtree rooted at u. We use the notations pre(u) to refer

to the preorder number of u and bound(u) to refer to the region bound defined by u. Given

the nodes u and v, u is an ancestor of v if and only if

pre(u) < pre(v) ∧ bound(u) ≥ pre(v)

holds. We extend this basic numbering scheme to determine the node distances in constant

time. Recall from Definition 6.6 on page 79 that the distance between two nodes u and v is

128

8.1 Compacting and Encoding a Target Tree

rachmaninov

7,8

8

composer
3,5

8
ashkenazy

rachmaninov

5,6

6

performer
3,5

8

concerto
piano

symphony

9,10

10

title
3,6

6

mc

1,119,?

pre,bound

pre pathcost

pathcost,inscost

catalog

1,?cd 0,1

classics
18

category
17,18 3,4

7

11,16

12,16

tracks
3,2

5,1

13,14
length
6,1

13:25
14 7

title
6,3

916
vivace

15,16

year
3,4

4
2001

3,1

4

2,18 1,2

track

Figure 8.1: The compacted and encoded version of the path tree depicted in Figure 7.2 on
page 111.

defined as the sum of the insertion costs of all nodes on the path from u to v (excluding u

and v). In order to calculate the node distances, we assign the path cost to each node u,

which is the total insertion cost of all nodes on the path from the root of the target tree to u

(excluding u). We write pathcost(u) to refer to this cost. Furthermore, we define the notation

inscost(u) to refer to the insertion cost assigned to u. If u is an ancestor of v, then the node

distance between u and v is

nodedist(u, v) = pathcost(v) − pathcost(u) − inscost(u).

If u is not an ancestor of v, then the distance between the nodes is infinite. The preorder

numbers, path costs, and insertion costs are assigned during a depth-first traversal of the

target tree; the bounds are assigned bottom-up. If u is a leaf, then the bound is equal to the

preorder number, and can be omitted. The insertion cost of a leaf is not needed to for the

calculation of the distances, and is therefore omitted as well.

An example of an encoded path tree is shown in Figure 8.1. The preorder number and the

bound are assigned to the left side of each node; the path cost and the insertion cost are

located at the right side. For simplicity, we omit the node types in the figure. Consider the

nodes 11 (tracks) and 16 (vivace). The numbering scheme allows the verification that node 11

is an ancestor of node 16, because 11 < 16 ∧ 16 ≥ 16 evaluates to true. The calculation

9 − 3 − 2 = 4 yields the sum of the insertion costs of the nodes 12 and 15, and therefore also

the distance between the nodes 11 and 16.

129

Chapter 8 Efficient Algorithms for Plan Operators

cd
composer
length
mc
performer
title
track
tracksvivace 2001 : (4,4)

(a) Index (b) Index (c) IndexII Idata struct integer

: (16,9)

: (2,18,1,2)
: (17,18,3,4)

: (7,8,3,5)
: (13,14,6,1)
: (19,?,1,1)
: (5,6,3,5)
: (9,10,3,6),(15,16,6,3)
: (12,16,5,1)
: (11,16,3,2)

: (10,6)symphony

concerto
piano
rachmaninov

: (10,6)
: (10,6)
: (8,8)

: (18,7)classics

13:25
2001

: (14,7)
: (4,4)

ashkenazy : (6,8)

catalog : (1,?,0,1)
category

Figure 8.2: The indexes of the path tree depicted in Figure 8.1 on the page before.

8.2 The Indexes of a Target Tree

To access all nodes of a given type and value, we use type-dependent indexes for both data

trees (to evaluate a query using the direct method) and path trees (to construct second-level

queries).

A type-dependent index Iτ maps the values of nodes with type τ to postings. Each posting

entry represents a target-tree node and contains the numbers assigned to the respective node.

That is, an entry in a structural index is a quadruple

(pre, bound, pathcost, inscost),

where the components refer to the corresponding values of the node represented by the entry.

An entry in an index for accessing nodes of type data is a pair

(pre, pathcost),

consisting of the preorder number and the path cost of the represented node. Figure 8.2

shows three indexes constructed for the compacted path tree depicted in Figure 8.1 on the

preceding page. The numbers are only stored within the posting entries; the target tree itself

is not necessary for the evaluation of queries. We support two variants for the indexing of

type hierarchies:

Replication: Entries belonging to nodes of type τ are stored in the index Iτ , and also in all

indexes Iτ ′ , where τ ′ is a supertype of τ .

Filtering: Entries belonging to nodes of type τ are only stored in the index Iτ , where τ ′

is a supertype of τ . To detect the actual type of the node, we add additional type

information to the entry representing the node.

130

8.3 Lists

Any combination of replication and filtering is possible. Our example in Figure 8.2 uses the

following combination: The index Istruct stores entries representing element nodes as well as

entries representing nodes of type attribute (for simplicity, we omit the type information). In

contrast, integer nodes are replicated so that they appear in both Idata and Iinteger.

The proposed indexing model can be implemented on top of any standard index, as long as

the index supports the selection predicates defined by the node type. For instance, a hash

table can be used if only equality tests are defined for a type. An example is the index Istruct

depicted in Figure 8.2(b). For numerical data, where less-than and greater-than must be

supported, a B-tree may be used. An example is the index Iinteger depicted in Figure 8.2(c).

Moreover, for text data we may need to support phrase and substring matching, regular

expressions, and fault-tolerant string matching based on the edit distance for strings. In

these cases, we may implement the index as a suffix tree or suffix array [MM90].

8.3 Lists

The operators defined in Section 6.3 and extended in Section 7.2 work on sets. A set stores

information about data-tree or path-tree nodes of a given type and value. Each basic set

entry has the structure (uD, c, c̃), where uD is a data-tree node, c is the primary cost of uD

(the cost of embedding a query subtree into the data subtree rooted at uD), and c̃ is the

backup cost of c used to compensate the effect of passing c along different paths.

In this section, we show how sets of node-cost tuples can be implemented so that the operators

join, outerjoin, union, and intersect are efficient: First, we replace the node component of a

tuple by four integers, which are sufficient to describe all necessary node properties. Second,

we use lists instead of sets. The tuples in the lists are sorted by the topology of the nodes

they represent. This allows the implementation of operators that have linear time complexity

with respect to the lengths of the operand lists.

A basic list entry used by the operators of the direct evaluation method implements a basic

node-cost tuple (uD, c, c̃). It has the following structure:

(pre, bound, pathcost, inscost, embcost, backcost),

where the first four integers store fixed information about the data-tree node uD. These

values are initialized from the corresponding integers assigned to the node (see Section 8.1).

The component embcost is the primary cost c; the component backcost is the backup cost c̃.

131

Chapter 8 Efficient Algorithms for Plan Operators

For the two schema-driven evaluation methods, we additionally have to track the images of

path-tree embeddings, which are later used as second level queries. In analogy to extended

node-cost tuples introduced in Section 7.2.1, we propose extended list entries, which have the

following structure:

(pre, bound, pathcost, inscost, embcost, backcost, pointers).

The first six components form a basic list entry. The component pointers is a set of references

to extended list entries. It implements the component N of an extended node-cost tuple

(uP , c, c̃, N) (see Definition 7.5 on page 115). If uP is a match of a query node uQ, then N

stores a combination of tuples that represent path-tree nodes matched by the children of uQ.

Each list is sorted by the preorder numbers of the list entries ascendingly, which reflects

the topology of the nodes. If one of the schema-driven evaluation methods is used, the lists

consist of k-segments (see Section 7.2.2), where all entries in a particular k-segment represent

embedding images of the same query subtree in the same subtree of the path tree. This means

that all entries in a k-segment have the same preorder number, but different embedding costs

and pointer sets. List segments are sorted by increasing embedding cost. All operations on

lists ensure both the primary sort order (by node number) and the secondary sort order (by

embedding cost) of the result list. We define the following notations:

[] the empty list,

|L| the number of entries in list L,

L[i] the ith entry in L (1 ≤ i ≤ |L|),
L[i, j] the interval of entries limited by the indices i and j.

We use a functional notation to refer to the components of entries. For example, we write

embcost(L[i]) to access the component embcost of the entry L[i]. In the algorithms introduced

in the following section, we sometimes say that “entry L2[j] is a descendant of entry L1[i]”.

This is an abbreviation for

pre(L1[i]) < pre(L2[j]) ∧ bound(L1[i]) ≥ pre(L2[j]).

8.4 Operations on Lists

In this section, we present algorithms for implementing the five operators defined in Sec-

tion 6.3. For simplicity, we only present the algorithms for lists with basic entries, which are

132

8.4 Operations on Lists

used by the direct query-evaluation method (see Chapter 6). The algorithms for lists with

extended entries and k-segments used by the schema-driven query-evaluation methods (see

Chapter 7) are straightforward extensions.

Each operator is implemented as a function that returns a list. The following table shows the

names of the functions.

operator symbol: σ "b "b t u
function name: select join outerjoin union intersect

In the following subsections, we always review the purpose of an operator before we present

its list-based implementation.

8.4.1 Selection

The selection operator σct [τ, φ, α] (see Definition 6.5 on page 78) creates a set of node-cost

tuples consisting of all data-tree nodes that have type τ or a subtype of τ , and that fulfill the

selection predicate φ with respect to value α. The cost component of the tuples is initialized

with the transformation cost ct.

The list-based version of the selection operator (see Algorithm 8.1 on the following page)

creates a list of basic entries, where each entry represents a selected data-tree node. After

setting up a new list (Line 1), the algorithm locates an index that supports the type τ and

the selection predicate φ (Line 2). For example, if τ = integer and φ =′≤′, then Iτ cannot

be a hash table. If the algorithm cannot find an appropriate index, it returns the empty list

(Line 3). Otherwise, the algorithm initializes a new list from the posting retrieved from the

index. It distinguishes between structural nodes (Lines 4–6), of which the indexes store four

integers, and nodes of type data, where pairs are stored (Lines 7–9). For each list entry, the

values pre and pathcost are copied from the index entries. If the selected nodes are structural

nodes, then the values bound and inscost are copied as well; otherwise, they are set to zero.

The primary cost and the backup cost of each list entry are set to the transformation cost ct.

The list returned by the operator is sorted by the preorder node numbers in ascending order.

8.4.2 Join and Outerjoin

The join operator S1 "b ctS2 (see Definition 6.7 on page 79) selects all tuples from the set S1

representing nodes with descendants in the set S2. For each ancestor and for each of its

133

Chapter 8 Efficient Algorithms for Plan Operators

Algorithm 8.1 accesses the index and initializes a list.

function select(τ, φ, α, c)

params: τ – a node type,
φ – a selection condition,
α – a value,
c – a transformation cost,

returns: L – a list initialized from the index.

1: L := []
2: Select an index Iτ ′ such that τ ′ � τ and Iτ ′ is able to verify φ
3: if Iτ ′ does not exist then return L
4: if struct ≺ τ then
5: for each tuple (pre, bound, pathcost, inscost) of Iτ (φ, α) do
6: append (pre, bound, pathcost, inscost, α, c, c) to L
7: else if data ≺ τ then
8: for each tuple (pre, pathcost) of Iτ (φ, α) do
9: append (pre, 0, pathcost, 0, α, c, c) to L
10: return L

descendants, it calculates the sum of the embedding cost assigned to the ancestor, the em-

bedding cost assigned to the descendant, and the node distance between the ancestor and the

descendant. From all descendants of the same ancestor, the operator chooses the one with

the lowest cost and inserts a new tuple consisting of the ancestor and the updated cost into

the set of results. The transformation cost ct is added to the cost component of each result

tuple.

The node-distance function (see Definition 6.6 on page 79) used by the join operator can be

easily rewritten to work with list entries. Let LA[i] be an entry in the ancestor list and LD[j]

be an entry in the descendant list. The distance between the nodes referred to by LA[i] and

LD[j] is

nodedist(LA[i], LD[j]) = pathcost(LD[j]) − pathcost(LA[i]) − inscost(LA[i]).

Using this function, we can calculate the new embedding cost embcost(LA[i])′ of the node

represented by LA[i] with respect to the node represented by LD[j] as follows:

embcost(LA[i])′ = embcost(LA[i]) + embcost(LD[j]) + nodedist(LA[i], LD[j]) + ct,

where ct is a deletion or permutation cost passed to the operator.

Recall that all lists are ascendingly sorted by the preorder node numbers. The sort order

reflects the topological relationships of the nodes represented by the list entries: Let LD[j]

and LD[k] be entries in the list LD. If j < k, then the node represented by LD[k] is either in

134

8.4 Operations on Lists

the subtree rooted at the node represented by LD[j], or it is to the right of this subtree. If

both LD[j] and LD[k] are descendants of the same entry LA[i], then all entries within the list

interval LD[j, k] are descendants of LA[i] as well. If LD[j] is the leftmost entry in LD that is a

descendant of LA[i] and LD[k] is the rightmost entry with that property, then all descendants

of LA[i] in LD are in the single interval LD[j, k]. An equivalent interpretation is that the node

represented by LA[i] covers a region, and all nodes of that region having the same type and

value are represented in a single interval of LD. Therefore, the lowest embedding cost of the

node represented by LA[i] with respect to its descendants in LD can be calculated as follows:

embcost(LA[i])′ = embcost(LA[i])+min{embcost(LD[l])+nodedist(LA[i], LD[l]) | i ≤ l ≤ k}+ct.

For the moment, we assume that the data tree is not recursive, i.e., any pair of type and

value appears only once on a path. This assumption implies that the nodes represented by

the entries in LA cover disjoint regions. Moreover, the region covered by the node represented

by the entry LA[i + 1] is to the right of the region covered by the node represented by LA[i].

Regarding the particular list LD, this means that the interval of descendants of LA[i + 1]

is to the right of the interval of descendants of LA[i]. The disjointedness of the intervals

allows to establish the ancestor-descendant relationship by simultaneously iterating through

the lists LA and LD. Linear-time joins based on regions are a well-known technique for the

implementation of containment queries (see, e.g., [Nav95]).

We now consider the general case of recursive trees, and introduce a join algorithm that works

correctly in the case of recursive trees, but still has linear time complexity in case of non-

recursive trees. The modification of the algorithm relies on a simple observation concerning

the positions of the descendants of a node in a single list: Let LA[i] be an entry in LA

representing node uD. If uD has a descendant that has the same type and value as uD, then

this descendant must be represented by an entry in LA. Moreover, because the data tree is

preorder enumerated, and because LA is sorted all m descendants of uD in LA must be in the

interval LA[i + 1, i + m].

We now consider the positions of descendants in two different lists: Assume that we have

already found the interval LD[j, k] of descendants of LA[i]. If the nodes represented by entries

in the interval LA[i+1, i+m] have descendants in LD, then those descendants must be among

the entries in the interval LD[j, k]. Figure 8.3 on the next page illustrates this observation:

All b-valued descendants of node 3 are in a contiguous interval of the list that stores all of

the occurrences of b. If we already know that interval, then we also know that all a-valued

descendants of node 3 (nodes 7 and 14) have its b-valued descendants in the same interval as

node 3. We can restrict the search for descendants to the computed intervals if we observe

135

Chapter 8 Efficient Algorithms for Plan Operators

a (3,20)

b (12,18)

a (14,16)
b (8,9)

a (7,10)

b (15,15)

b (4,6)
b (17, 18)

(a) Part of a recursive data tree.

occurrences of value a

occurrences of value b

����������
����������
����������
����������

(3,20) (7,10) (14,16)

(4,6) (8,9) (12,18) (17,18)(15,15)

(b) Lists with nested intervals.

Figure 8.3: A part of a recursive data tree and the corresponding sections in the lists belonging
to the values a and b, respectively. The distance values are not shown.

recursive uses of values on a path. The join operator uses recursive calls to perform the

interval search.

Algorithm 8.2 on the facing page shows the implementation of the join operator based on list

intervals. The outer loop iterates through the entries in LA (Line 2). At Lines 3 and 4, the

algorithm searches the starting position of an interval of descendants of LA[i] in LD. The

variable i′ marks the first index of that interval (Line 5). The algorithm then searches in

the interval of descendants for the one with the smallest sum of embedding costs and node

distance (Lines 6–8). If the calculated cost is not infinite, the algorithm creates a copy of

the entry LA[i], updates its embedding cost, and appends the entry to the result list (Lines 9

and 10). At Lines 12–15, recursive subtrees are taken into account. The algorithm searches

the first entry in LA that is not a descendant of LA[i] (Lines 12 and 13). If LA[i] does not have

any descendants in LD, then all its descendants in LA cannot have descendants in LD either.

Otherwise, if LA[i] has both descendants in LA and in LD, then the algorithm recursively

calls the operator for the computed intervals LA[i′, i] and LD[j′, j] (Lines 14 and 15).

The result list of a join contains only entries from LA that have descendants in LD. The

outerjoin operator additionally keeps all entries from the ancestor list that do not have de-

scendants. The parameter cd specifies the deletion cost of the query leaf whose matches are

in LD. If cd is not infinite, then the new operator copies each entry in the ancestor list LA

to the result list, even if it has no descendants in LD. In this case, the sum of cd and ct is

used as the embedding cost of the new entry appended to the result list. To modify the join

operator to an outer join, we simply have to insert the expression

cmin := min(cmin, cd)

between Lines 8 and 9.

136

8.4 Operations on Lists

Algorithm 8.2 performs an ancestor-descendant join.

function join(LA, LD, ct)

params: LA – a list of potential ancestors,
LD – a list of potential descendants,
ct – a transformation cost,

returns: L – the list of ancestors.

1: L := []; i := 1; j := 1
2: while i < |LA| do
3: while j < |LD| and LD[j] is not a descendant of LA[i] do
4: j := j + 1
5: cmin := ∞; j′ := j
6: while j < |LD| and LD[j] is a descendant of LA[i] do
7: cmin := min(cmin, embcost(LA[i]) + embcost(LD[j]) + nodedist(LA[i], LD[j]))
8: j := j + 1
9: if cmin < ∞ then
10: Append a copy of LA[i] to L and set its embedding cost to cmin + ct

11: i := i + 1; i′ := i
12: while i < |LA| and LA[i] is a descendant of LA[i′] do
13: i := i + 1
14: if |LA[i′, i]| > 0 and |LD[j′, j]| > 0 then
15: append the results of join(LA[i′, i], LD[j′, j], ct) to L
16: return L

137

Chapter 8 Efficient Algorithms for Plan Operators

8.4.3 Union and Intersection

The union operator S1 tct S2 (see Definition 6.9 on page 80) creates the union of the sets S1

and S2. If a node appears in only one set, then the cost calculated for the resulting node-cost

tuple is the sum of the primary cost of the tuple and the transformation cost ct. If a node is

in both S1 and S2, then the minimum of the operand costs is chosen and increased by ct.

Algorithm 8.3 shows the list-based implementation of the union operator. It makes use of

the topological relationships between the nodes to create the result list in linear time with

respect to the operand lists. Two cases have to be considered: First, a data-tree node is only

represented in one of the lists. In this instance, the entry referring to the node is copied and

inserted into the result list. Lines 3–5 capture the case that a node is represented in list L1

only, whereas Lines 6–8 handle the opposite case. Second, a data-tree node is represented in

both lists. Here the entry with the lower embedding cost is chosen (Lines 9–12). In all cases,

the embedding cost of the new entry is increased by the cost ct.

Algorithm 8.3 creates the union of the operand lists.

function union(L1, L2, ct)

params: L1, L2 – operand lists,
ct – a transformation cost.

returns: L – the list of entries occurring in L1 or L2.

1: L := []; i := 1; j := 1
2: while i < |L1| or j < |L2| do
3: if j = |L2| or (i < |L1| and pre(L1[i]) < pre(L2[j])) then
4: Append a copy of L1[i] to L and increment its embedding cost by ct

5: i := i + 1
6: else if i = |L1| or (j < |L2| and pre(L1[i]) > pre(L2[j])) then
7: Append a copy of L2[j] to L and increment its embedding cost by ct

8: j := j + 1
9: else /* pre(L1[i]) = pre(L2[j]) */
10: cmin := min(embcost(L1[i]), embcost(L2[j])) + ct

11: Append a copy of L1[i] to L and set its embedding cost to cmin

12: i := i + 1; j := j + 1
13: return L

The intersection operator S1 uct S2 (see Definition 6.10 on page 81) selects all pairs of tuples

from the sets S1 and S2 that refer to the same data-tree node. For each pair, it creates a new

node-cost tuple consisting of the shared node and a cost, which is the sum of the costs stored

in the corresponding tuples plus ct.

Algorithm 8.4 on the facing page shows the list-based implementation of the intersection

138

8.5 Complexity Bounds for Operators and Query-Execution Plans

operator. The algorithm iterates through both operand lists simultaneously (Line 2), and

selects all pairs of entries that refer to the same data-tree node from the operand lists (Line 3).

For each pair, a new entry is created. Its embedding cost is set to the sum of the embedding

costs of the operands plus ct (Line 5). The created entry is then appended to the result list.

Algorithm 8.4 creates the intersection of the operand lists.

function intersect(L1, L2, ct)

params: L1, L2 – operand lists,
ct – a transformation cost.

returns: L – the list of entries in both L1 and L2.

1: L := []; i := 1; j := 1
2: while i < |L1| and j < |L2| do
3: if pre(L1[i]) = pre(L1[j]) then
4: csum := embcost(L1[i]) + embcost(L2[j]) + ct

5: Append a copy of L1[i] to L and set its embedding cost to csum

6: if pre(L1[i]) ≤ pre(L1[j]) then
7: i := i + 1
8: if pre(L1[i]) ≥ pre(L1[j]) then
9: j := j + 1
10: return L

8.5 Complexity Bounds for Operators and Query-Execution Plans

In this section, we summarize the upper bounds for the time and space complexities of the

list-based algorithms for operators introduced in this chapter. Based on these findings and on

the analysis of query-execution plans done in Section 6.7, we also investigate the upper bounds

of time and space consumed during the evaluation of a plan. Because those bounds depend

on the chosen query-evaluation method, we analyze the direct method (see Section 8.5.2) and

the two schema-driven methods (see Section 8.5.3) separately.

We review the parameters introduced in Section 6.7 and add the letters k, l, m, r, s, sD, sP :

d – maximum number of children of a query selector (query degree),

k – number of second-level queries,

l – maximum length of an operand list,

m – maximum number of nodes in a second-level query,

n – number of query selectors (query size),

p – number of permitted permutations for the query,

r – maximum number of repeated values on a path (recursivity),

139

Chapter 8 Efficient Algorithms for Plan Operators

s – maximum number of occurrences of a value (selectivity),

sD – selectivity in a data tree,

sP – selectivity in a path tree,

v – maximum number of permitted value changes per query selector.

8.5.1 Time and Space Complexities of the Operators

Each operator (except the selection operator) takes two lists and creates a new list that

combines the entries of the operand lists. List operators have important properties regarding

their time and space complexities:

• The length of the result list created by a join, outerjoin, or intersection operator cannot

exceed the length of the longer operand list. The length of the result list created by a

union operator is bound by the sum of the lengths of the operand lists.

• The time complexity of each operator is linear with respect to the lengths of the operand

lists. For recursive target trees, the execution times of both join operators increase by

factor O(r).

• For each operator, the space needed to create a single entry for the result list is O(1).

Therefore, the space complexity of each operator is determined only by the size of the

result list. For recursive target trees, the join operators need O(r) additional space to

maintain position information during recursive calls.

All discussed properties also hold for the operators that handle extended list entries and

k-segments. The following table summarizes the time and space complexities of all operators:

select join outerjoin union intersect

time O(s) O(r · l) O(r · l) O(l) O(l)

space O(s) O(r + l) O(r + l) O(l) O(l)

The complexity formula of the selection operator does not take the time needed to access the

index into account.

8.5.2 Complexity Bounds for the Direct Evaluation Method

In Section 6.7, we investigated the space complexities of query-execution plans in terms of

the number of operators they consisted of. The number of union operators used to represent

140

8.5 Complexity Bounds for Operators and Query-Execution Plans

permutations or value-changes affects the maximum length of the lists passed during the plan

evaluation. Therefore, we first discuss the effect of the list lengths on the time and space

complexities of operators, with respect to input parameters like query size and number of

permitted value-changes. Next, we relate the operator complexities to the maximum number

of operators in a plan in order to get the total time and space complexities of a plan.

The maximum length of a list during the evaluation of a query is determined by the maximum

selectivity, i.e., the length of the longest posting used for list initialization. The maximum

length of a list increases if value changes are permitted. Each value change of a selector is

represented by a selection and a union operator. If a selector has v permitted value changes,

then the maximum list length grows by factor O(v). Permutations are similar to value changes:

They are added as alternative subplans connected by union operators. If p permutations are

defined for the query, and if all of them refer to the same selector, then O(p) union operators

are added to the plan and the maximum list length grows by factor O(p). Deletions are the

only operations that do not increase the list lengths, because the union operators representing

the deletions merge operands taken from the same list. In summary, the upper bound for the

length of lists created during the evaluation of an arbitrary query-execution plan is O(p ·v ·s).
To present complexity formulae that abstract from the concrete set of operators used in a

plan, we use the complexity bounds of the most time and space-consuming operator: the join

operator. We define the abbreviations

ot = O(r · p · v · s) os = O(r + p · v · s)

to denote the worst-case time complexity (ot) and space complexity (os) of any operator,

given the maximum list length O(p · v · s). The following table recapitulates the upper bound

for the number of plan operators, and summarizes the time and space complexities for the

evaluation of a plan:

number of plan operators evaluation time complexity evaluation space complexity

O((n · v + p) · d) O((n · v + p) · d · ot) O(n · os)

8.5.3 Complexity Bounds for the Schema-Driven Evaluation Methods

The two schema-driven query-evaluation methods proposed in Chapter 7 also use query-

execution plans for the creation of second-level queries. However, there are two important

differences from the direct evaluation method: First, the operators work on lists with k-

segments, which increases both the time and space complexities of the algorithms. Second,

141

Chapter 8 Efficient Algorithms for Plan Operators

the evaluation of an approXQL query consists of two steps: The creation and the evaluation

of second-level queries. In the following, we use subscripts for the letter s to distinguish

between the selectivities of the data tree sD and of the path tree sP . The time complexity

of each operator for extended lists rises by the factor k · log k, which is the time needed to

compute cost-sorted segments of size k from the operand lists. The space complexity rises by

the segment length k. We define the abbreviations

ot = O(r · p · v · sP · k · log k) os = O(r + p · v · sP · k)

to denote the worst-case time complexity (ot) and space complexity (os) of any operator for

extended lists, given the maximum list length O(p · v · sP · k). Because we use the same plans

to evaluate a query using the direct method and to create second-level queries, we can adopt

our findings about the complexity of the plan evaluation:

number of plan operators evaluation time complexity evaluation space complexity

O((n · v + p) · d) O((n · v + p) · d · ot) O(n · os)

The algorithm for evaluating second-level queries (Algorithm 7.1 on page 121) visits each

node in a second-level query exactly once, and processes lists whose lengths are bound by sD.

Therefore, the evaluation time of a second-level query is bound by

O(sD · m),

where m is the number of nodes in a second-level query. The maximum time needed to create

and evaluate k second-level queries is

O((n · v + p) · d · ot + k · sD · m).

Note that all parameters of the formula are typically small numbers. This is true even for sP

and sD, because sP cannot exceed the number of schema nodes, and sD is bound by the

maximum number of equal paths in the data tree. The results of an experimental efficiency

analysis presented in Chapter 10 show that the schema-driven query-evaluation methods are

indeed very fast.

8.6 Related Work

The preorder-bound numbering scheme for trees is widely used in retrieval systems that

support queries with “skip” operators like “//”, or operators that test for indirect inclusion

142

8.6 Related Work

(see, e.g., [CCB95a, Nav95, Meu00]). Often, the pair of numbers assigned to a node is

extended by a third number that stores the depth of the node in the tree. Given two nodes on a

path, the depth information allows to verify of whether nodes have parent-child relationships.

Amer-Yahia et. al. [ACS02] use the depth difference between two nodes to calculate the degree

of relaxation of a query edge. To our knowledge, the integration of cost information into the

numbering scheme has not been considered before.

Several researchers proposed efficient algorithms for the implementation of ancestor-descendant

joins [Nav95, ZND+01, AKJK+02, CVZ+02]. Navarro [Nav95] demonstrated that ancestor-

descendant joins on non-recursive trees can be evaluated in linear time with respect to the

lengths of the operand lists. Zhang et. al. [ZND+01] showed that this technique outper-

forms the evaluation of containment queries using a relational database system. Al-Khalifa

et. al. [AKJK+02] proposed two families of joins: tree-merge joins and stack-tree joins. The

algorithms for the tree-merge joins are similar to our join algorithm introduced in [Sch01a]

and adopted in this thesis: Both the ancestor list and the descendant list are processed si-

multaneously by exploiting the topology of nodes in the data tree. If the tree is recursive,

then parts of the descendant list must be processed several times. The algorithms for the

stack-tree joins also process the lists simultaneously, but use stacks to hold the ancestor(s) of

the currently processed descendants. Chien et. al. [CVZ+02] proposed an improved algorithm

for the evaluation of stack-tree joins that uses B-trees to access the list entries.

Apart from our work published in [Sch01a], the only attempt to integrate a valuation function

into an ancestor-descendant join was made by Amer-Yahia et. al. [ACS02] (see our review in

Section 6.8). Because the valuation functions of both approaches differ (minimum of costs

versus sum of weights), the join algorithms use different techniques to calculate the (partial)

scores of the results. Cost-calculating union and intersection operators for the evaluation

of XML queries have not been considered by other authors. The algorithms used for those

operators are contributions of this work.

143

