
Chapter 7

Schema-Driven Query Evaluation

An initial weakness of the direct query-evaluation method presented in the previous chapter

is that we must compute all results in order to retrieve the best n ones, after sorting and

pruning the result set. We simply do not know the cost of a logical document until we

have applied the last plan operator, and because we cannot estimate the final cost in an

early evaluation step, we do not know which documents can be discarded. A method to

overcome the lack of knowledge about the final cost of a partially evaluated document is to

involve additional information about common structures of the data tree. During the query

evaluation, this additional information can help to determine to which extent the cost of the

current document is expected to grow. In this chapter, we present a consequent realization of

this idea: We use the path tree (schema) of the data tree to find the best k query embeddings

in cost-sorted order. The images of these embeddings are used as “second-level queries”,

which are executed against the data tree in order to find the best n results. To find the best k

second-level queries, we make use of the algorithmic framework presented in the previous

chapter. We apply few changes to the five set operators, but do not modify the algorithms

for the construction and evaluation of query-execution plans.

The chapter is organized as follows: In the first section, we formally define path trees and

investigate their relationships to data trees. Starting in Section 7.2, we present a method for

evaluating a query with the help of a path tree. We first extend node-cost tuples so that they

can not only track an embedding cost, but also the image of the embedding for which the cost

has been calculated. Next, we show how the operators must be adapted to find the best k

second-level queries. In Section 7.3, we introduce an algorithm that finds all results of a given

second-level query. The algorithms for the creation and evaluation of second-level queries

are then integrated into an incremental query-evaluation algorithm that retrieves the best n

109



Chapter 7 Schema-Driven Query Evaluation

results of a query given an initial guess for k. This algorithm is presented in Section 7.4. In

Section 7.5, we show how the incremental algorithm can be optimized by merging second-level

queries with similar substructures. At the end of the chapter, we review related work.

7.1 The Relationship between a Data Tree and its Path Tree

In a data tree constructed for a collection of XML documents, many subtrees have similar

structures. A collection of sound storage media may contain several CDs that all have a title,

a composer, or both. Such data regularities can be captured by a path tree, which is similar

to a DataGuide [GW97]. In this section, we investigate how the path tree of a data tree can

be used to find all logical documents matching a query.

7.1.1 Path Trees and Node Classes

A path tree can be considered as a data tree in which sibling nodes with equal types and

values are merged. To define a path tree formally, we need the notion of a type-value path:

Definition 7.1 (Type-value path) A type-value path (τ1, α1).(τ2, α2) . . . (τn, αn) in a type-

value tree T = (N,E, r, type, value) is a sequence of type-value pairs, where each pair (τi, αi)

represents a node ui ∈ N such that

1. u1 = r,

2. τi = type(ui) for all 1 ≤ i ≤ n,

3. αi = value(ui) for all 1 ≤ i ≤ n, and

4. (ui, ui+1) ∈ E for all 1 ≤ i < n.

Note that a type-value path starts at the root of a tree, but does not necessarily end at a leaf.

Definition 7.2 (Path tree) The path tree TP of a data tree TD is a type-value tree such

that (i) for each type-value path in TD there is exactly one equal type-value path in TP , and

(ii) for each type-value path in TP there is an equal type-value path in TP .

The path tree of a data tree is unique because the left-to-right order of sibling nodes is

irrelevant. Figure 7.2 on the next page shows the path tree constructed for the data tree

110



7.1 The Relationship between a Data Tree and its Path Tree

cd

composer

rachmaninov

performer

ashkenazy
track

13:25

length title

vivace

tracks category

classics

performer

rachmaninov

title

symphony

cd

mc

year

2001
integer

attribute element

text text

element

element

title

concertopiano

catalog

element

texttext

attribute

data

element

text

element

element element

text

element

text

element

element

element

text

element

Figure 7.1: A part of a data tree.

cd

track

13:25

length title

vivace

composer

rachmaninovrachmaninovashkenazy

year performer

concertopiano symphony

title tracks

2001

mc

category

classics

catalog

integer

attribute

text

element

text

element

text text

element

element

element

element

element

text

element

element

element

textdata

attribute

texttext

Figure 7.2: The path tree of the data tree depicted in Figure 7.1.

depicted in Figure 7.1. The number of nodes in this path tree is not significantly smaller

than the number of nodes in the corresponding data tree, because the data tree does not have

repeated structures, and because all distinct leaf values are represented in the path tree. The

explicit representation of leaf values is a simplification that helps to explain our approach.

In the next chapter, we introduce compacted path trees, which have identical properties with

respect to the approximate query-matching distance, but have much smaller sizes.

Definition 7.3 (Node class, node instance) Let TD be a data tree, and TP be its path

tree. A node uP in TP is the class of a node uD in TD if and only if uP and uD are reachable

by equal type-value paths. If uP is the node class of uD, then uD is an instance of uP .

We use the notation uP = [uD] to denote the node class uP of uD, and the notation

instances(uP ) to refer to the set of instances of uP . Each data-tree node uD has exactly

one node class because there is only one type-value path from the root of the data tree to uD.

111



Chapter 7 Schema-Driven Query Evaluation

query tree

path tree

311

4

5
5 6

data tree

7

2
7

2

Figure 7.3: The relationship between a data tree and its path tree.

7.1.2 Using the Path Tree to find the Images of Data-Tree Embeddings

We prove that there are two equivalent ways of finding the images of data-tree embeddings:

The direct embedding of query trees, and a two-level method that uses the path tree of the

data tree in an intermediate step. Figure 7.3 gives an overview of our proofs. First, we show

that each tree included in the data tree (1) has an embedding (2) into the path tree. The

image (3) of the embedding is called a tree class. Several trees included in the data tree

may have the same tree class. Next, we show that embeddings are transitive. Given a query

tree (4) and embeddings in the data tree (5), we can also construct an embedding of the

query tree in the path tree (6) so that the embedding image (3) is a tree class of (1). In the

next step, we show that each tree class has reverse embeddings (7) that help to locate the

instances of the tree class, and that only tree classes have reverse embeddings. It follows that

we can find the images of the embeddings of a query tree TQ into a data tree by selecting the

images of the path-tree embeddings of TQ and using them to find the images of the data-tree

embedding of TQ.

Definition 7.4 (Tree class, tree instance) Let T ′
D be a tree included in TD, and T ′

P be

the image of an embedding of T ′
D into TP . Then T ′

P is a tree class of T ′
D and T ′

D is a tree

instance of T ′
P .

Each tree included in the data tree has a tree class. Intuitively, the construction of an

embedding of an arbitrary tree included in the data tree into the path tree is possible because

the path tree preserves all vertical relationships of the data tree as well as all horizontal

relationships required by embeddings. Of course, not all horizontal relationships of the data

tree are preserved; in particular, the order of siblings is lost and siblings with identical types

and values are mapped to a single node in the path tree. But these are exactly the relationships

not required by embeddings —by definition, an embedding is unordered and not injective.

112



7.1 The Relationship between a Data Tree and its Path Tree

Lemma 7.1 (Tree-class existence) Let TD be a data tree, and TP be its path tree. Each

tree T ′
D included in TD has a tree class in TP .

Proof: We prove the lemma by constructing an embedding f of T ′
D into TP (see Defini-

tion 5.1 on page 53). We set f(uD) = [uD] for each uD in the node set of T ′
D. The mapping

f(uD) is well-defined and is a type and value-preserving function (Definition 7.3). Therefore,

f fulfills the first three properties of Definition 5.1. Let vD be a child of uD. Definition 7.2

states that each parent-child relationship in the data tree corresponds to a parent-child rela-

tionship in the path tree. That is, [vD] is a child of [uD], and therefore f(vD) is a child of

f(uD). Thus, Property 4 of Definition 5.1 holds and f is an embedding. 2

We cannot ensure the opposite direction: Not every tree included in the path tree is a tree

class because the path tree contains sibling relationships that have no counterparts in the

data tree. Consider the path tree depicted in Figure 7.2 on page 111. The included tree

consisting of the cd node and the children composer and category is not a tree class because

there is no CD in our catalog that has both a composer and a category. Moreover, a tree

included in a data tree may belong to several tree classes. For example, a tree with the root

value title and the leaf value piano may appear several times in both a data tree and its path

tree. All tree classes of a tree included in a data tree share the same instances, and therefore

only one of the tree classes has to be considered.

So far, we have shown that each tree included in the data tree has a tree class (although this

tree class is not necessarily unique). An implication of this proposition is that each image of

an embedding of a query tree TQ in the data tree has a tree class. We now need a way to find

one of the tree classes of the embedding images of TQ without accessing the data tree. Once

we have this class, we can use it to find the embeddings of TQ in the data tree. The following

lemma helps to prove that we can in fact find a tree class using only the path tree.

Lemma 7.2 (Embedding transitivity) Let f be an embedding of a tree TA into a tree TB,

where T ′
B is the image of f . Let f ′ be an embedding of T ′

B into a tree TC , where T ′
C is the

image of f ′. Then exists an embedding f ′′ of TA into TC such that T ′
C is the image of f ′′.

Proof: All four properties of Definition 5.1 are transitive. We can therefore construct an

embedding f ′′ by defining f ′′(uA) = f ′(f(uA)) for each uA in the node set of TA. 2

Lemma 7.2 allows us to find the tree classes belonging to the images of all data-tree em-

beddings of a query tree TQ: Whenever TQ has an embedding in the data tree, the image

113



Chapter 7 Schema-Driven Query Evaluation

of the embedding has a tree class T ′
P . Because embeddings are transitive, there is also an

embedding of TQ into the path tree such that T ′
P is the image. Thus, if we have the images of

all path-tree embeddings of TQ, then we also have all tree classes belonging to the data-tree

embeddings of TQ. However, we are not interested in the tree classes of the images of data-tree

embeddings, but rather in the images itself. The following lemma shows that all tree classes

(any only tree classes) have reverse embeddings that help to locate their instances.

Lemma 7.3 (Reverse embeddings) Let TD be a data tree, TP be its path tree, and T ′
P be

a tree included in TP . If T ′
P is a tree class of a tree T ′

D included in TD, then there exists an

embedding of T ′
P into TD such that the root of T ′

D is the root of the embedding image. If T ′
P

is not a tree class of a tree included in TD, then no embedding into TD exists.

Proof: Case one: T ′
P is a tree class of T ′

D. Let f be the embedding that maps T ′
D to T ′

P .

We construct a reverse embedding f ′ as follows: Each node uP in T ′
P is the image of a node

uD in T ′
D. If uP = f(uD) is the image of only one node uD, then we define f ′(uP ) = uD.

Otherwise, if uP is the image of several sibling nodes in T ′
D, we choose an arbitrary one

(say wD) and define f ′(uP ) = wD. Each node in T ′
P is mapped to a single node in T ′

D.

Therefore, f ′ is a function. The properties 2, 3, and 4 of Definition 5.1 are equivalences

so that for each pair uP , vP holds value(uP ) = value(f ′(uP )), type(uP ) = type(f ′(uP )), and

(uP , vP ) ∈ E′
P ⇔ (f ′(uP ), f ′(vP )) ∈ E′

D. It follows that f ′ is an embedding of T ′
P into T ′

D.

Case two: T ′
P is not a class of any tree included in TD. Assume there was an embedding

of T ′
P into TD with the image T ′

D. Then we could construct an embedding f that maps T ′
D

to T ′
P in analogy to the construction of f ′ described above (the construction is even simpler

because no equal-valued siblings exist in the path tree). However, if f existed then T ′
P would

be a tree class. 2

The lemmata imply a simple two-level evaluation method for a query tree: If we have a

“primary” algorithm that finds the images of all of the embeddings of a query tree into a data

tree, then we can use the same algorithm to find the tree classes of those images (Lemmata 7.1

and 7.2). However, the algorithm may also find embedding images in the path tree that are

not tree classes. We additionally need a “secondary” algorithm that uses the image of a path-

tree embedding as a “second-level query”, and finds all reverse embeddings for that image.

Because only tree classes have reverse embeddings, and for a given class a reverse embedding

to each of its instances exist (Lemma 7.3), the two-level approach finds the images of all

embeddings of the query tree into the data tree, and it finds only those.

In the following sections, we use the equivalence between direct and two-level embedding to

implement efficient algorithms for the schema-driven evaluation of approXQL queries.

114



7.2 Finding Second-Level Queries in a Path Tree

7.2 Finding Second-Level Queries in a Path Tree

In Chapter 6, we presented an algorithmic framework for the evaluation of an approXQL query

with respect to a data tree. In this section, we extend this framework in a way that during

the evaluation of a query not only the roots of the embeddings are found, but also the images

of them. The extended framework is then used to find the images of path-tree embeddings

(second-level queries). We do neither modify the construction of query-execution plans, nor

the plan-evaluation algorithm. Instead, we apply changes to the basic level of the framework:

We extend node-cost tuples so that they can store not only an embedding cost, but also the

image of the embedding for which the cost has been calculated. However, the objective of this

chapter is to retrieve only the best n results. To find them, we need the k second-level queries

with the lowest embedding cost. (In Section 7.4, we show how to guess the parameter k based

on n.) To this end, we introduce k-segments, which are subsets of node-cost sets. Each tuple

of a segment represents a different embedding image with respect to the same subtree of the

path tree. We then show how the five set operators must be adapted to find the best k —or

even all — second-level queries.

7.2.1 Representing Embedding Images

In Section 6.3, we introduced five set operators. A set consists of node-cost tuples, where

each tuple (uD, c, c̃) represents a data-tree node uD that matches a certain query selector.

The primary cost c assigned to uD reflects an intermediate embedding cost computed during

the evaluation of the query-execution plan; the component c̃ serves as backup cost for the

primary cost c. Now, we extend the tuples in such a way that they represent not only the

cost of an embedding of a query subtree, but also the image of that embedding:

Definition 7.5 (Extended node-cost tuple) An extended node-cost tuple is a structure

(uP , c, c̃, N), where uP is a path-tree node, c is a primary cost, c̃ is a backup cost, and N is

a set of extended node-cost tuples.

The set N contains k extended node-cost tuples, where k is

the number of children of the query node uQ matching uP .

Each of these k tuples represents a path-tree node that is a

match of a child of uQ. Thus, the whole extended node-cost

tuple represents the image of an embedding with cost c.

piano concertorachmaninov

cd

titleperformer

Figure 7.4: A query tree.

Consider the query tree depicted in Figure 7.4 and assume that the node with value cd matches

the path-tree node uP1 , performer matches uP2, rachmaninov matches uP3 , title matches uP4 ,

115



Chapter 7 Schema-Driven Query Evaluation

piano matches uP5 , and concerto matches uP6 . Then a particular tuple computed for the query

tree has the form

(uP1 , c1, c̃1, { (uP2 , c2, c̃2, { (uP3 , c3, c̃3, ∅) }), (uP4 , c4, c̃4, { (uP5 , c5, c̃5, ∅), (uP6 , c6, c̃6, ∅) }) }),

where c1 . . . c6 and c̃1 . . . c̃6 are the primary and backup costs calculated during the evaluation

of the query.

7.2.2 k-Segments

In Section 6.3, we defined node-cost tuples. A node-cost tuple refers to the root of a data

subtree that includes the image of a query-tree embedding. In any set of node-cost tuples

processed by the operators in a query-execution plan, each data-tree node is represented at

most once. The unique occurrence of each node was reasonable because we were interested

in the best embedding per matching subtree of the data tree, and therefore we kept only the

lowest embedding cost per subtree. Now, we want to find the images of the best k approximate

embeddings of a query in a path tree in order to use them as second-level queries. Two distinct

path-tree embeddings may have distinct embedding roots, for instance the cd node and the

mc node. However, two distinct embeddings often have the same root, but map to different

included subtrees of the path tree. For example, two embedding images may have the common

root cd, but one of them may include the composer path whereas the other may include the

performer path. To track the images of the best k embeddings (and their costs) per query

subtree and per subtree of the path tree, we use k-segments:

Definition 7.6 (k-Segment) Let k be a fixed number. A k-segment is a set { t1, t2, . . . , tl }
(1 ≤ l ≤ k), where each ti = (uPi , ci, c̃i,Ni) (1 ≤ i ≤ l) is an extended node-cost tuple. For

each pair of integers i, j (1 ≤ i < j ≤ l) holds: uPi = uPj ∧ (ci 6= cj ∨ Ni 6= Nj).

All tuples of a fixed k-segment represent embedding images of the same query subtree in the

same subtree of the path tree.

7.2.3 Operators for Sets with Extended Node-Cost Tuples

We define the operators for sets with extended node-cost tuples. To distinguish these operators

from the basic operators introduced in Section 6.3, we call them “k-operators”. The interfaces

of the k-operators join, outerjoin, union, and intersection get an additional parameter k. For

the definition of the k-operators, we need an auxiliary function prune, which modifies a set

in such a way that all segments are reduced to the k lowest-cost tuples:

116



7.2 Finding Second-Level Queries in a Path Tree

Definition 7.7 (k-Set) Let S be a set of node-cost tuples and k be a fixed segment size. The

k-set of S is defined by the function

prune(k, S) = { (uP , c1, c̃1,N1) | (uP , c1, c̃1,N1) ∈ S

∧ there exist at most k − 1 tuples (uP , c2, c̃2,N2) ∈ S such that c2 < c1 }.

Selection

The selection operator for sets with extended node-cost tuples is almost identical to the

corresponding basic operator (see Definition 6.5 on page 78), except that it initializes the

additional set component of each tuple.

Definition 7.8 (Selection) Let τ = (D,P ) be a type, φ ∈ P be a predicate, α ∈ D be a

value, ct be a transformation cost, and TP = (NP , EP , rP , typeP , valueP ) be a path tree. The

selection of extended node-cost tuples from TP is defined as

σct [τ, φ, α] TP = { (uP , ct, ct, ∅) | uP ∈ NP ∧ τ � typeP (uP ) ∧ φ(α, valueP (uP )) }.

k-Join and k-Outerjoin

The basic join operator (see Definition 6.7 on page 79) selects all node-cost tuples from the

first operand set that have descendants in the second operand set. For each ancestor and for

each of its descendants, it calculates the sum of the primary cost of the ancestor, the primary

cost of the descendant, and the node distance between the ancestor and the descendant. From

all descendants of the same ancestor, the operator chooses the one with the lowest cost and

inserts a new tuple consisting of the ancestor and the updated cost into the set of results. The

transformation cost is added to the cost component of each result tuple. The k-join operator

differs from the basic version in three details: First, it handles ancestor and descendant sets

with k-segments. Second, it creates result segments of size k, where the tuples of a particular

segment represent the images of distinct embeddings of the same query subtree into the same

subtree of the path tree. Third, for each result tuple, it copies the set component of the

ancestor tuple and extends it by the descendant tuple.

Definition 7.9 (k-Join) Let S1 and S2 be sets of extended node-cost tuples, ct be a trans-

formation cost, and k be a segment size. The k-join between S1 and S2 is defined as

S1
k
"b ctS2 = prune(k, { (uP , ct + c1 + c2 + nodedist(uP , vP ), c̃1,N1 ∪ { (vP , c2, c̃2,N2) }) |

(uP , c1, c̃1,N1) ∈ S1 ∧ (vP , c2, c̃2,N2) ∈ S2 ∧ uP ; vP } ).

117



Chapter 7 Schema-Driven Query Evaluation

The basic outerjoin operator (see Definition 6.8 on page 80) is similar to the basic join

operator, except that it passes all node-cost tuples from the first operand set to the result set,

whether they have descendants in the second operand set or not. Consequently, the definition

of the k-outerjoin is almost identical to the definition of the k-join, except that each tuple

of the ancestor set is inserted into the result set. The primary cost of the additional tuples

is calculated as the sum of the transformation cost, the primary cost of the current ancestor

tuple, and the deletion cost of the query leaf.

Definition 7.10 (k-Outerjoin) Let S1 and S2 be sets of extended node-cost tuples, ct be a

transformation cost, cd be a deletion cost, and k be a segment size. The k-outerjoin between S1

and S2 is defined as

S1
k
"b ct

cd
S2 = prune(k, { (uP , ct + c1 + c2 + nodedist(uP , vP ), c̃1,N1 ∪ { (vP , c2, c̃2,N2) }) |

(uP , c1, c̃1,N1) ∈ S1 ∧ (vP , c2, c̃2,N2) ∈ S2 ∧ uP ; vP } ∪
{ (uP , c + c1 + cd, c̃1,N1) | (uP , c1, c̃1,N1) ∈ S1 } ).

k-Union and k-Intersection

The basic union operator (see Definition 6.9 on page 80) creates the union of the operand sets.

If a node appears in only one operand set, then the cost calculated for the resulting node-cost

tuple is the sum of its primary cost and the transformation cost passed to the operator. If

a node is in both operand sets, then the minimum of the primary costs of the operands is

chosen and increased by the transformation cost. The k-union operator extends that behavior

to sets with k-segments. At most k tuples representing the same path-tree node form a new

segment, which is ensured by the prune function.

Definition 7.11 (k-Union) Let S1 and S2 be sets of extended node-cost tuples, ct be a trans-

formation cost, and k be a segment size. The k-union between S1 and S2 is defined as

S1
k ctS2 = prune(k, { (uP , ct + c, c̃,N) | (uP , c, c̃, N) ∈ S1 ∪ S2 }.

The basic intersection operator (see Definition 6.10 on page 81) selects all pairs of node-cost

tuples from the operand sets that refer to the same data-tree node. For each pair, it creates a

new node-cost tuple consisting of the shared node and a cost, which is the sum of the primary

costs of the corresponding tuples, plus the transformation cost passed to the operator. The

k-intersection operator differs from the basic version in two details: First, it passes k-segments

of tuples to the result set. Second, it merges the set components of corresponding tuples.

118



7.3 Finding Results of Second-Level Queries in a Data Tree

Definition 7.12 (k-Intersection) Let S1 and S2 be sets of extended node-cost tuples, ct be

a transformation cost, and k be a segment size. The k-intersection between S1 and S2 is

defined as

S1
k ctS2 = prune(k, { (uP , ct + c1 + c2 − c̃1, c̃1,N1 ∪ N2) |

(uP , c1, c̃1,N1) ∈ S1 ∧ (uP , c2, c̃2,N2) ∈ S2 }.

7.2.4 Finding the Best k Second-Level Queries

Having extended the five operators by the ability to track the embedding images, we can

use the algorithmic framework developed in Chapter 6, which consists of the algorithms

create(Q) and evaluate(P, TD). The former creates an execution plan P for the query Q;

the latter evaluates P with respect to the data tree TD. We now assume that the algorithm

create(Q) uses k-operators to assemble plans, and passes an additional parameter k to the

evaluation algorithm, which in turn passes it to the k-operators. If we set k = ∞, then we

find all second-level queries in the path tree TP of TD:

evaluate(create(Q), TP ,∞).

To find the best k second-level queries, we use a function sort(S, k) that sorts the second-level

queries in S by increasing costs, and selects the k ones with the lowest costs:

sort(evaluate(create(Q), TP , k), k).

The additional sorting is necessary because the k-operators track the best k embedding images

per subtree of the path tree. Among the embedding images for all subtrees, the best k must

be selected.

7.3 Finding Results of Second-Level Queries in a Data Tree

The query-evaluation algorithm proposed in Section 6.4 (which now uses k-operators) returns

a set of cost-sorted tuples, where each tuple represents a second-level query. A second-level

query can be evaluated by a simple algorithm that traverses the data tree and finds exact

matches of the query. There is, however, a slight difference from the theoretical setting in

Section 7.1: The algorithm evaluate(P, TP , k) does not return “full” embedding images, but

only “skeletons” of them. More precisely, it returns images that do not represent the inserted

nodes, because the costs of the nodes to be inserted have been derived from the encoding of

119



Chapter 7 Schema-Driven Query Evaluation

the path tree. Fortunately, it is not necessary to know the nodes implicitly inserted between

two skeleton nodes uP and vP because a path tree preserves all parent-child relationships of

its data tree. If uD, vD are data-tree nodes and [uD], [vD] are their node classes, then the

path between uD and vD (if any) consists of nodes with the same types and values as the

nodes on the path between [uD] and [vD]. If we use any of the models to assign costs to basic

transformations described in Section 5.4, then

nodedist(uD, vD) = nodedist([uD], [vD])

holds for each pair uD, vD of data-tree nodes that have an ancestor-descendant relationship.

To find the paths of the data-tree that are instances of the path between uP and vP , we

must select all instances of both nodes, and test whether they have ancestor-descendant

relationships.

Algorithm 7.1 on the next page finds all exact embeddings of a second-level query (represented

by the tuple (uP , c1, c̃1,N)) into a data tree. The algorithm starts at the root of the second-

level query, traverses the query tree top-down, and evaluates the results bottom-up. During

its descent, it selects the node instances of the path-tree node uP in the data tree TD (Line 1).

The node uP is the root of the currently processed subtree of the second-level query. Next,

the algorithm evaluates each child vP of uP separately (Line 2): First, the subtree rooted

at vP is evaluated and the embedding roots are stored in set SD (Line 3). Second, all tuples

of SA that have descendants in SD are selected and inserted into a temporary set ST (Lines

5–7). At the end of the inner loop, ST is swapped to SA, so that it now contains only tuples

that have descendants in SD. The same procedure is applied to each child of the current

query-tree node, so that the returned set SA consists of all data-tree nodes that are roots of

subtrees that include matches of the entire query subtree.

7.4 An Incremental Algorithm for the Best-n-Results Problem

So far, we have seen how to construct second-level queries and how to find the roots of all

results for each second-level query. Algorithm 7.2 on the facing page integrates both parts.

At Line 1, the best k second-level queries are created and sorted by embedding cost. Next,

the queries are evaluated by function secondary(uP ,N1, TD). Each data-tree node retrieved

by this function is the root of a logical document; the embedding cost of Q for this document

is determined by the tuple (uP , c, c̃, N) taken from SP . Because any logical document may be

matched by several second-level queries (with different embedding costs), the algorithm must

keep track of documents already retrieved. Line 6 sketches the test against the history of the

120



7.4 An Incremental Algorithm for the Best-n-Results Problem

Algorithm 7.1 finds all results of a second-level query.

function secondary(uP ,N1, TD)

params: uP – a path-tree node representing the root of a second-level query,
N1 – a set of tuples representing the children of uP ,
TD – a data tree,

returns: SA – the set root nodes of results for the second-level query.

1: SA := instances(uP , TD) /* select all node instances of uP in TD */
2: foreach (vP , c, c̃, N2) ∈ N1 do
3: SD := secondary(vP ,N2) /* recursive call */
4: ST := ∅ /* initialize a temporary set */
5: foreach uD ∈ SA do
6: if uD has a descendant in SD then
7: ST := ST ∪ {uD }
8: SA := ST

9: return SA

preorder numbers of the roots of retrieved documents. In practice, we use a hash table to

implement this test. Algorithm 7.2 fulfills the requirements of an evaluation algorithm that

solves the all-results problem (see Definition 5.12 on page 62).

Algorithm 7.2 retrieves the results for the best k second-level queries.
input: Q – an approXQL query,

TD – a data tree,
TP – the path tree of TD,
k – the number of second-level queries to generate for n results,

output: the root-cost pairs of the logical documents for the best k second-level queries.

1: SP := sort(evaluate(create(Q), TP , k), k)
2: foreach (uP , c, c̃, N) ∈ SP do
3: SD := secondary(uP ,N, TD)
4: foreach uD ∈ SD do
5: if uD has not been seen so far then
6: output (uD, c)

However, our main objective is to solve the more interesting best-n-results problem (see

Definition 5.13 on page 62). If we knew beforehand how many second-level queries were

necessary to find n results, then we could determine k from n and pass it to Algorithm 7.2.

Unfortunately, there is no strong correlation between k and n; some second-level queries may

retrieve many results, some may not find any result at all. Therefore, we must guess the

initial value of k and increment it by a delta value δ if the first k second-level queries have

not retrieved enough results. Fortunately, the increment of k does not invalidate the previous

results: The set SP returned by algorithm evaluate for a certain k is a subset of the set S′
P

121



Chapter 7 Schema-Driven Query Evaluation

returned for a k′ ≥ k.

Algorithm 7.3 shows an incremental version of Algorithm 7.2. After the construction of the

execution plan for Q (Line 1), the algorithm repeats the creation and evaluation of second-

level queries until n results have been found. Note that the algorithm terminates even if n is

infinite, because no second-level query is created twice and because the number of included

trees in the path tree is finite. In any step, the algorithm erases the prefix of all second-level

queries that have already been evaluated (Line 5) and adds δ to k (Line 7). All second-level

queries remaining in SP are evaluated as described for Algorithm 7.2.

Algorithm 7.3 retrieves incrementally the best n results of a query.
input: Q – a query,

TD – a data tree,
TP – the path tree of TD,
k – initial guess for the number of second-level queries to create,
n – the number of requested results,
δ – increment for k if the number of queries is not sufficient,

output: the root-cost pairs of the best n results for Q in sorted order.

1: P := create(Q) /* create the execution plan for Q */
2: kprev := 0
3: while the number of retrieved documents is less than n do
4: SP := sort(evaluate(P, TP , k), k)
5: remove the kprev lowest-cost entries from SP

6: execute Lines 2 – 6 of Algorithm 7.2
7: kprev := k; k := k + δ

What are appropriate values for k and δ? In our experiments (see Chapter 10), we could

not find an initial value for k that was satisfying for all queries and data trees. This is not

surprising because all horizontal dependencies of the data tree are lost in the path tree, and

therefore we cannot say beforehand whether two query siblings have matches in the same

subtree. In most cases, we got the fastest answers if we set k = max(200, 3 · n). Also, it

proved to be successful if we incremented k non-linearly. We set δ = k and doubled the value

of δ in each iteration step.

7.5 Optimizing Schema-Driven Query Evaluation

The schema-driven incremental query evaluation proposed in this chapter guarantees that we

get the best n answers without computing the whole set of results. However, our approach

still has a weakness: The selectivity of a second-level query is typically high, and therefore the

122



7.5 Optimizing Schema-Driven Query Evaluation

algorithm must often choose a large k to find n results. In this section, we propose a hybrid

query-evaluation method, which merges second-level queries with similar substructures. This

reduces the selectivities so that fewer queries must be created in order to find n results.

To motivate our approach, consider the query

cd[title["piano" and "concerto"] and composer/"rachmaninov"]

and assume that we are allowed to change title into category or description, composer

into performer, and the word concerto into sonata or symphony. Also assume that all

parent-child relationships appearing in the query existed at least once in a path tree. Fig-

ure 7.5 shows a detail of a path tree for which our assumption holds. If no deletions of

structural nodes were permitted, then Algorithm 7.3 would create 26 distinct second-level

queries (provided that k ≥ 26). Many of them might find no results.

composer

rachmaninov

performer

rachmaninov

title

symphonysonataconcertopiano sonata piano sonata symphony

category description

cd

Figure 7.5: A detail of a path tree.

To reduce the selectivities of second-level queries, we merge them during the creation phase.

Merging candidates are queries that have subtrees with

• different structures but equal embedding costs,

• identical structures but different leaf values and different embedding costs.

Subtrees with different structures but equal embedding costs particularly appear if the value-

change costs are equal for several alternative values of an inner query selector. In our example,

we may define that the change of title to category, and of title to description both

have cost 4. Then we can reduce the number of second-level queries from 26 to 24, which also

decreases the average selectivity per query. Of course, if many alternative values with equal

costs are specified, the reduction is much more effective.

The motivation behind merging second-level queries that have subtrees with identical struc-

tures but different leaf values is the observation that leaves — in contrast to inner nodes—

typically have very high selectivities. In fact, the leaves primarily determine the selectivity

123



Chapter 7 Schema-Driven Query Evaluation

of a query. A second-level query in which each leaf is annotated with all alternative values

selects many more results than a query with a single value per selector. Moreover, the evalu-

ation time of a merged second-level query is not significantly higher than that of the original

second-level query, because the union of the match sets for all alternative leaf values is small

and can be constructed efficiently.

In most cases, a large number of second-level queries can be merged. In our example, there

are in fact only six second-level queries with a distinct inner structure. If we additionally

assume equal value-change costs for both alternative values of title, then we can reduce the

number of second-level queries to four (see Figure 7.6).

10

symphony
6 6

concerto sonatapiano
100 0 0

rachmaninov

title composer

cd

10

symphony
6 6

concerto sonatapiano
100 0 0

rachmaninov

title

cd

performer

10

0
rachmaninov

6
sonata symphony

6
sonata

100 0
piano

10

descriptioncategory

cd

performer

10

0
rachmaninov

6
sonata symphony

6
sonata

100 0
piano

10

composerdescriptioncategory

cd

10 10

1010

[0−16]

[5−21] [9−25]

[4−20]

Figure 7.6: The four hybrid second-level queries created for the approXQL query
cd[title["piano" and "concerto"] and composer/"rachmaninov"]
with respect to the path-tree shown in Figure 7.5 on the page before. The deletion
of inner nodes is not permitted; the deletion of a leaf imposes cost 10. The
following value changes are defined: composer to performer with cost 5, title to
category or description with cost 4, concerto to sonata or symphony with cost 6.
The intervals show the minimum and maximum costs the query results can have.

As the figure shows, we construct merged second-level queries by connecting alternative sub-

trees with “∨”-nodes. Sibling nodes in the original second-level query are connected by

“∧”-nodes. Because alternative leaves may impose distinct costs, we annotate each leaf with

its value-change cost (left side). Furthermore, each leaf whose deletion cost is less than in-

finite is annotated with this deletion cost. If a leaf only has a single value, then we write

the deletion cost at the right side of the node. Otherwise, we annotate the “∨”-node that

connects the set of nodes with alternative values. A second-level query with conjunctive and

124



7.5 Optimizing Schema-Driven Query Evaluation

disjunctive parts is called a hybrid second-level query.

The semantics of the cost annotations is as follows: A second-level query has a minimum

embedding cost, which is determined at creation time (see Section 7.2). During the evaluation

of the query, an extended version of Algorithm 7.1 on page 121 evaluates all alternative

branches of the query. The cost of a result is calculated as the cost assigned to the second-

level query, plus the sum of the costs assigned to the lowest-cost combination of leaves that

have matches in the result.

Consider the lower-left query shown in Figure 7.6 on the preceding page. The query has the

minimum embedding cost 5 because the value composer has been changed to performer.

Assume that during the evaluation of the query the algorithm detects that no match of the

leaf piano exists for a particular subtree of the data tree, and that only a match for the leaf

sonata but not for concerto exists. If the deletion has cost 10 and the value change has

cost 6, then the algorithm adds 16 to the embedding cost of the query and assigns the cost 21

to the result. This cost is the maximum cost a result of this query can have. The duplicate

cost calculations, first during the creation of second-level queries (as for the schema-driven

approach), and second during their evaluation (as for the direct approach), are the reasons

for the name hybrid query-evaluation method.

The cost intervals imply that the sort order of second-level queries does not fully determine the

sort order of their results: The cost assigned by the query-creation algorithm only determines

the minimum cost of a result selected by the query. The actual cost may be higher if a leaf

must be deleted or if its value must be changed. In this case, the subsequent second-level

query (with a higher embedding cost) may find a result with a lower cost than the previous

one. It follows that Algorithm 7.2 on page 121 (and its incremental version) does not work

correctly for hybrid second-level queries — it cannot output the results of a second-level query

without checking the embedding cost of the subsequent query. We adapt Algorithm 7.2 to

work with hybrid second-level queries by adding a buffer for “unsafe” results. All results

returned by a second-level query are inserted into the buffer in cost-sorted order. Before a

new second-level query is evaluated, the algorithm verifies whether there are results in the

buffer whose costs are less than or equal to the embedding cost of that query. If such buffer

entries exist, they are output in sorted order and removed from the buffer.

In Chapter 10, we investigate the efficiency of the hybrid query-evaluation method, and

compare it with both the direct method proposed in the previous chapter and the schema-

driven approach that does not merge second-level queries.

125



Chapter 7 Schema-Driven Query Evaluation

7.6 Related Work

The efficient retrieval of the best n results is a challenge for the implementation of any system

that in some sense valuates the results of a query. Efficient solutions have been proposed for

text retrieval systems (see [Bro95] for an overview) and, more recently, for relational database

management systems (see, e.g., [CK97, CG99, NB02]). However, in the context of querying

XML data, little attention has been paid to the problem.

Amer-Yahia et. al. [ACS02] investigate two problems related to the evaluation of relaxed tree-

pattern queries: the threshold problem and the best-n problem (called top-k problem in

their framework). A threshold is a user-defined value that determines the maximum score a

result may have. The authors propose two techniques to solve the threshold problem: First,

relaxations encoded in a query-execution plan are “undone” if those relaxation would lead to

results with scores above the threshold. Second, intermediate results are discarded if their

scores are above the threshold. The best-n problem is treated as a dynamic variant of the

threshold problem, where the threshold is adapted after the evaluation of each operator in

the plan. To each operator, a number maxW is assigned, which indicates the maximum score

by which the score of an intermediate results can grow in all remaining evaluation steps. The

score of the nth intermediate result determines the threshold. Each result whose intermediate

score augmented by maxW is below the current threshold is discarded. An inherent weakness

of that algorithm is that it compares maximum final scores with intermediate scores so that

it can discard only few results at early evaluation steps. In fact, the authors point out

that the threshold algorithm always performed better in their experiments provided that n

is accurately estimated. However, they do not provide a method to estimate this crucial

parameter.

A structural summary of a semistructured database helps to explore the logical structure

of the database and to accelerate the evaluation of queries with (regular) path expressions.

Examples of such structural summaries are DataGuides [GW97] and T-indexes [MS99]. To

our knowledge, the use of a structural summary for the retrieval of the best n results has not

been considered by other authors.

126


