Chapter 3

The approXQL Query Language

This chapter provides a tutorial-style introduction to the approXQL query language. We
distinguish between the core syntaxr and the extended syntax of the language. The design of
the core syntax is based on the assumption that typical users have only partial knowledge of
the structure of the XML documents, and are not willing (and often not able) to cope with
a complex syntax. A query formulated using the core syntax consists of selection conditions
on both the content and structure of the documents. These conditions can be combined with

containment operators and the Boolean operators “and” and “or”.

The extended syntax
provides primitives to modify the default semantics of the language and to specify typed
selection conditions. It addresses users who have additional knowledge about the structure
and content of the collection to be queried, and who are familiar with the non-standard

semantics of approXQL.

We introduce the core syntax in Section 3.1 and the extended syntax in Section 3.2. The
grammar of approXQL used in this chapter is simplified; we provide a full specification in
Appendix A. To define the production rules of the grammar, we use the Extended Backus-
Naur Form (EBNF) proposed by N. Wirth [Wir77]. In EBNF, []| brackets indicate zero or

one occurrences of the enclosed expression; { } brackets indicate zero or more occurrences.

3.1 The Core Syntax

The core syntax is designed for users who have minimal knowledge about the structure of the
collection to be queried. To formulate a query, the users must know the names of elements and

attributes they are interested in, and the hierarchical relationships between these elements

31



Chapter 3 The approXQL Query Language

and attributes. This knowledge does not need to be exhaustive because the approXQL query
processor can use value changes to vary element and attribute names, and permutations to

vary the hierarchical relationships specified in the query.

The constituents of the core syntax are structural selectors, data selectors, predicates, con-
tainment expressions, and Boolean expressions. In the following, we successively introduce

these constituents.

3.1.1 Structural Selectors

A structural selector such as composer, title, or year matches the name of an attribute or
element. The users do not need to know whether a name appears as an attribute or element
name in the XML documents. However, if the users know how a name is modeled, they can

use a type prefix, as we describe in Section 3.2.3.

A structural selector is the simplest kind of query, as the partial syntax diagram indicates:

StructSelector

NAME

Query

StructSelector

A query is executed against a collection of XML documents. It selects a set of logical docu-
ments. A logical document may be an element or an attribute of an element!. The concept of
logical documents allows us to cleanly differentiate between physical XML documents, which
are defined by the document creator, and logical documents, which are defined at query time.
We say that the name of an element or attribute is the root value of the logical document
defined by this element or attribute. Consider Figure 3.1 on the facing page. There are two
physical XML documents but 18 logical documents, because there are two attributes and 16

elements altogether.

We use the term root selector to denote the topmost selector of a query. The root selector

determines the candidate set of logical documents to be retrieved as results. Thus, the query
cd

selects all logical documents with the root value cd. In the collection depicted in Figure 3.1

two results of this query exist.

!We give an alternative definition of logical documents in Chapter 4, where a collection of XML documents

is interpreted as a data tree, and a logical document is a subtree of the data tree

32



3.1 The Core Syntax

<catalog> <catalog>
<cd year="2001"> <cd year="1998">
<performer>Ashkenazy</performer> <category>Classics</category>
<composer>Rachmaninov</composer> <performer>Rachmaninov</performer>
<title>Piano concerto no. 1</title> <title>A window in time</title>
<tracks> <tracks>
<track length="13:25"> <track length="5:42">
<title>Vivace</title> <title>Piano sonata</title>
</track> </track>
</tracks> </tracks>
</cd> </cd>
</catalog> </catalog>

Figure 3.1: Two physical XML documents, each including a logical document with the root
value cd.

3.1.2 Data Selectors and Predicates

Data selectors match tokens within text sequences and attribute values of XML documents.
A token is a substring of a text sequence or attribute value that is separated from other tokens
by whitespaces. In the core syntax, we distinguish between text tokens and numerical tokens.
All text tokens in a query and in XML documents are stemmed and converted to lower case.
A text selector is a special kind of data selector, which consists of text tokens enclosed by

quotation marks. The strings
"piano" and "piano forte"
are valid text selectors. We call the right selector a phrase selector. It matches the specified

words if they appear in a document in the given order, and without other words in between.

A data selector preceded by an operator forms a predicate:

Predicate = | Operator | DataSelector
DataSelector ::= Phrase | NUMBER
Phrase ::= ’"’ AlphaNum { AlphaNum } ’"’
AlphaNum ::= WORD | NUMBER

A WORD is a character sequence that starts with a letter and continues with letters and digits;
a NUMBER is a sequence of digits, optionally separated by a decimal point. Operators for
numerical data are '=’, ’<’, <=’ ’>’ and '>=’. For text data, only the test for equality is

defined. For example, the sequence of literals

33



Chapter 3 The approXQL Query Language

> 2000

is a predicate that matches numerical tokens whose values are greater than 2000. The pro-

duction rule for predicates shows that the operator can be omitted. In this case, the default

"

operator is used. A lone predicate is not a valid query; however, it is one constituent of

a query exrpression:

Expression ::= Query | Predicate

3.1.3 Containment Expressions

Queries may be composed to specify containment relationships, which must be fulfilled by
the matching elements and attributes in the XML documents. A containment relationship is

specified by brackets. For example, the query

cd [composer ["rachmaninov"]]

selects CDs that contain works composed by Rachmaninov. To yield an (exact) match,
the cd element must have an attribute or a directly contained element named composer.
Additionally, the attribute value or the text directly contained in the composer element must

include one or more text tokens with the value rachmaninov.

We do not demand that the inner parts of the query select numbers or words. The query

cd[review]

matches all CDs that have a review. We extend the formal definition of a query:

Query ::= StructSelector [ ’[’ Expression ’]’ |

We call any query contained in another one a subquery. Each pair of brackets defines a

hierarchy level of the query.

3.1.4 Boolean Expressions
So far, each hierarchy level consists only of a single subquery or a single predicate. To specify

that a CD must have a year and/or a composer, approXQL provides the Boolean operators

“and” and “or”. For example, the query

34



3.2 The Extended Syntax

cd[year[> 2000] and composer["rachmaninov" or "prokofiev"]]

requests CDs that appeared after 2000 and contain works composed by Rachmaninov or
Prokofiev. Boolean expressions at the same hierarchy level may be arbitrarily nested as the

following example shows:

cd[year[> 2000] and (composer["rachmaninov"] or performer["ashkenazy"])].

To give the full (although simplified) specification of the core syntax, we extend the definition

of an expression, and add definitions for disjunctions and conjunctions:

Query ::= StructSelector [ ’[’ Expression ’]’ |
Expression = Query | Predicate | Disjunction | ’(’ Expression ’)’
Disjunction = Conjunction { ’or’ Conjunction }
Conjunction = Expression { ’and’ Expression }
StructSelector ::= NAME
Predicate ::= | Operator | DataSelector
DataSelector ::= Phrase | NUMBER
Phrase ::= ’"’ AlphaNum { AlphaNum } ’"’
AlphaNum ::= WORD | NUMBER

To further simplify the syntax, we define an abbreviated notation for containment expres-
sions: Whenever an expression enclosed by brackets consists of a single subquery or a single
predicate, then a slash may be used instead of brackets. A containment expression written
in simplified syntax resembles a path expression defined by the XPath standard [CD99]. The

previous example query can be written as:

cd[year/>2000 and (composer/"rachmaninov" or performer/"ashkenazy")].

3.2 The Extended Syntax

The extended syntax addresses users who want to express their information needs even more
precisely than it is possible with the core syntax. To use the extended syntax, the users
must have good knowledge of the structure of the documents to be queried, and must be
familiar with the non-standard semantics of approXQL. We introduce the formal model of the
semantics in Chapter 5. However, to understand the effect of the extended syntax on the

interpretation of a query, we sketch the main principles of the semantics.

35



Chapter 3 The approXQL Query Language

For each logical document in a collection, the query engine tries to find an exact embedding
of the query. An exact embedding is a mapping of query selectors to elements, attributes, and
words such that the mapping preserves the values of the selectors as well as the containment

relationships of the selectors. Consider the query
cd[title["piano" and "concerto"] and composer/"rachmaninov"].

It has an exact embedding in the left document, but not in the right document depicted in
Figure 3.1 on page 33. The part of the left logical document matched by the query is drawn

in black; all other document parts are grey.

Clearly, there may be logical documents that are semantically close to the query, but it is
not possible to exactly embed the query. For each of those documents, the query engine
tries to transform the query in a way that the resulting query has an exact embedding in the
document. We allow the deletion, permutation, and insertion of query selectors, as well as
the change of the values assigned to the selectors. Each basic transformation has a cost; the
total cost of the transformation sequence determines the score of the document. Consider
again our example query. To yield an exact embedding into the right document shown in
Figure 3.1, the leaf selector "concerto" must be deleted, the selectors tracks and track
must be inserted, and the value of the selector composer must be changed to performer.

The resulting query
cd[tracks/track/title/"piano" and performer/"rachmaninov"]

can now be embedded exactly into the document. The black parts of the right document

show the elements and text sequences matched by the transformed query.

Sometimes, the users may not want to allow all possible transformations. For instance, they
may only want to find CDs that contain all specified keywords (and not a subset of them),
and they may want the keywords to appear in the CD title (and not in a track title). They
may also want to find sound storage media that are in fact composed (and not performed) by
Rachmaninov. In other situations, the users may want to assign the same scores to results
that have different structures. For instance, they may want to express that a query should
treat CD titles and track titles equally: Both variants should get the same score, and thus

the same position in the ranking.

We support both types of user preferences in our model. Any restriction requested by a user
forbids the corresponding query transformation; any specified relaration removes the cost

from the corresponding transformation.

36



3.2 The Extended Syntax

3.2.1 Query Restrictions

Restrictions forbid query transformations, or impose additional limitations on the query map-
pings. We support three types of restrictions that concern the insertion and deletion of

selectors, as well as the change of the value of a selector.

An insertion restriction forbids the insertion of selectors into a certain part of a query. The
users can express this kind of restriction by adding an exclamation mark as prefix to a selector
whose matches are required to be directly contained in the elements matched by its parent

selector. The query

cd[!title["piano" and "concerto"] and composer/"rachmaninov"]

shows an insertion restriction: Inserting selectors between cd and title is not allowed, which
means that cd elements are only selected if they have title attributes or directly contained

title elements. Using this syntax, we can simulate the XPath expression “cd/title”.

A walue-change restriction forbids the change of the value of a query selector. This kind of
restriction includes both element and attribute selectors like title, and data selectors like
"rachmaninov". A value-change restriction is indicated by an exclamation mark that follows

the concerned selector. For instance, the exclamation marks in the query

cd! [title["piano" and "concerto"!] and composer/"rachmaninov"]

suppress value changes of the selectors cd and "concerto".

A deletion restriction forbids the deletion of a selector. As with the other types of restrictions,
a deletion restriction is denoted by an exclamation mark. The mark follows the selector it

concerns, and is separated by a colon. The query

cd[title["piano":! and "concerto":!] and composer:!/"rachmaninov"]

shows an example, where the selectors "piano", "concerto", and composer must be retained.

The three types of restrictions can be used in combination:

cd!['title["piano":! and "concerto"!:!] and composer:!/"rachmaninov"].

37



Chapter 3 The approXQL Query Language

If all possible insertions, value changes, and deletions are explicitly forbidden, and if no
permutations are defined, then the semantics of a “fully restricted” query is equivalent to the
semantics of the same query phrased in a traditional XML query language, where containment
relationships of the query are mapped to direct-containment relationships in the documents.
If no restrictions are applied, the approXQL query processor still selects the exact results — but

only as best matches among many other results ranked by decreasing similarity.

3.2.2 Query Relaxations

A relaxation removes the cost from a query transformation. We distinguish between insertion
relazations, which allow the inserting of any number of selectors without costs, and value-

change relaxations, which allow the cost-free changing of the values of selectors.

An insertion relaxation is indicated by an asterisk in front of the selector whose matches may

appear anywhere below the matches of the parent selector. The query

cd[*title["piano" and "concerto"] and *composer/*"rachmaninov"]

relaxes the insertion of selectors between cd and title, cd and composer, and composer and
rachmaninov, respectively. Now, CD titles and CD track titles are cost-equivalent matches
for the title selector. Similarly, the matches for the composer selector may appear at any
distance from the matches of the cd selector, and the keyword "rachmaninov" may appear
at any depth in a composer part of the document. The relaxation operator “*” of approXQL
is exactly equivalent to the XQL operator “//”: It skips any number of elements without

imposing costs.

Value-change relaxations allow the cost-free mapping of a query selector to different values
in the documents. All alternative values are assigned to the respective selector, separated by
“ I 7

signs. We uniformly allow the value change of the root selector, of inner selectors, and of

leaf selectors. The query

(cd | mc | dvd) [title["piano" and ("concerto" | "sonata")] and
(composer | performer)/"rachmaninov"].

shows all three cases. The query specifies that CDs, MCs, and DVDs have to be treated
equally. Similarly, the query selects both piano concertos and piano sonatas, and retrieves
works composed or performed by Rachmaninov without imposing costs. Note that the sign

“I??

applied to leaf selectors is semantically equivalent to an “or” operator.

38



3.2 The Extended Syntax

3.2.3 The Type System

A structural selector in an approXQL query matches element and attribute names uniformly.
Similarly, a numerical selector without a decimal point matches both integers and real num-
bers. To restrict the scope of a selector, approXQL supports a simple type system. The type
system, together with query restrictions and relaxations, provides a means to adapt the query
semantics to the user’s knowledge of the application domain and expertise in query formula-
tion. In this subsection, we informally introduce all syntax-related aspects of the type system.
In Section 4.2, we provide a formal model of type-value trees, which represent queries and

documents in a uniform way.

The XML standard does not define an explicit type system; it only defines a logical docu-
ment structure that consists of elements, attributes, parsed text, non-parsed text, and further
components.? The logical document structure is the basis for the type system of approXQL.
There are two type hierarchies: The hierarchy of structural types consists of the general type
struct and its specializations element and attribute. Figure 3.2 on the following page shows
this type hierarchy. In contrast to elements and attributes, which are explicitly marked up,
XML knows only parsed text and non-parsed text to represent the content of documents.
To be able to detect data types automatically, we must rely on syntactic properties of text
sequences. The standard data types supported by approXQL are text, integer, and real. Fig-
ure 3.3 on the next page shows the data type hierarchy. The standard types can be enriched
by more specialized types like person name, date, timestamp, and so on. A precondition for
the use of such extensions is that the types of the tokens in a document can be determined
either automatically or with little human assistance. For name identification, several tools are
available, e.g., those described in [Hay94, RW97]. The grey parts of Figure 3.3 show possible

extensions of the standard data type hierarchy.

The use of the type system in approXQL queries follows our general philosophy: The default
type of a selector is the most general type of the structural type hierarchy or the data type

hierarchy, respectively. Our example query

cd[year[> 2000] and composer["rachmaninov"]]

2There are several proposals to enrich XML documents with data types, e.g., [DFHT99, BCML99, BGP0O].
Recently, the World Wide Web Consortium (W3C) recommended XML Schema [TBMMO1, BM01] as the
new standard for defining the structure, content and semantics of XML documents, including a rich set of
data types. However, it cannot be expected that every XML document will be an instance of a schema;
this holds in particular for semistructured documents. To be as general as possible, approXQL ignores every

schema that is referenced in a document.

39



Chapter 3 The approXQL Query Language

data

struct text real

SN SN

element attribute person_name  date integer

Figure 3.2: The structural type hierarchy. Figure 3.3: The default data type hierarchy
and two extensions.

is an abbreviation for

struct:cd[struct:year[real > 2000] and
struct:composer [text = "rachmaninov"]].

A selector or predicate of a general type matches all document parts of that type and all
document parts with a more specific type. For example, the selector struct:year matches
both elements and attributes with the value cd; the predicate year > 2000 matches both
integers and real numbers. By providing an explicit type, the users can restrict the scope of

the selectors. For example, the selectors in the query

element:cd[attribute:year[integer > 2000] and
element: composer [person name = "rachmaninov"]]

match only cd elements, year attributes, composer elements, integers greater than 2000, and

persons with the name Rachmaninov.

40



