
Chapter 2

State of the Art

At present, there are relatively few works that investigate the topic “similarity search in XML

data”. However, over the past years much research has been conducted in related areas:

• The database community has adopted the well-known concept of formal query languages

to the requirements of XML.

• A theoretical branch of database research has worked on flexible mapping techniques for

trees and graphs, which help to query XML data with complex, heterogeneous structure.

• The information retrieval community has enriched query languages for structured doc-

uments with text-retrieval concepts like term weighting and relevance ranking.

• In theoretical computer science and computational biology, researchers have developed

similarity measures for labeled trees, and have shown their applications to XML.

We review the state of the art in each of the mentioned research areas, develop a taxonomy of

existing approaches, and discuss why none of the reviewed approaches meets the requirements

listed in Section 1.2. In the following section, we take a closer look at XML and semistructured

data to prepare the groundwork for the subsequent reviews.

2.1 XML and Semistructured Data

XML is a practical subset of the Standard Generalised Markup Language (SGML) defined

in the ISO standard 8879:1986 [ISO86]. SGML was developed for maintaining large reposi-

tories of structured documentation, but it is not well suited for the Internet-wide exchange

9

Chapter 2 State of the Art

of documents. There are many optional features the sender and receiver of a document must

agree on in order to remain interoperable. The syntax of SGML is complex, ambiguous, and

includes many rarely used options. XML differs from SGML primarily through simplifying

the complex formalism of SGML.

XML documents have a physical and a logical structure. The physical structure is made

up of entities and entity references, which is a concept similar to macros in programming

languages. The logical structure consists of nested elements. Each document must have a

single root element. An element begins with a start-tag and ends with an end-tag enclosed in

angle brackets. Both tags must have the same name. All elements and text passages between

the start-tag and the end-tag of an element make up its content. An element can have certain

attributes that are listed within its start-tag. An attribute is a pair consisting of a name and

a value. Figure 2.1 shows a part of an XML document. The document starts with a preamble

that specifies the version of the XML specification and the name of the character set used

within the document. The preamble is followed by the start-tag of the root element catalog.

All other elements are nested within that root element. The elements cd and track each have

one attribute.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<catalog>
...
<cd year="2001">
<performer>Ashkenazy</performer>
<composer>Rachmaninov</composer>
<title>Piano concerto no. 1 </title>
<tracks>
<track length="13:25">
<title>Vivace</title>

</track>
...

</tracks>
</cd>
...

</catalog>

Figure 2.1: A part of an XML document.

The XML specification [BPSM00] does not predefine the names for elements and attributes.

Communities that want to exchange documents must agree on a set of common names, and

must specify the relationships between elements with given names. Such an agreement may

be formalized as a Document Type Description (DTD), which allows the users to verify that

each component of a document occurs in a valid place within the interchanged data stream.

However, a Document Type Description (DTD) is not required. Any document that obeys

10

2.2 Query Languages for XML

the XML syntax is a well-formed XML document.

The meaning of a name in a certain context of a document can be encoded in the programs

that interpret the document. For some applications, the interpretation of tag names can

be left to the users — the XML specification explicitly states that ”XML documents should

be human-legible and reasonably clear”. Descriptive markup is one of the key features of

XML that allows the users to take advantage of the structure for displaying, searching, and

browsing.

It is particularly the combination of content (the text sequences) and schema (the names and

structures of elements and attributes) within the same document that makes XML well suited

for the representation of semistructured data, which is “data that does not have a regular

and static structure like data found in a relational database but whose schema is dynamic

and may contain missing data or types” [HMG97]. Such properties are typical for data found

on the Internet, like web pages and mails. XML is considered to be the common format for

structured data, semistructured data, and even unstructured data.

XML is a markup language, not a storage format. However, a natural interpretation of

an XML document is a rooted tree or, if references between elements are included, a rooted

directed graph. The element and attribute names are mapped to inner nodes (or, alternatively,

to edges) of the tree or graph, and the text sequences enclosed by the innermost elements are

assigned to leaves. We frequently make use of this interpretation in the subsequent reviews.

2.2 Query Languages for XML

The motivation behind the design of query languages for XML is the fact that XML has its own

implied data model, which is neither that of relational databases nor that of object-oriented or

object-relational databases. This fact has triggered intensive research that has produced many

language proposals tailored to the XML data model. Some of them, like Lorel [AQM+97] and

YATL [SC98], were originally designed for semistructured data, and have later been adapted

to XML. Others, like XML-QL [DFF+98], XQL [RLS98], and YAXQL [Moe00] were developed

directly for XML. Fruitful impulses came from other fields of research such as functional

programming, which resulted in query languages like XDuce [HP00], logic programming,

which had influences on query languages like XPathLog [May01], and graphical user inter-

faces, which lead to the development of query languages like XML-GL [CCD+99]. The papers

[FSW99, BC00] provide comparisons between some of the mentioned languages. Currently, a

World Wide Web Consortium (W3C) working group advances a new language standard called

11

Chapter 2 State of the Art

FOR $c IN document("media.xml")/catalog/cd
WHERE $c/@year > 2000 AND $c/composer = "Rachmaninov"

RETURN $c/title

(a) XQuery

WHERE
<catalog>
<cd year=$y>
<title>$t</title>
<composer>Rachmaninov</composer>

</cd>
</catalog> IN "media.xml",
$y > 2000

CONSTRUCT
<title>$t</title>

(b) XML-QL

MAKE
title [$t]

MATCH "media.xml" WITH
catalog [cd [@year [$y],

title [$t],
composer [$c]]]

WHERE
$y > 2000 AND $c = "Rachmaninov"

(c) YATL

Figure 2.2: The query “select the titles from all CDs that appeared after 2000 and contain
works by Rachmaninov” expressed in XQuery, XML-QL, and YATL.

XQuery [BCF+02], which is based directly on the language Quilt [CRF00], but also adopts

and integrates several aspects from other XML query languages. In the following section, we

concentrate on the common characteristics of the various languages; in Section 2.2.2 we take

a closer look at language features related to semistructured data.

2.2.1 The Basic Query Components

XML queries typically consist of three parts: pattern clauses, filter clauses, and construction

clauses [FSW99]. A pattern clause specifies names and hierarchical relationships of elements

and attributes that must occur in the documents. A filter specifies conditions on the selected

values. A construction clause creates the resulting document by specifying a skeleton of nested

elements and attributes, in which the selected and transformed values and substructures are

inserted. Some languages allow pattern and filter clauses within a construction clause.

Figure 2.2 shows a simple query expressed in three different XML query languages. Although

the languages provide quite different syntactic constructs to express the same semantics, it

is easy to see the common basic structure of all three queries: Pattern clauses in XQuery are

specified by XPath [CD99] expressions. In the example query depicted in Figure 2.2(a), the

pattern consists of the source selector document("media.xml") and the path /catalog/cd

that starts at the root of the source document. XML-QL uses patterns that follow the syntax

of XML. A pattern is introduced by the keyword WHERE, and ends with the specification of the

source to which the pattern should apply (see Figure 2.2(b)). A YATL pattern starts with the

12

2.2 Query Languages for XML

keyword MATCH, followed by the specification of the source. The selection part of the pattern

models the structure of XML documents, where hierarchical relationships are indicated by

brackets (see Figure 2.2(c)). Filters in XQuery are implemented either as XPath filters or

as WHERE clauses. Our example shows the latter case. XML-QL groups patterns and filters

within WHERE blocks, separated by commas. YATL uses separate blocks for patterns (MATCH)

and filters (WHERE). All three languages have explicit construction blocks, introduced by the

keywords RETURN in XQuery, CONSTRUCT in XML-QL, and MAKE in YATL.

Besides the selection, filtering, and construction of documents, most of the languages also

support operations like inner and outer joins, aggregation, grouping, sorting, and quantifica-

tion. While all those operations have their counterparts in query languages for relational and

object oriented databases, there are also some language elements that cope with a peculiarity

of XML: its structural heterogeneity. We take a closer look at those elements in the next

section.

2.2.2 Language Aspects Related to Semistructured Data

XML documents may be semistructured, or may contain semistructured parts. Querying

semistructured data with a conventional query language is costly and tedious, because the

users must be aware of all structural deviations and must formulate queries that explicitly en-

code them. To allow querying with incomplete knowledge, regular path expressions have been

proposed for document databases [CACS94, CCM96] and semistructured data [AQM+97].

Today, regular path expressions are part of almost all query languages for XML. The W3C

recommendation XPath provides a standardized syntax for path expressions with (restricted)

regular features.

Among all XML query languages, Lorel is the one that offers the most sophisticated reg-

ular path expressions. Besides sequences like cd.composer.name, it supports optional la-

bels (cd(.composer)?.name), alternatives (cd.(composer|performer).name), repetitions

(cd(.composer)+.name), skipping of an arbitrary number of labels (cd.#.name), and even

wildcards for labels (cd.composer.%name).

Type coercion is another feature of Lorel that allows to cope with structural heterogeneity.

The data model of Lorel considers a collection of XML documents as a graph of objects and

values. The objective of type coercion is to force comparisons between objects and/or values,

even if the objects or values have different types. For example, in the inequality ”4.3” < 5,

both sides are coerced to the type real in order to perform a type-preserving comparison.

13

Chapter 2 State of the Art

All newer XML query languages use simpler regular path expressions than Lorel, and support

either no type coercion or more restricted variants of it. It is particularly interesting that

XQuery, the future standard language, uses rigid typing and rather restricted regular path

expressions. This observation indicates that XQuery is designed as a language for XML doc-

uments with well-defined structures, rather than a user-friendly language for ad-hoc queries

to semistructured data.

2.3 Flexible Query Mappings for Trees and Graphs

Regular path expressions are a powerful language primitive to cope with the structural hetero-

geneity of XML data. In many cases, however, the additional flexibility provided by regular

path expressions is not sufficient at all. The users still have to know that structural het-

erogeneity exists, and that therefore a regular path expression is necessary. They also have

to know which expression is appropriate to match all of the variants of a substructure that

may exist in the database. Flexible mappings require less knowledge about the structure of

the data. The users have to specify only “common” cases in the query, and the system is

responsible to find matches similar to those demanded by the query. We distinguish between

models that valuate the degree of query relaxation and models that do not.

2.3.1 Flexible Query Mappings without Valuation

One of the simplest cases of flexible query mapping is the automatic relaxation of parent-

child relationships to ancestor-descendant relationships. An automatic relaxation differs from

the application of a “skip” operator that is part of many XML query languages (e.g., the

operator “//” in XPath), because skip operators must be applied explicitly, whereas automatic

relaxations are performed implicitly.

Kilpelänen proposes ordered and unordered tree inclusion [Kil92] as a means to query a

tree-structured database with only partial knowledge of the structure. The users phrase tree-

shaped queries that specify the labels and the hierarchical relationships of database nodes they

are interested in. The system relaxes all parent-child relationships to ancestor-descendant

relationships. Surprisingly, the unordered variant of the tree-inclusion problem has proven

to be NP-complete. Meuss [Meu00] shows that the unordered tree-inclusion problem can be

solved in polynomial time if the injectivity property of the embedding function is dropped,

and if siblings of the query tree are allowed to be mapped to nodes on the same document

path.

14

2.3 Flexible Query Mappings for Trees and Graphs

Kanza et. al. [KNS99] propose a mapping semantics that allows partial query matches. A

partial match of a query pattern in a graph-structured database is a subgraph that does

not bind all query variables. In order to prevent a proliferation of answers, only maximal

answers are accepted in the sense that there are no assignments that bind more variables and

satisfy the query conditions. If the query is a tree or Directed Acyclic Graph (DAG), then all

maximal answers can be computed in polynomial time with respect to the size of the query,

the database, and the result. If the query is a general graph, then the problem is NP-complete.

In a later work [KS01], Kanza and Sagiv investigate mappings that allow the permutation of

path-connected query nodes. They propose a semiflexible mapping semantics, where query

paths are mapped to document paths such that every query label has an occurrence in the

document, but the occurrences may appear in an other order than specified. A flexible

semantics does not require that paths are mapped to paths, but only requires that the matches

of each pair of edge-connected query nodes must be connected by a path within the data.

An important application of flexible query mappings is the integration of data sources with

different —but similar — structures. Domenig and Dittrich [DD01] propose the query lan-

guage SOQL, which supports a LIKE operator whose argument is a path. The query processor

rewrites the path in such a way that the resulting paths are similar to the original path. Using

the set of rewritten paths, it selects those paths that have matches in at least one source.

2.3.2 Flexible Query Mappings with Valuation

Flexible mappings improve the usefulness of query languages, especially if the structure of the

data is heterogeneous, and if the users have incomplete knowledge on the structure. However,

the mapping flexibility may lead to a huge number of results. The valuation of the query-result

similarity, and the retrieval of the best n results avoid the explosion of the result set.

Damiani and Tanca [DT00] model a collection of XML documents as a fuzzy labeled graph

[CC92] and a query as (unweighted) labeled graph. To answer a query, the closure of the

document graph is computed by inserting shortcut edges between each pair of nodes that are

connected by a path of arbitrary length through the original graph. The weight of a shortcut

edge is a function of the weights associated to the edges of the original path. The query

graph is exactly embedded into the closure graph. To assign a score to an embedding, the

normalized sum of the weights of the matching edges is computed. The embedding images are

ranked by decreasing scores. To lower the time complexity, the authors propose to compute

the closure only once and to store the edges and their weights in a table. Unfortunately, the

table can reach a quadratic size with respect to the number of nodes in the original graph.

15

Chapter 2 State of the Art

TreeSearch [SZW01, SWG02] is a very simple but efficient technique to find approximate

results for tree-pattern queries. A query tree is split up into paths, and each path is separately

searched in the document trees. The score of a document is determined by the number of

root-to-leaf query paths that have matches in the document. A consequence of this valuation

model is that nodes close to the query root contribute more to the scores of the documents

than nodes close to the query leaves. Queries may contain “placeholder” nodes, which match

arbitrary document nodes, and “variable length don’t cares”, which match arbitrary document

paths. The authors point out that the proposed algorithm only works correctly if both the

query tree and the document trees have no sibling nodes with the same label. Otherwise,

the algorithm may return “false positives”, which are document trees that include the same

leaf-to-root paths as the query tree, but do not have the same shape. More precisely, an

inner query-tree node may be mapped to several document-tree nodes such that none of its

matches is a common ancestor of the matches of its children.

Amer-Yahia et. al. [ACS02] use valuated tree-pattern relaxations as a means to find approxi-

mate results for structured queries to XML documents. Lee [Lee02] reinterprets that model in

the context of the query-modification framework proposed by Chaudhuri [Cha90]. A query is

a single tree pattern whose nodes are labeled with element names. Selection conditions with

respect to the content of the documents are not supported. The model allows the relaxation

of parent-child relationships between query nodes to ancestor-descendant relationships, the

generalization of query labels, and the deletion of query nodes. To this end, an exact weight

and a relaxed weight are associated to each node and to each edge in the pattern. The exact

weight is used if the node or edge, respectively, has a match in the documents such that the

parent-child relationships in the pattern are preserved. The relaxed weight of a node is used if

its label does not match, but one of the other specializations of its generalized label matches.

If a node must be deleted, then a zero weight is used. The actual weight of an edge depends

on the distance (in terms of hierarchy levels) between the matches of the parent node and the

child node, and may range between the exact and the relaxed weight associated to the edge.

Amer-Yahia et. al. propose an algorithm that finds all results whose total weights are below

a certain threshold, and sketch an algorithm that finds the best n results.

2.4 XML and Information Retrieval

Information Retrieval is a science that investigates models and techniques to answer queries

by retrieving objects from a database that satisfy the users’ information needs. A query

may be posed in a natural language, in a formal language, or simply as sequence of terms.

16

2.4 XML and Information Retrieval

Database objects may be text documents, multimedia files, hypermedia documents, and oth-

ers. Typically, an object is represented by a set of descriptors. Vagueness is one of the

key concepts of Information Retrieval (IR), because the mapping of a user’s information

needs to a query is vague, the mapping of database objects to descriptors is vague, and the

relationships between query descriptors and object descriptors are vague [Fuh92]. Due to

the importance and the widespread availability of text documents, many researchers have

investigated the problem of answering queries to text databases, and many models have

been proposed. These include the Boolean model and its derivates [SFW83, Lee94], the

Vector Space Model (VSM) [Sal68], models based on probabilistic logic [CLvRC98], possi-

bilistic logic [Lal98], fuzzy sets [Cro94, KBP99], evidential reasoning [CCH92], genetic algo-

rithms [YKR93, PGF00], and neural networks [Kwo89, WH91]. Baeza-Yates and Ribeiro-

Neto [BR99] give an excellent survey of models and algorithms used for text retrieval.

In contrast to the large body of work available for text retrieval, few query languages and

retrieval models for structured documents (and especially for XML documents) exist. We

distinguish between text algebras, focused retrieval, and structured languages that support

relevance ranking.

2.4.1 Query Languages and Algebras for Structured Text Databases

The objective of early query languages and algebras for text databases with hierarchical

structure was to allow querying for content and structure in a uniform way. Here, we briefly

review some important approaches. Baeza-Yates and Navarro [NB96] give a more compre-

hensive analysis of the expressiveness and the efficiency of several models. Other reviews are

provided in [RH90, Loe94, CM95].

PAT expressions [ST93] allow the dynamic definition of text regions using pattern-matching

expressions that specify the begin and end of regions. Only the content of the database is

indexed. Once the regions are created, they can be manipulated with standard set operations

like union and intersection, but also with very specialized operations like “longest repeated

string”. The algebra cannot handle overlapping regions. If an operation leads to overlapping

regions, only their start points are taken. Because some operations return regions and others

return points, it is sometimes impossible to statically determine the return type of a nested

expression.

Burkowski [Bur92a, Bur92b] proposes an algebra based on lists of disjoint regions. Text words

and text regions are indexed the same way, using an extension of inverted lists. The model has

17

Chapter 2 State of the Art

been extended to overlapping regions in later works [CCB95a, CCB95b]. The algebra supports

several query operations that ask for the relationships between regions, and the relationships

between regions and words. Examples are: the nesting of regions, the containment of a

word in a region, the union of regions, and the smallest region covering some other regions.

Additional restrictions on the order of regions are imposed by a “followed by” operator.

MacLeod [Mac90, Mac91] proposes a language to define and query structured databases in a

uniform way. The language allows the users to query not only the content and hierarchical

structure of the database, but also hyperlinks between nodes and attributes assigned to nodes.

The answer to a query is a list of references to regions in the database.

Proximal nodes [Nav95, NB97] is another model that integrates both content and hierarchical

structure by specifying a data model, two types of indexes, and a query language. For a given

text, many independent hierarchical structures may be specified —but only one of them can be

used to answer a single query. The query language consists of a pattern-matching sublanguage,

operators to select nodes by name, and operators to combine the selected results. Supported

combination operations are, e.g., containment, intersection, union, and difference of regions.

With the exception of [Bur92b], where an implementation technique for the computation

of term weights in the context of text regions is proposed, the notion of relevance is not

considered in any model.

2.4.2 Focused Document Retrieval

Focused document retrieval aims at retrieving the best document components that satisfy a

query. The returned components are displayed to the users, and then constitute entry points

from where the users can decide to browse through the structure of the documents.

A simple model, introduced in [SKW01], computes the lowest common ancestors of the

matches of the query keywords. The subdocuments rooted at those ancestors are retrieved

as results.

More sophisticated models shift from a structure-oriented to a content-oriented view: Struc-

tured documents are interpreted as trees, where the leaves comprise the “raw” data, and the

information content of non-leaf components is derived from the information content of its

subcomponents. The matching function proposed in [CK96] locates each component C that

implies the query (exhaustivity of C), and that has no component that implies the query

(specifity of C). Lalmas [Lal97, LR98] extends this model by incorporating uncertainty in

18

2.4 XML and Information Retrieval

both the indexing and the retrieval of structured documents using Dempster-Shafer’s The-

ory of Evidence (D-S theory) [Sha76]. The degree of belief that a component is an answer

to a query is aggregated from the information content of the component and the informa-

tion content of its subcomponents via the combination rule of the D-S theory. The notion

of uncommitted belief of the D-S theory reflects the fact that indexing itself is a uncertain

process.

So far, queries are restricted to content. Lalmas [Lal00] extends the model to a uniform

representation of content and structure based on evidential reasoning [RLS92]. Components

are represented by descriptors for both content and structure. Descriptors for structural

parts may be adapted to a more general context. For example, the descriptor is chapter

may be changed to has chapter in the component containing the chapter. A query is a

logical sentence consisting of propositions connected by “and”, “or”, and “not”. A query

sentence Q retrieves a (composite) component C, if C is described by a sentence S that implies

Q with a degree of uncertainty. For example, the query is chapter ∧ about wine selects

components whose structure is described by the proposition is chapter and whose content is

described by the proposition about wine. Because queries are ”flat” logical formulae, nested

hierarchical queries cannot be expressed. For example, the query is chapter ∧ has title

∧ about wine locates chapters that have a title and are about wine—but it is not possible

to formulate a query that ensures that the title of the chapter is about wine.

Kazai et. al. [KLR01] extend the aggregation-based model for focused retrieval to linear rela-

tionships and link relationships between components. Also, the criterion for the retrieval of a

document component is now more general: A component is returned if all (most, at least one,

etc.) of its related components are relevant to the query. Each component is represented by a

collection of weighted index terms, where the weight of a term is a function of the occurrences

of the term in the component and in its connected components. The combination function is

based on fuzzy aggregation [Yag96].

2.4.3 Combining Structured Queries and Relevance Ranking

A relatively new branch of research investigates the combination of structured queries and

relevance ranking. This combination is challenging because the model for the calculation of

relevance scores must take not only the structure of the documents into account, but also the

constraints on structure and content specified by the query.

Arnold-Moore et. al. recognized the necessity of a retrieval language that supports ranking

by textual similarity [AFL+95]. They introduced the ELF data model and the SGQL query

19

Chapter 2 State of the Art

language, which provides three ranking operators. The operators compute similarity scores for

the results of queries asking for keywords in a structural context. However, the authors do not

provide a method to calculate the similarity scores for such keyword-in-context queries, and

they point out the open problem of how to combine similarity scores calculated by subqueries

of a complex query.

Navarro et. al. [NBVF98] introduce a simple query language and a generic ranking model. A

query is a set of subqueries, each annotated with a positive or negative weight. A subquery

is a logical formula consisting of presence and inclusion operators. To compute a score for a

particular document, the query processor counts the number of occurrences of each subquery

within the document. It then multiplies the user-defined weights by these numbers, and adds

the products to obtain a score for the document. The authors highlight the simplicity of their

ranking model and mention that other models can also be used within their framework.

An adaptation of conventional IR techniques to text-rich XML documents is proposed by

Hayashi et. al. [HTK00]. Their system uses a format file, which defines a mapping of elements

to search fields. The terms within a search field are weighted by using a variant of the tf*idf

formula [SM83]. A query is a Boolean formula consisting of terms and tag-paths, which

specify the fields in which the terms are searched. The query engine uses the format file to

select the appropriate indexes created for the search fields, evaluates the fields separately, and

combines the relevance scores of the parts according to the Boolean query operators. If the

query engine encounters an “or” operator, it adds the scores of the operands; if it encounters

an “and” operator, it selects the minimum of the scores. A restriction of this approach is the

static mapping of elements to fields, which requires an adaptation of the format file whenever

a new document type is indexed.

Myaeng et. al. [MJKZ98] use an inference network with two connected subnets to model both

queries and SGML documents. The document subnet represents the hierarchical relationships

between elements, and between elements and terms. The query subnet models the relation-

ships (e.g., Boolean operators) between the query terms. The query terms are connected only

to those leaves in the document subnet that fulfill the hierarchical relationships of the query,

which means that the query instantiates a part of the document subnet. The degree to which

an element, at any level, supports the query is computed by combining the probabilities of

its included elements, which are propagated along the network.

Wolff et. al. [WFC99, WFC00] propose XPRES, a probabilistic model for the ranking of results

for structured queries to structured documents. A query is a set of pairs consisting of a term

(a keyword or a phrase) and an associated structural role. The structural role of a term

20

2.4 XML and Information Retrieval

can be the name of an element, but also a simple path or regular path made up of element

names. The structural role specifies the elements in which the term must appear. With this

language, the users cannot express that one term should appear in the title, and that another

should appear in the body of the same chapter of a book. The retrieval function valuates

the descriptiveness of a term with respect to the structural role of the term. To this end,

the authors modify a retrieval function proposed by Croft [Cro83] such that it measures the

frequency and the inverse document frequency of a term within the scope of the elements

specified by its structural role. The structural role may also have a weight that can be

incorporated in the retrieval function.

XIRQL [FG00, FG01] is a language proposal that incorporates the notion of term weights, data

types, vague predicates, semantic relativism, and relevance-oriented search into XQL. Term

weights are defined with respect to predefined index elements; they are adapted to broader

contexts via augmentation. Terms in index nodes represent probabilistic events, which are

assumed to be independent. Retrieval results are Boolean combinations of events based on

a probabilistic relational algebra [FR97]. Datatypes capture different kinds of data, e.g.,

person names, locations, and dates. Vague predicates help to search for similar values of a

data type, e.g., phonetically similar person names. The term “semantic relativism” describes

the capability to create generalizations. For example, the operator ~person matches both

elements and attributes with the name person; the operator #person refers to elements and

attributes with type person or one of its subtypes. Finally, relevance-oriented search omits

structural conditions and aims at retrieving the best document components as described for

focused retrieval.

Theobald and Weikum [TW00, TW02] propose the XML query language XXL, which adopts

several concepts from XML-QL and from other XML query languages. XXL supports a simi-

larity operator that works at the level of values, and also at the level of element and attribute

names. For example, the expression ~cd selects elements with a name similar to the name cd.

The query engine assigns weights to the matches and combines them according to the different

Boolean operators in the query, assuming probabilistic independence. Sizov et. al. [STW01]

propose to use the classical tf*idf formula to calculate the term weights used by the XXL

query engine, and to use ontologies to determine the weights of element names.

ELIXIR [CK02] is a query language comparable to XXL, except it additionally supports sim-

ilarity joins on strings. The language uses WHIRL [Coh98, Coh00], which is an extension of

relational databases that can perform “soft joins” based on the similarity of textual identifiers.

A retrieval technique that combines structured queries with the similarity measure of the

21

Chapter 2 State of the Art

VSM is proposed in [SM00, SM02]. The key concept of this approach is the use of labeled

trees for the modeling of queries, collections, documents, and even terms. A collection of XML

documents is mapped to a single data tree; each subtree of the data tree is considered to be

a logical document. All logical documents that have (partial) embeddings of the query tree

according to the tree-inclusion formalism [Kil92] are results. To allow the relevance valuation

of the results, the authors extend the traditional term concept to subtrees of query trees and

logical documents: For each structural term that occurs in the query tree or in the data tree,

the term frequency and the inverse document frequency are determined, and a term weight is

calculated. As in the traditional VSM, the similarity between a query and a result is defined

as the closeness between the vector of (structural) query terms and the vector of (structural)

document terms.

2.5 Distance Measures for Labeled Trees

Distance measures for labeled trees are of great interest in several domains: In molecu-

lar biology and genetics, they help to compare protein structures [SZ90] and phylogenetic

trees [DHJ+97]. In programming languages, the comparison of parse trees allows syntac-

tic error recovery and correction [Tai78]. In data warehouses, digital libraries, and au-

thoring systems, different versions of documents are managed. Changes between versions

of tree-structured documents can be detected and analyzed using similarity measures for

trees [CRGW96, CAM02].

The definition of the classical tree-edit distance was given by Kuo-Chung Tai [Tai79]. He

proposed to use three kinds of edit operations: Changing a node u means changing the label

of u. Deleting a node u means making the children of u become the children of the parent

of u and then removing u. Inserting is the complement of deleting. Each operation has a

cost. Edit operations can be composed to sequences; the cost of a sequence is the sum of the

costs of the operations. To measure the closeness between two trees T1 and T2, edit sequences

are applied to T1 such that the resulting tree is congruent to T2. The similarity between T1

and T2 is defined to be the edit sequence with the lowest cost. The edit operations can be

represented by a mapping, which is a graphical specification of the edit operations applied to

the nodes in the trees. A mapping M consists of node pairs; each pair (u, v) represents two

corresponding nodes in T1 and T2. If u and v have distinct labels, then (u, v) represents a

renaming. Otherwise, it is a null edit. Nodes in T1 not occurring in M represent deletions.

Similarly, nodes in T2 not occurring in M represent insertions. The cost of M is the sum of

all renamings represented by the node pairs in M , plus the sum of deletions of nodes in T1,

22

2.6 Similarity Search in Tree-Structured Data

plus the sum of all insertions of nodes into T2. For each edit sequence S, a mapping with a

cost less than or equal to the cost of S exists, and for each mapping an edit sequence with the

same cost exists. This implies that the distance between T1 and T2 is the cost of the mapping

with the lowest cost among all mappings between T1 and T2 [AG97].

The edit distance is defined for ordered and unordered trees. A tree is ordered if the left-

to-right order of sibling nodes is fixed. The mappings for ordered trees preserve the order of

siblings, i.e., for any two nodes u, v in T1, if u is to the left of v, then the image of u must

be to the left of the image of v in T2. The problem of finding the edit distance between two

ordered trees T1 and T2 can be solved in O(|N1| · |N2| ·depth(T1) ·depth(T2)) time, where |N1|
(|N2|) is the number of nodes in T1 (T2). An early variant of ordered tree edit was proposed

by Selkow [Sel77]. His model restricts the insertions and deletions to the leaves of the trees.

The time complexity of the algorithm solving this problem is O(|N1| · |N2|).

Unfortunately, the edit-distance problem for unordered trees is MAX SNP-hard—even if both

trees are binary— , which means that there is no polynomial time approximation scheme

(PTAS) for this problem unless P=NP [ZSS92]. Motivated by the hardness result for the

editing distance between unordered trees, some restricted measures have been proposed. The

restrictions concern the order of edit sequences, the permitted mappings, or both. The align-

ment of unordered trees [JWZ94] corresponds to a restricted tree edit distance in which all

insertions precede all deletions. Even the computation of this restricted measure is MAX

SNP-hard when at least one of the trees is allowed to have an arbitrary degree (the maximum

number of children of a node). The main idea of a model for unordered trees introduced

in [TT88] and refined in [Zha93] is to restrict the mappings between the trees: Separate sub-

trees in T1 must be mapped to separate subtrees in T2. A further restriction of this model is

proposed in [ZWS95]. Here, only nodes with at most two neighbors can be inserted into or

deleted from T1. Both problems can be solved in O(|N1| · |N2| · D) time, where D is a factor

that depends on the degree of the trees.

2.6 Similarity Search in Tree-Structured Data

Similarity search is concerned with the task to locate objects that are “close” to a query

according to a given distance measure. There is a large number of domains where similarity

search is of interest: In text databases, users may want to find strings allowing a number of

errors; in genome databases they may be interested in protein or DNA sequences that are

variations of a given sequence; in multimedia databases the users may want to select images

23

Chapter 2 State of the Art

or audio clips that are similar to a sample; in spatial databases they may want to locate

objects that are geometrically close to a query object; etc.

Tree-similarity search is a variant of similarity search where the query and the objects are

labeled trees. An object is “close” to the query if the tree distance between the query and

the object is below a certain threshold. Obviously, every distance measure reviewed in the

previous section can be used for tree-similarity search.

Approximate tree-pattern matching is an important specialization of tree-similarity search.

Here, the set of objects is defined as the set of trees included in a single data tree. Note

that an included tree is any tree that can be constructed as follows: Choose a subtree of the

data tree and prune away some of its subtrees. The time complexity of an algorithm that

solves a pattern-matching problem cannot be below the complexity of an algorithm for the

corresponding distance problem. In particular, tree pattern matching is MAX SNP-hard for

the unordered tree-edit distance and the unordered tree-alignment distance.

Very few restricted measures for unordered trees allow approximate tree-pattern matching in

polynomial time [Zha93, ZWS95], and only in [Zha93], a pattern-matching algorithm is pro-

posed. This algorithm benefits from restricted mappings which, as discussed in the previous

section, require that separate subtrees of the query tree must be mapped to separate subtrees

of the data tree.

Shasha et. al. [ZSW94] propose a pattern-matching algorithm with “variable length don’t

cares” based on the tree-edit distance for ordered trees. A “variable length don’t care” is a

sequence of virtual nodes that matches an arbitrary path in the data tree. The query language

WAQL [HWC+99] uses this algorithm to implement the special operator

D has T with dist op k,

which evaluates to true if the document D includes a tree whose distance to T is op k, where

op is a numerical comparison operator like “<”.

2.7 A Taxonomy of XML Query Languages and Retrieval Models

XML query languages developed by the database community are tailored to structure-rich

documents, and they focus on applications that query, transform, and integrate XML docu-

ments. Most languages require that the documents have relatively regular and static structure.

This is particularly true for the upcoming standard XQuery, which uses a static type system.

24

2.7 A Taxonomy of XML Query Languages and Retrieval Models

rich
structure-

XML-QL
YAXQL Lorel

SOQLXQL
flexible semantics

tree inclusion

XDuce
XQuery

tree relaxationpartial answers

YATL

TreeSearch

fuzzy graphs

WAQL

text-rich

application oriented user oriented

text algebras focussed retrieval

XXL

XIRQL

ELIXIR

XPRES

?

result ranking

Figure 2.3: A rough taxonomy of XML query languages and retrieval models. The ap-
proaches are proposed in the following papers: XDuce [HP00], XQuery [BCF+02],
YATL [SC98], XML-QL [DFF+98], YAXQL [Moe00], XQL [RLS98], Lorel [AQM+97],
SOQL [DD01], flexible queries [KS01], partial matches [KNS99], tree inclu-
sion [Kil92], TreeSearch [SZW01], tree relaxation [ACS02], fuzzy graphs [DT00],
WAQL [HWC+99], ELIXIR [CK02], XXL [TW02], XIRQL [FG01], XPRES [WFC99].
Text algebras and techniques for focused retrieval are proposed in several papers.
We review them in Section 2.4.1 and Section 2.4.2, respectively. The question
mark indicates the position a new approach should be located at.

The structure of the documents must be fully known to a user who formulates queries. The

semantics is rigid, which means that there must be a perfect match between the conditions

specified in the query and the structure and content of the documents retrieved.

Query languages and retrieval models developed in the IR community take a user-oriented

view. They are tailored to text-rich documents, where the XML markup structures a large,

continuous text. The focus of IR languages is on content; the query structure is interpreted

rigidly.

Figure 2.3 shows a rough taxonomy of existing XML query languages and retrieval models.

XML query languages developed by the database community are located in the upper-left

corner; they are designed for structure-rich documents and for use in applications. Note

that older proposals like Lorel have more features related to user-oriented querying than

younger developments like XQuery. The lower-right corner represents user-oriented languages

or models for text-rich documents. The user-friendliest models are those developed for focused

retrieval, where queries are just sequences of keywords.

Table 2.1 on the next page shows a more detailed comparison between query languages and

retrieval models that (i) support structured queries and (ii) either have a non-standard map-

25

Chapter 2 State of the Art

query language or content name partial edge ex- permu- valuation
retrieval model similarity similarity matches pansion tations method

ELIXIR [CK02]
√

– – – – WHIRL [Coh00]

flexible queries [KS01] – – – –
√

–

fuzzy graphs [DT00] – – –
√

– total weight

partial answers [KNS99] – –
√

– – –

tree inclusion [Kil92] – – –
√

– –

tree relaxation [ACS02] –
√ √ √

– total weight

TreeSearch [SZW01] – –
√

— – matching paths1

WAQL [HWC+99]
√ √ √ √

– –

XIRQL [FG01]
√ √

– – – probabilistic

XPRES [WFC99]
√

– – – – probabilistic

XXL [TW02]
√ √

– – – probabilistic

Table 2.1: Comparison of selected features of XML query languages and retrieval models.

ping semantics or support a kind of similarity valuation. The table columns list features

we think are favorable —or even necessary—to realize similarity search in XML data. The

column “content similarity” shows the ability of the language or model to find content similar

to the keywords or values specified by the query. Some languages also support the mapping

of query labels to similar element or attribute names, which is indicated in the column “name

similarity”. A language allows “partial matches” if a query may return answers that do not

comprise bindings for all element and attribute names occurring in the query. The column

“edge expansion” is marked for those languages or models that automatically relax query

edges to paths. Note that this feature differs from operators like “a//b” or “a.*.b”, where

the users must explicitly state that an edge should be relaxed. The column “permutations”

lists all languages that allow the reordering of hierarchical relationships of query selectors.

Finally, the “valuation method” shows the method used for the similarity valuation.

2.8 What is Missing?

The approaches shown in Figure 2.3, and particularly those listed in Table 2.1 have some of the

features that we demanded in our definition of the objectives of this thesis (see Section 1.2).

However, none of the reviewed query languages and retrieval models fulfills all, or at least the

majority of our demands. In the following, we review and extend the requirements for the

new language and discuss why no existing approach meets our requirements.

1The score of a document is determined by the number of query paths that have matches in the document.

26

2.8 What is Missing?

Syntax. The query language should allow to incorporate the hierarchical structure of XML

documents into the search process to yield precise queries. The formulation of a query

should be simple even for occasional users and should require only a partial knowledge

of the structure and content of the documents. Consequently, the language should

be located in the far-right area of Figure 2.3. For experienced users, the language

should offer extended features that allow to specify the users’ information needs more

precisely. This includes syntactic primitives to modify the interpretation of a query, but

also standard components of query languages like Boolean operators, data types, and

comparison predicates for keywords and numerical data.

Semantics. The interpretation of a structured query should be vague. A query should retrieve

results that exactly match the query, but also answers with a structure and content

similar to the selection conditions specified by the query. The similarity measure should

build on all five concepts of flexible query interpretation listed in Table 2.1, and it should

combine them in such a way that a unique score can be assigned to each query result.

The scores should be the basis for a ranking of the results. Moreover, it should be

possible to adapt the basic parameters of the similarity measure. Because the new

language should be able to handle complex, heterogenous structure (but also text-rich

documents), it should be located above the vertical center of Figure 2.3.

Algorithms. The query processor should be able to answer a query in sublinear time with

respect to the size of the collection. In particular, it should retrieve the best n results

quickly. The answer time of the system should be low, even if the collection is large,

and the structure of the data is very complex and heterogeneous. Fast query processing

requires that the similarity measure allows an implementation based on well-known

database techniques, which includes the use of index structures and query-execution

plans.

The XML query languages reviewed in Section 2.2 clearly do not meet our requirements as we

have already pointed out in Section 1.1. The complex syntax of those languages in conjunction

with the rigid interpretation of queries indicate that their main field of usage are applications

that query and transform XML documents with relatively regular structure.

Flexible query mappings are a means to add non-standard semantics to the selection parts of a

query. None of the flexible mapping models without valuation reviewed in Section 2.3.1 meets

our requirements, because one of our main requirements is the assignment of scores to the

results in order to establish a relevance ranking. The approach of Damiani and Tanca [DT00]

supports the ranking of results. However, it also does not meet our requirements, because it

27

Chapter 2 State of the Art

is restricted to a single kind of flexibility, namely the expansion of query edges (by means of

weighted shortcuts inserted into the original data graph). The TreeSearch approach [SZW01,

SWG02] allows only the deletion of nodes. The valuation model is extremely simple and

cannot be adapted to the properties of queries and documents. Moreover, the possible retrieval

of “false positives” restricts the usability of the approach. Tree-pattern relaxation [ACS02] is a

flexible mapping model that supports name similarity, partial matches, and edge expansion.

Despite its capabilities to retrieve results similar to the query, the approach lacks several

features demanded in this section: It only supports tree-pattern queries (without Boolean

operators) that match the structural parts of XML documents. All content-related features

are missing. In particular, no selection predicates for keywords and numerical data exist.

Moreover, the ability to find results with similar element or attribute names is limited, because

only one generalized label for each query label can be specified. For example, the label cd may

be generalized to media. Then, each subtype of media like dvd or book gets the same score.

We believe that a name-similarity model should allow to differently valuate the renamings

cd→ dvd and cd→ book.

Although there is a wide range of information retrieval models for text-rich XML documents,

we claim that none of them is appropriate for similarity search in XML documents with a com-

plex, heterogeneous structure. All query algebras for text databases interpret the structure

in a rigid way, and only one model incorporates term weights to enable the ranking of results.

The goal of models for focused retrieval is to find the best document components that satisfy

a query. Queries are either unstructured, or they can include simple structural constraints

(as discussed in Section 2.4.2). This contrasts with our objective to support queries that

reflect the hierarchical structure of XML documents, which means that the query language

should fully support nested structural expressions. All approaches that aim at combining

structured queries and relevance ranking (reviewed in Section 2.4.3) are designed for docu-

ments with large text passages, but with simple, regular structure. None of the models allows

for partial structural matches, automatic edge expansion, or permutations; and only XIRQL

[FG00, FG01] and XXL [TW00, TW02] consider the similarity of element and attribute names.

The use of a tree distance measure as a basis for the semantics of a query language is promising,

because it enriches the language with similarity-search capabilities. Unfortunately, none of

the distance measures reviewed in the Sections 2.5 and 2.6 satisfies our requirements. First

of all, the distance measures are not tailored to XML data. They are often based on ordered

trees —but ordered trees are inappropriate for querying, because the order of the elements,

and especially the order of the keywords within the documents may be inconsistent. Even if it

were consistent, the order might not be known to the users. Furthermore, the measures rely

28

2.8 What is Missing?

on a notion of similarity that is based on neighborhood and not on semantic closeness. The

measures are also not designed to support queries with Boolean operators, and other selection

predicates than those testing the equality of labels. Tree-similarity measures do not only have

an inappropriate semantics, they also require algorithms with very high time complexities.

Most similarity measures for unordered trees are NP-hard. Even the restricted variants for

unordered trees (and also the similarity measures for ordered trees) require algorithms that

touch every node in the query tree and every node in the in the data tree at least once. Such

algorithms cannot have a sublinear time complexity as demanded, and will have unacceptable

answer times for large document collections.

29

