Appendix B

Formal Definition of Recursively Constructible Family of Graphs

We say that a sequence of graphs $\{G_n\}_{n\geq 0}$ is a recursively constructible family of graphs if it can can be built from a given initial graph by means of a repeated fixed sequence of elementary operations involving addition of vertices and edges, and deletion of edges.

The concept of recursively constructible family of graphs appears for the first time in a joint work with Marc Noy [43]. There, these families are formally defined as follows.

Given a graph G and $U \subseteq V(G)$, let G[U] be the subgraph induced by U, and let $N_G(U)$ be the set of vertices in V(G) adjacent to some vertex in U. The symbol \cup denotes disjoint union.

Then we require the existence of a positive integer r, and a (labeled) graph M, such that:

- (a) $V(G_0) = W_0, E(G_0) = E_0.$
- (b) $V(G_n) = V(G_{n-1}) \cup W_n$.
- (c) $E(G_n) = (E(G_{n-1}) \setminus S) \cup E_n$, where $S \subseteq \bigcup_{i=1}^r E_{n-i}$ is a set of edges with one end in W_0 and the other end in $\bigcup_{i=1}^r W_{n-i}$.
- (d) All edges of E_n go between W_n and $W_0 \cup (\bigcup_{i=0}^r W_{n-i})$, for n > r.
- (e) The graph $G_n[W_0 \cup (\bigcup_{i=0}^r W_{n-i})]$ is equal to M for n > r. In particular, $G_n[W_n]$ is always the same graph.

When we say 'equal' in condition (e) we mean the following. The vertices in G_n are labeled by consecutive integers. The first labels correspond to the initial vertices W_0 , next labels to W_1 , and so on. And within a given W_n , the labels are also ordered, so that $G_n[W_n]$ is always the same labeled graph. Then the mapping that assigns the vertices of M to the vertices of $W_0 \cup W_n \cup W_{n-1} \cup \cdots \cup W_{n-r}$ in the order of increasing labels is a graph isomorphism. Also, the set S of edges that can be removed in condition (c) is always the same, a fact captured again by condition (e).

The elementary operations which constitute the step from G_{n-1} to G_n are then of the following three kinds:

1. Addition of a new set W_n of vertices adjacent to vertices only in $W_0 \cup (\bigcup_{i=0}^r W_{n-i})$.

- 2. Deletion of a fixed set S of edges with one end in W_0 and the other end in $\bigcup_{i=1}^r W_{n-i}$.
- 3. Addition of a fixed new set E_n of edges incident only to vertices in $W_0 \cup (\bigcup_{i=0}^r W_{n-i})$.

Operation 1 is the first step for enlarging the graph. The edges between W_n and W_0 are crucial in order to capture families with 'cyclic boundary conditions', like for example the family of prisms $\{P_{W\times k}\}_{k\geq 0}$ in Figure 5.3. Then we also need to remove the corresponding edges added in the previous step, and this is where Operation 2 comes into play. Operation 3 specifies the edges between the new and the old vertices, and also within the new vertices.

Our definition allows to connect vertices in W_n not only to W_{n-1} but also to W_{n-2} up to W_{n-r} . The reason is to be able to capture powers of graphs and, more generally, circulant graphs.