
Appendix A

Proof of Lemma 4.3

We want to prove that we end up with the same value of qi independently of the path we have

chosen. It remains to show the following:

Lemma A.1. Any trip around an interior point of the cell decomposition generates a difference

vector (0, 0, 0).

Proof. Let be p0 be an interior point of the cell decomposition. For improving readability, we

do not distinguish between the different vertices and auxiliary vertices converging to p0 and

we denote them indistinctly by 0.

Let S0 be the sequence of all pieces with one end converging to p0, in counter clockwise

order. The elements of S0 are of the form (s, 0), with s, 0 ∈ V ∪ A. Note that given two

different pieces (s1, 01) and (s2, 02), we can have s1 = s2 or 01 = 02. See Figure A.1 for an

example. The pairs of pieces of S0 sharing the same supporting bar are exactly those of type

(c) (remember that we walk counter clockwise around p0). The remaining pieces of S0 are

those of type (a) or (b) and satisfy that 0 = 0̄ ∈ V is an end vertex of the supporting bar.
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Figure A.1: Crossed pieces when walking counter clockwise around p0. The pair {(0, 4), (0, 7)}
lies on the same supporting bar; both pieces are of type (c). The same for the pair {(0, 5), (0, 6)}.
The remaining pieces are of type (a) or (b).

The difference vector ξ around p0 is given by

ξ =
∑

(0,s)∈S0

(ω0s(p0 × ps) + ∆(0, s)) .
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152 APPENDIX A. PROOF OF LEMMA 4.3

Grouping terms according to the type of the pieces and by Part 1 of Lemma 4.1 we get

ξ =
∑

(0,s)∈S0

ω0s(p0 × ps) +
∑

(0,s)∈S0
of type (b)

∆(0, s) +
∑

(0,s)∈S0
of type (c)

∆(0, s) . (A.1)

For the first term of (A.1), we have

∑

(0,s)∈S0

ω0s(p0 × ps) =
∑

(0,s)∈S0

ω0s ((p0 × ps) − (p0 × p0))

=
∑

(0,s)∈S0

ω0s(p0 × (ps − p0))

= p0 ×
∑

(0,s)∈S0

ω0s(ps − p0)

= p0 ×
∑

(0,s)∈S0

ω0̄s̄(ps̄ − p0̄)

= p0 ×
∑

(0,s)∈S0
0∈V

ω0s̄(ps̄ − p0) . (A.2)

The first equality holds since p0 × p0 is always zero. The second and third equations hold by

the linearity of the cross product. The fourth equality holds since, given a piece (b, t) of the

bar (b̄, t̄),

ωbt(pt − pb) = ωb̄t̄(pt̄ − pb̄) .

The fifth equality holds from the following: since we surround a vertex p0, the pairs of oriented

pieces supported by the same bar, contribute to the sum with two terms of equal value but

different sign, thus they cancel. Hence only the remaining pieces, those of type (a) or (b),

contribute to the sum.

By Part 2 of Lemma 4.1 and by the linearity of the cross product, we have for the second

term of (A.1):

∑

(0,s)∈S0
of type (b)

∆(0, s) =
∑

(0,s)∈S0
of type (b)

F
[s,s̄]
0 p0 × (ps̄ − p0)

⊥ . (A.3)

We analyze now the third term of (A.1). We pair the pieces of S0 of type (c) according to

their supporting bar. It is easy to see that they can be paired in such a way. Let P0 be the set

of all the oriented pairs. An element of P0 is of the form {(0, s1), (0, s2)}, and its supporting

bar is (s̄2, s̄1) (see Figure A.2). We have

∑

(0,s)∈S0
of type (c)

∆(0, s) =
∑

{(0,s1),(0,s2)}∈P0

(∆(0, s1) + ∆(0, s2)) . (A.4)
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Figure A.2: A pair of P0

Given a pair {(0, s1), (0, s2)} of P0, we obtain

∆(0, s1) + ∆(0, s2)

= F
[s1,s̄1]
s̄2

ps̄2 × (ps̄1 − ps̄2)
⊥ − F

[0,s̄2]
s̄1

ps̄1 × (ps̄1 − ps̄2)
⊥

+F
[s2,s̄2]
s̄1

ps̄1 × (ps̄2 − ps̄1)
⊥ − F

[0,s̄1]
s̄2

ps̄2 × (ps̄2 − ps̄1)
⊥

= F
[0,0]
s̄2

ps̄2 × (ps̄1 − ps̄2)
⊥ − F

[0,0]
s̄1

ps̄1 × (ps̄1 − ps2)
⊥

=
( ∑

k:{k;s̄2,s̄1}∈L
pk=p0

ωks̄2 s̄1 −
∑

k:{k;s̄1,s̄2}∈L
pk=p0

ωks̄1 s̄2

)
p0 × (ps̄1 − ps̄2)

⊥ . (A.5)

The first equation follows from the definition of ∆, with the supporting bar (s̄2, s̄1) oriented

as (0, s1), or (s̄1, s̄2) oriented as (0, s2). For the second equation we used −x⊥ = (−x)⊥ and

the fact that

[0, s̄i] = 0 ∪ [si, s̄i] , for i = 1, 2

by construction. The third equation follows from the definition of F
[0,0]
s̄2

and F
[0,0]
s̄1

, the linearity

of the cross product and the representation of pk as a convex combination of ps̄2 , ps̄1 , and we

write p0 instead of pk.

From (A.2), (A.3), (A.4) and (A.5), the equation (A.1) can be rewritten as

ξ =p0 ×
( ∑

(0,s)∈S0
0∈V

ω0s̄(ps̄ − p0)

+
∑

(0,s)∈S0
of type (b)

( ∑

k:{k;0,s̄}∈L

−ηk0s̄
0 +

∑

k:{k;s̄,0}∈L

ηks̄0
0

)
(ps̄ − p0)

⊥

+
∑

{(0,s1),(0,s2)}∈P0

( ∑

k:{k;s̄2,s̄1}∈L
pk=p0

ωks̄2 s̄1 −
∑

k:{k;s̄1,s̄2}∈L
pk=p0

ωks̄1 s̄2

)
(ps̄1 − ps̄2)

⊥

)

=p0 ×
( ∑

(0,s)∈S0
0∈V

ω0s̄(ps̄ − p0) +
∑

0∈V

FST (0)
)

=p0 × (0, 0, 0)

=(0, 0, 0) .
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The vector p0 is a common factor of the three terms of the sum, thus the first equation follows.

For the second and third equations, one can check that the second term of the cross product is

nothing else than the resulting force at p0, which is the sum of the classic and the self-touching

stress over all the vertices converging to p0, and we had equilibrium at every vertex.


