Bibliography

[1] M. Aigner and G. M. Ziegler, Proofs from THE BOOK, 2nd Edition, Springer Verlag, 2001.
[2] H. Alt, C. Knauer, G. Rote and S. Whitesides, The complexity of unfolding. Towards a Theory of Geometric Graphs, (ed. J. Pach), American Mathematical Society (2004), 1-13.
[3] G. Barequet and M. Moffie, The complexity of Jensen's algorithm for counting polyominoes, Proc. 1st Workshop on Analytic Algorithmics and Combinatorics, New Orleans, LA, 2004, 161-169.
[4] A. Berman and J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1976.
[5] T. Biedl, E. D. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, S. M. Robbins, I. Streinu, G. Toussaint and S. Whitesides, A note on reconfiguring tree linkages: trees can lock, Discrete Applied Mathematics 117(1-3) (2002), 293-297.
[6] T. Biedl, E. D. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, S. M. Robbins, I. Streinu, G. Toussaint and S. Whitesides, On reconfiguring tree linkages: trees can lock, Proceedings of the 10th Canadian Conference on Computational Geometry (CCCG'98), Montral, Québec, Canada (1998).
[7] T. Biedl, E. Demaine, C. Duncan, R. Fleischer and S. Kobourov, Tight bounds on maximal and maximum matchings, Discrete Mathematics 285(1-3) (2004), 7-15.
[8] T. Biedl, E. D. Demaine, S. Lazard, S. M. Robbins, M. A. Soss, Convexifying monotone polygons, 10th International Symposium on Algorithms and Computation (ISAAC'99), Lecture Notes in Computer Science, Vol. 1741, Chennai, India (1999), 415424.
[9] N. L. Biggs, R. M. Damerell and D. A. Sands, Recursive families of graphs, J. Combin. Theory, Ser. B 12 (1972), 123-131.
[10] N. G. De Bruijn, Nieuw Archief voor Wiskunde 2 (1954), 67, problems 17 and 18. Answers in Wiskundige Opgaven met de Oplossingen 20 (1955), 19-20.
[11] N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland, third edition, 1970.
[12] T. Brylawsky and J. Oxley, The Tutte polynomial and its applications, in N. White (ed.), Matroid Applications, Encyclopedia of Mathematics and its Applications 40, Cambridge Univ. Press, Cambridge (1992), 123-225.
[13] N. Calkin, C. Merino, S. Noble and M. Noy, Improved bounds for the number of forests and acyclic orientations in the square lattice, Electron. J. Combin. 10 (2003) \#R4.
[14] M. Chrobak, M. T. Goodrich and R. Tamassia, Convex drawings of graphs in two and three dimensions (preliminary version), Proceedings of the Twelfth Annual Symposium on Computational Geometry (1996), 319-328.
[15] F. Chung and S.-T. Yau, Coverings, heat kernels and spanning trees, Electronic Journal of Combinatorics 6 (1999), \#R12, 21 pp.
[16] R. Connelly, E. Demaine and G. Rote, Straightening polygonal arcs and convexifying polygonal cycles, Discrete ε^{3} Computational Geometry 30(2) (2003), 205-239.
[17] R. Connelly, E. D. Demaine and G. Rote, Infinitesimally locked self-touching linkages with applications to locked trees, Physical Knots: Knotting, Linking, and Folding Geometric Objects in \mathbb{R}^{3}, (eds. J. A. Calvo, K. C. Millett, E. J. Rawdon), Contemporary Mathematics 304, American Mathematical Society (2002), 287-311.
[18] A.R. Conway, Enumerating 2D percolation series by the finite-lattice method: Theory J. Physics, A: Mathematical and General, 28 (1995), 335-349.
[19] A.R. Conway and A.J. Guttmann, On two-dimensional percolation, J. Physics, A: Mathematical and General 28 (1995), 891-904.
[20] H. Crapo and W. Whiteley, Statics of frameworks and motions of panel structures, a projective geometric introduction, Structural Topology 6 (1982), 43-82.
[21] H. Crapo and W. Whiteley, Plane self stresses and projected polyhedra I: the basic pattern, Structural Topology 20 (1993), 55-78.
[22] H. Crapo and W. Whiteley, Spaces of stresses, projections and parallel drawings for spherical polyhedra, Contributions to Algebra and Geometry 35(2) (1994), 259-281.
[23] E. D. Demaine, Folding and unfolding linkages, paper, and polyhedra, Revised Papers from the Japan Conference on Discrete and Computational Geometry, (eds. J. Akiyama, M. Kano, M. Urabe), JCDCG 2000, Lecture Notes in Computer Science 2098, SpringerVerlag, 2001, 113-124.
[24] E. D. Demaine, J. S. B. Mitchell, J. O'Rourke, The Open Problems Project, problem 37, 2006.
[25] P. Eades and P. Garvan, Drawing stressed planar graphs in three dimensions, Proceedings of the Symposium on Graph Drawing, GD'95, Passau, Germany, September 20-22, edited by F. J. Brandenburg, Lecture Notes in Computer Science, Springer-Verlag, 1027 (1996), 212-223.
[26] L. Fejes Toth and A. Heppes, Über stabile Körpersysteme, Compositio Mathematica 15(2) (1963), 119-126.
[27] R. Fourer, D. M. Gay, B. W. Kernighan, AMPL, a Modeling Language for Mathematical Programming, Duxbury Press/Brooks/Cole Publishing Company, 2002.
[28] S.W. Golomb, Polyominoes, 2nd ed., Princeton University Press, 1994.
[29] P. Hilton and J. Pederson, Catalan Numbers, their generalization, and their uses, Math. Intelligencer 13(2) (1991), 64-75.
[30] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[31] S. Janson, T. Luczak and A. Ruciński, Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, 2000.
[32] I. Jensen, Enumerations of lattice animals and trees, J. of Statistical Physics, 102 (2001), 865-881.
[33] I. Jensen, Counting polyominoes: A parallel implementation for cluster computing, Lecture Notes in Computer Science, 2659 (2003), 203-212.
[34] D. A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967), 851-863.
[35] D.A. Klarner, Polyominoes, Handbook of Discrete and Computational Geometry (J.E. Goodman and J. O'Rourke, eds.), CRC Press (1997), Ch. 12, 225-240.
[36] D.E. Knuth, Programs POLYNUM and POLYSLAVE, http://sunburn.stanford.edu/~knuth/programs.html\#polyominoes
[37] D.L. Kreher and D.R. Stinson, Combinatorial Algorithms, Generation, Enumeration and Search (CAGES), CRC Press, 1998.
[38] Y. Kusakari, M. Sato and T. Nishizeki, Planar reconfiguration of monotone trees, IEICE Trans. Fundamentals, Vol. E83-A, 5 (2002).
[39] B. McKay, Spanning trees in regular graphs, Eur. J. Combinatorics 4 (1983), 149-160.
[40] R. Merris, Laplacian matrices of graphs: a survey, Second Conference of the International Linear Algebra Society, Lisbon (1992); Linear Algebra Applications, 197/198 (1994), 143-176.
[41] T. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products, Bull. American Mathematical Society, 54 (1948), 352-360.
[42] T. Nishizeki and I. Baybars, Lower bounds on the cardinality of the maximum matching of planar graphs, Discrete Mathematics 28(3) (1979), 255-267.
[43] M. Noy and A. Ribó, Recursively constructible families of graphs, Advances in Applied Mathematics 32 (2004), 350-363.
[44] S. Onn and B. Sturmfels, A quantitative Steinitz's theorem, Beiträge zur Algebra und Geometrie, 35 (1994), 125-129.
[45] J. O'Rourke, Folding and unfolding in computational geometry, Revised Papers from the Japan Conference on Discrete and Computational Geometry, (eds. J. Akiyama, M. Kano, M. Urabe), JCDCG '98, Lecture Notes Comput. Sci. 1763, Springer-Verlag, Berlin, 2000, 258-266.
[46] János Pach and Géza Tóth, Monotone Drawings of Planar Graphs, Lecture Notes in Computer Science, Vol. 2518 (2002), 647-653.
[47] B. M. I Rands and D. J. A. Welsh, Animals, trees and renewal sequences, IMA J. Appl. Math. 27 (1981), 1-17; Corrigendum, 28 (1982), 107.
[48] J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics 1643, Springer-Verlag Berlin Heidelberg, 1996.
[49] R. Shrock and F. Y. Wu, Spanning trees on graphs and lattices in dimensions, J. Physics, A: Mathematical and General 33 (2000), 3881-3902.
[50] J. Snoeyink and J. Stolfi, Objects that cannot be taken apart with two hands, Proceedings of the Ninth Annual Symposium on Computational Geometry (1993), 247-256.
[51] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, 1999.
[52] E. Steinitz, Polyeder und Raumeinteilungen, Encyclopädie der Mathematischen Wissenschaften, Vol. 3 (Geometrie), Part 3AB12 (1922), 1-139.
[53] E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder, Springer Verlag, Berlin, 1934; reprint, Springer Verlag, 1976.
[54] I. Streinu, A combinatorial approach to planar non-colliding robot arm motion planning, Proceedings of the 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, California), IEEE Computer Society Press, Washington (2000), 442-453.
[55] D. J. A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge Univ. Press, Cambridge, 1993.
[56] W. Whiteley, Motions and stresses of projected polyhedra, Structural Topology 7 (1982), 13-38.
[57] F. Y. Wu, Number of spanning trees on a lattice, J. Phys. A: Math. Gen. 10 (1977), L113-115.

