
Part III

Polyominoes

119

Chapter 7

Counting Polyominoes on

Twisted Cylinders

7.1 Introduction

Polyominoes. A polyomino of size n, also called an n-omino, is a connected set of n adjacent

squares on a regular square lattice (connectivity is through edges only). Fixed polyominoes

are considered distinct if they have different shapes or orientations. The symbol A(n) denotes

the number of fixed polyominoes of size n on the plane. Figure 7.1(a) shows the only two fixed

dominoes (adjacent pairs of squares). Similarly, Figures 7.1(b) and 7.1(c) show the six fixed

triominoes and the 19 fixed tetrominoes—polyominoes of size 3 and 4, respectively. Thus,

A(2) = 2, A(3) = 6, A(4) = 19, and so on.

(a) Dominoes (b) Triominoes

(c) Tetrominoes

Figure 7.1: Fixed dominoes, triominoes, and tetrominoes

No analytic formula for A(n) is known. The only methods for computing A(n) are based

121

122 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

on explicitly or implicitly enumerating all polyominoes.

Counting polyominoes has received a lot of attention in the literature. In Barequet et al. [3],

we can find an overview of the development of counting fixed polyominoes, beginning in 1962

with R. C. Read. The problem appears at The Open Problems Project [24].

We base our present study on Andrew Conway’s transfer-matrix algorithm [18], which

was subsequently improved by Jensen [32] and further optimized by Knuth [36]. Using his

algorithm, Jensen obtained the values up to A(48). More recently, he used a parallel version

of the algorithm and computed A(n) for n ≤ 56 [33].

It is known that A(n) is exponential in n. Klarner [34] showed that the limit λ :=

limn→∞
n
√

A(n) exists. Golomb [28] labeled λ as Klarner’s constant. It is believed that

A(n) ∼ Cλnnθ for some constants C > 0 and θ ≈ −1, so that the quotients A(n + 1)/A(n)

converge, but none of this has been proved. There have been several attempts to bound λ

from below and above, as well as to estimate it, based on knowing A(n) up to certain values

of n. The best-known published lower and upper bounds are 3.927378 [33] and 4.649551 [?].

However, the claimed lower bound was based on an incorrect assumption, which goes back to

the paper of Rands and Welsh [47]. As we point out in Section 7.7, the lower bound should

have been corrected to 3.87565. Regardless of this matter, not even a single significant digit of

λ is known for sure. The constant λ is estimated to be around 4.06 [19, 33]; see [35] for more

background information on polyominoes.

In this chapter, we improve the lower bound on Klarner’s constant to 3.980137 by counting

polyominoes on a different grid structure, a twisted cylinder.

The Twisted Cylinder. A twisted cylinder of width W is obtained from the integer grid

N × N by identifying point (i, j) with (i + 1, j + W), for all i, j. Geometrically, it can be

imagined to be an infinite tube; see Figure 7.2.

2

3

4

5

1

W = 5

Figure 7.2: A twisted cylinder of width 5. The wrap-around connections are indicated; for

example, cells 1 and 2 are adjacent.

The usual cylinder would be obtained by identifying (i, j) with (i, j + W), without also

moving one step in the horizontal direction. The reason for introducing the twist is that it

allows us to build up the cylinder incrementally, one cell at a time, through a uniform process.

This leads to a simpler recursion and algorithm. To build up the usual “untwisted” cylinder

cell by cell, one has to go through a number of different cases until a complete column is built

up.

We implemented an algorithm in C that iterates the transfer equations, thereby obtaining

a lower bound on the growth rate of the number of polyominoes on the twisted cylinder. This

is also an improved lower bound on the number of polyominoes in the plane.

7.2. THE TRANSFER-MATRIX ALGORITHM 123

The algorithm has to maintain a large vector of numbers whose entries are indexed by

certain combinatorial objects that are called states. The states have a very clean combinatorial

structure, and they are in bijection with so-called Motzkin paths. We use this bijection as a

space-efficient scheme for addressing the entries of the state vector. Previous algorithms for

counting polyominoes treated only a small fraction of all possible states. This so-called pruning

of states was crucial for reaching larger values of n, but required the algorithms to encode and

store states explicitly, using a hash-table, and could not have used our scheme.

Contents of the Chapter. The chapter is organized as follows. In Section 7.2 we present

the idea of the transfer-matrix algorithm and define the notion of states, and how they are

represented. In Section 7.3 we describe the recursive operations for enumerating polyominoes

on our twisted cylinder grid and present the transfer equations, as well as the iteration process.

We also provide an algebraic analysis of the growing rate of the number of polyominoes on the

twisted cylinder. In Section 7.4 we prove a bijection between the states and Motzkin paths. In

Section 7.5 we describe explicitly how Motzkin paths are generated, ranked and unranked, and

updated. In Section 7.6 we report the results and the obtained lower bounds. In Section 7.7

we correct the previous lower bound given in [47]. Finally, in the concluding Section 7.8, we

mention a few open questions. In Appendix C and Appendix D we describe how the results of

the computer calculations were checked by independent computer calculations.

7.2 The Transfer-Matrix Algorithm

In this section we briefly describe the idea behind the transfer-matrix method for counting

fixed polyominoes. In computer science terms, this algorithm would be classified as a dynamic

programming algorithm.

The transfer-matrix method has already appeared in Chapter 5, for computing the asymp-

totic number of spanning trees of some recursively constructible families of graphs.

The strategy is as follows. The polyominoes are built from left to right, adding one cell of

the twisted cylinder at a time. Conceptually, the twisted cylinder is cut by a boundary line

through the W rows. The boundary cells are the W cells adjacent to the left of the boundary

line. In fact, the boundary cells are the W last added cells at a given moment of this building

process (see Figure 7.3).

Instead of keeping track of all polyominoes, the procedure keeps track of the numbers of

polyominoes with identical right boundaries. During the process, the configurations of the

right boundaries of the (yet incomplete) polyominoes are called states, as will be described. A

polyomino is expanded in the current column, cell by cell, from top to bottom. The new cell is

either occupied (i.e., belongs to the new polyomino) or empty (i.e., does not belong to it). By

“expanding” we mean updating both the states and their respective numbers of polyominoes.

A partial polyomino is the part of the polyomino lying on the left of the boundary line at

some moment. A partial polyomino is not necessarily connected, but each component must

contain a boundary cell.

7.2.1 Motzkin Paths

A Motzkin path [41] of length n is a path from (0, 0) to (n, 0) in a n × n grid, consisting of

up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0), that never goes below the x-axis.

124 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

The number Mn of Motzkin paths of length n is known as the nth Motzkin number.

Motzkin numbers satisfy the recurrence

Mn = Mn−1 +
n−2∑

i=0

Mi · Mn−i−2, (7.1)

for n ≥ 2 and M0 = M1 = 1. The first few Motzkin numbers are

(Mn)∞n=0 = {1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, . . .}.

It is obvious that Mn ≤ 3n. A more precise asymptotic expression for Motzkin numbers,

Mn =
3n

n3/2
·
√

27

4π
· (1 + O(1/n)),

can be deduced from the generating function

∞∑

n=0

Mnxn =
1 − x −

√
(1 − 3x)(1 + x)

2x2
.

We represent the steps (1, 0), (1, 1), (1,−1) of a Motzkin path by the vertical moves 0,1,−1,

respectively. (We omit the horizontal moves since they are always 1.) Thus, a Motzkin path

of length n is represented as a string of n symbols of the alphabet {1,−1, 0}.
Motzkin numbers have many different interpretations [51]. For example, there is a corre-

spondence between Motzkin paths and drawing chords in an outerplanar graph.

7.2.2 Representation of States

A state represents the information about a partial polyomino at a given moment, as far as

it is necessary to determine which cells can be added to make the partial polyomino a full

polyomino.

We encode a state by its signature by first labelling the boundary cells as indicated in

Figure 7.2. The signature of a partial polyomino is given as a collection of sets of occupied

boundary cells. Each set represents the boundary cells of one connected component; see Fig-

ure 7.3 for an example.

A signature is not an arbitrary collection of disjoint subsets of {1, . . . , W}. First of all, if

two adjacent cells i and i+1 are occupied, they must belong to the same component. Moreover,

the different components must be noncrossing: For i < j < k < l, it is impossible that i and k

belong to one component and j and l belong to a different component; these two components

would have to cross on the twisted cylinder. A valid signature (or state) is a signature obeying

these two rules. (This includes the “empty” state in which no boundary cell is occupied.)

The states can also be encoded by Motzkin paths of length W + 1. In Section 7.4 we prove

a bijection between the set of valid signatures and the set of Motzkin paths. Figure 7.3 gives

an example of both encodings of the same state, as a signature in the form of a set of sets and

as a Motzkin path. In the notation of states as sets of sets, we use angle brackets to avoid an

excessive accumulation of braces.

We prefer the term state when we regard a state as an abstract concept, without regard to

its representation.

7.3. COUNTING POLYOMINOES ON A TWISTED CYLINDER 125

9

12

16

2

3

4

5

8

10

11

13

14

15

1

7

6

⇐⇒

A− A A − B − C C − A A − − A A

4 5 6 7 8 9 10 11 12 13 14 15 1631 2

Figure 7.3: Left: A snapshot of the boundary line (solid line) during the transfer-matrix

calculation. This state is encoded by the signature 〈{2, 3, 4, 11, 12, 15, 16}, {6}, {8, 9}〉. Note

that the bottom cell of the second column is adjacent to the top cell of the third column. The

numbers are the labels of the boundary cells. Right: the same state encoded as the Motzkin

path (0, 1, 0, 0, 1, 1,−1, 1, 0,−1,−1, 0, 1, 0,−1, 0,−1). For a better visualization of the state, we

assign a symbol to each connected component and the symbol “−” to empty cells.

The encoding by signatures is a very natural representation of the states, but it is expensive.

In our program we use the representation as Motzkin paths, which is much more efficient.

Indeed, we rank the Motzkin paths, i.e., we represent the states by an integer from 2 to M ,

where M = MW+1 is the number of Motzkin paths of length W +1. The ranking and unranking

operations are described later in Section 7.5.1.

There also many other possible ways to encode the states. In his algorithm, Jensen [32]

used signature strings of length W containing the five digits 0–4, which Knuth [36] replaced

by the more intuitive five-character alphabet {0, 1, (,), -}. Conway [18] used strings of length

W with eight digits 0–7.

7.3 Counting Polyominoes on a Twisted Cylinder

Let ZW (n) be the number of polyominoes of size n on our twisted cylinder of width W . It is

related to the number A(n) of polyominoes in the plane as follows:

Lemma 7.1. For any W , we have ZW (n) ≤ A(n).

Proof. We construct an injective function from n-ominoes on the cylinder to n-ominoes on the

plane. First, it is clear that an n-omino X in the plane can be mapped to a polyomino α(X)

126 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

on the cylinder, by simply wrapping it on the cylinder. This may cause different cells of X to

overlap, which, therefore, α(X) may have fewer than n cells.

On the other hand, an n-omino Y on the cylinder can always be unfolded into an n-omino

in the plane, usually in many different ways: Refer to the subgraph G(Y) of the grid Z2 that

is generated by the vertex set Y . (The squares of the grid can be represented as the vertices

of the infinite grid graph Z2.) Select any spanning tree T in G(Y). This spanning tree can

be uniquely unfolded from Z2 into the plane, and it defines an n-omino β(Y) on the plane.

β(Y) will have all adjacencies between cells that were preserved in T , but some adjacencies of

Y may be lost. When rolling β(Y) back onto Z2, there will be no overlapping cells and we

retrieve the original polyomino Y :

α(β(Y)) = Y

It follows that β is an injective mapping.

The mapping β is, in general, far from unique. As soon as G(Y) contains a cycle that

“wraps around” the cylinder (i.e., that is not contractible), there are many different ways to

unroll Y into the plane.

Klarner’s constant λ, which is the growth rate of A(n), is lower bounded by the growth

rate λW of ZW (n), that is:

λ ≥ λW = lim
n→∞

ZW (n + 1)

ZW (n)

We enumerate partial polyominoes with n cells in a given state. The point of the twisted

cylinder grid is that when adding a cell, we always repeat the same 2-step operation:

1. Add new cell: Update the state. If the cell is empty, the size of the polyomino remains

the same. If the cell is occupied, the size grows by one unit.

2. Rotate one position: Shift the state, i.e., rotate the cylinder one position so that cell W

becomes invisible, the labels 1 . . .W − 1 are shifted by +1, and the new added cell is

labelled as 1.

See the illustration for W = 3 in Figure 7.4.

2

3

1 1

2 2

3

1
add cell rotate

Figure 7.4: Addition of new cell and rotation.

In Section 7.5.2 we describe how the states, encoded by Motzkin paths, are updated when

adding a cell and rotating.

7.3.1 System of Equations

Successor states

Let S be the set of all non-empty valid states. For each state s ∈ S, there are two possible

successor states each time a new cell is added and the grid is rotated, depending on whether the

7.3. COUNTING POLYOMINOES ON A TWISTED CYLINDER 127

new cell is empty or occupied. Given s, let succ0(s) (succ1(s)) be the successor state reached

after adding a new empty (occupied) cell and rotating.

Example. For W = 4, the four boundary cells are labelled as in Figure 7.5. Consider the

initial state s = 〈{1, 2}, {4}〉. After adding a new cell and rotating, we get succ0(s) = 〈{2, 3}〉
and succ1(s) = 〈{1, 2, 3}〉.

1

2

3

4

rotate

rotate

add cell

succ1(s) = 〈{1, 2, 3}〉

succ0(s) = 〈{2, 3}〉

s = 〈{1, 2}, {4}〉

1

2

3

4

1

2

3

4

Figure 7.5: Example of successor states for W = 4. In the upper row the new cell is empty; in

the lower row it is occupied.

Note that succ0(s) does not exist if, when adding an empty cell from an initial state s, some

connected component becomes isolated from the boundary. (In this case a connected polyomino

could never be completed.) This happens exactly when the component {W} appears in s. For

example, for W = 3, succ0(〈{3}〉) and succ0(〈{1}, {3}〉) are not valid states, since in both cases

the component containing 3 is forever isolated after the addition of an empty cell.

Transfer equations for counting polyominoes of a given size

Define the vector x(i) of length |S| with components:

x(i)
s := ♯{partial polyominoes with i occupied cells in state s} (7.2)

Lemma 7.2. For each n ∈ N, we have x
(n)
〈{W}〉 = ZW (n).

Proof. Given a polyomino of size n, the last added cell is the lower cell of its last column. This

is the last cell that we see, the nth cell. If we add W − 1 empty cells once the polyomino is

completed, due to the rotation process of the twisted cylinder, the last occupied cell is labelled

W and we always reach the state 〈{W}〉. Hence x
(n)
〈{W}〉 equals the number of polyominoes of

size n on the twisted cylinder.

The following recursion keeps track of all operations:

x(i+1)
s =

∑

s′:s=succ0(s′)

x
(i+1)
s′ +

∑

s′:s=succ1(s′)

x
(i)
s′ ∀s ∈ S (7.3)

128 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

Note that the vector x(i+1) depends on itself. There is, however, no cyclic dependency since

we can order the states so that succ0(s) appears before s. This is done by grouping the states

into sets G1, G2, . . . , GW such that

Gk = { s ∈ S : k is the smallest label of an ocuppied cell }

For example, for W = 3 we have G1 = {〈{1}〉, 〈{1, 2}〉, 〈{1, 3}〉, 〈{1, 2, 3}〉, 〈{1}, {3}〉},
G2 = {〈{2}〉, 〈{2, 3}〉} and G3 = {〈{3}〉}.

Proposition 7.1. For each state s ∈ Gk, k = 1 . . .W , succ0(s) (if valid) belongs to Gk+1 and

succ1(s) belongs to G1.

Proof. For computing succ0(s) we first remove W from s, and second we shift each label l

to l + 1 (l = 1 . . W − 1). As the smallest label is then incremented by one, the resulting

state belongs to Gk+1. Note that the unique state belonging to GW is 〈{W}〉, and there is no

succ0(〈{W}〉) in this case.

For computing succ1(s) we always add an occupied cell with label 1, so 1 always appears

in succ1(s), hence the resulting state belongs to G1.

We can, therefore, use (7.2) to compute x(i+1) from x(i) if we process the states in the order

of the groups to which they belong, as GW , GW−1, . . . , G1.

Corollary 7.1. The states ordered as described above ensure that succ0(s) appears before s.

We draw a layered digraph (layers from 1 to n), with nodes x
(i)
s at layer i, for all s ∈ S and

i = 1 . . n, and arcs from each node x
(i)
s to nodes x

(i)
succ0(s)

and x
(i+1)
succ1(s)

, i = 1 . . n − 1. We

call this digraph the recursion graph. For simplicity, we denote at the same time, by x
(i)
s , the

node and its label, the number of partial polyominoes with i cells in state s.

Consider two layers i and i + 1. The system of equations (7.3) is represented by drawing

arcs from each node x
(i)
s to its successor nodes, x

(i)
succ0(s) and x

(i+1)
succ1(s)

. Figure 7.6 shows two

successive layers for W = 3. Figure 7.8 shows the recursion graph for W = 3. It follows from

Corollary 7.1 that the recursion graph is acyclic.

x
(i)
〈{1,2,3}〉x

(i)
〈{1},{3}〉x

(i)
〈{3}〉 x

(i)
〈{1}〉 x

(i)
〈{1,3}〉x

(i)
〈{1,2}〉x

(i)
〈{2,3}〉x

(i)
〈{2}〉

x
(i+1)
〈{1,2,3}〉x

(i+1)
〈{1},{3}〉x

(i+1)
〈{1}〉 x

(i+1)
〈{1,3}〉x

(i+1)
〈{1,2}〉x

(i+1)
〈{2,3}〉x

(i+1)
〈{2}〉x

(i+1)
〈{3}〉

(i)

(i + 1)

Figure 7.6: Schematic representation of the system (7.3) for W = 3.

In Figure 7.7 we show a schematic representation of the general graph, where the nodes

are grouped together according to their corresponding set Gk, and instead of arcs between the

original nodes we draw arcs between groups, using Proposition 7.1.

7.3. COUNTING POLYOMINOES ON A TWISTED CYLINDER 129

(i + 1)

GW

GW

G3

G3 G2

G2 G1

G1

(i)

. . .

. . .

Figure 7.7: Representation of system (7.3) by groups.

Matrix notation

The system of equations (7.3) can also be written in a matrix form. We store the set of

operations in two transfer matrices A and B, where rows correspond to the initial states, and

columns correspond to the successor states. In A, for each row s there is a 1 at column succ0(s)

(if succ0(s) is a valid state). In B, for each row s there is a 1 at column succ1(s). All the other

entries are zeros. Our ordering of the states implies that A is strictly lower triangular.

Then system (7.3) translates into a matrix form as

x(i+1) = x(i+1)A + x(i)B, (7.4)

where x(i) is regarded as a row vector. We call this the forward iteration. The equation (7.4)

can be written as

x(i+1) = x(i)Tfor (7.5)

with Tfor = B(1 − A)−1.

7.3.2 Iterating the Equations

We start the iteration with the initial vector x(0) := 0 and set x
(1)
〈{1}〉 := 1. We can then use (7.3)

to obtain the remaining states of x(1). We can imagine an initial column of empty cells, with

the first occupied cell being the one with label 1, on the second column. Equivalently, we can

begin directly with the initial conditions:

x
(1)
〈{w}〉 = 1 for w = 1, . . . , W

x(1)
s = 0 for all other states s ∈ S (7.6)

We iterate the system (7.3) so that at each step x(i) becomes the old vector xold, and x(i+1)

is the newly-computed vector xnew. This produces a recursion that, as we see later, gives the

number of polyominoes of a given size.

We can prove the following lemma:

Lemma 7.3. ZW (n) equals the number of paths from node x
(1)
〈{1}〉 to node x

(n)
〈{W}〉 in the re-

cursion graph.

Proof. Without loss of generality, we assume that all polyominoes begin at the same cell of the

infinite twisted cylinder grid. This is a kind of normalization: we set the first appearing cell

(the upper cell of the first column) of each polyomino to the same position.

130 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

(n)(2) . . . (n − 1)(1)

x
(n)
〈{W}〉

x
(1)
〈{1}〉

Figure 7.8: Recursion graph, W = 3

Starting with the initial conditions (7.6), we proceed with the recursion adding one cell at

each step and rotating. At each layer (i), the number of distinct paths starting at x
(1)
〈{1}〉 and

arriving to a node x
(i)
s is the accumulation of all the arcs of the forward iteration. It represents

the number of partial polyominoes with i cells in state s.

By Lemma 7.2, the process for completing a polyomino of size n ends at node x
(n)
〈{W}〉. Since

each addition of a cell, empty or occupied, is represented by an arc on the recursion graph,

the number of distinct paths from x
(1)
〈{1}〉 to x

(n)
〈{W}〉 represents the ZW (n) different ways of

constructing a polyomino of size n.

Thus, we enumerate all polyominoes iterating the equations, which amounts to following

all paths starting at x
(1)
〈{1}〉 and ending at x

(n)
〈{W}〉.

Backward recursion

In our program we use an alternative recursion that is, as we discuss later, preferable from a

practical point of view. We iterate the following system of equations:

y(i−1)
s = y

(i−1)
succ0(s)

+ y
(i)
succ1(s) ∀s ∈ S (7.7)

If succ0(s) does not exist, the corresponding value is simply omitted. In other words, we

walk backwards on the recursion graph. This translates into a matrix form as

y(i−1) = Ay(i−1) + By(i),

7.3. COUNTING POLYOMINOES ON A TWISTED CYLINDER 131

which can be written as

y(i−1) = Tbacky
(i)

with Tback = (I − A)−1B.

As before, the vector y(i−1) depends on itself, but there is no cyclic dependency, due to

Corollary 7.1.

Consider the initial vector y(0). We set

y(0) := 0 and y
(−1)
〈{W}〉 := 1, (7.8)

and use (7.7) to obtain the remaining states of y(−1).

Starting with the initial conditions (7.8), we iterate the system (7.7) so that at each step

y(−i) becomes the old vector yold and y(−i−1) is the newly-computed vector ynew. We thus

obtain the vectors y(0),y(−1),y(−2), . . . ,y(−i),y(−i−1),

As can be seen from the recursion graph,

y(−i)
s = ♯{paths from node x(n−i+1)

s to node x
(n)
〈{W}〉} (7.9)

Lemma 7.4. Starting with initial conditions (7.6) and (7.8), we have

y
(−n)
〈{1}〉 = ZW (n) = x

(n)
〈{W}〉.

Proof. By (7.9), y
(−n)
〈{1}〉 corresponds to the number of paths from node x

(1)
〈{1}〉 to node x

(n)
〈{W}〉,

which by Lemma 7.3 is the number of polyominoes of size n on a twisted cylinder of width W .

The second equation is given by Lemma 7.2.

Lemma 7.5. The matrices defining the forward and backward iterations have the same eigen-

values.

Proof. The matrices Tfor = B(1 − A)−1 and Tback = (I − A)−1B have the same eigenvalues

because they are similar: Tback = (I − A)−1Tfor(I − A).

Independently of this proof, we see that the forward and the backward iterations must have

the same dominant eigenvalues since both iterations define the number of polyominoes:

λW = lim
n→∞

ZW (n + 1)

ZW (n)
= lim

n→∞

x
(n+1)
〈{W}〉

x
(n)
〈{W}〉

= lim
n→∞

y
(−n−1)
〈{1}〉

y
(−n)
〈{1}〉

7.3.3 The Growth Rate λW

In this section we explain how we bound the growth rate λW . First, we need to prove that

there is a unique eigenvalue of largest absolute value. For this, we apply the Perron-Frobenius

Theorem to our transfer matrix. The Perron-Frobenius Theorem is stated in Section 0.5.

The matrix can be written as Tfor = B(1−A)−1 = B(1+A+A2+A3+· · ·). A is a triangular

matrix with zeros on the diagonal, hence it is nilpotent and the above series expansion is finite.

Since all the entries of A and B are nonnegative, it follows that this is also true for the entries

of Tfor.

Note that succ1({1, . . . , W}) = {1, . . . , W}. Hence, the diagonal entry of B corresponding

to the state {1, . . . , W} is 1 (all other diagonal entries of B are zero). Since both A and B are

nonnegative, the diagonal entry of Tfor corresponding to the state {1, . . . , W} is positive.

132 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

However, in our case the graph is not strongly connected because some valid states cannot

be reached. It will turn out that these states have no predecessor states, and the remaining

states, which we will call reachable, form a strongly connected graph. Hence, we can apply

the Perron-Frobenius Theorem to this subset of states. The result will then carry over to the

original iteration: in the forward recursion, the unreachable states will always have value 0;

and in the backward recursion, their value has no influence on successive iterations.

Let us now analyze the states in detail. Consider the state 〈{1, 3}, {5}〉 for W = 5. Some

cell, which is adjacent to boundary cell 1 has to be occupied since 1 is connected to 3. This

occupied cell, cannot be cell 2 since it is not present in the signature. There is one remaining

cell, which is adjacent to 1, but this cell is also adjacent to 5. It follows that 1 and 5 must

belong to the same component. Therefore, this state corresponds to no partial polyomino, and

it is not the successor of any other state. In fact, this type of example is the only case where

a state is not reachable. We call a signature (or state) unreachable if

1. cell 1 is occupied, but it does not form a singleton component of its own;

2. cell 2 is not occupied; and

3. cell W is occupied, but it does not lie in the same component as cell 1.

Otherwise, we call a state reachable.

Lemma 7.6.

1. Every non-empty reachable state can be reached from every other state, by a path that

starts with a succ1 operation.

2. No successor of any state is an unreachable state.

Proof. We prove that from every state we can reach the state {1, . . . , W} by a sequence of

successor operations, and vice versa. If we start from any state and apply a sequence of W

succ1-operations, we arrive at state {1, . . . , W}.
To see that some reachable state s can be reached from {1, . . . , W}, we construct a partial

polyomino corresponding to this state. We start with the boundary cells that are specified by

the given signature. The problem is to extend these cells to the left to a partial polyomino

with the given connected components. From the definition of reachable states it follows that

adding an arbitrary number of cells to the left of existing cells does not change the connectivity

between existing connected components.

The process is now similar to that for polyominoes in the plane; we do not need the wrap-

around connections between row 1 and row W . We leave cells that are singleton components

unconnected. We add cells to the left of all occupied cells that are not singleton components.

After growing three layers of new cells, pieces that should form components and that have no

other components nested inside (except singleton components) can be connected together. The

remaining pieces can be further grown to the left and connected one by one. Finally, we grow

one of the outermost components by adding a large block of occupied cells, such that several

columns are completely occupied. See Figure 7.9.

In constructing this partial polyomino cell by cell, we pass from state {1, . . . , W} to the

current state s. Since the succeeding operations correctly model the growth of partial poly-

ominoes, we get a path from {1, . . . , W} to state s in the recursion graph.

7.3. COUNTING POLYOMINOES ON A TWISTED CYLINDER 133

−
A
−
D
−
A
−

A

−

−
B
−
C
−
−
B
−
B
−
A
A
−

Figure 7.9: Construction for reaching state −AA−B −B−−C −B−A−−A−D−A− from

state {1 . . .W}, or AA . . . A.

The second part of the lemma is easy to see. Since an unreachable state s contains cell 1,

it can only be a succ1-successor. Since 1 is not a singleton component, the previous state ŝ

must have contained cell W (before the cyclic renumbering), as well as cell W − 1 (which is

renumbered to W in s). W and W − 1 must belong to the same component in ŝ; hence, they

will be in the same component as the new cell 1 in s, which is a contradiction.

Let us clarify the relation between the recursion graph, which consists of successive layers,

and the graph Gfor that represents the structure of Tfor, which has just one vertex for every

state.

We have Tfor = B(1 − A)−1 = B(1 + A + A2 + A3 + · · ·). An entry in the matrix (1 +

A + A2 + A3 + · · ·) corresponds to a sequence of 0 or more edges that are represented by the

adjacency matrix A, i.e., a sequence of succ0 operations. Therefore, Tfor has a positive entry

in the row corresponding to state s and the column corresponding to state t (and Gfor has an

edge from s to t) if and only if t can be reached from s by a single succ1 operation followed

by 0 or more succ0 operations.

Thus a path P from state s to state t in Gfor corresponds to a path P ′ from s on some

layer of the recursion graph to a vertex t on some other layer of the recursion graph. This path

starts with a succ1 edge, but is otherwise completely arbitrary.

Conversely, each path in the recursion graph that starts with a succ1 edge is reflected by

some path in Gfor. This leads to the following statement.

Lemma 7.7. Tfor has a unique eigenvalue λW of largest absolute value. This eigenvalue is

positive, and has multiplicity one and a nonnegative corresponding eigenvector.

134 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

Starting the forward recursion with any nonnegative nonzero vector will yield a sequence of

vectors that, after normalization, converges to this eigenvector.

Proof. We first look at the submatrix T̄for of Tfor that consists only of rows and columns for

reachable states.

By Lemma 7.6 and the above considerations, the graph of this matrix is strongly connected,

and the matrix is irreducible. The matrix Tfor has at least one positive diagonal entry. This is

also true for the submatrix T̄for, since this mentioned entry corresponds to a reachable state.

Hence, T̄for is primitive.

By the Perron-Frobenius Theorem, the statement of the lemma holds for this reduced

matrix. The sequence of iterated vectors x̄ converges (after normalization) to the Perron-

Frobenius eigenvector, the unique nonnegative eigenvector, which corresponds to the largest

eigenvalue.

If we extend the matrix to the full matrix, the second part of Lemma 7.6 implies that the

components that correspond to unreachable states in x will be zero after the first iteration,

no matter what the starting vector is. It means that the additional, unreachable components

have no further influence on the iteration. Moreover, if the initial vector is nonzero, the next

version of it will have a nonzero component for a reachable state, which ensures that the

Perron-Frobenius theorem can be applied from this point on, and convergence happens as for

the reduced vector x̄.

Compared to the reduced matrix T̄for, the additional columns of Tfor, which correspond

to unreachable states, are all zero. It follows that Tfor has all eigenvalues of T̄for, plus an

additional set of zero eigenvalues. Thus the statement about the unique eigenvector of largest

absolute value holds for Tfor, just as for T̄for.

By Lemma 7.5, λW is the unique eigenvalue of largest absolute value of Tback as well.

Lemma 7.8. λW is the unique eigenvalue of Tback of largest absolute value. This eigenvalue

is positive, and has multiplicity one and a positive corresponding eigenvector.

Starting the backward recursion with any nonnegative vector with at least one nonzero entry

on a reachable state will yield a sequence of vectors which, after normalization, converges to

this eigenvector.

Proof. The first sentence follows from Lemma 7.7 by Lemma 7.5. We consider the iterations

with the reduced matrix T̄back and a reduced vector ȳ for the reachable states, as in Lemma 7.7.

If follows that this iteration converges to the Perron-Frobenius eigenvector, which is positive.

If we compare this iteration with the original recursion (7.7), we see that the components

of y(i) and y(i−1) that correspond to unreachable states have no influence on the recursion

because they do not appear on the right-hand side. It follows that the subvector of reachable

states in y(i) has exactly the same sequence of iterated versions as ȳ(i).

The unreachable states in y(i−1) can be calculated directly from ȳ(i−1) and ȳ(i) by (7.7).

It follows, by taking the limit, that the unreachable states in the eigenvector can be calculated

from the eigenvector of T̄back using (7.7), and the fact that the whole eigenvector is positive.

Lemmas 7.7 and 7.8 imply that

ZW (n) ≤ c(λW)n,

7.4. BIJECTION BETWEEN SIGNATURES AND MOTZKIN PATHS 135

for some constant c. This is another way to express that λW is the growth rate of ZW (n).

The following lemma (which is actually a key lemma in one possible way to prove the Perron-

Frobenius Theorem) shows how to compute bounds for λW .

Lemma 7.9. Let yold be any vector with positive entries and let ynew = Tbacky
old. Let λlow and

λhigh be, respectively, the minimum and maximum values of ynew
s /yold

s over all components s.

Then, λlow ≤ λW ≤ λhigh.

Proof. From the definition of λlow and λhigh, we have

λlowyold ≤ ynew ≤ λhighy
old.

Let y∗ be the eigenvector corresponding to the eigenvalue λW :

Tbacky
∗ = λW y∗

By scaling y∗, we can achieve y∗ ≤ yold and y∗
s = yold

s for some state s ∈ S. Then we have

λW y∗ = Tbacky
∗ ≤ Tbacky

old = ynew ≤ λhighy
old.

This is true in particular for the s component: λW y∗
s ≤ λhighy

old
s . Moreover, since we assumed

y∗
s = yold

s , this implies λW ≤ λhigh.

Analogously, we can achieve y∗ ≥ yold and y∗
s = yold

s for some state s ∈ S. In this case we

have λW y∗ ≥ λlowyold, which implies λW ≥ λlow.

Thus, λlow ≤ λW ≤ λ is a lower bound on Klarner’s constant as well.

Our program iterates the equations until λlow and λhigh are close enough.

7.4 Bijection between Signatures and Motzkin Paths

Consider a (partial) polyomino on a twisted cylinder of width W and unrestricted length.

Figure 7.10 shows all the different possible boundaries and their states for 1 ≤ W ≤ 4.

A few points about Motzkin paths are in order here. A Motzkin path of length W + 1 is

an array p = (p[0], . . . , p[W]), where each component p[i] is one step 0, 1,−1. The levels are,

as the name suggests, the different y-coordinates of the paths. We can also assign a level to

each node of the path, by

level [i + 1] := level [i] + p[i] i = 0 . . W

with level [0] = 0.

In the following theorem we give the relation between the number of signature strings and

Motzkin numbers.

Theorem 7.1. There is a bijection between valid states of length W and Motzkin paths of

length W + 1, Hence, the number of nonempty valid states is MW+1 − 1.

Proof. We explicitly describe the conversions (in both directions) between Motzkin paths and

signatures as sets of sets. This is a bijective correspondence between both encodings of the

states.

We convert a signature string to a Motzkin path as follows: Consider the edges between

boundary cells. Edges between occupied cells of the same connected component or between

empty cells are mapped to the horizontal step 0. For a block of consecutive, occupied cells of

the same connected component, we distinguish between four cases:

136 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

A A A A A_ _

(a) W = 1: 1 state (b) W = 2: 3 states

A A A A A

A A A B A A A A A

_ _ _ _ _ _ _

_ _ _

(c) W = 3: 8 states

_

_

A A A A A

A A A A A A A

A A A A A A

A A A A A A A A A

A

A

A

_ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _

_ _

A

B A

B BA A B

A A B BAA __

_

(d) W = 4: 20 states

Figure 7.10: All states for 1 ≤ W ≤ 4. For a better visualization, boundaries are drawn

horizontally and states indicated using a slightly different notation. We assign a symbol to

each connected component and the symbol ‘−’ to empty cells.

• The left edge of the first block is mapped to 1.

• The left edge of all remaining blocks is mapped to −1.

• The right edge of the last block is mapped to −1.

• The right edge of all remaining blocks is mapped to 1.

When a new component starts, the path will rise to a new level (+1). All cells of the

component will lie on this level. When the component is interrupted (i.e., a block, which is not

the last block of the component, ends), the path rises to a higher level (+1), essentially pushing

the current block on a stack, to be continued later. When the component resumes, the path

will come down to the correct level (−1). At the very end of the component, the path will be

lowered to the level that it had before the component was started (−1). For empty cells, the

path lies on an even level, whereas occupied cells lie on odd levels. A connected component,

which is nested within k other components, lies on level 1+2k; see Figure 7.11 for an example.

7.5. ENCODING STATES AS MOTZKIN PATHS 137

A− A A − B − C C − A A − − A A

4 5 6 7 8 9 10 11 12 13 14 15 1631 2

Figure 7.11: The Motzkin path (0, 1, 0, 0, 1, 1,−1, 1, 0,−1,−1, 0, 1, 0,−1, 0,−1), with W = 16.

The connected components {6} and {8, 9} lie on level 3, nested within the component

{2, 3, 4, 11, 12, 15, 16} (on level 1). Cells 1, 5, 7, 10, 13, 14 are empty since they lie on levels 0

and 2.

The process can be better understood by the following simple algorithm that converts a

Motzkin path to a signature. It maintains a stack of partially completed components in an

array current set [1], current set [3], current set [5], (The even entries of this array are not

used.) The current element is always added to the topmost set on the stack.

Algorithm ConvertPathToSetofSets(p)

Input. A Motzkin path p[0 . . W]

Output. The corresponding signature

level := 0

signature := {}
for i = 0 to W do

if p[i] = 1

level := level + 1

if level is odd (* Start a new set *)

current set [level] := {}
else if p[i] = −1

if level is odd (* Current set is complete. Store it *)

signature := signature ∪ {current set [level]}
level := level − 1

if level is odd

Add i to current set [level]

return signature

Figure 7.3 shows an example of this bijection.

Finally, we explain the index shift between the number of signatures and Motzkin numbers.

That is, why S(W) = MW+1 − 1. The shift occurs simply because a signature of length k is

mapped to a path of length k + 1, while the (k + 1)st Motzkin number is the number of paths

of length k +1. The missing state is the “empty” signature {} that corresponds to the straight

x-parallel path (0, 0, . . . , 0).

7.5 Encoding States as Motzkin Paths

As defined before, M = MW+1 denotes the number of Motzkin paths of length W + 1. After

discarding the empty signature, we have M − 1 states.

138 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

7.5.1 Motzkin Path Generation

In order to store x(i) in an array indexed by the states, we use an efficient data structure that

allows us to generate all Motzkin paths of a given length m = W + 1 in lexicographic order,

as well to rank and unrank Motzkin paths.

Listing all Motzkin paths in lexicographic order establishes a bijection between all Motzkin

paths and the integers between 1 and M . The operation of ranking refers to the direct compu-

tation of the corresponding integer for a given Motzkin path, and unranking means the inverse

operation. Both processes can be carried out in O(m) time. The data structure and the

algorithms for ranking and unranking are quite standard; see for example [37, Section 3.4.1].

Construct a diagram such as the one in Figure 7.12, with m+1 nodes on the base and ⌈m
2 ⌉

rows, representing the levels. Assign ones to all nodes of the upper-right diagonal. Running

over all nodes from right to left, each node is assigned the sum of the values of its adjacent

nodes to the right. This number is the number of paths that start in this node. At the end,

the leftmost node will receive the value M , the number of Motzkin paths of length m. This

preprocessing takes O(m2) time.

2 1149

12 5 2 1

3 1

21

Figure 7.12: Generating Motzkin paths of length 5, M5 = 21.

The bijection from the set of integers from 1 to M to the set of Motzkin paths of length m

is established in the following way. Refer again to Figure 7.12, for an example with Motzkin

paths of length m = 5. We proceed from left to right. Begin at the leftmost node. There

are 21 Motzkin paths of length 5; the first nine start with the horizontal step (paths 1st till

9th), and the other 12 start with the up-step (paths 10th till 21st). If the first step is 0, the

second node of the path is the one assigned the number 9 on the diagram. One can see that

of these nine paths, four go straight (paths 1st till 4th) and five go up (paths 5th till 9th).

If the first step is 1, the second node of the path is the one assigned the number 12 on the

diagram. Of these 12 paths, four go down (paths 10th till 13th), five go straight (paths 14th

till 18th) and the last three go up (paths 19th till 21th). This procedure continues until the

upper-right diagonal is reached. At this point the rest of the path goes always down ending at

the rightmost node.

The following proposition shows that we obtain the paths in the desired order, hence no

extra sorting is needed.

Proposition 7.2. The Motzkin paths are generated in lexicographic order, satisfying the con-

ditions of Corollary 7.1.

Proof. Given a Motzkin path, the first nonzero step indicates the smallest label of an occupied

cell—the group in which the state belongs. Thus a path p precedes a path p′ in our ordering

if the first nonzero step in p appears later than the first nonzero step in p′.

7.5. ENCODING STATES AS MOTZKIN PATHS 139

Our numbering of paths also satisfies the following property: at each node, we assign the

paths continuing with step −1, the lower numbers, those continuing with step 1, the upper

numbers, and those continuing with step 0, the middle numbers. In particular, at each node on

the base, we assign the paths continuing with step 1 the upper numbers and those continuing

with step 0 the lower numbers. Accordingly, a path is assigned a lower number as long as the

first nonzero step appears later.

7.5.2 Motzkin Path Updating

Here we explain how the Motzkin paths are updated after the operations of adding a new cell

and rotating.

First, we describe the updating for an initial state s encoded as sets of connected com-

ponents. (This is also the representation used in the Maple program in Appendix D, at the

beginning of the procedure check.) The rotation (shift) is always done by removing W , shifting

each label l to l + 1 for l = 1 . . W − 1, and labelling the new cell as 1. For every case we

provide an example with W = 3.

1. Add Empty Cell and Shift (Compute succ0(s))

• If W does not appear in s, just shift. Example: succ0(〈{2}〉) = 〈{3}〉.
• If W appears in s, but is not alone in its component, delete the element W and

shift. Example: succ0(〈{1, 3}〉) = 〈{2}〉.
• If W appears in s, alone in its component as {W}, then succ0(s) is not valid, since

the cell W is always disconnected when an empty cell is added. Example: No

succ0(〈{1}, {3}〉).

2. Add Occupied Cell and Shift (Compute succ1(s))

• If W and 1 are in the same component, just shift. Example: succ1(〈{1, 3}〉) =

〈{1, 2}〉.
• If W and 1 appear in different components, unite these two components and shift.

Example: succ1(〈{1}, {3}〉) = 〈{1, 2}〉.
• If 1 appears in s but W does not, add the element W to the component containing 1

and shift. Example: succ1(〈{1, 2}〉) = 〈{1, 2, 3}〉.
• If W appears in s and 1 does not, just shift. Example: succ1(〈{2, 3}〉) = 〈{1, 3}〉.
• If 1 and W do not appear in s, add a new component {W} to s and shift. Example:

succ1(〈{2}〉) = 〈{1}, {3}〉.

Now we translate these operations into a Motzkin-path notation. Let p = (p[0] . . .p[W])

be a Motzkin path of length W + 1 representing a state s. Below we describe the routines for

computing the two possible successor states.

Given p, the shifting is performed differently depending on whether the last step p[W] is 0

or −1. If p[W] = 0, it means that the cell W is empty. The shifting is performed by cutting

the last step and gluing it at the beginning of the path (i.e., shifting one position to the right).

Consequently, the resulting path is (0,p[0 . . W − 1]). On the other hand, if p[W] = −1,

the cell W is occupied. For a better exposition, the process in this case is described below

140 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

WBA C

Figure 7.13: Example of the points A, B, and C.

in a separate routine ShiftW. See an example of the shifting of a path with p[W] = −1 in

Figure 7.13.

The following algorithms for computing successors rearrange and change parts of the given

Motzkin paths, depending on the first and last two steps on the input path. The algorithm

refers to three positions A, B, and C in the input path. A is the leftmost position A > 0 such

that level [A] = 0. If cell 1 is occupied, then A − 1 is the largest element in the component

containing 1. If A = W + 1, it means that cells 1 and W lie in the same component. In a few

cases, the algorithm makes a distinction depending on whether or not A equals W + 1.

B is the rightmost position (for B ≤ W) such that level [B] = 0. If cell W is occupied, then

B + 1 is the smallest cell in the component containing W . If A < W + 1, then A ≤ B.

Finally, C is defined as the rightmost position (for C ≤ W − 1) such that level [C] = 1. C

is used when cell W is occupied but does not form a singleton component. In this case C is

the largest cell in the component containing W , and C > B.

In the interesting cases, we show how p is initially composed of different subsequences

between the points A, B, or C, and how the output is composed of the same pieces, to make

the similarities and the differences between the input and the output clearly visible. In most

cases (except where the output contains only one “piece,” and except in case (0, . . . ,−1,−1)

of AddEmptyCell), these pieces form Motzkin paths in their own right: the total sum of all

entries is 0, and the paths never go below 0. (They may, however, be empty).

In the ordering of the cases, the rightmost element of p is considered to be the most

important sorting criterion.

Algorithm AddEmptyCell

Input. A Motzkin path p = p[0 . . W] representing a state s

Output. Updated Motzkin path representing succ0(s)

Depending on the pattern of p, perform one of the following operations:

(. . . , 0): (∗ W does not appear in s ∗)
return (0, p[0 . . W − 1])

(. . . , 0,−1): (∗ W and W − 1 appear in s ∗)
return (0, p[0 . . W − 2],−1)

(. . . ,−1,−1): (∗ p = (p[0 . . C − 1], 1, p[C + 1 . . W − 2],−1,−1) ∗)
return (0, p[0 . . B − 1],−1, p[B + 1 . . W − 2], 0)

(. . . , 1,−1): (∗ W forms a singleton component ∗)
return null

Algorithm AddOccupiedCell

7.6. RESULTS 141

Input. A Motzkin path p = p[0 . . W] representing s

Output. Updated Motzkin path representing succ1(s)

Depending on the pattern of p, perform one of the following operations:

(0, . . . , 0): (∗ 1 and W do not appear ∗)
return (1,−1, p[1 . . W − 1])

(1, . . . , 0): (∗ 1 appears and W does not appear ∗)
return (1, 0, p[1 . . W − 1])

(0, . . . , 1,−1): (∗ 1 does not appear and W is a singleton ∗)
return (1,−1, p[1 . . W − 2], 0)

(1, . . . , 1,−1): (∗ 1 appears and W is a singleton ∗)
return (1, 0, p[1 . . W − 2], 0)

(0, . . . , 0,−1): (∗ 1 does not appear and W is not a singleton ∗)
(∗ p = (0, p[1 . . B − 1], 1, p[B + 1 . . W − 2], 0,−1) ∗)
return (1, 1, p[1 . . B − 1],−1, p[B + 1 . . W − 2],−1)

(1, . . . , 0,−1): (∗ 1 and W appear, and W is not a singleton ∗)
if A = W + 1 (∗ 1 and W are connected ∗)
then return (1, 0, p[0 . . W − 2],−1)

else (∗ p = (1, p[1 . . A − 2],−1, p[A . . B − 1], 1,

p[B + 1 . . W − 2], 0,−1) ∗)
return (1, 0, p[1 . . A − 2], 1, p[A . . B − 1],−1,

p[B + 1 . . W − 2],−1)

(0, . . . ,−1,−1): (∗ 1 does not appear and W is not a singleton ∗)
(∗ p = (0, p[1 . . B − 1], 1, p[B + 1 . . C − 1], 1,

p[C + 1 . . W − 2],−1,−1) ∗)
return (1, 1, p[1 . . B − 1],−1, p[B + 1 . . C − 1],−1,

p[C + 1 . . W − 2], 0)

(1, . . . ,−1,−1): (∗ 1 and W appear and W is not a singleton ∗)
if A = W + 1 (∗ 1 and W are connected ∗)
then (∗ p = (1, p[1 . . C − 1], 1, p[C + 1 . . W − 2],−1,−1) ∗)

return (1, 0, p[1 . . C − 1],−1, p[C + 1 . . W − 2], 0)

else (∗ 1 and W are not connected ∗)
(∗ p = (1, p[1 . . A − 2],−1, p[A . . B − 1], 1,

p[B + 1 . . C − 1], 1, p[C + 1 . . W − 2],−1,−1) ∗)
return (1, 0, p[1 . . A − 2], 1, p[A . . B − 1],−1,

p[B + 1 . . C − 1],−1, p[C + 1 . . W − 2], 0)

In our program, we precompute the successors succ0(s) and succ1(s) once for each state

s = 2 . . .M (the first Motzkin path is the horizontal one, which is not valid) and store them

in two arrays succ0 and succ1.

7.6 Results

We report our results in Table 7.1. We iterate the equations until λhigh < 1.000001 λlow (we

check it every ten iterations). Already for W = 13, we get a better lower bound on Klarner’s

constant than the best previous lower bound of 3.874623 (Section 7.7). At W = 16 we beat the

142 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

best previously claimed (incorrect) lower bound of 3.927378. The values of λlow are truncated

after six digits and the values of λhigh are rounded up. Thus, the entries of the table are

conservative bounds.

W Number of iterations λlow λhigh

3 20 2.658967 2.658968

4 20 3.060900 3.060902

5 30 3.314099 3.314101

6 40 3.480942 3.480944

7 40 3.596053 3.596056

8 50 3.678748 3.678750

9 60 3.740219 3.740222

10 70 3.787241 3.787244

11 80 3.824085 3.824089

12 90 3.853547 3.853551

13 110 3.877518 3.877521

14 120 3.897315 3.897319

15 130 3.913878 3.913883

16 140 3.927895 3.927899

17 160 3.939877 3.939882

18 170 3.950210 3.950215

19 190 3.959194 3.959198

20 200 3.967059 3.967064

21 220 3.973992 3.973996

22 240 3.980137 3.980142

Table 7.1: The bounds on λW

So the best lower bound that we obtained is λ > 3.980137, for W = 22. We independently

checked the results of the computation using Maple; see Appendix C. This has been done for

W ≤ 20 and led to a “certified” bound of λ ≥ 348080/87743 > 3.96704.

We performed the calculations on a PC with 32 gigabytes of memory. We could not compute

λlow for W = 23 and more, since the storage requirement is too large. The number M of

Motzkin paths of length W + 1 is roughly proportional to 3W+1/(W + 1)3/2. We store four

arrays of size M : two vectors succ0 and succ1 of 32-bit unsigned integers, which are computed

in an initialization phase, and the old and the new versions of the eigenvector, ynew and yold,

which are single-precision floating-point vectors. For W = 23, the number of Motzkin paths of

length 24 is M = 3,192,727,797 ≈ 231.57. With our current code, this would require about 48

gigabytes (5.1 × 1010 bytes) of memory.

Some obvious optimizations are possible. We do not need to store all M components of

yold—only those in the first group G1. By Proposition 7.1, we only need the states belonging

to the group G1 for computing ynew. This does not make a large difference since G1 is quite

7.6. RESULTS 143

big. Asymptotically, G1 accounts for 2/3 of all states. (The states not in G1 correspond to

Motzkin paths of length W .)

We can also eliminate the unreachable states, at the expense of making the ranking and

unranking procedures more complicated. For W = 23 this would save about 11 %; asymptot-

ically, for larger and larger n, one can prove that the unreachable states make a fraction of

4/27 ≈ 15 %.

The largest and smallest entries of the iteration vector y differ by a factor of more than

1011, for the largest width W . Thus, it is not straightforward to replace the floating-point

representation of these numbers by a more compact representation.

One might also try to eliminate the storage of the succ arrays completely, computing the

required values on-the-fly, as one iterates over all states.

With these improvements and some additional programming tricks, we could try to optimize

the memory requirement. Nevertheless, we do not believe that we could go beyond W = 24.

This would not allow us to push the lower bound above the barrier of 4, even with an optimistic

extrapolation of the figures from Table 7.1. Probably one needs to go to W = 27 to reach a

bound larger than 4 using our approach.

The running time grows approximately by a factor of 3 when increasing W by one unit.

The running time for the largest example (W = 22) was about 6 hours.

The code of our C program can be found on the world-wide web at

http://www.inf.fu-berlin.de/~rote/Software/polyominos/.

Backward Iteration versus Forward Iteration. One reason for choosing the backward

iteration (7.7) over the forward one (7.3) is that it is very simple to program it, as a loop with

three lines. Another reason is that this scheme should lead to a faster program because it

interacts beneficially with computer hardware, for the following reasons.

The elements of the vector ynew are written in sequential order, and only once. Access

to the arrays succ0 and succ1 is read-only and purely sequential. This has a beneficial effect

on memory caches and virtual memory. Non-sequential access is restricted to the one or two

successor positions in the array yold. There is some locality of reference here, too: adjacent

Motzkin paths tend to have close 0-successors and 1-successors, in the lexicographic order. At

least the access pattern conforms to the group structure of Proposition 7.1.

Contrast this with a forward iteration. The simplest way to program it would require the

array xnew to be cleared at the beginning of every iteration. It would make a loop over all

states s that would typically involve statements such as

xnew[succ1[s]] += xold[s],

which involves reading an old value and rewriting a different value in a random-access pattern.

However, the above considerations are only speculations, which may depend on details

of the computer architecture of the operating system and which are not substantiated by

computer experiments. In fact, we tried to run our program for W = 23, using virtual memory,

but it thrashed hopelessly, even though about half of the total memory requirement of 48

gigabytes was accessed read-only in a purely sequential manner and the other half would have

fit comfortably into physical memory. If we had let the program run to completion, it would

have taken about half a year.

144 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

7.7 Previous Lower Bounds on Klarner’s Constant

The best previously published lower bounds on Klarner’s constant were based on a technique of

Rands and Welsh [47]. They defined an operation a∗ b which takes two polyominoes a and b of

m and n cells, respectively, and constructs a new polyomino with m+n−1 cells by identifying

the bottommost cell in the leftmost column of b with the topmost cell in the rightmost column

of a. For example,

. ∗ . = . ,

where we have marked the identified cells with a dot. Let us call polyomino c ∗-indecomposable

if it cannot be written as a composition c = a∗ b of two other polyominoes in a non-trivial way,

i.e., with a and b each containing at least two cells. (In [47], this was called ∗-inconstructible.)

It is clear that every polyomino c which is not ∗-indecomposable can be written as a non-trivial

composition

c = δ ∗ b (7.10)

of an ∗-indecomposable polyomino δ with another polyomino b. Denoting the sets of all poly-

ominoes and of all ∗-indecomposable polyominoes of size i by Ai and ∆∗
i , respectively, one

obtains

An = (∆∗
2 ∗ An−1) ∪ (∆∗

3 ∗ An−2) ∪ · · · ∪ (∆∗
n−1) ∗ A2 ∪ ∆∗

n, (7.11)

for n ≥ 2, where we have extended the ∗ operation to sets of polyominoes. However, the union

on the right side of (7.11) is not disjoint, because the decomposition in (7.10) is not unique:

= . ∗ . =
. ∗ .

, and both and are ∗-indecomposable. Rands and Welsh [47]

erroneously assumed that the union is disjoint and derived from this the recursion

an = δ∗2an−1 + δ∗3an−2 + · · · + δ∗n−1a2 + δ∗na1 (7.12)

for the respective numbers an and δ∗n of polyominoes. The first few numbers are δ∗2 = 2, δ∗3 = 2,

δ∗4 = 4:

∆∗
2 = { , } , ∆∗

3 = { , } , ∆∗
4 =

{
, , ,

}
(7.13)

If (7.12) were true, this would lead to a1 = 1, a2 = 2, a3 = 6, and a4 = 20, which is too high

because the true number of polyominoes with 4 cells is 19. (This is actually how the mistake

was discovered in a class on algorithms for counting and enumeration taught by G. Rote, where

the calculation of an with the help of (7.12) was posed as an exercise.) Even if the reader does

not want to check that the list of ∗-indecomposable polyominoes in (7.13) is complete, one can

still conclude that the value of a4 is too high, and (7.12) cannot hold.

The paper [47] also mentions another composition of polyominoes, which goes back to

Klarner [34]. The operation a × b for two polyominoes a and b is defined similarly as a ∗ b,

except that bottommost cell in the leftmost column of b is now put adjacent to the topmost

cell in the rightmost column of a, separated by a vertical edge. The resulting polyomino has

m + n cells:

. × . = . .

Now, for this operation, unique factorization holds: every polyomino c which is not ×-indecomposable

can be written in a unique way as a non-trivial composition c = δ × b of an ×-indecomposable

7.8. OPEN QUESTIONS 145

polyomino δ with another polyomino b. (In this case, a non-trivial product a × b means that

both a and b are non-empty.) Thus, one obtains the recursion

an = δ1an−1 + δ2an−2 + · · · + δn−1a1 + δn, (7.14)

where δi denotes the number of ×-indecomposable polyominoes of size i. There are δ1 = 1,

δ2 = 1, δ3 = 3, δ4 = 8, δ5 = 24 polyominoes with up to 5 cells which are indecomposable:

∆1 = { }, ∆2 = { } , ∆3 =
{

, ,
}

, ∆4 =
{

, , , , , , ,
}

The idea of Rands and Welsh to derive a lower bound on the growth rate of an is as follows: If

the values a1, . . . , aN are known up to some size N , one can use (7.14) to compute δ1, . . . , δN .

If one replaces the unknown numbers δN+1, δN+2, . . . by the trivial lower bound of 0, (7.14)

turns into a recursion for numbers ân which are a lower bound on an.

ân =

N∑

i=1

δiân−i, for n > N

This is a linear recursion of order N with constant coefficients δ1, . . . , δN , and hence its growth

rate can be determined as the root of its characteristic equation

xN − δ1x
N−1 − δ2x

N−2 − · · · − δN−1x − δN = 0. (7.15)

The unique positive root x is a lower bound on Klarner’s constant. Applying this technique

to the numbers ai for i up to N = 56 [33] yields a lower bound of λ ≥ 3.87462343 . . ., which is

however weaker than the bound 3.927379. . . published in [33] that would follow in an analogous

way from (7.12).

We finally mention an easy way to strengthen this technique, although with the present

knowledge about the values of an, it still gives much weaker bounds on Klarner’s constant

than our method of counting polyominoes on the twisted cylinder. One can check that any

number of cells can be added above or below existing cells in an indecomposable polyomino

without destroying the property of indecomposability. Thus, the number of indecomposable

polyominoes increases with size. For example, an indecomposable polyomino a with n cells

can be turned into an indecomposable polyomino a′ with n + 1 cells by adding the cell above

the topmost cell in the rightmost column of a. Every polyomino a′ can be obtained at most

once in this way. It follows that δi+1 ≥ δi.

Now, if one replaces the unknown numbers δN+1, δN+2, . . . in (7.14) by the lower bound

δN instead of 0, one gets a better lower bound on an. The characteristic equation (7.15), after

dividing by xN , turns into

1 = δ1x
−1 + δ2x

−2 + · · · + δN−1x
−N+1 + δNx−N + δNx−N−1 + δNx−N−2 + · · ·

= δ1x
−1 + δ2x

−2 + · · · + δN−1x
−N+1 + δNx−N · 1

1 − 1/x
,

whose root gives the stronger bound λ ≥ 3.87565527.

7.8 Open Questions

The number of polyominoes with a fixed number of cells on a twisted cylinder increases as we

enlarge the width W . This can be shown by an injective mapping as in Lemma 7.1. It seems

146 CHAPTER 7. COUNTING POLYOMINOES ON TWISTED CYLINDERS

obvious that the limiting growth factors behave similarly, i.e., λW+1 > λW . This conjecture

is substantiated by Table 7.1, but we do not have proof. We also do not know whether

limW→∞ λW → λ, although this looks like a natural assumption.

