
Part II

Spanning Trees with

Applications to the Embedding

of Polytopes on Small Integer

Grids

57

Chapter 5

On the Maximum Number of

Spanning Trees of a Planar

Graph

5.1 Introduction

Let G = (V, E) be a planar graph with n = |V | vertices, and let T (G) be the number of

spanning trees of G.

We study lower and upper bounds for the maximum number of spanning trees of a planar

graph. If we add edges to a planar graph, the number of spanning trees grows. Hence, we

deal with triangulated planar graphs, since they are the graphs containing a largest number of

spanning trees.

We also study upper bounds for the specific cases of graphs with no triangular faces, and

graphs with neither triangular nor quadrangular faces. Note that any planar graph must

contain at least a pentagonal face, because the dual graph is also planar and hence it has a

vertex of degree 5.

In Section 5.2 we present a new method based on transfer matrices for computing the

asymptotic number of spanning trees of some recursively constructible families of graphs, from

which we obtain lower bounds. We prove the following theorem.

Theorem. 1. The maximum number of spanning trees over the set Gn of all planar graphs

with n vertices is bounded by

lim
n→∞

(
max
G∈Gn

T (G)

) 1
n

≥ 5.029545 . . .

2. If we consider the set G4
n of all planar graphs of smallest face cycle 4, then the maximum

number of spanning trees is bounded by

lim
n→∞

(
max
G∈G4

n

T (G)

) 1
n

≥ 3.209912 . . .

59

60 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Part 1 and Part 2 of this theorem correspond to Theorems 5.4 and 5.6 respectively.

In Section 5.3, upper bounds for the number of spanning trees of planar triangulated graphs,

and planar graphs with smallest face cycle 4 and 5 are studied. Several techniques are discussed,

and the obtained results compared. For graphs without triangles, the best results are obtained

using a probabilistic method and Suen’s inequality. The following theorem summarizes the

obtained results.

Theorem. Given a planar graph G,

1. T (G) ≤ 5.3̄n;

2. If G is a 3-connected graph with smallest face cycle at least 4, then

T (G) <

[
exp

(
ln 4 − 1

8

)]n

< 3.529988n;

3. If G is a 3-connected graph with smallest face cycle 5, then

T (G) <

[
exp

(
2

3
ln 3 +

1

3
ln 4 − 4

27

)]n

< 2.847263n.

Here 5.3̄ denotes the periodic number 5.333333

Part 1 is proved in Theorem 5.7. Other attempts for triangulated graphs using Suen’s

inequality are shown in Section 5.3.3. For Parts 2 and 3 we refer to the corresponding Theo-

rems 5.10 and 5.11, in Section 5.3.3.

In Section 5.4 we relate the number of spanning trees with the number of spanning forests

with three and four trees, each rooted at one pinned vertex, obtaining upper bounds for the

number of such forests of a graph. This is in relation with Chapter 6, where we use the obtained

bounds on the number of spanning forests for bounding the size of the integer grid in which a

3-polytope can be embedded.

For our application to embed 3-polytopes in small integer grids we only use the upper

bounds on the number of spanning trees. The obtained lower bounds on the number of spanning

trees are not used, but they give us an idea of how tight the upper bounds are.

5.2 Lower Bounds for T

For obtaining lower bounds we compute the asymptotic number of spanning trees of some

families of graphs with many edges that have a regular structure. It turns out that one of

these families has the largest known number of spanning trees.

For this computation we develop a transfer-matrix method that works for families of graphs

with a regular construction, known as recursively constructible families of graphs. These fami-

lies are presented in Section 5.2.1. The transfer-matrix approach is described in Section 5.2.2.

With this method we enumerate the number of spanning trees for some families of planar

lattice graphs with small width.

The problem is that we are restricted by the dimension of the transfer matrices, which

becomes too large when we increase the width. Hence we follow a different strategy: we use

5.2. LOWER BOUNDS FOR T 61

the bound given by Shrock and Wu [49]. In that paper, values for the number of spanning

trees of different infinite lattices are given. Their families have periodic conditions on the

boundaries and hence they are not planar graphs. We show, using algebraic properties of the

transfer matrices, that their asymptotic values for the number of spanning trees remain the

same if we change some boundary conditions, and hence the lower bounds given in [49] are

also valid for planar graphs. This is described in Section 5.2.5.

5.2.1 Recursively Constructible Families of Graphs

We say that a sequence of graphs {Gk}k≥0 is a recursively constructible family of graphs if

it can can be built in a regular way from a given initial graph, by means of a repeated fixed

sequence of elementary operations involving addition of vertices and edges, and deletion of

edges.

The idea of recursively constructible family of graphs appeared in a joint work with Marc

Noy [43]. The formal definition of this concept is a little bit complicated and it can be found

in Appendix B. In particular, the definition implies that the same number of edges has to be

added in every step.

For example, consider the family {Lk}k≥0 of ladder graphs with diagonals, where Lk consists

of k attached squares with diagonals. See Figure 5.1. The initial graph of the family, L0,

consists of only one edge, the first graph L1 consists of one square with diagonal, the second

graph L2 consists of two squares with diagonals, and so on. We construct Lk+1 from Lk by

adding two new vertices and a fixed set consisting of four new adjacencies. Starting from the

initial graph L0 and repeating this adding operation, we obtain L1, L2, L3, So we construct

in this recursive way the whole family {Lk}k≥0.

k = 5

Figure 5.1: L5, five attached squares with diagonals. It is obtained adding to L4 two new

vertices and the set of thick edges.

Other families with a regular construction are grids {GW×k}k≥0 of squares with diagonals,

with fixed width W and growing length k. For obtaining the grid GW×(k+1) from the grid

GW×k we add W new vertices and a fixed set of adjacencies. See Figure 5.2 for an example

with W = 4.

Also prisms {PW×k}k≥0 of squares with diagonals are recursively constructible. For ob-

taining the prism PW×(k+1) from the prism PW×k we first delete the edges connecting column

1 and column k, and second we add a new column of vertices k + 1 adjacent to columns 1 and

k by means of a fixed set of edges. See Figure 5.3.

The family {Kk}k≥0 of complete graphs is an example which is not a recursively con-

structible family, since at each step we must add on edge more than in the previous step, hence

we are not adding a fixed set of edges.

62 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

A more General Framework: the Tutte Polynomial

The number of spanning trees is a very special case of the Tutte polynomial. Although we do

not need it for understanding what is going on in this chapter, we write a few words about

the Tutte polynomial since we started to work with recursively constructible families of graphs

and the transfer-matrix method within this more general framework.

The Tutte polynomial of a graph G = (V, E) is defined as

TP (G; x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A) ,

where, for every subset A ⊆ E, its rank r(A) is |V | minus the number of components of

the spanning subgraph (V, A). Usually the Tutte polynomial is denoted by T (G; x, y) in the

literature, but we denote it here by TP (G; x, y) to avoid confusions with T (G), the number of

spanning trees.

The Tutte polynomial contains much information on the graph G; we refer to [12, 55] for

background information. For example, by setting y = 0 we obtain essentially the chromatic

polynomial of G, and by setting x = 0 we obtain essentially the flow polynomial of G. Also,

special evaluations of the Tutte polynomial give the number of spanning forests, the number

of acyclic orientations, the number of spanning connected subgraphs, or the number of totally

cyclic orientations in G. In particular, TP (G; 1, 1) is equal to T (G), the number of spanning

trees in G.

We can associate the Tutte polynomial to a given a recursively constructible family of

graphs {Gk}k≥0, obtaining a sequence of polynomials {TP (Gk; x, y)}k≥0. It follows that the

regularity on the graphs is translated in polynomial terms into a recurrence relation. Hence, we

go from a combinatorial object like a family of graphs to an algebraic object like the recurrence

relation satisfied by a family of polynomials.

Biggs, Damerell and Sands [9] call a family {Gk}k≥0 of graphs recursive if their Tutte

polynomials satisfy a homogeneous linear recurrence relation with polynomial coefficients, that

is,

TP (Gk+r; x, y) + p1(x, y) TP (Gk+r−1; x, y) + · · · + pr(x, y) TP (Gk; x, y) = 0 ,

where the pi(x, y) are polynomials with integral coefficients independent of k, 1 ≤ i ≤ r. This

k k + 1

Figure 5.2: The family {G4×k}k≥0. The set of thick edges are added in the step from G4×k to

G4×(k+1).

5.2. LOWER BOUNDS FOR T 63

1
k + 1

k

Figure 5.3: The family {P4×k}k≥0. Dotted edges are the set of deleted adjacencies, and thick

edges the set of added adjacencies in the step from P4×k to P4×(k+1).

condition is equivalent to the fact that the ordinary generating function

∑

k≥0

TP (Gk; x, y) zk

is a rational function in x, y and z. They show, using the contraction-deletion rule, that

several families of graphs, like cycles, ladders and wheels, are recursive. All these families

have in common the fact that they can be constructed from an initial graph by the repeated

application of a fixed graph operation.

In a joint work with Marc Noy [43] we proved the following theorem:

Theorem 5.1. Every recursively constructible family of graphs is recursive.

The proof is based on a transfer-matrix method, and it is an extension of the one intro-

duced in [13] for computing the Tutte polynomial of a square lattice. The corresponding linear

recurrence can be found explicitly, although the computations usually involve very large matri-

ces. An important novelty in our approach is that we can also delete edges, an operation that

corresponds algebraically to multiply by the inverse of a certain transfer matrix. The deletion

of edges allows us to include in this framework families with cyclic boundary conditions, like

toroidal lattices.

Theorem 5.1 is also true for all special evaluations of the Tutte polynomial, in particular

for the number of spanning trees:

Corollary 5.1. If a family of graphs {Gk}k≥0 is recursively constructible, then their number of

spanning trees satisfy a homogeneous linear recurrence relation with integral coefficients, that

is,

T (Gk+r) + α1T (Gk+r−1) + · · · + αrT (Gk) = 0.

Proof. By setting αi = pi(1, 1), for 1 ≤ i ≤ r, the corollary follows.

64 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

For example, the previously defined family {Lk}k≥0 of ladders with diagonals satisfies

T (Lk+2) − 7 T (Lk+1) + T (Lk) = 0 , (5.1)

as we show later.

5.2.2 Enumerating T via Transfer Matrices

We apply the transfer-matrix method to compute directly the number of spanning trees, with-

out going over the Tutte polynomial, which would be computationally much more complicated.

The approach is based on the storage in a transfer matrix Λ of the contributions to the number

of spanning trees of the new edge subsets appearing in the step from Gk to Gk+1.

The transfer-matrix method is described more generally in Chapter 7, where it is used to

analyze the growth in the number of polyominoes on a twisted cylinder as the number of cells

increases.

An Example: the Family of Ladders with Diagonals

We explain the argument here in the case of the family {Lk}k≥0 of ladder graphs with diagonals.

The graph Lk is viewed as the union of Lk−1 and a graph M consisting of a square with

diagonals with the edge of the first column deleted.

A partial spanning tree is the part of the spanning tree which is already constructed, lying

at the left of the last added column of vertices. A partial spanning tree is not necessarily

connected, but it must be possible to connect it in the future. Note that in the case of ladders

with diagonals, a partial spanning tree is either a spanning tree or a spanning forest with two

trees.

In general, each connected component of a partial spanning tree must contain at least one

vertex of the last added column or the first one. In the particular case of the family {Lk}k≥0,

the spanning tree or each of the two trees constituting the partial spanning tree must contain

at least one vertex of the last added column.

Every spanning tree Tk of Lk is obtained from a partial spanning tree Tk−1 of Lk−1 and a

subset of edges δ of E(M). If we want to use this fact in a recursive scheme, for every partial

spanning tree Tk−1 of Lk−1 and every subset δ of edges of M we must be able to know if

the obtained subset of edges Tk = Tk−1 ∪ δ is a partial spanning tree of Lk or not, without

knowledge of the whole Tk−1, but from the information about the connected components given

by the last added column of Tk−1 and Tk.

Given Tk−1, a partial spanning tree of Lk−1, we label the two vertices in the (n − 1)th

column according to the connected component of Tk−1 to which they belong. The components

are labelled sequentially as they appear. In this way we get a state s(Tk−1) = (s1, s2), where

the si are the labels of the components. For our family we have two possible states, (A, A)

and (A, B), which correspond respectively to the cases when the two vertices 1 and 2 of the

(n − 1)th column belong to the same component or to different components. See the example

of Figure 5.4. Note that the connected components induce a partition on the set of vertices,

hence the states (A, A) and (A, B) correspond to the two possible partitions of {1, 2}: the

partitions {1, 2} and {1} ∪ {2} respectively.

Then, from the knowledge of the state s = s(Tk−1) and the new added edge subset δ, we

can deduce if Tk is a partial spanning tree or not: it cannot contain cycles and each connected

5.2. LOWER BOUNDS FOR T 65

component must contain a new added vertex to guarantee that it can be connected later, i. e.,

δ cannot isolate any component of Tk−1 from the two rightmost vertices.

Definition 5.1. Let s be a state of a partial spanning tree Tk−1 of the ladder Lk−1, and a

subset δ of E(M). If the subgraph Tk−1 ∪ δ of Lk obtained by adding the edge-set δ to Tk−1

is a partial spanning tree Tk, we call the state of Tk successor state of s, and we denote it by

succδ(s).

We have an example in Figure 5.4.

a

b

c

d

B

A

A

A

Figure 5.4: In this example, s = (A, B) in L4. We add δ, consisting of the edges {a, b, c}
(drawn in thick lines). Since the two new vertices belong to the same connected component,

succδ(s) = (A, A).

Definition 5.2. Given a recursively constructible family of graphs, we say that a state s is a

valid state if it is reachable from some initial state, and from s we can reach the final state

(A, A . . . , A) (otherwise we could not obtain a spanning tree, which is connected at the end),

by repeating a finite number of times the computation of the successor state.

Note that if the family of graphs is connected, then it has a non-empty set of valid states.

For every possible state s of Lk−1, we consider all 2|E(M)| edge subsets δ of E(M), and for

each δ, if the result is a partial spanning tree, we compute its corresponding successor state

succδ(s), otherwise we throw the combination of s and δ away. This happens when, after the

addition of δ, a cycle appears or some components are isolated forever, that is, there is no valid

successor state. Note that all successor states that can be obtained in this way are valid states.

Actually, the valid states are precisely the states given by a partial spanning tree. In order to

illustrate the procedure we show in Table 5.1 the update of the states.

Next we define a transfer matrix Λ as follows. The rows and columns are indexed by the

states (A, A) and (A, B). The rows correspond to the initial states, and columns correspond to

the successor states. Since we have two possible states, Λ is a 2 by 2 matrix. We accumulate

the contributions to the number of spanning trees of each possible edge subset δ in the matrix

Λ. The matrix Λ is set initially to 0. For every state s and for every δ, if succδ(s) is a valid

state, we increase by one unit the entry Λ[s, succδ(s)]. We obtain

Λ =

(
5 3

3 2

)
.

Denote by tk the vector storing the number of partial spanning trees in the graph Lk. The

matrix Λ is used to get from tk to tk+1 in this form:

tk+1 = Λ · tk. (5.2)

66 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

δ succδ(A, A) succδ(A, B)

∅ − −
{a} (A, B) −
{b} − −
{c} (A, B) −
{d} (A, B) −
{a, b} (A, A) −
{a, c} (A, A) (A, B)

{a, d} (A, A) −
{b, c} (A, A) −
{b, d} (A, A) −
{c, d} − (A, B)

{a, b, c} − (A, A)

{a, b, d} − −
{a, c, d} − (A, A)

{b, c, d} − (A, A)

{a, b, c, d} − −

Table 5.1: Update of the states for the family {Lk}k≥0. a and c are the two horizontal edges

of M , b is the vertical edge and d is the diagonal edge (see Figure 5.4). There are 24 = 16

possible edge subsets δ. The sign − means that there is no successor state.

If we write down (5.2) in explicit from, we get

t
(A,A)
k+1 = 5 t

(A,A)
k + 3 t

(A,B)
k

t
(A,B)
k+1 = 3 t

(A,A)
k + 2 t

(A,B)
k

where tsk is the component of tk denoting the number of partial spanning trees in Lk with the

vertices of the last column in state s.

Finally, we iterate (5.2), obtaining the number of spanning trees of the family of ladders

with diagonals as

T (Lk) = (1 1) · Λk ·
(

1

0

)
.

The vector (1 1) corresponds to the contributions of the states (A, A) and (A, B) to the number

of spanning trees of the initial graph of the family, L0, which is just an edge. There are two

possible edge subsets in L0: the empty set or the edge itself. The first one leads to the state

(A, B) and the second one leads to the state (A, A). The multiplication by Λk iterates the

system (5.2). The vector (1 0)t at the end, ignores all disconnected forests and adds up all

connected partial spanning trees, which are those ending in state (A, A).

Using this formula, the reader can check that T (L0) = 1, T (L1) = 8, T (L2) = 55, T (L3) =

377, . . . , and the recurrence (5.1) can be proved.

5.2. LOWER BOUNDS FOR T 67

The General Case

The method in this example can be extended to any recursively constructible family of graphs

{Gk}k≥0. In general, for any given recursively constructible family of graphs {Gk}k≥0 we have

T (Gk) = X0 · Λk · u, (5.3)

where Λ is the transfer matrix of the family, the vector X0 stores the contributions to the

number of spanning trees of the initial graph of the family, G0, and u is the vector (1 0 0 . . . 0)t

with a 1 in the component corresponding to the connected state and zero everywhere else.

The transfer matrix Λ has rows and columns corresponding to the valid states. Hence, Λ

is a square matrix of dimension the number of valid states.

We can also obtain the recurrence relation for T (Gk) from the denominator of the generating

function
∑

k≥0 T (Gk)zk, which is a rational function due to Corollary 5.1:

∑

k≥0

T (Gk)zk =
∑

k≥0

(
X0 · Λk · u

)
zk

= X0 ·
∑

k≥0

(Λz)k · u

= X0 · (I − Λz)−1 · u .

The denominator of (I −Λz)−1, i. e., the determinant of I −Λz, gives the recurrence relation.

5.2.3 The Asymptotic Behavior of T (Gk)

We show that T (Gk) behaves asymptotically as ρ(Λ)k, where ρ(Λ) is the spectral radius of Λ,

that is, the largest absolute value of all eigenvalues of the matrix Λ. This is summarized in the

following theorem.

Theorem 5.2. Let {Gk}k≥0 be any connected recursively constructible family of graphs. Then,

lim
k→∞

(T (Gk))1/k = ρ(Λ) .

To prove Theorem 5.2 we use the Perron-Frobenius Theorem, stated in Section 0.5. We

show that our transfer matrix Λ satisfies the conditions of the Perron-Frobenius Theorem. It

is clear that Λ is a nonnegative matrix, since it is initially set to 0 and for every pair of states

(s, succδ(s)), the corresponding entry Λ[s, succδ(s)] is increased in one unit. Let us prove the

other conditions.

Lemma 5.1. For any recursively constructible family of connected graphs, the transfer matrix

Λ is irreducible.

Proof. We prove that the underlying graph of Λ is strongly connected. This is equivalent to

prove that from any valid state si we can reach any other valid state sj after a finite number

of steps Gk → Gk+1.

This is true since, by the definition 5.2, all valid states are reachable, and from every state

we can reach the state (A, A, . . . , A) and vice versa. (Remember that for any connected family

of graphs, there is a non-empty set of valid states).

68 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Lemma 5.2. For any recursively constructible family of connected graphs, the transfer matrix

Λ has at least one nonzero diagonal entry.

Proof. Let M be the new graph added in the step Gk−1 → Gk. We show that there is an edge

subset δ of E(M) such that if s = (A, A, . . . , A), then succδ(s) = (A, A, . . . , A).

Any acyclic graph can be extended to a spanning tree. Hence, if we have a spanning tree in

Gk−1, it can be extended it to a spanning tree in Gk by adding an edge subset δ. The added

edges of δ, are incident to at least one new vertex of Gk (we cannot add an edge between two

old vertices, otherwise we would have a cycle). Hence, δ ⊆ E(M).

Thus the first entry of the diagonal of Λ, which is the number of edge subsets of M that

lead from the initial state (A, A, . . . , A) to the successor state (A, A, . . . , A), is at least one.

The next corollary follows from Lemma 5.1 and Lemma 5.2.

Corollary 5.2. The transfer matrix Λ is primitive.

Hence the conditions of Perron-Frobenius Theorem are satisfied. Now we can prove Theo-

rem 5.2.

Proof of Theorem 5.2. From (5.3), Corollary 5.2 and the Perron-Frobenius Theorem, we have

lim
k→∞

T (Gk)

ρ(Λ)k
= lim

k→∞

X0 · Λk · u
ρ(Λ)k

= X0 ·
(

lim
k→∞

Λk

ρ(Λ)k

)
· u

= X0 · L · u ,

where L = zvt, Λz = ρ(Λ)z, Λtv = ρ(Λ)v, z > 0, v > 0 and ztv = 1.

Note that X0 and L > 0, thus the real number θ = X0 · L · u is positive and we obtain

lim
k→∞

T (Gk)

ρ(Λ)k
= θ > 0 .

Then

lim
k→∞

T (Gk)1/k = lim
k→∞

θ1/kρ(Λ)k/k = ρ(Λ) .

Thanks to Theorem 5.2 we have, for example, that the family of ladders with diagonals

described in Section 5.2.2 satisfies

lim
k→∞

T (Lk)
1/k = ρ

((
5 3

3 2

))
=

7

2
+

3

2

√
5

and, since at each step we add two new vertices, we have n = 2k, where n denotes the number

of vertices of the graph. Hence we can write

lim
k→∞

T (Lk)
1/2k =

√
7

2
+

3

2

√
5 = 2.618033 . . .

In general, given a family of graphs {Gk}k≥0 with n = n(k) vertices, we denote by T∞(G∞)

the limit limk→∞ T (Gk)1/n(k). With this notation we write

T∞(L∞) = 2.618033 . . .

5.2. LOWER BOUNDS FOR T 69

5.2.4 Results

We have implemented Maple routines for computing the transfer matrices of several families of

planar graphs with many triangles which we expected to have large number of spanning trees.

For the family {G′
W×k}k≥0 of grids of squares with diagonals of width W and growing k

with an extra vertex adjacent to the top vertices and the bottom vertices (see Figure 5.5), we

have obtained the following values

T∞(G′
2×∞) = 4.390256 . . .

T∞(G′
3×∞) = 4.608977 . . .

T∞(G′
4×∞) = 4.718901 . . .

T∞(G′
5×∞) = 4.784489 . . .

T∞(G′
6×∞) = 4.827803 . . .

The states encode W + 1 vertices: the W vertices in the kth column and one extra vertex.

Using that the graph is planar, that two encoded vertices of the right boundary can only be

connected by a path lying on the left, and that the extra vertex is adjacent to the top and

bottom boundaries of the grid, we deduce that the number of valid states is the number of

non-crossing partitions of a set of W + 1 elements.

The number of non-crossing partitions of a set of r elements is precisely the rth Catalan

number [29, 51]. Hence, G′
W×∞ uses as many states as the (W + 1)st Catalan number . The

sequence of the first Catalan numbers is (1, 2, 5, 14, 42, 132, 429, 1430, . . .). Thus, for the family

{G′
6×k}k≥0 we have already 429 states.

Figure 5.5: The graph G′
4×5 of the family {G′

4×k}k≥0.

For the family {P ′
W×k}k≥0 of prism grids of squares with diagonals of width W and growing

k with two extra vertices, one adjacent to all top vertices and the other adjacent to all bottom

70 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

vertices (see Figure 5.6), the obtained result is

T∞(P ′
2×∞) = 4.390256 . . .

We only have computed the transfer matrix for W = 2. We need to codify 2W +2 vertices (two

columns of W vertices each, for the cyclic boundary condition, and the two extra vertices).

The number of valid states for this family is the number of non-crossing partitions of a set of

2W + 2 elements. For the family {P ′
2×k}k≥0, we have already 132 valid states, the number of

non-crossing partitions of a set of 6 elements.

Figure 5.6: A graph of the family {P ′
3×k}k≥0.

We have obtained the best results with the family of cylinder grids {CW×k}k≥0 of squares

with diagonals, wrapping around from the top vertices to the bottom vertices, with fixed width

W and growing k. This family can be seen as a triangular cylindrical lattice. See Figure 5.7.

The results are

T∞(C3×∞) = 4.546149 . . .

T∞(C4×∞) = 4.752157 . . .

T∞(C5×∞) = 4.850303 . . .

T∞(C6×∞) = 4.904405 . . . (5.4)

The states encode W vertices. By planarity, and since the encoded vertices can only be

connected by a path lying on the left, there are as many valid states as non-crossing partitions

of a set of W elements, that is the W th Catalan number. For example, for the family {C6×k}k≥0

we have 132 states.

So the best obtained lower bound with this method is 4.904405. . . , given by the family

{C6×k}k≥0.

We could not compute the asymptotic behavior of the number of spanning trees for families

with larger width due to the huge number of states.

The dimension of the transfer matrix equals the number of valid states. In general, for any

recursively constructible family of graphs of any kind, the number of states is the number of

partitions of a set of r elements, where r is the number of vertices that we codify. The sequence

of the first numbers of set partitions is (1, 2, 5, 15, 52, 203, 877, 4140, . . .). These numbers, also

5.2. LOWER BOUNDS FOR T 71

Figure 5.7: The graph C4×5 of the family {C4×k}k≥0.

known as Bell numbers B(r), grow very fast with r. It follows from [11, page 9 (6.2.7)], that

their asymptotic growth is

B(r) ≈
(

r

e log r

)r

.

(This is an underestimate.) The Bell numbers grow more than exponentially but less than r!.

We are dealing with connected planar graphs. As we have seen, in our case not all set

partitions are valid states; the valid states are then a subset of all set partitions. In the case of

planar graphs, the number of valid states is reduced to the number of non-crossing partitions of

a set of r elements, that is the r-th Catalan number. The problem is that the Catalan numbers

still grow very fast: their asymptotic growth is essentially 4n.

Hence the above method is not computationally feasible for high values of r, as the required

space to store the transfer matrix grows exponentially. For example, for families where 10

vertices are codified (r = 10) the transfer matrix is a 16796 by 16796 matrix. Even for small

values of r, the computation requires already a lot of space.

5.2.5 Removing Periodic Boundary Conditions to Obtain a Bound

for Planar Graphs

In [49], Shrock and Wu consider the problem of enumerating spanning trees on graphs and lat-

tices, obtaining bounds on the number of spanning trees, and inequalities relating the numbers

of spanning trees of different sorts of infinite lattice families of graphs. They present a general

formulation for the enumeration of spanning trees on lattices in d ≥ 2 dimensions, which is

applied to the hypercubic, body-centered cubic, face-centered cubic, and specific lattices of

dimension 2 including the triangular lattice, the so-called kagomé, the diced, 4-8-8 (bathroom-

tile) lattices, the Union Jack, and 3-12-12 lattices. They obtain closed-form expressions for the

number of spanning trees for these lattices of finite sizes.

Let ĈW×k be the graph obtained from CW×k by connecting the last column to the first

column in the same way as all other adjacent columns in CW×k are connected. See Figure 5.8.

Shrock and Wu refer to this graphs as triangular grid graphs with periodic boundary conditions.

As the other families studied in [49] (all with periodic conditions on the boundaries), they can

be embedded on the torus, but they are not planar graphs.

72 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Figure 5.8: The graph Ĉ4×5 of the family {Ĉ4×k}k≥0.

The graphs ĈW×k are more regular and symmetric than the graphs CW×k, in which the

boundary vertices are distinguished from the remaining vertices. Therefore, an explicit formula

for the number of spanning trees in ĈW×k can be derived by spectral methods, and the limit

for k → ∞ can be calculated analytically:

T∞(ĈW×∞) = exp

(
1

W

W−1∑

k=0

ln
(
3 − cosωk + ((1 − cosωk)(7 − cosωk))1/2

))
,

where ωk = 2πk/W . This summation can be explicitly carried out for a given W . Their results

coincide with our results in (5.4) for T∞(CW×∞), for all the computed values of the width W .

We prove below in Theorem 5.3 that this is true in general.

For W → ∞, Wu [57] shows that

lim
W→∞

(T∞(ĈW×∞)) = exp

(
3
√

3

π

(
1 − 1

52
+

1

72
− 1

112
+

1

132
− · · ·

))
(5.5)

= 5.029545 . . .

(see also [49, (2.18) and (2.19)]). The triangular lattice ĈW×∞ is the family for which Shrock

and Wu obtain a largest result.

It turns out that the spectral radius of the transfer matrices of both families {CW×∞}k≥0

and {ĈW×∞}k≥0 is the same. We can prove the following theorem:

Theorem 5.3.

T∞(CW×∞) = T∞(ĈW×∞)

Proof. We prove this by comparing the transfer-matrix method on the family {ĈW×k}k≥0 with

the family {CW×k}k≥0.

5.2. LOWER BOUNDS FOR T 73

To calculate T∞(ĈW×∞) by the transfer-matrix method, we build ĈW×k by first building

up CW×k recursively in the usual way, and adding a subset δ̂ of the edges between the last and

first column at the end.

We now also have to consider partial spanning trees of CW×k whose components are not

necessarily connected to the right boundary. The condition on partial spanning trees is that

each component contains at least one vertex of the leftmost or the rightmost column. In

addition to the partition of the right boundary vertices into components, a state must also

remember the components to which the left boundary vertices belong. A state ŝ is thus a

vector of 2W numbers ŝ = (s0, s), encoding the components among the W vertices of the

leftmost column (in the vector s0) and the W vertices in the rightmost column (in the vector

s). We use again the convention of assigning labels to components in the order in which they

first appear.

Let Λ̂ denote the transfer matrix for this larger set of states Σ. We have

T (ĈW×k) = X̂0 · Λ̂k · û .

The initial vector X̂0 has a 1 for each state ŝ = (s0, s) that corresponds to a subset of

edges of the graph CW×0 (a cycle of length W), and 0 otherwise. (These states have s0 = s.)

The vector û encodes the possible ways of combining the connected components of each state

ŝ = (s0, s) into a single tree by adding a subset δ̂ of “wrap-around” edges between the left and

the right boundary.

Let us now relate Λ̂ to the transfer matrix Λ for the original recursion for computing

T (CW×k). We will establish the lemma by showing ρ(Λ̂) = ρ(Λ).

For this purpose, we decompose the set of states Σ in

Σ = Σ0 ∪ Σ1 ∪ · · · ∪ Σd ∪ · · · ∪ ΣW ,

according to the number d of components of ŝ = (s0, s) which are disconnected from the right

boundary. This is the number of different indices in s0 that do not occur in s. Accordingly,

we write Λ̂ in block form as

Λ̂ =




B00 B01 B02 . . . B0W

B11 B12 . . . B1W

B22 . . . B2W

. . .
...

0 BWW




,

where each block Bij contains the contributions to the number of spanning trees from a state

of Σi to a successor state of Σj . This matrix is block upper triangular: a component which is

isolated from the right boundary will remain isolated when edges are added on the right, thus

the number d of isolated components cannot decrease.

It follows that

ρ(Λ̂) = max{ ρ(B00) , ρ(B11) , . . . , ρ(BWW) }. (5.6)

For analyzing Bdd let us further divide the states ŝ = (s0, s) in

Σd = Σ0
d ∪ Σ1

d ∪ · · · ∪ Σe
d ∪ · · · ∪ ΣW

d ,

74 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

according to the number of components of s0 which are connected to the right boundary. This

is the number of indices of s0 that also occur in s. (We must have 1 ≤ d + e ≤ W , but for ease

of notation we ignore this constraint).

Accordingly, we can write

Bdd =




Ad
00 0

Ad
10 Ad

11

...
. . .

Ad
W0 Ad

W1 . . . Ad
WW




in block lower-triangular form: different components in s0 can become connected, but no new

connected components can appear. Thus

ρ(Bdd) = max{ ρ(Ad
00) , ρ(Ad

11) , . . . , ρ(Ad
WW) }. (5.7)

Let us now look at the successor of a state ŝ = (s0, s) ∈ Σe
d when a set δ of edges is added

on the right. We are mostly interested in successor states in the same class Σe
d because these

are the states which determine ρ(Ad
ee) and eventually ρ(Λ̂).

Let CW×k → CW×(k+1) be the original recursion for CW×k.

First, there are the edge sets δ which can be legally added to the state s in the step CW×k →
CW×(k+1). In addition, there are edge sets δ which leave some components disconnected from

the right. However, these transitions increase d and contribute to some matrix Bdd′ with d′ > d.

Thus we only need to consider transitions δ that lead from s to a legal successor succδ(s) in

the original recursion CW×k → CW×(k+1), and which are encoded in the transfer matrix Λ.

For each δ, we have

ŝuccδ((s0, s)) = (s′0, succδ(s)),

where s′0 reflects the changes in labels when going from s to succδ(s): any labels of s that

were relabeled in succδ(s) because some components were united (and higher labels were con-

sequently shifted down) must be similarly relabeled in s0, yielding s′0. If any such relabeling

took place in s′0, however, it means that some components in s0 were united. (Recall that the

components appearing in s0 have the smallest labels.) Such successor states belong to Σe′

d with

e′ < e and do not contribute anything to Ad
ee.

The only edge sets that contribute to the diagonal blocks Ad
ee are therefore the sets δ which

leave s0 intact and are legal in the original recursion CW×k → CW×(k+1):

ŝuccδ((s0, s)) = (s0, succδ(s))

If we group the states (s0, s) ∈ Σe
d according to s0, and order the states with the same s0

according to s as they appear in Λ, we can write

Ad
ee =




D
(1)
d,e 0

D
(2)
d,e

. . .

0 D
(t)
d,e




where s
(1)
0 , s

(2)
0 , . . . , s

(t)
0 are the different values of the vector s0. All transitions δ encoded in

one of these blocks D
(t)
d,e are also legal transitions for the original recursion CW×k → CW×(k+1).

5.2. LOWER BOUNDS FOR T 75

Therefore, since each block encodes only part of the legal transitions δ, we have

D
(t)
d,e ≤ Λ

Thus,

ρ(Ad
ee) = max{ ρ(D

(1)
d,e) , . . . , ρ(D

(t)
d,e) } ≤ ρ(Λ),

which yields, with (5.6) and (5.7)

ρ(Λ̂) ≤ ρ(Λ).

To obtain the converse inequality, consider the states ŝ = (s0, s) in Σ1
0. All vertices in

the left column belong to a single component which is connected to the right boundary, and

s0 = (A, A, . . . , A). The edge sets which lead to a successor state in the same class Σ1
0 are

precisely the ones which lead to a legal successor state in the original step CW×k → CW×(k+1).

Thus we have

A0
11 = Λ

and hence, by (5.6) and (5.7),

ρ(Λ̂) ≥ ρ(A0
11) = ρ(Λ).

We have proved that the family {CW×k}k≥0 has the same spectral radius with or without

periodic conditions on the vertical boundaries, and the theorem follows.

Corollary 5.3. The number of spanning trees of the family of cylindrical triangular lattices is

given by

lim
W→∞

(T∞(CW×∞)) = 5.029545 . . .

Hence we conclude with the following result.

Theorem 5.4. The maximum number of spanning trees over the set Gn of all planar graphs

with n vertices is bounded by

lim
n→∞

(
max
G∈Gn

T (G)

) 1
n

≥ 5.029545 . . .

(The exact expression is given in (5.5).)

Proof. We use the known result which says that if a function f : N → R is supermultiplicative,

that is, f(n + m) ≥ f(n) · f(m) and exponentially bounded, that is, there exist a K ∈ R such

that f(n) ≤ Kn, then the limit limn→∞ f(n)1/n exists [34].

Our function f(n) = maxG∈Gn
T (G) is supermultiplicative, since given a graph A with n

vertices and a graph B with m vertices, the number of spanning trees satisfies

T (A ∪ B ∪ e) = T (A) · T (B) ,

for any edge e adjacent to a vertex of A and a vertex of B.

The function f(n) = maxG∈Gn
T (G) is also exponentially bounded: in Section 5.3 we give

upper bounds for the number of spanning trees. Theorem 5.7 gives the upper bound

T (G) ≤ 5.3̄n,

76 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

where 5.3̄ denotes the periodic number 5.333333

Hence, the limit

lim
n→∞

(
max
G∈Gn

T (G)

) 1
n

exists, and by Corollary 5.3 we have the result.

5.2.6 Square Grids

For lower bounding the maximum number of spanning trees of a planar graph with smallest

face cycle 4, we use arguments analogous to the triangulated case.

Let {QW×k}k≥0 be the family of square cylinder grid graphs, wrapping around from the

top vertices to the bottom vertices, with fixed width W and growing length k. Shrock and

Wu [49] obtained the number of spanning trees for the family {Q̂W×k}k≥0, where the graph

Q̂W×k is obtained from QW×k by connecting the last column to the first column in the same

way as all other adjacent columns in QW×k are connected. We call this graphs square grid

graphs with periodic boundary conditions. See Figure 5.9.

Figure 5.9: The square grid 4 × 5 with periodic boundary conditions.

In [49] is given the following limit for T (Q̂W×k):

T∞(Q̂W×∞) = exp

(
1

W

W−1∑

k=0

ln
(
2 − cosωk +

(
(2 − cosωk)2 − 1

)1/2
))

,

where ωk = 2πk/W .

For W arbitrarily large, we have [57]

lim
W→∞

(T∞(Q̂W×∞)) = exp

(
4

π

(
1 − 1

32
+

1

52
− 1

72
+

1

92
− · · ·

))
(5.8)

= 3.209912 . . .

(see also [49, (2.17)]).

As for triangular grid graphs, the spectral radius of the transfer matrices of both families

{QW×∞}k≥0 and {Q̂W×∞}k≥0 is the same. We have

Theorem 5.5.

T∞(QW×∞) = T∞(Q̂W×∞)

5.3. UPPER BOUNDS FOR T 77

The proof is analogous to the proof of Theorem 5.5.

Corollary 5.4. The number of spanning trees of the family of square cylinder grid graphs is

given by

lim
W→∞

(T∞(QW×∞)) = 3.209912 . . .

We conclude with the following result.

Theorem 5.6. The maximum number of spanning trees over the set G4
n of all planar graphs

of smallest face cycle 4 with n vertices is bounded by

lim
n→∞

(
max
G∈G4

n

T (G)

) 1
n

≥ 3.209912 . . .

(The exact expression is given in (5.8).)

The proof is analogous to the proof of Theorem 5.4, using Corollary 5.4.

5.3 Upper Bounds for T

Let G = (V, E) be a planar graph with n = |V | vertices, m edges, and f faces. First we recall

a known result that we use several times.

Lemma 5.3. A planar graph G and its dual G∗ have the same number of spanning trees.

The best obtained bound that we have found for general planar graphs is given by the

following theorem.

Theorem 5.7. If G is a planar graph, then

T (G) ≤
(

16

3

)n

= 5.3̄n

We denote by 5.3̄ the periodic number 5.333333

Proof. If we add edges to a graph, the number of spanning trees grows. We add edges to G

while maintaining its planarity, until we obtain a triangulated planar graph GT which satisfies

T (G) ≤ T (GT).

Since GT is triangulated, its dual graph G∗
T is 3-regular. We apply to G∗

T the upper bound

for κ-regular graphs with κ ≥ 3, due to McKay [39], Chung and Yau [15]:

T (G∗
T) ≤

(
2 ln n∗

n∗κ lnκ

)
(cκ)n∗

,

where n∗ is the number of vertices of the dual graph G∗
T , and

cκ =
(κ − 1)κ−1

(κ2 − 2κ)
κ
2 −1

is the leading term.

78 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

For κ = 3, we have c3 = 4
√

3/3. The graph G∗
T has 2n − 4 vertices (which correspond to

the faces of GT), therefore we obtain the upper bound

T (G∗
T) ≤ c2n−4

3 ≤
(

16

3

)n

= 5.3̄n

This bound is also valid for T (G), since T (G) ≤ T (GT) = T (G∗
T) (the last equality holds by

Lemma 5.3).

Recall that the lower bound that we have for the maximum number of spanning trees of a

planar graph is 5.029545n . . . , given in Theorem 5.4.

A next step would be to try to improve this bound by using the planarity of G∗, which is

not considered in the proofs in [15, 39], but this seems difficult.

A face cycle in a graph G is a cycle with edges in the boundary of a face of G. We say that

a graph has smallest face cycle k if its shortest face cycle has length k. A graph with smallest

face cycle 4 is a graph without triangles but at least one quadrilateral face. A graph with

smallest face cycle 5 has neither triangular nor quadrilateral faces, but at least a pentagonal

face. Note that a 3-connected planar graph must contain always a triangle, a quadrilateral

face or a pentagonal face, because the dual graph is also planar and hence its average degree

is less than 6, thus the dual graph has minimum degree at most 5.

We have tried several different techniques for bounding T (G), obtaining new bounds for

the cases of planar graphs with smallest face cycle 4 and 5. The applied techniques and results

are discussed in the sections below. Although the obtained bounds for general planar graphs

are not better than the one given in Theorem 5.7, we would also like to give an overview of

the results using these alternative methods.

5.3.1 The Outgoing Edge Approach for Upper Bounding T

For every vertex v ∈ V , let dv = d(v) denote the degree of v. We can easily show the following

lemma:

Lemma 5.4. The number of spanning trees is bounded by the product of vertex degrees:

T (G) ≤
∏

v∈V \{r}

dv, (5.9)

for an arbitrary vertex r.

Proof. Choose a vertex r to be the root. Consider the directed graph obtained by replacing

every edge by two directed arcs, one in each direction, except for the root, which has only

ingoing edges.

We can obtain all spanning trees just selecting one outgoing edge to each vertex different

than the root. We denote by R such a selection. See Figure 5.10. Within the selection R,

cycles can appear, but the process is injective, i. e., we do not obtain twice the same spanning

tree. This is because a spanning tree obtained in this way has a directed path from each leaf

to the root, and this is the only possible orientation.

Hence

T (G) ≤
∏

v∈V \{r}

dv,

since dv is the number of possibilities of selecting one outgoing edge to each vertex different

from the root.

5.3. UPPER BOUNDS FOR T 79

r

Figure 5.10: A planar graph with a selected root r and a selection of outgoing edges that forms

a spanning tree.

This gives an upper bound of 6n for planar graphs, because

T (G) ≤
∏

v∈V \{r}

dv ≤
∏

v∈V

dv ≤
(∑

v∈V dv

n

)n

< 6n. (5.10)

The second inequality holds by the arithmetic-geometric means inequality. The last inequality

holds since the average degree of a planar graph is less than 6.

The bound (5.10) is a quite relaxed bound. The error comes from counting selections of

outgoing edges that contain cycles, since they do not constitute any spanning tree. Hence, one

can try to improve the bound by excluding cyclic selections, and this is what we do in the

following sections.

5.3.2 Removing Sets of Independent Edges

In this section, the bounds are obtained quite easily but they are improved by later sections.

Therefore, some details are only sketched, as for example the details about linear programming

towards the end of the section.

Consider the 2-cycles formed by both directed arcs along the same edge. Since in R we

select at most one outgoing edge per vertex, we can only find several 2-cycles in R if they

are along independent edges. As a first attempt, we can improve the bound (5.10) a little by

considering matchings on G and applying the following lemma.

Lemma 5.5. Suppose (x1, y1), (x2, y2), . . . , (x|M|, y|M|) are the edges of a matching M of the

graph G, and z1, . . . , zu are the unmatched vertices (u > 0). Then

T (G) ≤
|M|∏

k=1

(d(xk)d(yk) − 1)

u−1∏

i=1

d(zi).

Proof. The error on the bound given in Lemma 5.4 comes from counting selections that contain

cycles. For forming a tree, we must exclude cycles. In particular, we can exclude 2-cycles by

80 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

considering a matching M , and excluding the possibility that, for an edge (xk, yk) in M ,

both directed arcs along the edge form a 2-cycle. Then we can substitute, in the product of

Lemma 5.4, d(xk)d(yk) by d(xk)d(yk) − 1. We can do this for each k = 1 . . . |M |, since given

two edges of the matching (xk1 , yk1) and (xk2 , yk2), the existence of a 2-cycle between xk1 and

yk1 is independent of the existence of a 2-cycle between xk2 and yk2 .

Since the root has no outgoing edge, it cannot be contained in any cycle. In particular, it

cannot be contained in any 2-cycle, hence we count it as one of the unmatched vertices. The

product of degrees over the unmatched vertices has only u−1 factors because in (5.9) the root

is excluded.

For applying the bound given by Lemma 5.5, we look at the size of a maximum matching

Mmax in our graph. Let δ(G) the minimum degree of G. In [42], Nishizeki and Baybars

establish the following lower bounds for the size of the maximum matchings:

Theorem 5.8. Let G be a planar 3-connected graph with n vertices. We have

• |Mmax| ≥
⌈

n+4
3

⌉

• If δ(G) ≥ 4, then |Mmax| ≥
⌈

3n+8
7

⌉

• If δ(G) = 5, then |Mmax| ≥
⌈

9n+20
19

⌉

In the same paper it is also proved that a 4-connected planar graph is Hamiltonian, and

hence it has a perfect matching, that is, a matching of
⌊

n
2

⌋
vertices.

For our application, we assume the graph G to be 3-connected, since we want to lift it to

a polytope.

Proposition 5.1. If G is a planar 3-connected graph with n vertices, then

T (G) < 5.943922n.

Proof. By Lemma 5.5 we have

T (G) ≤
|Mmax|∏

k=1

(d(xk)d(yk) − 1)

n−2|Mmax|∏

i=1

d(zi). (5.11)

We want to maximize the expression (5.11) above under the constraint

∑

v∈V

d(v) ≤ 6n − 12 ,

given by the Handshaking Lemma and the fact that a planar graph has at most 3n− 6 edges.

We claim that, under the weaker constraint

∑

v∈V

d(v) ≤ 6n ,

(5.11) is maximized by

(6 · 6 − 1)|Mmax| 6n−2|Mmax|.

This can be seen using an exchanging argument: We want to show that the amount (5.11)

only grows when each pair of degrees d(v1) and d(v2) such that d(v1)− d(v2) ≥ 2 is exchanged

5.3. UPPER BOUNDS FOR T 81

by d(v1) − 1 and d(v2) + 1 respectively. To prove this, we have to distinguish several cases,

depending on the position where d(v1) and d(v2) occur in the product (5.11). For two vertices

xk and yk matched to each other, such that d(xk) − d(yk) ≥ 2, it is easy to see that

d(xk)d(yk) − 1 ≤ (d(xk) − 1) (d(yk) + 1) − 1.

It two vertices zi and zj are both unmatched, satisfying d(zi) − d(zj) ≥ 2, we have

d(zi)d(zj) ≤ (d(zi) − 1) (d(zj) + 1) .

For two vertices xk and xl both matched but not to each other, such that d(xk) − d(xl) ≥ 2,

we have

(d(xk)d(yk) − 1) (d(xl)d(yl) − 1) ≤ ((d(xk) − 1) d(yk) − 1) ((d(xl) + 1) d(yl) − 1) .

Similarly, for a vertex xk matched and a vertex zi unmatched, such that d(xk)− d(zi) ≥ 2, we

have

(d(xk)d(yk) − 1) d(zi) ≤ ((d(xk) − 1) d(yk) − 1) (d(zi) + 1) .

Finally, for a vertex xk matched and a vertex zi unmatched, such that d(zi) − d(xk) ≥ 2, we

have

(d(xk)d(yk) − 1) d(zi) ≤ ((d(xk) + 1) d(yk) − 1) (d(zi) − 1) .

Within this exchange, the constraint
∑

v∈V d(v) ≤ 6n is maintained since the sum of degrees

remains the same. At the end, the degrees have at most two different values that differ only

in one unit. Since the average degree is at most 6, we have

T (G) ≤
|Mmax|∏

k=1

(d(xk)d(yk) − 1)

n−2|Mmax|∏

i=1

d(zi)

≤ (6 · 6 − 1)|Mmax| 6n−2|Mmax|

≤
(
35

1
3 6

1
3

)n

< 5.943922n.

For the third inequality we have used that δ(G) ≥ 3 because G is 3-connected, and, by Theo-

rem 5.8, G has a maximum matching Mmax of size at least
⌈

n+4
3

⌉
.

In graphs with smallest face cycle 4, each face is bounded by 4 or more edges, hence 2f ≤ m,

and by Euler’s formula, we have m ≤ 2n − 4. Then, the average degree is given by

∑
v∈V dv

n
=

2 m

n
≤ 2(2n− 4)

n
< 4

and from (5.10) we obtain T (G) < 4n.

If the smallest face cycle is 5, each face is bounded by 5 or more edges, hence 5f ≤ 2m,

and by Euler’s Formula, we have m ≤ 5/3n− 10/3. Then, the average degree is

∑
v∈V dv

n
=

2 m

n
≤ 2(5/3n− 10/3)

n
< 3.3̄

and from (5.10) we have T (G) < 3.3̄n.

82 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

We have also improved these two upper bounds by removing maximum matchings, not

on G, but on the dual graph G∗, because it gives better bounds. The dual graph G∗ is also

3-connected, and by Lemma 5.3 it satisfies T (G) = T (G∗).

If G has smallest face cycle at least 4, then δ(G∗) ≥ 4 and, by Theorem 5.8, G∗ has a

maximum matching of size at least
⌈

3f+8
7

⌉
. In case G has smallest face cycle 5, then δ(G∗) = 5

and G∗ has a maximum matching of size at least
⌈

9f+20
19

⌉
.

These two special cases are not so simple as the general case, where we know that the

largest number of spanning trees is given by triangulated graphs. For graphs with smallest

face cycle 4 or 5, the largest number of spanning trees could be given by a graph with faces

of different length, hence the vertices of the dual graph may have different degrees. We have

modelled the situation by a linear program, whose variables are the number of matched edges

between vertices of given degrees, and the number of unmatched vertices of given degrees. As

linear constraints we have taken the size of a maximum matching, the Handshaking Lemma,

the bounds on the number of vertices of G∗, and the fact that the sum of number of matched

and unmatched vertices equals the number of vertices of G∗.

The obtained results are, if G has smallest face cycle 4,

T (G) ≤
(
(4 · 4 − 1)

3
7 4

1
7

)f

< 3.890879n.

In case G has smallest face cycle 5,

T (G) ≤
(
(5 · 5 − 1)

9
19 5

1
19

)f

< 2.886566n.

We have not tried to improve the bounds on the minimum size of a maximum matching of G∗

for our concrete cases, since the mentioned results are not too far from the best bound we could

obtain by this method in the optimal case: if we would have a perfect matching, by resetting

the constraints, the solution of the linear problem would be T (G) < 3.872984 for graphs with

smallest face cycle 4, and T (G) < 2.884410 for graphs with smallest face cycle 5. We obtain

stronger bounds in the next section with a different technique.

One could improve the bound of Lemma 5.5 by excluding larger cycles, like 3-cycles, 4-

cycles, etc. For example, any independent triangle x1x2x3 would contribute to the product of

Lemma 5.4 with a factor of

d(x1)d(x2)d(x3) − 2 − d(x1) − d(x2) − d(x3)

instead of d(x1)d(x2)d(x3). We subtract 2 from d(x1)d(x2)d(x3) since it corresponds to both

directed 3-cycles along the triangle, and we subtract d(xi) since it corresponds to the case

when we have a 2-cycle between xj and xk and the outgoing edge of xi can be any edge,

i, j, k = 1, 2, 3.

5.3.3 A Probabilistic Model. Suen’s Inequality

As an application, in Chapter 6 we lift the graph G to a polytope. Therefore we assume the

graph G to be 3-connected.

Consider the selection of edges R described in the proof of Lemma 5.4: choose a root

vertex r, and treat G as a directed graph where every edge has two possible directions, with

the exception that the root has only ingoing edges. We view at this selection as a random

5.3. UPPER BOUNDS FOR T 83

selection, obtained with the random process consisting in selecting at random one outgoing

edge to each vertex different than r. Within this process, we obtain all spanning trees exactly

once.

Such a random selection of outgoing edges forms a tree if and only if it does not contain a

cycle. Hence we can write

T (G) =
∏

v∈V \{r}

dv · Prob (a random selection R of outgoing edges forms a tree)

=
∏

v∈V \{r}

dv · Prob (a random selection R of outgoing edges does not form a cycle),

(5.12)

where the random selection of outgoing edges is for all vertices except for the root. The goal is

then to exclude cyclic selections. Given a random selection R, the existence of different cycles

in R are not independent events but also not very dependent.

We improve the results of Section 5.3.2 by using Suen’s inequality. Suen’s inequality uses

the concept of a dependency graph. Let {Xi}i∈I be a family of random variables, defined on a

common probability space. A dependency graph for {Xi} is a graph L with vertex set I such

that if A and B are two disjoint subsets of I with no edge in L between a vertex of A and a

vertex of B, then the families {Xi}i∈A and {Xi}i∈B are mutually independent. In particular,

two variables Xi and Xj are independent unless there is an edge in L between i and j. If there

exists such an edge, we write i ∼ j. Suen’s inequality is useful in cases in which there exists a

sparse dependency graph. The expected value of a random variable X is denoted by EX . The

following theorem is a special case of Suen’s inequality [31]:

Theorem 5.9. Let Ii, i ∈ I, be a finite family of Bernoulli random variables with success

probability pi, having a dependency graph L. Let X =
∑

i Ii and λ = EX =
∑

i pi. Moreover,

let ∆ = 1
2

∑
i

∑
j:i∼j E(IiIj) and ζ = maxi

∑
k∼i pk. Then

Prob (X = 0) ≤ exp (−λ + ∆e2ζ).

Let R be a random selection of outgoing edges for all vertices except for the root r. Let

D denote the set of all directed cycles in the graph obtained from G by replacing every edge

by two directed arcs except for the root, which has only ingoing edges. Note that a cycle of

D cannot contain the root r. In other words, D is the set of all directed cycles c that could

appear in R.

In our model, the indicator variables Ic correspond to the existence of the directed cycle c,

for all c ∈ D. Ic is 1 if the cycle c appears in R, 0 otherwise. A directed cycle c ∈ D appears

in R when all its arcs are present in R, and the presence in R of the different arcs of c are

independent events. An arc from a vertex v to the successor vertex on a particular directed

cycle is present in R with probability 1/dv. Hence, if c is a directed cycle of G not containing

the root, Ic is a Bernoulli variable taking the value 1 with probability pc =
(∏

v∈c dv

)−1
. The

random variable X =
∑

c∈D Ic counts the number of directed cycles in R, and Prob (X = 0)

measures the probability that no cycle exists in R, i. e., that R forms a spanning tree. We

want an upper bound for Prob (X = 0).

The vertices of the dependency graph are all directed cycles c in D. Note that two directed

cycles ci and cj in R never share a vertex, because every vertex different from the root has

exactly one outgoing edge in R. Hence, in the dependency graph, we connect two directed

84 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

cycles ci and cj by an edge (ci ∼ cj) if they share some vertex: if ci and cj share at least one

vertex, the existence of ci and the existence of cj in R are incompatible events, so they are

dependent events; conversely, if ci ∼ cj , then they are non-disjoint cycles.

Thus, i ∼ j implies that E(IiIj) = 0, which means that ∆ = 0 in Theorem 5.9. Therefore

we have

Prob (X = 0) ≤ exp (−λR), (5.13)

where λR is the sum of probabilities pc for all directed cycles c that can appear in R, that is

λR =
∑

c∈D

pc =
∑

c∈D

1∏
v∈c

dv

=
∑

(i,j)∈C2

1

didj
+

∑

(i,j,k)∈C3

2

didjdk
+

∑

(i,j,k,l)∈C4

2

didjdkdl
+ . . . (5.14)

where Cl denotes the set of all undirected cycles of length l in G, not containing the root. We

have a 2 in the numerators for the cycles of length at least 3 since every cycle must be counted

twice, one in each orientation (remember we consider directed cycles).

Our task is to obtain lower bounds for λR, but the value of λR depends on the graph G.

From (5.12) and (5.13) we have

T (G) ≤
∏

v∈V \{r}

dv exp (−λR) .

We reduce the sum (5.14) to be finite by cutting it at a given length l, that is, considering

only short cycles. Let λ
(l)
R denote this finite sum. Obviously we still have a bound for T (G):

T (G) ≤
∏

v∈V \{r}

dv exp (−λ
(l)
R) . (5.15)

To make it simpler we consider a slightly different model, where every vertex has an outgoing

edge, including the root. Let R′ such a random selection of outgoing edges. Note that in this

model a cycle always appears in R′. λR′ is the sum of probabilities for all directed cycles that

can appear in R′, that is

λR′ =
∑

(i,j)∈E

1

didj
+

∑

(i,j,k)∈C′
3

2

didjdk
+

∑

(i,j,k,l)∈C′
4

2

didjdkdl
+ . . .

In the expression above, C′
l denotes the set of all undirected cycles of length l in G (also

those including the root). Note that

C′
l = Cl ∪ {c ∈ C′

l : r ∈ c}.

As before, denote by λ
(l)
R′ the finite sum obtained from cutting λR′ at a given length l.

Considering 2-Cycles. Consider the amount

∏

v∈V

dv exp
(
−λ

(2)
R′

)
. (5.16)

5.3. UPPER BOUNDS FOR T 85

Let Z2 be the logarithm of (5.16), that is

Z2 :=
∑

v∈V

ln dv −
∑

(i,j)∈E

1

didj
.

The random process where every vertex has an outgoing edge is simpler to analyze than the

original one where the root is only allowed to have ingoing edges. The following lemma and

corollary show that actually we can work with the selection R′ for upper bounding T (G).

Lemma 5.6. Let Z2 =
∑

v∈V ln dv −∑(i,j)∈E
1

didj
, and let r be an arbitrarily chosen root

vertex. Then

T (G) ≤ exp (Z2 + K2) ,

where

K2 := − lndr +
∑

(r,i)∈E

1

drdi

is a correction term.

Proof. We have ∑

(i,j)∈C2

1

didj
=

∑

(i,j)∈E

1

didj
−

∑

(r,i)∈E

1

drdi
(5.17)

Hence, from (5.15) and (5.17) we have

T (G) ≤ exp

(∑

v∈V \{r}

ln dv − λ
(2)
R

)
= exp

(∑

v∈V \{r}

ln dv −
∑

(i,j)∈C2

1

didj

)

= exp

(∑

v∈V \{r}

ln dv −
∑

(i,j)∈E

1

didj
+

∑

(r,i)∈E

1

drdi

)

= exp

(
Z2 − ln dr +

∑

(r,i)∈E

1

drdi

)
.

and the lemma is proven.

Corollary 5.5.

T (G) < exp (Z2) .

Proof. Since δ(G) is at least 3 because G is 3-connected, and there are dr edges of the form

(r, i), we have
∑

(r,i)∈E

1

drdi
=

1

dr

∑

(r,i)∈E

1

di
≤ 1

dr
· dr ·

1

3
=

1

3
. (5.18)

Also we have dr ≥ 3, hence

K2 = − lndr +
∑

(r,i)∈E

1

drdi
≤ − ln 3 +

1

3
< 0 ,

and the corollary follows.

86 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Considering 3-Cycles.

Lemma 5.7. Let

Z3 :=
∑

v∈V

ln dv −
∑

(i,j)∈E

1

didj
−

∑

(i,j,k)∈C′
3

2

didjdk
,

and let r be an arbitrarily chosen root vertex. Then

T (G) ≤ exp (Z3 + K3) ,

where

K3 := − ln dr +
∑

(r,i)∈E

1

drdi
+

∑

(r,i,j)∈C′
3

2

drdidj

is a correction term.

Proof. We have ∑

(i,j,k)∈C3

1

didjdk
=

∑

(i,j,k)∈C′
3

1

didjdk
−

∑

(r,i,j)∈C′
3

1

drdidj
(5.19)

From (5.15), (5.17) and (5.19) we have

T (G) ≤ exp

(∑

v∈V \{r}

ln dv − λ
(3)
R

)
= exp

(∑

v∈V \{r}

ln dv −
∑

(i,j)∈C2

1

didj
−

∑

(i,j,k)∈C3

2

didjdk

)

= exp

(∑

v∈V \{r}

ln dv −
∑

(i,j)∈E

1

didj
+

∑

(r,i)∈E

1

drdi
−

∑

(i,j,k)∈C′
3

2

didjdk
+

∑

(r,i,j)∈C′
3

2

drdidj

)

= exp

(
Z3 − ln dr +

∑

(r,i)∈E

1

drdi
+

∑

(r,i,j)∈C′
3

2

drdidj

)
.

Corollary 5.6.

T (G) < exp (Z3) .

Proof. Let N be the subgraph of G spanned by the vertices adjacent to r. The subset of C′
3

of 3-cycles containing the root has the same cardinality as the set of edges of N , which is at

most 3dr − 6 < 3dr, since N is a planar graph with dr vertices. Then we have

∑

(r,i,j)∈C′
3

2

drdidj
=

2

dr

∑

(r,i,j)∈C′
3

1

didj
<

2

dr
· 3dr ·

1

9
=

2

3

We used that δ(G) is at least 3 since G is 3-connected. Also we have dr ≥ 3, and (5.18) is

satisfied, hence

K3 = − ln dr +
∑

(r,i)∈E

1

drdi
+

∑

(r,i,j)∈C′
3

2

drdidj
< − ln 3 +

1

3
+

2

3
< 0 ,

and the corollary follows.

5.3. UPPER BOUNDS FOR T 87

Considering Larger Cycles. For larger cycles, the correction term K is derived from a

similar lemma:

Lemma 5.8. Let

Zl :=
∑

v∈V

ln dv −
∑

(i,j)∈E

1

didj
−

∑

(i,j,k)∈C′
3

2

didjdk
− · · · −

∑

C∈C′
l

2∏
i∈C di

,

and let r be an arbitrarily chosen root vertex. Then

T (G) ≤ exp (Zl + Kl) ,

where

Kl := − lndr +
∑

(r,i)∈E

1

drdi
+

∑

(r,i,j)∈C′
3

2

drdidj
+ · · · +

∑

C∈C′
l
: r∈C

2∏
i∈C di

is a correction term.

The proof is analogous to Lemma 5.6 and Lemma 5.7.

A. The Outgoing Edge Method with Suen’s Inequality for 3-Connected Planar

Graphs

Considering 2-Cycles. Our goal is to maximize Z2. Let fij , with i ≤ j, be the number of

edges connecting a vertex of degree i and a vertex of degree j. We want to write

Z2 =
∑

v∈V

ln dv −
∑

(i,j)∈E

1

didj

as a linear function in the variables fij , and to maximize this linear function under some

constraints.

The degree of a vertex is at least 3 because the graph G is 3-connected and at most n− 1.

We have 3 ≤ i, j ≤ n. (For simplicity, we write a relaxed program: we write n instead of n− 1

and we solve the system for more variables, which will be zero in the solution).

Then, 2fii +
∑n

j=i+1 fij equals the total number of edges incident to vertices of degree i,

and hence

2fii +
n∑

j=3

j 6=i

fij = i ni, i = 3 . . . n,

where ni denotes the number of vertices of G of degree i. Therefore

n =

n∑

i=3

ni =

n∑

i=3

2fii +
∑n

j=3
j 6=i

fij

i
=

∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
. (5.20)

In a planar graph, each face is bounded by at least 3 edges. Thus, the total number of

edge-face pairs is at least 3f , that is, 3f ≤ 2m, and by Euler’s formula, the number of edges is

at most 3n − 6. Therefore ∑

3≤i≤j≤n

fij ≤ 3n− 6. (5.21)

88 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

We can rewrite Z2 as a linear function in terms of fij as

Z2 =
∑

v∈V

ln dv −
∑

{v1,v2}∈E

1

d1d2

=

n∑

i=3

ln(i) ni −
∑

3≤i≤j≤n

fij
1

ij

=

n∑

i=3

ln i

2fii +
∑n

j=3
j 6=i

fij

i
−

∑

3≤i≤j≤n

fij
1

ij

=
∑

3≤i≤j≤n

fij

(
ln i

i
+

ln j

j
− 1

ij

)
. (5.22)

From (5.20), (5.21), (5.22) and the fact that the numbers fij are non-negative, we write

the following linear program:

maximize Z2 =
∑

3≤i≤j≤n

fij

(
ln i

i
+

ln j

j
− 1

ij

)

subject to
∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
= n

∑

3≤i≤j≤n

fij ≤ 3n− 6

fij ≥ 0, for i, j = 3 . . . n, i ≤ j

(P2)

For uniformity we replace (5.21) by a weaker constraint

∑

3≤i≤j≤n

fij ≤ 3n , (5.23)

obtaining a new linear program:

maximize Z2 =
∑

3≤i≤j≤n

fij

(
ln i

i
+

ln j

j
− 1

ij

)

subject to
∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
= n

∑

3≤i≤j≤n

fij ≤ 3n

fij ≥ 0, for i, j = 3 . . . n, i ≤ j

(P ′
2)

Let Z∗
2 be the optimum value which maximizes the objective function Z2 under the con-

straints given in (P ′
2).

We solved this linear program using the commercial linear programming solver CPLEX with

AMPL as a modeling interface. AMPL is a modeling language for large-scale optimization and

mathematical programming problems [27].

5.3. UPPER BOUNDS FOR T 89

For several values of the parameter n up to 5000, we obtained Z∗
2 = 1.708427, which means

exp (Z∗
2/n) = 5.520267 (these values are rounded up). The optimum Z∗

2 is achieved when

f66 = 3n and fij = 0, for all ij 6= 66.

This is true not only for the values of n checked empirically, but for any n, as it is stated

in the following lemma.

Lemma 5.9. The linear program (P ′
2) has the optimum value

Z∗
2 =

(
ln 6 − 1

12

)
n .

Proof. The solution {f66 = 3n, fij = 0 for all ij 6= 66} given above is feasible for the modified

program (P ′
2) because it satisfies the constraints. This solution yields precisely the value of the

objective function

3n

(
ln 6

6
+

ln 6

6
− 1

36

)
=

(
ln 6 − 1

12

)
n .

To see that this is the optimum solution, we form a linear combination of the constraints (5.20)

and (5.23), with positive factors λ1 and λ2:

λ1


 ∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
− n


+ λ2


 ∑

3≤i≤j≤n

fij − 3n


 ≤ 0 ,

where λ1 and λ2 are obtained as the optimal dual variables associated to these constraints.

This implies
∑

3≤i≤j≤n

fij

(
λ1

(
1

i
+

1

j

)
+ λ2

)
≤ n (λ1 + 3λ2) . (5.24)

For proving that the objective function in (P ′
2) is upper bounded by n (λ1 + 3λ2), we must

prove that the coefficient of fij in the objective function is upper bounded by the coefficient

of fij on the left side of (5.24). This is, we must prove

ln i

i
+

ln j

j
− 1

ij
≤ λ1

(
1

i
+

1

j

)
+ λ2, 3 ≤ i ≤ j ≤ n,

or, equivalently, that the function

g(i, j) =
ln i − λ1

i
+

ln j − λ1

j
− 1

ij
− λ2

is negative or zero, for all integers i, j such that 3 ≤ i ≤ j ≤ n.

Let λ1 = 0.53, and let λ2 ≈ 0.392808 be determined by the equation g(6, 6) = 0. The

equation g(6, 6) = 0 is obtained by complementary slackness, since f66 6= 0 in the (proposed)

optimal solution.

For the rest of the values ij 6= 66, we prove g(i, j) < 0. For the values i, j ≥ 6, we show

that g(i, j) is a monotone decreasing function for growing i and j, by proving that the partial

derivatives ∂g(i, j)/∂i and ∂g(i, j)/∂j are negative. We have

∂g(i, j)

∂i
=

1

i2
− ln i − λ1

i2
+

1

i2j
.

90 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Since i > 0, ∂g(i, j)/∂i < 0 if and only if 1 − ln i + λ1 + 1
j < 0, which is true for any i, j ≥ 6.

Analogously, we can prove that ∂g(i, j)/∂j < 0. Hence, for i, j ≥ 6 we have g(i, j) < 0.

For i between 3 and 5, we fix i and look for the smallest integer value of j for which the

function is monotone decreasing in j, or equivalently, the smallest integer value of j for which

the partial derivative ∂g(i, j)/∂j is negative. For i = 3, g(i, j) is monotone decreasing for

j ≥ 7. For i = 4 and i = 5, g(i, j) is monotone decreasing for j ≥ 6. For the remaining values

of i, j, that is, for ij equal to 33, 34, 35, 36, 37, 44, 45, 46, 55, 56, the inequality g(i, j) < 0

can be checked directly. This implies that g(3, j) is negative for j > 7, and that g(4, j), g(5, j)

are negative for j > 6.

This proves that the objective function is upper bounded by Z∗
2 = n (λ1 + 3λ2), and,

substituting the given values of λ1 and λ2, we have λ1 + 3λ2 = ln 6 − 1/12.

Since the constraints of the linear program (P ′
2) are weaker than the constraints of the

original program (P2), the optimum value given by Lemma 5.9 is an upper bound for the

optimum value of (P2):

Corollary 5.7. The optimum value of the linear program (P2) is upper bounded by

Z∗
2 =

(
ln 6 − 1

12

)
n .

Hence we conclude with the following proposition.

Proposition 5.2. For any 3-connected planar graph G, the Outgoing Edge approach gives an

upper bound of

T (G) < 5.520267n.

Proof. By Corollary 5.5 and Corollary 5.7, we have

T (G) <

[
exp

(
Z∗

2

n

)]n

=

[
exp

(
ln 6 − 1

12

)]n

< 5.520267n.

Remark 5.1. There is no planar graph with f66 = 3n. However, such a graph can be embedded

on the torus. In fact, the situation where all vertices have degree 6 holds for the triangular

grid {ĈW×k}k≥0 with periodic boundary conditions considered in Section 5.2.5, for which we

obtained the maximum number of spanning trees. It has been shown in Theorem 5.3 that the

difference between graphs embedded on the torus and planar graphs does not make a differ-

ence in the asymptotic growth factor for the number of spanning trees, at least for recursively

constructible families of graphs.

We did further numerical experiments. The obtained results are not proved but they are

only established empirically.

Empirical Results: Considering 3-Faces. We consider now 2-cycles and 3-faces. Let F3

be the set of 3-face cycles of G. The number of 3-cycles of a graph is at least the number of

3-face cycles since F3 ⊂ C′
3, hence we obtain a more relaxed upper bound.

Let fijk, with i ≤ j ≤ k, be the number of 3-faces constituted by a vertex of degree i, a

vertex of degree j and a vertex of degree k. Here we have 3 ≤ i ≤ j ≤ k ≤ n.

5.3. UPPER BOUNDS FOR T 91

Let ZF3 be the upper bound of Z3 in terms of 3-faces:

Z3 ≤
∑

v∈V

ln dv −
∑

(i,j)∈E

1

didj
−

∑

(i,j,k)∈F3

2

didjdk

= ZF3

We want to write ZF3 as a linear function in the variables fij and fijk, and to maximize

this linear function under some constraints. The term of ZF3 corresponding to 3-faces can be

rewritten as a linear function of fijk as

∑

3≤i≤j≤k≤n

fijk
2

ijk
, (5.25)

and, from (5.22) and (5.25), we have

ZF3 =
∑

3≤i≤j≤n

fij

(
ln i

i
+

ln j

j
− 1

ij

)
−

∑

3≤i≤j≤k≤n

fijk
2

ijk
. (5.26)

We establish a condition linking triangles and edges. If fijk is the number of triangular

faces, this condition is that fijk contributes 1/2 to fij , 1/2 to fik, and 1/2 to fjk. This must

be corrected for i = j and j = k, and we obtain

2fij =

i−1∑

k=1

fkij +

j∑

k=i

fikj +

n∑

k=j+1

fijk + fiij + fijj , 3 ≤ i ≤ j ≤ n. (5.27)

Note that if i < j we are counting fiij and fijj twice each, and once the fkij , fikj or fijk

with k 6= i, j; and in case i = j, we are counting three times fiii and once the fkii or fiik with

k 6= i.

From (5.20), (5.21), (5.26), (5.27) and the non-negativity of the numbers fijk, we have the

following linear program:

maximize ZF3 =
∑

3≤i≤j≤n

fij

(
ln i

i
+

ln j

j
− 1

ij

)
−

∑

3≤i≤j≤k≤n

fijk
2

ijk

subject to
∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
= n

∑

3≤i≤j≤n

fij = 3n− 6

2fij =

i−1∑

k=1

fkij +

j∑

k=i

fikj +

n∑

k=j+1

fijk + fiij + fijj , for i, j = 3 . . . n, i ≤ j

fij , fijk ≥ 0, for i, j, k = 3 . . . n, i ≤ j ≤ k
(P3)

As before, for uniformity we replace (5.21) by the weaker constraint (5.23), that is
∑

3≤i≤j≤n

fij ≤ 3n ,

92 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

obtaining a new linear program (P ′
3).

Let Z∗
F3 be the optimum value which maximizes the objective function ZF3 under the

constraints given in (P ′
3). Solving (P ′

3) with AMPL for values of the parameter n up to 300,

we obtain

Z∗
F3 =

(
ln 6 − 11

108

)
n . (5.28)

With AMPL, and writing 3n instead of 3n − 6, the optimum is achieved when

f66 = 3n, fij = 0 for all ij 6= 66, f666 = 2n, and fijk = 0 for all ijk 6= 666,

which corresponds to the case where all edges have degree 6. This means that, if this result

were true for every n, the optimum would be achieved when G is almost a graph of the family

of triangular grid graphs with periodic boundary conditions. See the discussion in Remark 5.1.

This is consistent with the hypothesis that the family of triangular grid graphs with periodic

boundary conditions yields the largest number of spanning trees. Note that in this family all

3-cycles are 3-faces.

Since the constraints of the linear program (P ′
3) are weaker than the constraints of the

original program (P3), the optimum value given by (5.28) is an upper bound for the optimum

value of (P3). By Corollary 5.6, we have

T (G) <

[
exp

(
Z∗

F3

n

)]n

=

[
exp

(
ln 6 − 11

108

)]n

< 5.418981n (5.29)

The bound (5.29) is still far from the upper bound given by Theorem 5.7.

Considering Larger Cycles. For l > 4 it is very tricky to write the linear constraints that

relate the number of l-cycles constituted by vertices of given degrees with the number of edges.

However, we think that it is not worth to continue working in this direction: Everything

seems to indicate that the graphs that are similar to the 6-regular family {ĈW×k}k≥0 give the

maximum number of spanning trees over all planar graphs. In the remainder of this section we

explore heuristically the bounds that Suen’s inequality would give, under the hypothesis that

the triangular grid is the optimal graph. In line with Remark 5.1, we consider the 6-regular

triangular grid that is embedded on the torus.

Consider a graph of this family with n vertices, and let us compute |Cl|, the number of

cycles of length l, for some more values of l. |C2| and |C3| equal respectively to the number

of edges and faces. The 4-cycles are the boundary of pairs of adjacent triangles. Hence there

are as many 4-cycles as edges, that is, |C4| = 3n. The 5-cycles are the boundary of triplets of

adjacent triangles meeting at a vertex (see Figure 5.11). For each vertex there are 6 of these

triplets, one for each possible orientation, thus |C5| = 6n. The 6-cycles are hexagons (there are

n hexagons, one centered at each vertex), or boundaries of groups of four triangles distributed

as illustrated in Figure 5.12. Hence one can see that |C6| = n+6n+6n+2n. The 7-cycles are

boundaries of groups of five or seven triangles distributed as illustrated in Figure 5.13. Hence,

|C7| = 6n + 6n + 6n + 24n.

5.3. UPPER BOUNDS FOR T 93

Figure 5.11: 5-cycle as the boundary of triplets of adjacent triangles meeting at the white

vertex. For each vertex, there are 6 different such 5-cycles, one for each possible orientation.

Summarizing, we have

|C2| = f66 = 3n

|C3| = f666 = 2n

|C4| = 3n

|C5| = 6n

|C6| = 15n

|C7| = 42n

If we plug these values into Lemma 5.8, we obtain

T (G) ≤ 6n exp

(
−3n

62
− 2

(
2n

63
+

3n

64
+

6n

65
+

15n

66
+

42n

67

)
+ K7

)
< K · 5.380556n.

where K = exp(K7) is a correction term.

We could not obtain a better bound than this if we would write down a linear program

which considers l-cycles up to l = 7, and it is still quite far from the bound of 5.3̄n given in

Theorem 5.7. Also, for larger l, the improvement is every time much smaller.

B. Suen’s Inequality for 3-Connected Graphs with Smallest Face Cycle at Least 4

Let G be a 3-connected planar graph with smallest face cycle at least 4.

Considering 2-Cycles. If we only consider 2-cycles, we can write a linear program (P 4
2)

analogous to (P2), with the difference that now the graph has at most 2n − 4 edges. Hence,

instead of (5.21), we have the constraint
∑

3≤i≤j≤n

fij ≤ 2n− 4. (5.30)

For uniformity we replace (5.30) by a weaker constraint
∑

3≤i≤j≤n

fij ≤ 2n , (5.31)

obtaining a new linear program (P 4
2
′
).

For values of n up to 1000, we obtain with AMPL a rounded up value of exp(Z4
2
∗
/n) =

3.529988, where Z4
2
∗

is the optimum value of the linear program (P 4
2
′
). The optimum value

Z4
2
∗

is achieved when

f44 = 2n, and fij = 0 for all ij 6= 44.

94 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Figure 5.12: 6-cycles as the boundary of four triangles. Top left: The four triangles meet at

the white vertex. For each vertex, there are 6 different such 6-cycles, one for each possible

orientation. Top right: Four aligned triangles. For each vertex v, there are 12 possible such

6-cycles with extreme vertex v (2 for each triangle incident to v), but in total each 6-cycle

is counted twice since it has two extreme vertices. (Extreme vertices are drawn white in the

figure.) Hence the graph has 12n/2 = 6n 6-cycles of this kind. Bottom: The four triangles

form a big equilateral triangle, and its boundary is the 6-cycle. Since each triangle of the graph

is the central triangle of exactly one of this big triangles, there are in total 2n cycles of this

kind (as many as triangles).

We formally prove this for every n.

Lemma 5.10. The linear program (P 4
2
′
) has the optimum value

Z4
2
∗

=

(
ln 4 − 1

8

)
n .

Proof. The proof is analogous to the proof of Lemma 5.9.

The solution {f44 = 2n, fij = 0 for all ij 6= 44} given above is feasible for the modified

program (P 4
2
′
) because it satisfies the constraints. This solution yields precisely the value of

the objective function

2n

(
ln 4

4
+

ln 4

4
− 1

16

)
=

(
ln 4 − 1

8

)
n .

To see that this is the optimum solution we form a linear combination of the constraints (5.20)

and (5.31), with factors λ1 and λ2:

λ1


 ∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
− n


+ λ2


 ∑

3≤i≤j≤n

fij − 2n


 ≤ 0 ,

5.3. UPPER BOUNDS FOR T 95

Figure 5.13: Top left: 7-cycles as the boundary of seven triangles, obtained by adding one

triangle adjacent to one of the six sides of an hexagon. There are 6 ways to get it, and n

hexagons, hence the number of such 7-cycles is 6n. Top right: 7-cycles as the boundary of five

triangles meeting at a vertex, drawn white. For each vertex, there are 6 possible such 7-cycles,

one for each orientation. Bottom: 7-cycles as the boundary of five triangles, obtained from the

group of four triangles in Figure 5.12 (top right), by adding one triangle adjacent to one of the

six sides. We must take into account that if the triangle is added at the end as in the third

picture, then it is counted twice in total. We have 6n and 4 · 6n 7-cycles distributed as in the

bottom first and second picture respectively.

where λ1 and λ2 are obtained as the optimal dual variables associated to these constraints.

As in Lemma 5.9 we must show that the function

g(i, j) =
ln i − λ1

i
+

ln j − λ1

j
− 1

ij
− λ2

is negative or zero, for all integers i, j such that 3 ≤ i ≤ j ≤ n.

Since f44 6= 0 in the (proposed) optimal solution, we obtain by complementary slackness

the equation g(4, 4) = 0. By taking λ1 = 0 and λ2 ≈ 0.630647 determined by the equation

g(4, 4) = 0, we can prove that g(i, j) is negative everywhere, except g(4, 4) = 0.

Since the constraints of the linear program (P 4
2
′
) are weaker than the constraints of the

original program (P 4
2), we have:

Corollary 5.8. The optimum value of the linear program (P 4
2) is upper bounded by Z4

2
∗
.

Theorem 5.10. For a 3-connected planar graph G with smallest face cycle at least 4, the

96 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Outgoing Edge approach gives an upper bound of

T (G) <

[
exp

(
ln 4 − 1

8

)]n

< 3.529988n.

Proof. By Corollary 5.5 and Corollary 5.8, we have

T (G) <

[
exp

(
Z4

2
∗

n

)]n

,

and substituting the value of Z4
2
∗

given in Lemma 5.10 we have the result.

There is no planar graph with no triangles and f44 = 2n, but such a graph can be embedded

on the torus. The situation where all vertices have degree 4 holds for the square grid with

periodic boundary conditions considered in Section 5.2.6.

Recall that, by Theorem 5.6, the lower bound on the maximum number of spanning trees

for graphs with smallest face cycle 4 is 3.209912n

We carried out further more numerical experiments. The obtained results are not proved

but they are only established empirically.

Empirical Results: Considering 4-Faces and 5-Faces. We can assume that G has only

4-faces and 5-faces: add edges to the original graph, keeping the smallest face cycle being 4.

We can only add chords to the faces while not creating triangles. This can be done if we

correctly add chords to the faces with at least 6 sides. For example, we can add a chord to a

6-face creating two 4-faces. If we keep on adding chords till we cannot continue, we get at the

end a graph where all faces have length 4 or 5. When we add edges, the number of spanning

trees grows, which is fine since we are searching upper bounds.

We consider now 2-cycles, 4-faces and 5-faces. Let F4 and F5 be the set of 4-face cycles

and 5-face cycles of G respectively. Since the number of 4-face cycles (5-face cycles) of a graph

is at least the number of 4-faces (5-faces), we obtain a more relaxed upper bound.

Let fijkl and fijklm be respectively the number of 4-faces and 5-faces constituted by vertices

of degrees given by the indices ijkl and ijklm (3 ≤ i, j, k, l, m ≤ n). The indices ijkl and ijklm

are always ordered according to their lexicographically minimum cyclic permutation. We write

{ijkl} ∈ F4 and {ijklm} ∈ F5 when ijkl or ijklm constitute a 4-face cycle or a 5-face cycle

with the indicated degrees, and the indices are correctly ordered.

We want to establish a condition linking edges and 4-faces and 5-faces, similar to the one

for edges and triangles established in (5.27). If we only had 4-faces, we would have

2fij =
∑

k,l

(fijkl + fkijl + fklij + fiklj + fkjil + fklji) , if i < j

2fii =
∑

k,l

(fijkl + fkijl + fklij + fiklj) .

In this equation, if i < j we are counting 2 times fiijj , fiiij , fijjj , fijik and fijkj , where

k 6= i, j, 4 times fijij , and once all other variables. If i = j we are counting 4 times fiiii, 2

times fiiik, and once all other variables, which have the form fiikl, with k, l 6= i. With this

linking equation we are balancing how many times we count every edge with respect to its two

5.3. UPPER BOUNDS FOR T 97

incident faces. Actually these faces could be quadrilaterals or pentagons. Hence, the linking

condition is indeed

2fij =
∑

k,l

(fijkl + fkijl + fklij + fiklj + fkjil + fklji)

+
∑

k,l,m

(fijklm + fkijlm + fklijm + fklmij + fiklmj + fkjilm + fkljim + fklmji) ;

2fii =
∑

k,l

(fijkl + fkijl + fklij + fiklj)

+
∑

k,l,m

(fijklm + fkijlm + fklijm + fklmij + fiklmj) . (5.32)

The following constraint, corresponding to Euler’s formula, is also needed.
∑

3≤i≤j≤n

fij −
∑

{i,j,k,l}∈F4

fijkl −
∑

{i,j,k,l,m}∈F5

fijklm = n − 2 . (5.33)

From (5.20), (5.32), (5.33), we write the following linear program:

maximize Z4
5 =

∑

3≤i≤j≤n

fij

(
ln i

i
+

ln j

j
− 1

ij

)
−

∑

{i,j,k,l}∈F4

fijkl

ijkl
−

∑

{i,j,k,l,m}∈F5

fijklm

ijklm

subject to
∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
= n

∑

3≤i≤j≤n

fij −
∑

{i,j,k,l}∈F4

fijkl −
∑

{i,j,k,l,m}∈F5

fijklm ≤ n

and (5.32)

(P 4
45)

Note that the constraint (5.30) can be omitted since it is implied by the others.

Let Z4
5
∗

is the optimum value that maximizes the objective function Z4
5 under the con-

straints given in (P 4
45). We solved this linear program with AMPL for several values of n up

to 25, obtaining

exp (Z4
5
∗
/n) = 3.502518n.

(The result is rounded up.) Hence, by Lemma 5.8, we would obtain a bound of

T (G) ≤ K · 3.502518n. (5.34)

where K = exp(K5) is a correction term.

This is what would come out, but this result is only established empirically. We have

not formally proved that the result (5.34) is true for any value of n. It could be a little bit

complicated since there are many non-zero dual variables. But the difference between the

bound (5.34) and the bound in Theorem 5.10 is very small.

For the checked values of n, the optimum is achieved when almost all vertices have degree 4,

and almost all faces are quadrilaterals. We conjecture then that the family of square grid graphs

with periodic boundary conditions described in Section 5.2.6 gives the maximum number of

spanning trees for planar graphs without triangles. Note that in this family all 4-cycles are

4-faces.

98 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Considering Larger Cycles. For l > 6 it is tricky to write down the linear program

constraints relating the number of l-cycles constituted by vertices of given degrees with the

number of edges.

However, as in the general case, we think that it is not worth to continue working in this

direction: Everything seems to indicate that the graphs that are similar to the 4-regular family

of square grid graphs with periodic boundary conditions described in Section 5.2.6 give the

maximum number of spanning trees over all planar graphs. In the remainder of this section,

we explore heuristically the bounds that Suen’s inequality would give, under the hypothesis

that the square grid is the optimal graph. We consider the 4-regular square grid embedded on

the torus.

Consider the 4-regular family of square grid graphs with periodic boundary conditions

which we think that gives the maximum number of spanning trees for planar graphs without

triangles. This family has 2n edges, no 3-cycles, and n faces, which are the 4-cycles. The

6-cycles are the boundary of two adjacent squares. This means that there are as many 6-cycles

as edges, that is, |C6| = 2n. The 8-cycles are the boundary of three squares, as in Figure 5.14,

or the boundary of a big square formed by 4 faces (there are n of such big squares, one centered

at each vertex). Hence |C8| = 6n + n = 7n. The 10-cycles are boundaries of groups of four or

five squares distributed as illustrated in Figure 5.15. Hence |C10| = 8n + 18n = 26n. There

are no cycles of odd length.

Figure 5.14: 8-cycles as the boundary of three squares. For each square Q, there are 6 of these

8-cycles with Q in the shadowed position. (We do not count twice the same 8-cycle.)

If we plug this values into Lemma 5.8 we obtain

T (G) ≤ 4n exp

(
−|C2|

42
− 2

(|C4|
64

+
|C6|
66

+
|C8|
68

+
|C10|
610

)
+ K11

)

= 4n exp

(
−2n

42
− 2

(
n

64
+

2n

66
+

7n

68
+

26n

610

)
+ K11

)

< K · 3.498178n.

where K = exp(K11) is a correction term.

We could not obtain a better bound than this if we could write a linear program which

considers l-cycles up to l = 11. Also, for larger l, the improvement is every time much smaller.

C. Suen’s Inequality for 3-Connected Graphs with Smallest Face Cycle 5

Let G be a 3-connected planar graph with smallest face cycle 5.

Considering 2-Cycles. If we only consider 2-cycles we can write a linear program (P 5
2)

analogous to (P2). The difference is that now the graph has at most 5/3n− 10/3 edges. Hence

5.3. UPPER BOUNDS FOR T 99

Figure 5.15: Top left: 10-cycles as the boundary of 5 squares, one square attached to the side

of a big square. There are 8 ways to attach it, and n such big squares, hence 8n such 10-cycles.

The rest: 10-cycles as the boundary of four squares. For each square Q, there are 18 such

10-cycles with Q in the shadowed position, and they are counted once.

the constraint (5.21) is substituted by

∑

3≤i≤j≤n

fij ≤ 5

3
n − 10

3
. (5.35)

Let (P 5
2)′ be the linear program obtained by replacing (5.35) by the weaker constraint

∑

3≤i≤j≤n

fij ≤ 5

3
n . (5.36)

Let Z5
2
∗

be the optimum value of the linear program (P 5
2)′. For several values of the

parameter n up to 1000, we obtain with AMPL a rounded up value of exp(Z5
2
∗
/n) = 2.847263.

The optimum value Z5
2
∗

of the objective function is achieved when

f33 = n/3, f34 = 4n/3, and fij = 0 for all ij 6= 33 or ij 6= 34.

This corresponds to the case where all vertices have degree 3 or 4, n/3 of the edges are between

vertices of degree 3, and 4n/3 of the edges are between a vertex of degree 3 and a vertex of

degree 4. We formally prove it for every n.

100 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Lemma 5.11. The linear program (P 5
2)′ has the optimum value

Z5
2
∗

=

(
2

3
ln 3 +

1

3
ln 4 − 4

27

)
n .

Proof. The proof is analogous to the proof of Lemma 5.9.

The solution {f33 = n/3, f34 = 4n/3, fij = 0 for all ij 6= 33 or ij 6= 34} given above

is feasible for (P 5
2)′ because it satisfies the constraints. This solution yields the value of the

objective function

n

3

(
ln 3

3
+

ln 3

3
− 1

9

)
+

4n

3

(
ln 3

3
+

ln 4

4
− 1

12

)
=

(
2

3
ln 3 +

1

3
ln 4 − 4

27

)
n .

To see that this is the optimum solution, we form a linear combination of the constraints (5.20)

and (5.36), with factors λ1 and λ2:

λ1


 ∑

3≤i≤j≤n

fij

(
1

i
+

1

j

)
− n


+ λ2


 ∑

3≤i≤j≤n

fij −
5

3
n


 ≤ 0 ,

where λ1 and λ2 are obtained as the optimal dual variables associated to these constraints.

As in Lemma 5.9 we must show that the function

g(i, j) =
ln i − λ1

i
+

ln j − λ1

j
− 1

ij
− λ2

is negative or zero, for all integers i, j such that 3 ≤ i ≤ j ≤ n.

We obtain by complementary slackness the equations g(3, 4) = 0 and g(4, 4) = 0, since

f34, f44 6= 0 in the (proposed) optimal solution. Solving the system of equations {g(3, 4) =

0, g(4, 4) = 0} we obtain λ1 ≈ −0.014433 and λ2 ≈ 0.630864. For this values of λ1 and λ2, we

can prove that g(i, j) is negative everywhere, except g(3, 4) = 0 and g(4, 4) = 0.

Since the constraints of the linear program (P 5
2)′ are weaker than the constraints of the

original program (P 5
2), we have:

Corollary 5.9. The optimum value of the linear program (P 5
2) is upper bounded by Z5

2
∗
.

Theorem 5.11. For a 3-connected planar graph G with smallest face cycle 5, the Outgoing

Edge approach gives an upper bound of

T (G) <

[
exp

(
2

3
ln 3 +

1

3
ln 4 − 4

27

)]n

< 2.847263n.

Proof. By Corollary 5.5 and Corollary 5.9, we have

T (G) <

[
exp

(
Z5

2
∗

n

)]n

,

and substituting the value of Z5
2
∗

given in Lemma 5.11 we have the result.

5.4. UPPER BOUNDS FOR THE NUMBER OF FORESTS 101

Figure 5.16: Grid where all faces are pentagons, satisfying f33 = n/3, f34 = 4n/3, and fij = 0

for all ij 6= 33 or ij 6= 34. The grid has periodic boundary conditions: the top vertices are

identified with the bottom boundary vertices, and the left boundary vertices are identified with

the right boundary vertices.

There is no planar graph with smallest face cycle 5 and f33 = n/3, f34 = 4n/3, and fij = 0

for all ij 6= 33 or ij 6= 34, since, as we said above, a planar graph with smallest face cycle 5

has at most 5/3n − 10/3 edges. However, such a graph can be embedded on the torus. The

situation holds for the grid with periodic conditions illustrated in Figure 5.16.

We can assume that G has only 5-faces, 6-faces and 7-faces: If we add edges to the graph,

the number of spanning trees grows. Similarly as in the previous section, we add chords while

keeping the smallest face cycle being 5, till we cannot continue, and we obtain a graph where

all faces have length 5, 6 or 7.

It is too tricky to write a linear program which considers the deletion of 5-faces, 6-faces

and 7-faces, and we do not expect that this brings a significant improvement.

5.4 Upper Bounds for the Number of Forests

For embedding 3-polytopes in small integer grids in Chapter 6, we need to upper bound the

number of spanning forests of a planar graph with three and four trees, each rooted at one

chosen vertex. The number of spanning forests with three trees is used for embedding 3-

polytopes with at least one triangular face. The number of spanning forest with four trees is

used for embedding 3-polytopes with no triangular face but a quadrilateral face.

We bound the number of spanning forests in terms of the number of spanning trees, and

we use the upper bounds for spanning trees given in Section 5.3.

Lemma 5.12. Let G be a planar graph with three selected vertices v1, v2, v3. Let F 3(G) be the

set of spanning forests of G with three trees, each one rooted at one chosen vertex v1, v2, v3.

Then,
T (G)

4n2
≤ |F 3(G)| ≤ (n − 1)2 T (G).

102 CHAPTER 5. THE MAXIMUM NUMBER OF SPANNING TREES

Proof. Let T be a spanning tree of G and let v1, v2, v3 be three chosen vertices. We obtain

from T a spanning forest with three trees, each one rooted at one chosen vertex, by removing

two edges that disconnect v1, v2, v3. We can disconnect v1 from v2 by removing any of the

edges of the path from v1 to v2. This can be done in at most n − 1 ways. The vertex v3 is

still connected to either v1 or v2, by a path of at most n − 1 edges. By removing one of these

edges, we obtain the desired spanning forest. Hence, a spanning forest can be obtained from

T in at most (n − 1)2 ways, so |F 3(G)| ≤ (n − 1)2 T (G).

This bound is not very tight, but it is also not too relaxed: |F 3(G)| is at least T (G)/4n2.

To see this, let F be a spanning forest with three trees F1, F2, F3, each rooted at one chosen

vertex. From F we can obtain a spanning tree by adding two edges a and b; a connects F 1

with F 2 or F 3, and b connects the remaining component with the component containing a.

The graph G has at most 3n−6 edges because it is planar, and the spanning forest F has n−3

edges. Hence a and b can be chosen within a set of 3n− 6− (n− 3) = 2n− 3 remaining edges.

Thus we can obtain a spanning tree in at most 4n2 ways, and this proves the lower bound of

the theorem.

A tight example for the upper bound on |F 3(G)| given in Lemma 5.12 is illustrated in

Figure 5.17, where the three paths from the unique degree-3 vertex to the chosen vertices

v1, v2, v3 have length (n − 1)/3. This graph has one spanning tree and 1/3(n − 1)2 span-

ning forests with three trees, each one rooted at one chosen vertex. Hence, in this example,

|F 3(G)| = 1/3 (n− 1)2 T (G).

v2

v1

v3

Figure 5.17: Example with |F 3(G)| = 1/3 (n − 1)2 T (G). The three paths from the unique

degree-3 vertex to the chosen vertices v1, v2, v3 have length (n − 1)/3, where n is the number

of vertices of the graph.

A tight example for the lower bound on |F 3(G)| in Lemma 5.12 is illustrate in Figure 5.18,

where, given a spanning forest with three trees, each one rooted at one chosen vertex v1, v2, v3,

we can obtain a spanning tree in n2 ways (up to a constant factor).

Consider now the case when G is a graph with no triangular face, but at least one quadri-

lateral face, and consider the number of spanning forests with four trees.

Lemma 5.13. Let G be a planar graph with smallest face cycle at least 4. Let |F 4(G)| be the

set of spanning forests of G with four trees, each one rooted at one chosen vertex v1, v2, v3, v4.

5.4. UPPER BOUNDS FOR THE NUMBER OF FORESTS 103

v3

v1 v2

Figure 5.18: Example with T (G) ≈ n2|F 3(G)|.

Then,
T (G)

n3
≤ |F 4(G)| ≤ (n − 1)3 T (G).

Proof. Let T be a spanning tree of G and let v1, v2, v3, v4 be four chosen vertices. Analogously

as in Theorem 5.12, we obtain from T a spanning forest with four components, each one rooted

at one chosen vertex, by removing three edges that disconnect the chosen vertices. Each chosen

vertex vi can be disconnected from another chosen edge vj by removing an edge of the path

from vi to vj , and this can be done in at most n − 1 ways. We must do this three times for

disconnecting the four chosen vertices from each other. Hence, a spanning forest is obtained

from T in at most (n − 1)3 ways, so |F 4(G)| ≤ (n − 1)3 T (G).

To see that the bound is not too relaxed, we lower bound |F 4(G)| in terms of T (G). Let F

be a spanning forest with four components F1, F2, F3, F4, each one rooted at one chosen vertex.

From F we can obtain a spanning tree by adding three edges a, b and c connecting the four

components. The graph G has at most 2n − 4 edges since each face is bounded by at least 4

edges, and the spanning forest F has n− 4 edges. Hence a, b and c can be chosen within a set

of 2n − 4 − (n − 4) = n edges. Thus we can obtain a spanning tree in at most n3 ways, and

this proves the lower bound for |F 4(G)|.

