
Chapter 4

A Generalization of the

Maxwell-Cremona Theorem for

Self-Touching Configurations

4.1 Introduction

The classic Maxwell-Cremona Theorem [20, 21, 22, 48, 56] is a powerful tool that establishes a

bijection between the set of classical equilibrium stresses of a configuration in R
2 and the set

of three-dimensional polyhedral terrains in R
3 that project onto it.

In this chapter we study how this theorem translates to the case of self-touching con-

figurations. We present a generalization of the Maxwell-Cremona Theorem and establish a

correspondence between the set of stresses of a planar self-touching configuration and the

set of generalized three-dimensional polyhedral terrains, that is, three-dimensional polyhedral

terrains with jump discontinuities, that project onto it.

The lifting, that is, the direction from the self-touching stress to the generalized three-

dimensional polyhedral terrain, is unique up to the addition of a linear function, but the

projection, which is the direction from the generalized polyhedral terrain to the self-touching

stress, is in general not unique.

In [16], the authors use the Maxwell-Cremona Theorem for solving the Carpenter’s Rule

Problem. Inspired in their idea, we developed this generalization of the Maxwell-Cremona

Theorem as a tool for proving Theorem 3.1, but we did not succeed. Maybe in the future will

be found some nice application of our generalization.

4.2 Basics

4.2.1 The Cell Decomposition

Suppose we are given a self-touching configuration, which we can assume to be connected. We

distinguish between vertices and points, the converging positions of the vertices. We denote by

pv the coordinates of a vertex v. We assume that the configuration is embedded in R
3 in the

plane z = 1, so that each point pv has coordinates (xv, yv, 1).
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38 CHAPTER 4. LIFTINGS OF SELF-TOUCHING CONFIGURATIONS

The points of the self-touching configuration induce a cell decomposition: if it is connected,

the peripheral cell is realized as a polygon and the interior cells form a proper cell decomposition

of it by polygons. See Figure 4.1 for an example. Let ci, i = 1, . . . , m, be the interior cells,

and let c0 be the exterior cell.
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Figure 4.1: Left: Vertices and bars of a self-touching configuration. Right: points and edges

of the corresponding cell decomposition. Numbers denote edge multiplicities.

Several bars of the linkage may converge to the same overlapping position. We distinguish

between edges of the cell decomposition, bars of the self-touching configuration, and pieces of

bars. The cell decomposition induces a subdivision of the bars of the self-touching configuration

into pieces. See an example in Figure 4.2. The edges are the segments in the cell decomposition.

In general, an edge of the cell decomposition represents several overlapping pieces of bars.

Given an edge e ∈ E, let Se be the set of overlapping pieces lying along e, and let λe = |Se|
be the multiplicity of e. Note that given an oriented edge e = (β, τ), for each oriented piece

(b, t) ∈ Sβτ we have pβ = pb and pτ = pt. Let E, B, S be the sets of edges, bars and pieces

respectively. Along the chapter, edges, bars and pieces are assumed to be oriented in some

arbitrary way, to be able to distinguish their different sides, left and right.

We introduce auxiliary vertices on the interior of the bars, delimiting the pieces. Let A be

the set of auxiliary vertices. Obviously, two auxiliary vertices on the same bar have different

coordinates. Note that a point of the cell decomposition can represent several vertices of V

and several auxiliary vertices of A.

Let (b, t) be an oriented piece. We denote by (b̄, t̄) its supporting bar, i. e., the oriented bar

containing the piece. See Figure 4.2.

b t̄

t
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Figure 4.2: A piece (b, t) and its supporting bar (b̄, t̄). Vertices are drawn in white and auxiliary

vertices in black (we use this convention in the whole chapter).
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4.2.2 The Self-Touching Forces

Given a self-touching configuration, we say that the triplet {k; i, j} belongs to L if pk is a

vertex pushing against the directed bar (pi,pj) and pk must remain on the left side of the

line through pi and pj in order to maintain the combinatorial planar embedding. Note that

{k; j, i} ∈ L means that pk pushes against the bar (pi,pj) and pk remains on the right side of

the line through pi and pj .

Connelly, Demaine and Rote [17] generalized the stresses defined in Section 0.2 for classic

configurations to self-touching configurations. Given a self-touching configuration, in addition

to the classic stress on the bars, we assign to each triplet {k; i, j} a weight F = ωkij , rep-

resenting the force that pk transmits to the bar (pi,pj). The scalars F = ωkij are called

self-touching stresses, and they distribute proportionally as represented in Figure 4.3. We use

the representation of pk as a convex combination of pi and pj ,

pk = αpi + (1 − α)pj ∀{k; i, j} ∈ L,

where α = αkij is such that 0 < α < 1. The vertex pk feels a force of value F in the direction

(pj − pi)
⊥, perpendicular to the bar (pi,pj) and pointing to the left side of it, where pk

is restricted to move. The vertices pi and pj feel a proportional force of values αkijF and

(1 − αkij)F respectively, in the opposite direction.

pj

α

F

αF

1−α pk

pi

(1−α)F

Figure 4.3: A touching incidence (small double arrow) and proportional distribution of self-

touching stress F (single arrows). Bold edges denote bars.
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a counterclockwise rotation by 90◦, parallel to the plane xy.

In general, a vertex v of the configuration can be involved in several self-touching stresses.

Let FST (v) be the resulting self-touching stress at v, that is, the resulting force of, first, the

force that v feels from pushing against other bars, and second, the proportional distribution at

v of all the self-touching stresses pushing against both left and right sides of the bars incident

to v. This is expressed formally as
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FST (v) =
∑

i,j:{v;i,j}∈L

ωvij(pj − pi)
⊥

+
∑

j:(v,j)∈B


 ∑

k:{k;v,j}∈L

−αkvjωkvj(pj − pv)
⊥ +

∑

k:{k;j,v}∈L

(1 − αkjv)ωkjv(pj − pv)⊥


 .

We say that the configuration is in equilibrium if all forces, i. e., classical stresses on the

bars and self-touching stresses, add up to zero at every vertex v, that is

FST (v) +
∑

j:(v,j)∈B

ωvj(pj − pv) = 0 , ∀v ∈ V.

4.3 From Stressed Self-Touching Configurations to Poly-

hedra

We generalize to the self-touching case the approach of Richter-Gebert [48], summarized in

Section 0.3, for obtaining the Maxwell-Cremona correspondence for classical configurations.

4.3.1 The vectors qi

We are given a self-touching configuration in equilibrium stress. Remember that we assume that

the configuration is embedded in R
3 in the plane z = 1, so that each point pi has coordinates

(xi, yi, 1).

Given an oriented edge (β, τ), of multiplicity λ, there is a unique adjacent cell L to the left

of it, and a unique adjacent cell R to the right of it. We call the (ordered) tuple (β, τ | L, R) an

oriented patch. (The letters are chosen as mnemonics as in [48] for β = bottom, τ = top, L = left,

R = right.) We have an extra information: we have all the overlapping pieces (bs, ts) lying along

the edge (β, τ), and their corresponding supporting bars (b̄s, t̄s), for each s = 1, . . . , λ. Assume

the pieces are embedded in order from the right cell R to the left cell L, such that (b1, t1) is

directly adjacent to R and (bλ, tλ) is directly adjacent to L.

Now, to each cell ci we associate a vector qi ∈ R
3 by:

(i) q0 = (0, 0, 0);

(ii) qL = qR +
∑

(b,t)∈Sβτ

(ωbt(pβ × pτ ) + ∆(b, t)) if (β, τ | L, R) is an oriented patch.

where

∆(b, t) =
( ∑

k:{k;b̄,̄t}∈L

k∈[t,̄t]

− αkb̄t̄ωkb̄t̄ +
∑

k:{k;̄t,b̄}∈L

k∈[t,̄t]

(1 − αkt̄b̄)ωkt̄b̄

)
pb̄ × (pt̄ − pb̄)

⊥

−
( ∑

k:{k;b̄,̄t}∈L

k∈[b̄,b]

− (1 − αkb̄t̄)ωkb̄t̄ +
∑

k:{k;̄t,b̄}∈L

k∈[b̄,b]

αkt̄b̄ωkt̄b̄

)
pt̄ × (pt̄ − pb̄)

⊥.

In other words, ∆(b, t) is nothing else than the crossproduct of pb̄ by the resultant force

which b̄ feels from the self-touching stress incident to both sides left and right of the segment
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[t, t̄], minus the crossproduct of pt̄ by the resultant force which t̄ feels from the self-touching

stress incident to both sides of the segment [b̄, b].

To save space, we introduce the following notation: F
[a,b]
v denotes the total amount of force

that the vertex v feels from the self-touching stress incident to both sides left and right of the

segment [a, b] (v, a and b are three vertices on the same bar). Then, ∆(b, t) can be rewritten

as:

∆(b, t) = F
[t,̄t]

b̄
pb̄ × (pt̄ − pb̄)

⊥ − F
[b̄,b]

t̄
pt̄ × (pt̄ − pb̄)

⊥. (4.1)

One can see in (4.1) that only vertices pushing against the interior of the bar contribute to

∆(b, t), i. e., there is no contribution to ∆(b, t) of the self-touching stress coming from vertices

touching to b̄ or t̄.

We classify the pieces into the following types. We say that a piece (b, t) is of type (a) when

(b, t) = (b̄, t̄), that is, when (b, t) is itself a bar with no vertex touching its interior, and hence

both b and t are (not auxiliary) vertices of the configuration. We say that a piece (b, t) is of

type (b) when b = b̄ and t 6= t̄, that is, when b is a end vertex of the supporting bar and t is an

auxiliary vertex (remember that the piece is oriented). We say that a piece (b, t) is of type (c)

when b 6= b̄, that is, b is an auxiliary vertex. The vertex t can be auxiliary (if t 6= t̄) or not (if

t = t̄). See Figure 4.4 for an example.

v1

x
y

v2

v3

v4

v6 v7
v5

Figure 4.4: Cases for an oriented piece of bar. (v1, x), (x, y), and (y, v2) are pieces of the

bar (v1, v2). The first one is of type (b), the other two are of type (c). The rest of bars are

themselves pieces of type (a). With our notation, (v1, x) = (x, y) = (y, v2) = (v1, v2), and, for

example, (v1, v5) = (v1, v5).

The next lemma shows how ∆(b, t) simplifies in the particular cases where (b, t) is a piece

of type (a) or (b).

Lemma 4.1. For a piece of bar (b, t), we have

1. If (b, t) = (b̄, t̄) is a piece of type (a), then

∆(b, t) = 0 ;

2. If (b, t) = (b̄, t) is a piece of type (b), then

∆(b, t) = F
[t,̄t]

b̄
pb̄ × (pt̄ − pb̄)

⊥ .
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Proof. Part 1 is true by definition, since pieces of type (a) are bars without any self-touching

stress incident to its interior. Part 2 follows since b = b̄, thus trivially there is no self-touching

stress at [b̄, b], so F
[b̄,b]

t̄
= 0.

Lemma 4.2. The vectors qi are well-defined.

For proving Lemma 4.2, we need the following result.

Lemma 4.3. Any trip around an interior point of the cell decomposition generates a difference

vector (0, 0, 0).

This is a straight forward calculation but very technical, and it is shown in Appendix A in

order to avoid technical details here.

Proof of Lemma 4.2. The two oriented patches (β, τ | L, R) and (τ, β|R, L) define a consistent

relation between pβ ,pτ ,qL, and qR:

qL = qR +
∑

(b,t)∈Sβτ

(ωbt(pβ × pτ ) + ∆(b, t))

m
qR = qL +

∑

(t,b)∈Sτβ

(ωtb(pτ × pβ) + ∆(t, b))

This is true since ωbt = ωtb, since Sβτ and Sτβ contain the same pieces but with inverse

orientations, and since

∆(b, t) = −∆(t, b) ,

which follows from the definition (4.1), using that −x⊥ = (−x)⊥.

As in Richter-Gebert’s book [48], we compute the vectors qi recursively, choosing a sequence

(path) of cells, from q0 to qi. Walking along this sequence, qi = qL is computed from

qi−1 = qR when we leave the cell R to enter the cell L, crossing the edge (β, τ) (we consider

the oriented patch (β, τ | L, R)).

To show that we obtain the same value for qi independently from the path we choose, it

suffices to prove that any trip around an interior point of the cell decomposition generates a

difference vector (0, 0, 0) [48], which holds by Lemma 4.3.

4.3.2 The Lifting Function

First we introduce some notation. Given an oriented patch (β, τ | L, R), it can happen that

some vertices of V converging to pβ or pτ are neither directly incident to cR nor to cL, but

hidden between pieces of Sβτ (see Figure 4.5). Let x be such a vertex. We write x ∈ cR,

x ∈ cL. We denote by Si
βτ (x) be the set of pieces along (β, τ) crossed when we walk from the

cell ci to x, oriented like (β, τ) when leaving ci (i = L, R), and by Si
βτ (x)−1 the same set of

pieces but with inverse orientation. Note that Si
βτ (v) = ∅ corresponds to the case when v is

directly incident to ci. Note that

Sβτ = SR
βτ (x) ∪ SL

βτ (x)−1 ∪ Sβτ (x) , (4.2)

where Sβτ (x) denotes the set of pieces along (β, τ) incident to x, and ∪ denotes here the disjoint

union.
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Figure 4.5: In this example, SR
βτ (x) = {(2, 4)}, SL

βτ (x) = {(7, 3)} and Sβτ (x) = {(x, 5), (x, 6)}.

The vectors qi are now used to define the lifting function h, also called the height function.

Let C be the self-touching configuration, composed of bars and vertices. Let [C] denote the set

of points which is the union of all edges of the cell decomposition in R
2 induced by C. Then

the height function is defined in the domain D := R
2 \ [C] ∪ C, contrary to the usual lifting

for classic configurations, in which the height is defined in R
2. Hence h : D → R assigns a

z–coordinate to each vertex of V , to each point on a bar of C and to each point of R
2 \ [C]. This

means that different vertices or different bars can have different heights at the same geometric

location.

The height of a vertex x ∈ V is defined as

h(x) :=

〈
px,qi +

∑

(b,t)∈Si
βτ

(x)

(ωbt(pβ × pτ ) + ∆(b, t))

〉
, if x ∈ ci . (4.3)

We obtain the height of the interior points of bars by linear interpolation from their end

vertices. The height of the interior points can also be computed directly, by the linearity of the

scalar product: if x is interior to a piece (b, t) that lies along an edge (β, τ), we can compute

h(x) directly from (4.3) (Si
βτ (x) is analogously defined for interior points). In particular, cells

lift to facets in the usual way, and if x belongs the closure of a cell (interior or directly incident

to it), then (4.3) translates into

h(x) = 〈px,qi〉 if x ∈ ci , (4.4)

which, as expected, agrees with the height (2) given by the classic Maxwell-Cremona Theorem.

Lemma 4.4. The function h is well-defined, that is, it defines a unique height for each vertex.

Proof. Let b0 be a vertex of V with pb0 = pβ , where (β, τ | L, R) is an oriented patch of the

configuration. We can reach b0 walking from cL or from cR. We show that h attains the same

value at b0 when walking from both sides. We have
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qL +
∑

(t,b)∈SL
βτ

(b0)

(ωtb(pτ × pβ) + ∆(t, b))

= qR +
∑

(b,t)∈Sβτ

(ωbt(pβ × pτ ) + ∆(b, t)) +
∑

(t,b)∈SL
βτ

(b0)

(ωtb(pτ × pβ) + ∆(t, b))

= qR +
∑

(b,t)∈Sβτ

(ωbt(pβ × pτ ) + ∆(b, t)) −
∑

(b,t)∈SL
βτ

(b0)−1

(ωbt(pβ × pτ ) + ∆(b, t))

= qR +
∑

(b,t)∈SR
βτ

(b0)

(ωbt(pβ × pτ ) + ∆(b, t)) +
∑

(b0,t)∈Sβτ(b0)

(ωb0t(pβ × pτ ) + ∆(b0, t)) .

(4.5)

The first equality is (ii) on page 40. The second equality holds since (t, b) ∈ SL
βτ (b0) if and

only if (b, t) ∈ SL
βτ (b0)

−1, ωtb = ωbt, pτ × pβ = −pβ × pτ and ∆(t, b) = −∆(b, t). The third

equality holds by (4.2).

Since pb0 = pβ , we have

〈pb0 , ωb0t(pβ × pτ )〉 = 0 ,

and since b0 ∈ V , then each piece (b0, t) ∈ Sβτ (b0) is of type (a) or (b). Hence, by Lemma 4.1

we have

〈pb0 , ∆(b0, t)〉 = 0 ∀(b0, t) ∈ Sβτ (b0).

Now, applying the scalar product by pb0 on both sides of (4.5), we obtain

〈
pb0 ,qL +

∑

(t,b)∈SL
βτ

(b0)

(ωtb(pτ × pβ) + ∆(t, b))

〉

=

〈
pb0 ,qR +

∑

(b,t)∈SR
βτ

(b0)

(ωbt(pβ × pτ ) + ∆(b, t))

〉
,

and on the right and left of the equality we have the height of b0 walking from cL or from cR

respectively.

4.3.3 Generalized Polyhedral Terrains

Consider our height function h defined by (4.3), depending on two variables, the two plane

coordinates. If the directional limit of h at a point p takes different finite values depending

on the direction, the cell or the bar we come from, we say that the function has a jump

discontinuity at p. The jump at p is the difference between two directional limits at p. Note

that we can have one, two, three or even more directional limits at p.

The lifting is performed by applying to each vertex of the configuration the height function

h. We obtain what we call a three-dimensional generalized polyhedral terrain. The difference

with the classic polyhedral terrain obtained in the usual lifting is that in the generalized poly-

hedral terrain we can have concurrent bars and vertices with different heights. The obtained

generalized polyhedral terrain has then jump discontinuities at those vertices and bars con-

verging to the same geometric position in the self-touching configuration, as is it shown in this

section.
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The next lemma shows that each cell lifts to a planar polygon in R
3 and that the self-

touching configuration lifts to a generalized polyhedral terrain, with jump discontinuities at

those edges affected by self-touching forces.

Lemma 4.5. The height function h is piecewise linear with jump discontinuities at the bars

with incident self-touching stress.

Proof. By definition, h is piecewise linear, linear on each cell. Given an oriented patch (β, τ |
L, R) affected by self-touching forces, let us compute the vertical jump discontinuity along

(β, τ). First we compute the jump at each of the points pβ and pτ .

Let δh(β) denote the jump δh at pβ , that is, the difference of heights between two adjacent

cells incident to pβ on the lifted polyhedron. For pβ we have

〈pβ ,qL〉 = 〈pβ ,qR〉 +
∑

(b,t)∈Sβτ

ωbt 〈pβ ,pb × pt〉 +
∑

(b,t)∈Sβτ

〈pβ , ∆(b, t)〉

= 〈pβ ,qR〉 +
∑

(b,t)∈Sβτ

〈pβ , ∆(b, t)〉 .

For the first equation we use the definition of qL and the linearity of the scalar product. For the

second equation we use that for each piece (b, t) in Sβτ we have pb = pβ , and 〈x,x × y〉 = 0.

This shows that for adjacent cells without self-touching stress, the height agrees along the

common bar. Now, for each piece (b, t), consider its supporting bar (b̄, t̄) and write pb as

pb = αpb̄ + (1 − α)pt̄ with 0 < α < 1. Then the jump at pβ , δh(β), is given by

δh(β) = 〈pβ ,qL〉 − 〈pβ ,qR〉
=

∑

(b,t)∈Sβτ

〈pb, ∆(b, t)〉

= −
∑

(b,t)∈Sβτ

(
(1 − α)F

[t,̄t]

b̄
+ αF

[b̄,b]

t̄

) 〈
pb̄,pt̄ × (pt̄ − pb̄)

⊥
〉

= −
∑

(b,t)∈Sβτ

(
(1 − α)F

[t,̄t]

b̄
+ αF

[b̄,b]

t̄

)
‖pt̄ − pb̄‖2 . (4.6)

We used 〈x,x × y〉 = 0 and the fact that, for vectors in R
3 embedded in z = 0, we have

〈
x,y × (y − x)⊥

〉
= −

〈
y,x × (y − x)⊥

〉
= ‖y − x‖2 .

Similarly, we can compute δh(τ), the jump at pτ .

Any point p on (β, τ) can be written as the convex combination p = λpβ + (1− λ)pτ with

0 < λ < 1. Since the scalar product is linear, the jump at p is

δh(p) = λδh(β) + (1 − λ)δh(τ) .

In the proof of Lemma 4.5 we have computed the jump between two facets separated by

possibly several overlapping pieces of bars. In addition, these separating overlapping pieces are

pushing against each other, thus there are jump discontinuities between any two of them if the

self-touching stress in between is not zero. The difference of height from a piece (b, t) to the
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contiguous one is given by its corresponding summand in (4.6). Adding up the jumps between

all pieces separating two cells, we obtain the total jump between the two corresponding lifted

facets.

Given a bar (a, b) and an auxiliary vertex i on (a, b), let Lab(i) denote the set of touching

vertices pushing against i from the left side of (a, b). Analogously, let Rab(i) denote the set

of touching vertices pushing against i from the right side of (a, b). Note that, by definition

of height (4.3), all vertices in Lab(i) (resp. Rab(i)) have the same height h(Lab(i)) (resp.

h(Rab(i))), since we cross the same pieces to reach them from an adjacent cell. That is,

touching vertices converging to the same coordinate position lift to the same height. The

height of the bar (a, b) at the coordinate position pi equals the height h(Lab(i)) when the set

of vertices Lab(i) transmits to (a, b) no self-touching stress. If the set of vertices Lab(i) pushes

against (a, b) with a non-zero self-touching stress, then h(Lab(i)) lifts higher than the bar (a, b)

at pi. Analogously, h(Rab(i)) lifts higher than the bar (a, b) at pi when Rab(i) pushes against

(a, b) with a non-zero self-touching stress, otherwise it lifts to the same height as the bar. See

Figure 4.6.

bar 1

bar 3

bar 2��������������������������������������������������

h4

h2

h3

h1

cR

cL

p

Figure 4.6: Heights of vertices converging to the same point p. All converging vertices lying

in the region between cR and bar 1 have the same height h1, those lying in the region between

bar 1 and bar 2 have height h2, those lying in the region between bar 2 and bar 3 have height

h3 and those lying in the region between bar 3 and cL have height h4. The heights h1, h2, h3

and h4 can be different. The height of the bar i at p is at most the minimum between hi and

hi+1, i = 1, 2, 3.

4.3.4 Some Examples of Lifted Self-Touching Configurations

We illustrate in Figure 4.7 and Figure 4.8 a couple of examples to give to the reader a more

intuitive idea of how these liftings and jump discontinuities look.

4.3.5 Geometric Interpretation of qL − qR

When we apply the height function h, a cell with associated vector q = (qx, qy, qz) lifts to a

facet F (a planar polygon in R
3) of the polyhedral terrain, contained in the plane

qxx + qyy − z + qz = 0 ,
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F1

1
3F2

2
3F2

2
3F1

c3 F2

1
3F1

c1

c2 c
a d

b

c0

a

d

Figure 4.7: A self-touching configuration (left) and its lifting (right). The vertices b and c push

against the bar (a, d) with self-touching forces of values F1 = ωbad and F2 = ωcad respectively.

The proportional forces that the vertices a and d feel are indicated. The thick arrows on the

bar (a, d) represent the classic stress ωad on this bar. In the lifting, all vertices incident to the

exterior cell c0 have height zero. The height of b can be computed from the vector q associated

to any of the cells c1, c2 or c3 to which is incident, as h(b) = 〈pb,q1〉 = 〈pb,q2〉 = 〈pb,q3〉. The

height of c can for example be computed as h(c) = 〈pc,q1〉. Since F2 is larger than F1, c lifts

higher than b, as one can see in the lifted polyhedron. The discontinuity at ad is represented

in the lifting by a vertical facet abcd.

as it can be seen from (4.4). Then
(
qx

qy

)
is the gradient vector of F and nF = (−qx,−qy, 1) is

its normal vector.

We want to understand geometrically how the vector q changes when walking from a cell

cR to an adjacent cell cL. Recall that the difference qL − qR is given by

qL − qR =
∑

(b,t)∈Sβτ

(
ωbt(pβ × pτ ) + F

[t,̄t]

b̄
pb̄ × (pt̄ − pb̄)

⊥ − F
[b̄,b]

t̄
pt̄ × (pt̄ − pb̄)

⊥
)

. (4.7)

Hence, for each crossed piece (b, t) we have three terms with leading vectors pb×pt = pβ ×pτ ,

pb̄ × (pt̄ − pb̄)
⊥ and pt̄ × (pt̄ − pb̄)

⊥ respectively.

The first term of (4.7) is due to the classic stresses on the bars. The vector pb × pt causes

a rotation about the axis (b, t), i. e., about the bar (b̄, t̄). This is represented in Figure 4.9.

The difference angle θ between the normals nR and nL depends on the stress ωbt, and it is

positive, negative or zero depending on the sign of ωbt.

The second and third terms of (4.7) are due to the self-touching stresses along the whole

supporting bars of the crossed pieces. The vector pb̄ × (pt̄ − pb̄)
⊥ induces a rotation about an

horizontal axis through b̄ perpendicular to (b̄, t̄). The vector pt̄ × (pt̄ −pb̄)
⊥ induces a rotation

in the opposite direction about the horizontal axis through t̄ perpendicular to (b̄, t̄). In both

cases it is like “opening a book” with cover FL, back-cover the plane containing FR, and spine

the mentioned axis. See Figure 4.10. If the self-touching stress is zero, there is no rotation.

(The “book remains closed”.)



48 CHAPTER 4. LIFTINGS OF SELF-TOUCHING CONFIGURATIONS

a

F4

F3

f d

F1

F2

ce b

a

b

c = d

e

f

Figure 4.8: Another self-touching configuration (left) and its lifting (right). F1, F2, F3 and F4

denote the self-touching stresses with which the vertices b, e and f push against the bars (a, c),

(a, d), (b, c) and (b, d). The proportional forces at the vertices a, c and d are not represented.

Note that F1 and F2 must have the same value F so that b is in equilibrium. The amount of

force F determines the height of b. Since F3 is larger than F4, e lifts to a higher point than f .

4.4 The Correspondence between Self-Touching Configu-

rations and Generalized Polyhedral Terrains

In this section we generalize the Maxwell-Cremona Theorem and establish a correspondence be-

tween the set of stresses of a planar self-touching configuration and the set of three-dimensional

generalized polyhedral terrains that project onto it.

The direction from the self-touching stresses to the three-dimensional generalized polyhedral

terrain is called lifting and, as we show below, it is unique up to the addition of a linear function,

which is given by q0. The other direction, from the generalized polyhedral terrain to the self-

touching stresses, is called projection and it is in general not unique: the lifting has a non-trivial

kernel, as we prove later.

Theorem 4.1 (The Maxwell-Cremona correspondence for self-touching configurations). Let

C be a planar self-touching configuration. There is a correspondence between

(a) set of stresses on C which are in equilibrium at all vertices.

(b) set of three-dimensional generalized polyhedral terrains that project onto C.

Given a stress ω on C, the lifting is performed by applying the height function h defined by (4.3)

to each vertex of C, obtaining a three-dimensional generalized polyhedral terrain Γω. The

correspondence has the following properties:

1. Given an equilibrium stress ω on C, there is a unique corresponding three-dimensional

generalized polyhedral terrain Γω with the exterior facet lying on z = 0 that projects onto

it.

2. Given a three-dimensional polyhedral terrain Γ with jump discontinuities, its correspond-

ing vertical projection onto the plane has a self-touching equilibrium stress ωΓ which is



4.4. THE MAXWELL-CREMONA CORRESPONDENCE 49

θ

FL

nR

FR

nL t̄

b̄

Figure 4.9: The term corresponding to pb × pt induces a turn moment about the bar (b̄, t̄).

FLnR

b̄

nL

FR

t̄θ

t̄

FL
nR

nL

b̄

FR

θ

Figure 4.10: Left: rotation induced by pb̄ × (pt̄ −pb̄)
⊥. Right: rotation induced by pt̄ × (pt̄ −

pb̄)
⊥. In both pictures, the rotation axis is drawn in thick lines.

not always unique: the lifting construction is a mapping ω 7→ Γω which is not injective

in general, i. e, the kernel K of the lifting can be non-trivial.

Proof of Part 1 of Theorem 4.1. This is true by definition. Since q0 is fixed to (0, 0, 0), the

well-defined vectors qi are unique by construction. By Lemma 4.4, h defines, given the stress

ω, a unique height for each vertex of the self-touching configuration, obtaining in this way

Γω.

Now we look at the other direction, the projection. For proving Part 2, we need the following

lemma.

Lemma 4.6. Given a three-dimensional polyhedral terrain, we can recover, for each bar inde-

pendently and at each auxiliary vertex, the total amount of incident self-touching stress pushing

against the left and the right side separately.

Proof. Let (a, b) ∈ B be a bar and let 1, . . . , n be the (ordered) auxiliary vertices on it. We

write the coordinates of the auxiliary vertices as the convex combination pi = αipa+(1−αi)pb,

1 ≤ i ≤ n.

We describe how to recover the total amount of self-touching stress incident to an auxiliary

vertex from the left side. Analogously we recover the self-touching stresses incident to the right

side (or also they can be seen as stresses on the left side of (b, a)).
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Consider the auxiliary vertex i on (a, b). Since the height of each vertex in Γ is known, we

know the difference δh(i) between the height of i as a point on the bar (a, b) and the height of

the set Lab(i) of touching vertices pushing against i from the left side of (a, b). The jump δh(i)

is the summand of (4.6) corresponding to the piece (i, i + 1), that is

δh(i) =
(
(1 − αi)F

[i+1,b]
a + αiF

[a,i]
b

)
‖pb − pa‖2

=

(
αi

i−1∑

s=1

(1 − αs)Ws + (1 − αi)αiWi + (1 − αi)

n∑

s=i+1

αsWs

)
‖pb − pa‖2,

where

Ws =
∑

k∈Lab(s)

ωkab ,

i. e., Ws is the total amount of self-touching stress incident to the auxiliary point s from the

left side of the bar (a, b). Note that if we write the equation of the jump δh(i) for the piece

(i − 1, i) instead of the piece (i, i + 1), F
[i+1,b]
a is substituted by F

[i,b]
a , F

[a,i]
b is substituted by

F
[a,i−1]
b , and the result is exactly the same. In Figure 4.11 we have a representation of a bar

and its incident self-touching stresses grouped by coordinates.

W2 W3

ba
1 3

W1

2

Lab(1)

Lab(2) Lab(3)

Figure 4.11: This bar (a, b) has three auxiliary vertices 1, 2, 3. Each of them receives stress from

each side. Look at the left side of the bar. We group the self-touching stresses pushing against

the left side according to their coordinates, into the sets Lab(1), Lab(2), Lab(3). We have three

linearly independent equations, one for each jump δh(i) = h(i) − h(Lab(i)), i = 1, 2, 3, on the

variables W1, W2, W3. Hence we can recover uniquely W1, W2, W3. The same reasoning is valid

for the stresses pushing against the right side of the bar.

If we consider the equation of the jump δh(i) for each i, 1 ≤ i ≤ n, we obtain the following

system of n linear equations and n variables Wi:

δh(i)

‖pb − pa‖2
= αi

i−1∑

s=1

(1 − αs)Ws + (1 − αi)αiWi + (1 − αi)

n∑

s=i+1

αsWs , 1 ≤ i ≤ n .



4.4. THE MAXWELL-CREMONA CORRESPONDENCE 51

We want to show that these equations are linearly independent, i. e., that the system has

a unique solution, and hence we can recover W1, . . . , Wn. For this, we prove that the n × n

matrix A = (aij), with

aij =





αi(1 − αj) if i > j

αi(1 − αi) if i = j

αj(1 − αi) if i < j

is non-singular. Apply the following linear transformations to A: for each i and j, divide the

elements of the row i of A by αi and the elements of the column j by (1 − αj). We obtain a

new matrix A′ = (a′
ij) =

(
aij

αi(1−αj)

)
, with

a′
ij =

{
1 if i ≥ j
(1−αi)

αi

αj

(1−αj)
if i < j

Now subtract row k − 1 from row k, 2 ≤ k ≤ n. We obtain an upper triangular matrix A′′; its

determinant is the product of the elements of the diagonal, that is

|A′′| =
n∏

i=2

(
1 − (1 − αi−1)

αi−1

αi

(1 − αi)

)

(note that a′′
11 = 1). By construction, αi−1 6= αi. Then (1−αi−1)

αi−1

αi

(1−αi)
6= 1 for each i,

1 ≤ i ≤ n, hence

|A′′| 6= 0

and this implies that the determinant of the original matrix A is also non-zero.

Proof of Part 2 of Theorem 4.1. Given a polyhedral terrain Γ, we know the height of each

vertex. Hence we can compute the vectors q associated to each proper facet of the configuration,

since three independent points determine uniquely a plane in R
3.

By Lemma 4.6 we can recover, for each bar (a, b) and for each auxiliary vertex i on this

bar, the amounts ∑

k∈Lab(i)

ωkab (4.8)

and ∑

k∈Rab(i)

ωkab . (4.9)

But unfortunately, in general we cannot recover each ωkab individually, for a vertex k pushing

against i. For each oriented patch (β, τ | L, R), we are able to recover ∆(b, t) from the

amounts (4.8) and (4.9), for all (b, t) ∈ Sβτ . Hence, from

qL − qR =
∑

(b,t)∈Sβτ

(ωbt(pβ × pτ ) + ∆(b, t)) ,

we can recover ∑

(b,t)∈Sβτ

ωbt . (4.10)

But from this amount we cannot, in general, recover the classical stress ωbt on each piece

separately.
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It is possible to extract some more information about the stresses from the fact that each

vertex is in equilibrium, but in general this does not suffice to recover all the classic stresses

and self-touching stresses of the configuration. Thus we can recover the stress ωΓ up to the

kernel K of the lifting, which is unfortunately non-trivial: in general, there can be many

stresses in equilibrium that keep the amounts (4.8), (4.9) and (4.10) fixed, and that therefore

lift to the same polyhedral terrain Γ. This is what happens in Example 1 and Example 2 of

Section 4.4.1.

4.4.1 Characterization of the Kernel K
Let ω be an equilibrium stress of a self-touching configuration, which lifts to a polyhedral

terrain Γω. We define the kernel K of the configuration as the set of all assignments of scalars

to the bars and touching incidences, such that, being in equilibrium, lift to the flat polyhedron.

that is, the configuration with ω = 0 and any assignment κ ∈ K lifts to the flat polyhedron.

Equivalently, all equilibrium stresses of the form

{ω + κ : κ ∈ K}
lift to the same polyhedron Γω.

An element of the kernel must not necessarily be a stress, in the sense that it has no

restrictions on the signs (we give an example later).

Since the addition of an element κ of the kernel to a stress ω does not affect the coordinates

of the lifted polyhedron Γω, it must not change these two values:

• ∑
(b,t)∈Sβτ

ωbt, for any edge (β, τ), to keep the angle between the two incident facets.

• The total amount of self-touching stress pushing against any bar (a, b) at any interior

point i, from left and right separately (all Wi’s, with the notation of Lemma 4.6), to keep

the jump discontinuities.

Also each vertex must remain in equilibrium, hence κ itself must be in equilibrium.

Hence, the kernel K is the set of assignments κ of scalars to the bars and touching incidences

satisfying the conditions:

1.
∑

(b,t)∈Sβτ

κbt = 0 , for any edge (β, τ).

2.
∑

v∈Lab(i)
κvab =

∑
v∈Rab(i)

κvab = 0 , for any bar (a, b) and any point i interior to

(a, b).

3. FKST (v) +
∑

j:(v,j)∈B

κvj(pj − pv) = 0 , for any vertex v.

where FKST (v) is the resulting force at v of the kernel assignments to the touching incidences.

FKST (v) is defined analogously to FST (v):

FKST (v) =
∑

i,j:{v;i,j}∈L

κvij(pj − pi)
⊥

+
∑

j:(v,j)∈B


 ∑

k:{k;v,j}∈L

−αkvjκkvj(pj − pv)
⊥ +

∑

k:{k;j,v}∈L

(1 − αkjv)κkjv(pj − pv)⊥


 .

Next we give some easy cases with a non-trivial kernel.
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Example 1.

In this example we have cycles of stresses in equilibrium on overlapping bars. Look at

Figure 4.12. Any equilibrium stress ω on this configuration, satisfies ωac = −ωad = ω1,

ωbc = −ωbd = −ω2 and ω1(pa − pc) − ω2(pb − pc) = 0.

L

−ω1

ω1

ω2

−ω2

R

d

c

b
a

p2
p1

p3

Figure 4.12: Example of non-trivial kernel. First case.

Let κ be a kernel element. Since ω + κ must be in equilibrium, κ must also satisfy κac =

−κad = κ1, κbc = −κbd = −κ2 and κ1(pa − pc) − κ2(pb − pc) = 0. Hence, the following

conditions for the pieces between cR to cL are also satisfied:

∑

(b,t)∈S12

κbt = −ω1 + ω1 = 0

if we cross the edge (p1,p2), and

∑

(b,t)∈S23

κbt = −ω1 + ω2 − ω2 + ω1 = 0

if we cross the edge (p2,p3). Since the amount of self-touching stress pushing against the

interior of the bars (a, d) and (c, a) must be maintained, we have κbad = κbca = 0. Hence

the kernel K is the one-dimensional subspace defined by the parameters κ1, κ2 ∈ R and the

equations

{κac = −κad = κ1, κbc = −κbd = −κ2, κ1(pa − pc) − κ2(pb − pc) = 0} , (4.11)

and κ is zero everywhere else.

Note that this example involves only classical stress and no self-touching stresses. Fig-

ure 4.13 shows how a self-touching configuration of this kind looks like.

Example 2

In this example we have cycles of stresses in equilibrium on touching bars converging to several

different edges and with self-touching forces between touching vertices implied. This situation

is illustrated with an example in Figure 4.14.

Given a polyhedral terrain Γ which projects onto this configuration, from the vectors q we

can extract ωad, ωcd and ωbc, ωdf + ωde, ωce + ωcg, ωax + ωaf and ωbx + ωbg. The heights



54 CHAPTER 4. LIFTINGS OF SELF-TOUCHING CONFIGURATIONS

a

b
c

d

Figure 4.13: The self-touching configuration of Figure 4.8 has a non-trivial kernel. The kernel

is zero everywhere except on the bars drawn thick, where it satisfies the conditions (4.11). The

height of b depends only on F = ωbca = ωbad, and it is independent of κ1.

h(a), h(b), h(c) and h(d) are equal to 0, since they belong to the exterior facet lying on z = 0

(q0 = 0).

From the jump between h(x) = 0 and the height h(Lab(x)) of any of the vertices of Lab(x) =

{e, f, g}, we can recover by Lemma 4.6 the sum ωfab + ωgab:

h(Lab(x)) − h(x) = (1 − αx)αx Wx ‖pb − pa‖2

=
3

4
Wx

=
3

4
ωfab + ωgab

Thus the heights h(Lab(x)) = h(e) = h(f) = h(g) depend only on the sum Wx = wfab + ωgab,

and every pair of stresses ωfab, ωgab < 0 adding up to Wx lifts to the same polyhedral terrain.

Also, since the vertices e, f, g have the same height we cannot obtain any information about

the self-touching stresses between them, wfed and wgce.

The equilibrium equations at each vertex of the configuration are:

a : ωad(pd − pa) − αx(ωfab + ωgab)(pb − pa)⊥ = 0

b : ωbc(pc − pb) − (1 − αx)(ωfab + ωgab)(pb − pa)⊥ = 0

d : ωad(pa − pd) + ωcd(pc − pd) + (ωdf + ωde)(px − pd) = 0

c : ωbc(pb − pc) + ωcd(pd − pc) + (ωce + ωcg)(px − pc) = 0

e : ωed(pd − pe) + ωce(pc − pe) + ωedf (pf − pd)
⊥ + ωegc(pc − pg)

⊥ = 0

f : ωdf(pd − pf ) + ωaf (pa − pf ) − ωedf (pf − pd)
⊥ + ωfab(pb − pa)⊥ = 0

g : ωgc(pc − pg) + ωbg(pb − pg) − ωegc(pc − pg)
⊥ + ωgab(pb − pa)⊥ = 0

But, unfortunately, there are several sets of stresses which satisfy these equilibrium equa-

tions: all stresses of the form {ωΓ +κ : κ ∈ K}, where ωΓ is one possible equilibrium stress that
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Figure 4.14: Example of non-trivial kernel. Second case.

lifts to Γ and K is the kernel. The kernel of this configuration is the 2-dimensional subspace

defined by the equations below, where κgce and κfab are the independent parameters:

{ κgab = −κfab , κad = κcd = κbc = 0 ,

κfed =
32

85
κfab +

10
√

17

289
κgce , κbg = −κfab −

25
√

17

102
κgce ,

κab =
3

4
κfab +

25
√

17

136
κgce , κaf = −3κfab −

25
√

17

34
κgce ,

κcg = −κce = κfab +
3
√

17

34
κgce , κdf = −κde = −13

17
κfab +

25
√

17

578
κgce }

Note that κ ∈ K is not itself a stress because it does not have the correct signs: for example,

κfab and κgab cannot be both negative, since κgab = −κfab . Note also that the addition of

any κ ∈ K to the stress ωΓ does not modify Wx = ωfab + ωgab .

Figure 4.15 shows a self-touching configuration with a kernel of this kind.
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Figure 4.15: A self-touching configuration with a non-trivial kernel and its lifting. The kernel

is zero everywhere except on the bars drawn thick. The vertices e, f , and g lift to the same

height, and this height depends only on Wx, the total force of e, f, g against the bar (a, b).


