
Chapter 3

Perturbations of Self-Touching

Configurations

3.1 Introduction

Given a self-touching configuration C, an initial perturbed drawing D0 which is simple, but

with edges that are not necessarily straight lines, can be obtained easily:

Step 1. We start from the geometric drawing and place a circle of radius δ around every

point p (δ has to be small enough such that no circle intersects another circle or an edge to

which its center is not incident.)

Step 2. For each edge of multiplicity m we can easily draw m parallel line segments between

the disks representing the endpoints. These segments terminate at the disk boundaries. The

parallel lines must be drawn close enough to the original position to ensure that no segments

coming from different edges intersect.

Step 3. Then we draw inside each disk Dp a copy of the plane graph Gp in the specification

disk using the terminal points that were fixed in Step 2.

We get a plane drawing D0 of C in which every vertex is at a distance at most δ from its

target position. By selecting a straight-line drawing inside the disks it is possible to achieve

that the edges of D0 are polygonal chains, but this is not important for our definition. (It is

not hard to see that the graphs Gp can always be drawn with straight edges.)

We are looking for a straight-line drawing D of C that can be obtained from this drawing

D0 by continuously deforming the edges, while keeping the graph non-crossing at all times and

the vertices within the δ-disks at all times. We call such a drawing a δ-perturbation. In other

words, a δ-perturbation of a self-touching configuration is a repositioning of the vertices within

δ-disks consistent with the combinatorial planar embedding.

As an example, the drawing in Figure 3.1(Right) is a δ-perturbation when the dotted disks

have radius δ. If 2δ is smaller than the distance between two points, this definition ensures

that a vertex remains on the “correct side” of an edge which it touches, in an intuitive sense.

Note that for edges which are close to each other and almost parallel, such as in Figure 3.2,

it is possible to have homotopic straight-line drawings (within δ-disks) in which points have
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Figure 3.1: From [17]. Left: A self-touching configuration. Right: A perturbation of the

self-touching configuration on the left, within the dotted circles.

switched to the other side of an edge. Hence our condition is stronger than merely requiring

that D and D0 are homotopic.

Figure 3.2: Two homotopic straight-line drawings within the shadowed disks, which are not

δ-perturbations of the same self-touching configuration.

Perturbations appear in the context of locked linkages, as it has been discussed in Sec-

tion 1.2. We have been able to prove the following statement, posed as a conjecture by Connelly,

Demaine and Rote [17]:

Theorem 3.1. For each self-touching configuration, and for each δ > 0, there exists a δ-

perturbation.

In Section 3.2 we prove the theorem for one-dimensional self-touching configurations, that

is, self-touching configurations in which all vertices lie initially on a line. We can draw any

self-touching configuration as a simple planar drawing with x-monotone edges that are not

necessarily straight lines, in which every vertex is at distance at most δ from its initial posi-

tion, and we show that for any planar drawing with x-monotone edges, there exists a straight
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line embedding with given x-coordinates. In Section 3.3 we prove the theorem for the gen-

eral planar case, using the one-dimensional case as a building block. In Section 3.4 we show,

as a consequence of Theorem 3.1, that polygonal chains and polygonal cycles are infinitesi-

mally flexible, which is a first step for solving the infinitesimal version of the Carpenter’s Rule

problem.

3.2 1-D Self Touching Configurations

In this section we prove that any one-dimensional self-touching configuration can be perturbed:

we show that any one-dimensional self-touching configuration can be transformed into an x-

monotone 3-connected planar graph with two x-monotone chains on the boundary, and where

every intermediate vertex has left and right neighbors, and we use that any such a graph has

a straight line embedding in equilibrium stress with given x-coordinates.

A curve γ is x-monotone if any vertical line either does not intersect γ, or it intersects γ

at a single point. We say that a graph is x-monotone if all its edges are x-monotone.

Given a one-dimensional self-touching configuration, we can easily obtain a perturbed draw-

ing which is simple and where every bar is represented by an x-monotone arc, where the arcs

are not necessarily straight lines but polygonal lines, with all vertices distinct and within δ-

balls. The procedure is as follows. First we draw a small disk around each vertex location and

place the terminals appropriately: the terminals which have connections to the left side are

placed on the left semi-circle, and similarly on the right side. Now we place the vertices in each

disk: First we draw the edges that go through without touching a vertex, and the vertices that

have connections both to the left side and to the right side (together with their incident edges).

These edges and vertex stars have a unique order from top to bottom since they do not cross,

and we draw them one after the other from top to bottom. There is no problem in drawing

these components: we just place the vertex anywhere between the rightmost connection on the

left and the leftmost connection on the right, below the previously drawn edges and vertices,

and connect them by x-monotone paths. Finally we draw the vertices that have connections

only to the left or only to the right. Such vertices may be nested inside each other: If a vertex

v is connected to two terminals a and b on the, say, left side, and another vertex w is connected

to a terminal between a and b, then w is nested within the connections of v, and we draw v

before w. Since the graph is planar, the nesting relation is transitive and acyclic. Thus, there

is a good order in which we can draw the vertices (together with their incident connections),

beginning with the outermost levels of nesting. In the end, we just have to connect the ter-

minals on one side of each disk to the corresponding terminals on the next disk by monotone

paths, which is easy. We call such a drawing an x-monotone representation. Here we obtain a

representation with polygonal arcs, but in the figures we draw curved arcs.

The difficulty is how to simultaneously straighten the arcs while vertices do not move outside

the δ-balls. See Figure 3.3. Our strategy consists of fixing the x-coordinates in the x-monotone

representation and to apply the following theorem.

Theorem 3.2. Any planar embedding with x-monotone edges can be straightened, maintaining

the same x-coordinates, with all vertices distinct.

The straight line embedding given by this theorem is precisely the δ-perturbation. Theo-

rem 3.2 was independently proven in 2002 by Pach and Tóth [46], but we were not aware of

it.
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Figure 3.3: Top: An x-monotone representation of a 1D self-touching configuration. Bottom:

Straight line embedding with the same x-coordinates and with vertices inside δ-balls.

For general self-touching configurations, we will need in Section 3.3 the following variation

of Theorem 3.2.

Theorem 3.3. Any planar embedding with x-monotone edges and a fixed polygonal convex

outer face such that no chord overlaps any boundary bar when it is drawn straight, can be

straightened maintaining the same x-coordinates, with all vertices distinct.

To prove Theorem 3.2, we need the following lemma.

Lemma 3.1. Any x-monotone representation of a one-dimensional self-touching configuration

can be extended to an x-monotone planar graph such that:

(a) It is 3-connected.

(b) Every interior vertex, that is, every vertex not incident to the exterior face, is adjacent

to vertices on both sides of it, left and right.

(c) The boundary is an x-monotone triangle.

Proof. We perform a sequence of transformations to our x-monotone representation for ob-

taining the desired graph. To fulfill condition (c), we just add 3 new vertices and 3 new edges

forming an x-monotone triangle on the boundary. To fulfill condition (b), for any vertex u we

do the following: if u has no left neighbor, we add an x-monotone edge joining u and a vertex

on its left, belonging to the same face as u and similarly for the right. Note that, after adding

all these edges, each face is x-monotone, that is, every polygon has two monotone chains on

the boundary. Hence we have not introduced crossings. For condition (a), we triangulate the

obtained graph: add a vertex v in the interior of each non-triangular face, and connect v to

each vertex of the face by x-monotone edges.

These steps are illustrated in Figure 3.4. Since within this transformation we have not

introduced any loop or any multiple edge, our triangulation is 3-connected.

It is easy to achieve that the obtained graph has no vertical edges, since vertices initially

connected converge to different positions and we can achieve that the new added x-monotone
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Figure 3.4: Extension of an x-monotone representation of a 1D self-touching configuration to

a graph fulfilling the conditions of Lemma 3.1. Top left: Original x-monotone representation.

Top right: The resulting graph. Bottom: The extension. In dashed lines, transformation for

fulfilling (b); dotted lines and white vertices, transformation for fulfilling (a).
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edges are not vertical. This is obvious for the edges added for condition (b). The edges added

for condition (c) are not vertical if we place conveniently the vertices in the interior of the

non-triangular faces.

For proving Theorem 3.3, which is used for general self-touching configurations, we need

the following variation of Lemma 3.1.

Lemma 3.2. Any x-monotone representation of a one-dimensional self-touching configuration

with an outer face without chords and consisting of two x-monotone chains, can be extended

to an x-monotone planar graph such that:

(a) It is 3-connected.

(b) Every interior vertex, that is, every vertex not incident to the exterior face, has left and

right neighbors.

Proof. We can extend the planar embedding to a graph fulfilling (b) as described in the proof

of Lemma 3.1. Achieving 3-connectivity is not a problem for the interior vertices since we

triangulate the interior of the graph. The graph cannot become disconnected by removing two

vertices: it could only be disconnected by removing two boundary vertices, but since we do

not have chords this cannot happen.

3.2.1 Tutte Embedding for Fixed x-Coordinates

Given a graph G = (V, E) fulfilling the conditions of Lemma 3.1, we can apply the Tutte

embedding.

The classical Tutte embedding described in Section 0.2 finds the equilibrium position of the

interior vertices of G for a fixed convex boundary and an assignment of positive stresses ωij to

the interior edges.

In this chapter we use the following variant of the Tutte embedding: we fix the convex

boundary and the x-coordinates of the interior vertices, and we search for an assignment

of stresses to the interior edges and the y-coordinates of the interior vertices such that the

configuration is in equilibrium.

First of all, we fix the coordinates of our triangular boundary p1,p2,p3, where p1 and

p2 are the leftmost and rightmost vertices respectively. For computing the equilibrium stress

and the y-coordinates of the n − 3 interior vertices that fit with the fixed x-coordinates, we

apply the approach described in Chrobak et al [14]. We say that a stress is in x-equilibrium

if it satisfies the equilibrium equations for the x-coordinate. The next lemma shows how to

compute, given the x-coordinates, a positive x-equilibrium stress, i. e., an x-equilibrium stress

that is positive for all interior edges.

Define the x-cost cij of an edge {i, j} to be |ωij(xi − xj)|.

Lemma 3.3. Given an embedded 3-connected planar graph G of n vertices with a convex outer

face p1, . . . ,pk and no vertical edges, we can compute, in O(n) time, a positive x-equilibrium

stress on G such that each x-cost cij is a positive integer with magnitude O(n).

This lemma is proven in [14] for the particular case in which the graph has a triangular

boundary, and it can be analogously proven for any convex boundary. The sketch of the proof

is the following. Let us orient all edges of G from left to right (this is well-defined, since G
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contains no vertical edges); this is, we denote by (i, j) an oriented edge, with xi < xj . Let p1

and p2 be the leftmost and rightmost boundary vertices respectively. By our assumptions, for

each interior edge (i, j), there exists an x-monotone directed path Pij from p1 to p2 containing

(i, j). The x-cost on each edge can be seen as a flow from left to right, with the x-equilibrium

equation serving the role of flow conservation at each node. However, we do not set any capacity

constraint on the edges. The initial flow is 0 on all edges. Then, for each interior edge (i, j) we

increase by one unit the flow along the path Pij from p1 to p2. Since we maintain the interior

x-equilibrium with each “augmentation”, this procedure results in an interior-positive stress

in equilibrium. The stresses are obtained as ωij = cij/(xi − xj). The method described here

works in time O(n2). Chrobak, Goodrich and Tamassia [14] show how to achieve a running

time of O(n) by carefully picking the augmenting paths Pij . They also prove that all x-costs

in G are integers bounded by O(n).

Hence, from the x-coordinates, we can determine by Lemma 3.3 the interior positive stresses

ωij . Thus, following the notation given in Section 0.2, L̄ is known and solving the equilibrium

system for the y-coordinate

L̄ · y = by,

we obtain the y-coordinates of the interior points. Thus we have obtained the positions of the

straight-line embedding with the imposed x-coordinates.

3.2.2 The δ-Perturbation

Summarizing the previous results we are able to prove Theorem 3.2.

Proof of Theorem 3.2. Use Lemma 3.1 to extend the x-monotone planar embedding to a 3-

connected graph with an x-monotone triangular boundary and where every interior vertex has

left and right neighbours. Fix the vertices of the triangular boundary within δ-balls centered

on the line in which the original self-touching configuration lay. Since we maintain the combi-

natorial planar embedding, the y-coordinate of the interior vertices will be perturbed less than

δ (otherwise they would switch to the exterior of the triangle).

Fix the x-coordinates of all interior vertices at their original position. Apply Lemma 3.3

to compute a positive x-equilibrium stress ω, and solve the equilibrium system for the y-

coordinates of the interior points, obtaining the coordinates of the spring embedding.

Analogously, we can prove Theorem 3.3.

Proof of Theorem 3.3. We extend the planar embedding to a graph fulfilling the conditions of

Lemma 3.2. Then we can apply Lemma 3.3 and the rest of the proof is analogous to the proof

of Theorem 3.2.

Given a one-dimensional self-touching configuration, we draw an x-monotone representa-

tion, as described at the beginning of this section. Applying Theorem 3.2 and scaling such that

all vertices differ at most δ/2 from its original position, we conclude with the following result.

Theorem 3.4. For every one-dimensional self-touching configuration, and for each δ > 0,

there exists a simple δ-perturbation.
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3.3 2-D Self-Touching Configurations

Let C be any self-touching configuration in R
2. We show Theorem 3.1 by perturbing C in two

stages. The idea is to structure the self-touching configuration into several one-dimensional

elongated oval structures that we call cigars, so that each cigar contains several overlapping

edges. This structuring allows us to perturb the configuration in two stages. In a first stage,

we perturb the boundaries of all cigars so that they become convex. In a second stage, we

perturb the interior of the cigars using the results of Section 3.2.

We assume that there are no vertical segments in C by just rotating the configuration a

little, i. e., we assume that there are no vertical cigars.

In the following we denote by Br(x) the open disk of radius r centered at x.

3.3.1 Cigars

For every segment (edge) of the self-touching configuration, we join all overlapping bars into

one-dimensional cigars, so that each bar belongs exactly to one cigar.

If there is a bar along two or more consecutive segments, then the overlapping bars of

these segments are included in the same cigar. If there is no common bar along two parallel

consecutive segments, then these two segments belong to different cigars. See Figure 3.5.

Figure 3.5: Grouping vertices and parallel bars into cigars. Boundary vertices are surrounded

by a circle and boundary bars are drawn in thick lines. The vertex in white converges to the

left endpoint of one cigar and the right endpoint of the other cigar.

When a bar of the self-touching configuration does not overlap with any other bar, it

constitutes a cigar by itself. We call this type of cigars sticks.

In each cigar C we distinguish between interior vertices and boundary vertices.

The boundary vertices of a cigar C are the vertices of C which are endpoints of some cigar,

which can be C itself or another cigar C′. In other words, vertices belonging to more than one

cigar are boundary vertices of the cigars they belong to.

Remark 3.1. A vertex belonging to t cigars must converge to at least the endpoint of t − 1

of these cigars. That is, two cigars C1 and C2 never share a boundary vertex which does not

converge to any of the endpoints of C1 and C2.

Note also that one vertex belongs to more than one cigar if it is incident to bars pointing

to several directions, or incident to parallel bars lying along two consecutive parallel segments

of C such that no other bar lies along both segments (in this case the vertex belongs to the

boundary of two cigars: it converges to the left endpoint of one cigar and the right endpoint

of the other one, see the white point in Figure 3.5).
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All the remaining vertices of C are the interior vertices. The interior vertices belong only

to C and do not converge to an endpoint of C.

We introduce boundary bars connecting the boundary vertices so that the boundary of each

cigar becomes a flattened self-touching polygon. Obviously we do not introduce those boundary

bars already existing in C, otherwise we would have multiple bars.

The boundary bars connecting two boundary vertices converging to the same point have

an infinitesimal length. We say that these bars have zero length. When there are several

converging boundary points, they are connected by zero length boundary bars according to

the topological planar embedding of the self-touching configuration, such that the boundary

of the cigar has the topology of a planar polygon.

In the case when a cigar that is not a stick has only two boundary vertices, one in each

endpoint, we must introduce an artificial boundary vertex, otherwise we would have multiple

bars on the boundary of the cigar. See Figure 3.6.

Figure 3.6: Addition of an artificial boundary vertex (in white) for avoiding multiple bars.

The bars adjacent to at least one interior vertex are interior bars of the corresponding cigar.

In a cigar, some pairs of boundary vertices which are not connected by a boundary bar

may be adjacent. We call chords the bars joining two boundary vertices not connected by a

boundary bar. Chords are neither interior bars nor boundary bars.

In the case of a stick, its two extreme vertices are its only boundary vertices, and the bar

itself is the only boundary bar. (Obviously a stick has an empty interior.)

See in Figure 3.7 an example of how a self-touching configuration is structured into cigars.

3.3.2 First Stage: Perturbing the Boundaries of the Cigars

In this first stage we forget about the interior of the cigars. We remove the interior edges and

the interior vertices of all cigars, obtaining a self-touching configuration CB made up only of

the cigar boundaries. See Figure 3.8.

Our goal now is to obtain a δ-perturbation of CB where the boundaries of all cigars are

convex polygons. We do it in several steps. First we convexify the boundaries of what we call

merged cigars, without working out the self-touching incidences. Later we perturb the vertices

converging to the same point while maintaining the convexity of the cigar boundaries.

The boundary vertices of a cigar are classified into endpoint vertices, lower boundary ver-

tices and upper boundary vertices. The endpoint vertices are those converging to the endpoints

of the cigar. The lower and upper boundary vertices are not endpoint vertices.
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Figure 3.7: A self-touching configuration C and its cigars. Boundary bars are drawn in thick

lines, and those boundary bars introduced artificially are drawn with dashed lines. Boundary

vertices introduced artificially are drawn in white. Bars between vertices converging to the

same position, that is, between vertices inside the same dotted disk, are zero length. The thin

continuous lines represent the interior bars. Bars are drawn as curves instead of straight lines.

Merged Cigars

In CB, we merge vertices infinitesimally close to each other as follows. See Figure 3.9.

Vertices converging to the same point are merged into a unique vertex, also when they

belong to boundaries of different cigars. But we do not merge upper boundary vertices with

lower boundary vertices of the same cigar.

In the case when an endpoint x of a cigar Cx converges to the interior of a boundary bar

of another cigar Cy, we add a new vertex y, touching x, to the boundary of Cy, and we merge

x and y. Let yp and ys be respectively the preceding and the succeeding vertex to y on the

boundary of Cy. The new bars {y, yp} and {y, ys} become boundary bars, and the existing

boundary bar {yp, ys} becomes a chord.

Note that in the case where Cy is a stick with endpoints yp and ys, it becomes a cigar with

a triangular boundary of vertices y, yp, ys (it is no longer a stick).

We denote by C′
B the resulting self-touching configuration.
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Figure 3.8: The cigar boundaries CB of the self-touching configuration in Figure 3.7.
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Figure 3.9: Merging an endpoint x of a cigar Cx incident to the interior of a boundary bar of

another cigar Cy .

Convexifying the Merged Cigars

We want to obtain a δ/3-perturbation of C′
B where the boundaries of all cigars are strictly

convex polygons (except for the sticks). We perturb now the vertices only within disks of

radius δ/3 since later we move some vertices again, so we ensure this way that later we will

still have place inside the δ-disks.

Since there are no vertical bars, for each cigar it makes sense to speak of “above” or “below”.

We say that a cigar A is below a cigar B, and we write A ≺ B, if an endpoint of A coincides

with a lower boundary vertex of B, or if an upper boundary vertex of A coincides with an

endpoint of B. If A ≺ B, we can also say that B is above A. This is illustrated in Figure 3.11.

In case two cigars A and B have an endpoint in common, A and B are not compared by

the relation ≺.
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Figure 3.10: The cigar boundaries of Figure 3.8, now merged and constituting C′
B.

A

B

B

A

Figure 3.11: Cases for a cigar A below a cigar B, A ≺ B.

Lemma 3.4. The relation ≺ is acyclic.

Proof. Suppose it is not true. Then let P be the smallest directed cycle. Suppose in P we

have A ≺ B ≺ C, for given cigars A, B and C. Consider a straight arc from the common

vertex of A and B to the common vertex of B and C. We draw such a straight arc for all

the comparative relations in P . Then, on the self-touching configuration, P is represented by

a directed simple polygon. The vertices of the polygon correspond to vertices of C′
B, and the

arcs are along original edges of C′
B (not necessarily along the entire edge). P is simple, i. e.,

it does not have self-intersections: its arcs P do not cross since the underlying self-touching

configuration is planar, and the vertices of P are all different since we are taking the minimum

cycle.

The directed polygon P has two possible orientations: counterclockwise or clockwise. Sup-

pose it is oriented counterclockwise. Consider the leftmost vertex l of P .

Analogously to Lemma 2.2, given a simple polygon, consider the directed walk from a
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bottommost vertex to a topmost vertex along the left boundary chain. If l is a leftmost vertex

on this walk with a non-vertical ingoing edge, then the edge leaving l must lie in the lower

half-plane defined by the edge entering l. Let A and B the cigars meeting at l, such that the

edge entering l lies along the cigar A and the edge leaving l lies along the cigar B. Then l must

be either an endpoint of A and an upper boundary vertex of B, or a lower boundary vertex of

A and an endpoint of B. Hence it is impossible that A ≺ B, thus the cycle P cannot exist.

The proof is analogous for P oriented clockwise, by considering the rightmost point of

P .

We convexify the cigar boundaries in two steps. First we take the cigars of C′
B from bottom

to top according to the relation ≺, so that if A ≺ B then A is taken before B, and we convexify

their upper boundaries one by one. Second, we take the cigars of C′
B in the inverse order, from

top to bottom, so that if A ≺ B then B is taken before A, and we convexify their lower

boundaries one by one.

Let us then convexify the upper boundaries one by one in the mentioned order, from bottom

to top. For a cigar C, the idea is to move each vertex v of C vertically upwards a certain amount

∆y+
v , which is defined inductively. The amount ∆y+

v is positive for all upper boundary vertices

of C and endpoint vertices of C which are upper boundary vertices of some other cigars, and

zero for the remaining vertices, that is, lower boundary vertices and endpoint vertices which

are not upper boundary vertices of any other cigar.

Let i and j be the endpoint vertices of C. If i is an upper boundary vertex of some other

cigar C′, then we have C′ ≺ C, hence ∆y+
i > 0 has been already defined. Otherwise, we set

∆y+
i = 0. Analogously, ∆y+

j > 0 has been already defined as an upper boundary vertex of a

preceding cigar, or it is set to ∆y+
j = 0. Once ∆y+

i and ∆y+
j are defined for both endpoint

vertices i and j, we define ∆y+
k for any upper boundary vertex k of C as

∆y+
k :=

x

l
∆y+

j +
l − x

l
∆y+

i + x(l − x),

where l is the distance from i to j, and x is the distance from i to k. The first two summands

translate the vertical movement of the endpoints i and j to the upper boundary vertex k. The

term x(l − x) ensures that the upper boundary is strictly convex after moving all the upper

boundary vertices of C. See Figure 3.12.

When we have visited all cigars from bottom to top, ∆y+
v is defined for all vertices of C′

B.

Then we visit all cigars one by one from top to bottom. The idea is to move each vertex v

vertically downwards a certain amount ∆y−
v defined inductively. The amount ∆y−

v is negative

for all lower boundary vertices, and zero for the remaining vertices, that is, for all upper

boundary vertices and endpoint vertices which are not lower boundary vertices of any cigar.

Suppose ∆y−
i and ∆y−

j are already defined for the endpoint vertices i and j of a cigar C.

Then, for any lower boundary vertex k of C, ∆y−
k is defined as

∆y−
k :=

x

l
∆y−

j +
l − x

l
∆y−

i − x(l − x),

where l is the distance from i to j, and x is the distance from i to k. Analogously to the

previous case, the first two summands translate the vertical movement of the endpoints i and

j to k, while −x(l − x) ensures the strict convexity of the lower boundary.

Finally, each vertex v of C′
B with coordinates (xv, yv) is moved vertically to (xv, yv +

ε (∆y+
v + ∆y−

v )). We choose the parameter ε small enough such that v is moved within a

disk of radius δ/3 centered at (xv, yv), i. e, such that |ε (∆y+
v + ∆y−

v ) | ≤ δ/3. See Figure 3.13.
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i

j

∆y+
j

∆y+
i

k

∆y+
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l

x

Figure 3.12: This is how the upper boundary of a cigar would look (thick lines) if we would

move each of its vertices v = (xv, yv) to (xv, yv + ε∆y+
v ). In this case, both endpoints of the

cigar are also upper boundary vertices of some other cigar, since they are moved vertically

upwards a positive amount. Small points represent the original positions of the vertices.

Dealing with the Touching Vertices of the Boundaries

Once the merged cigars have a strictly convex boundary we have to first “unmerge them”

again, and second, draw the δ-perturbation of the self-touching configuration CB. This can be

done independently for each vertex v of C′
B.

Take a vertex v of C′
B. This vertex may include many merged vertices from several cigars.

Step 1. Separating Cigars without Vertices in Common. As a first step we “unmerge

the cigars”, that is, we separate cigars and sets of cigars with no vertices in common. We want

to spread the vertex v into possibly several vertices such that each cigar previously containing

v in C′
B contains exactly one vertex that converged to v. This spreading is performed again

within the interior of a disk of radius δ/3 centered at v.

By Remark 3.1, at most one vertex converging to v is not an endpoint of a cigar. Let u0

be such a vertex, if it exists. All other vertices converging to v, denote them by u1, . . . , ut, are

endpoints of cigars.

The strategy is as follows. In case it exists, u0 remains fixed. For perturbing the rest of

the vertices u1, . . . , ut we proceed as follows. Each vertex ui, 1 ≤ i ≤ t, can be an endpoint

of several cigars C1
i , . . . , Csi

i . The goal is to spread the vertices ui while maintaining the strict

convexity of the cigars C1
i , . . . , Csi

i .

For each vertex ui, and for each j, 1 ≤ j ≤ si, there is an area where ui can be placed such

that Cj
i remains convex. We denote by A(Cj

i , ui) the interior of this area.

In the general case when both upper and lower boundaries of Cj
i contain two or more

vertices, A(Cj
i , ui) is the interior of the area between the lines kl, mn and ln, containing ui,

where l and k (resp. n and m) are respectively the first and the second vertices after ui on

the upper (resp. lower) boundary of Cj
i (see Figure 3.14). Note that if the lines kl and mn

intersect in the same halfplane defined by ln that contains ui, then A(Cj
i , ui) is bounded by

the triangle formed by the lines kl, mn, ln.

In the case when the upper (resp. lower) boundary is just a bar joining the two endpoints,
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C
C2

i

j

C1

Figure 3.13: A cigar C, strictly convex after moving vertically its boundary vertices. The

endpoint vertex i is an upper boundary vertex of another cigar C1, such that C1 ≺ C, hence

∆y+
i > 0. The other endpoint vertex j is a lower boundary vertex of another cigar C2, such

that C ≺ C2, hence ∆y−
j < 0.

then A(Cj
i , ui) is defined as the open halfplane delimited by mn (resp. kl) and containing ui.

This is also necessary even when the cigar has a triangular boundary, which is always convex,

since, in order to maintain the combinatorial planar embedding, ui cannot switch to the other

halfplane. In the case when Cj
i is a stick, A(Cj

i , ui) is the whole plane, since a stick is always

convex.

Note that since Cj
i is strictly convex, ui belongs to A(Cj

i , ui).

For perturbing ui within δ/3-disks while maintaining the convexity of all the cigars C1
i , . . . , Csi

i

we must consider the intersection

Rui
=




si⋂

j=1

A(Cj
i , ui)


 ∩ Bδ/3(ui) .

This intersection is non-empty since the original position of ui, v, is interior to each A(Cj
i , ui)

and interior to Bδ/3(ui). We obtain a non-empty open region Rui
where ui can be drawn, for

each vertex ui, 1 ≤ i ≤ t. See Figure 3.15 for an example.

Now we must spread all vertices ui, 1 ≤ i ≤ t, each within Rui
, ensuring that no crossings

between cigars are introduced. Let the sector Si of a vertex ui be the smallest circular sector of

the disk Bδ/3(v) containing all the cigars C1
i , . . . , Csi

i . We say that a vertex ui is nested within

a vertex uj if Si is contained in Sj . See Figure 3.16 (Left). Note that, if we have Si = Sj, then

one of the two vertices, say uj, is the endpoint of two sticks. In this case, we say that ui is

nested within uj . Note also that, for each ui, its corresponding sector Si intersects Rui
. We

perturb each vertex ui within Rui
and into the interior of its sector Si. If ui is nested within

another vertex uj , then ui must be perturbed further away from its initial position than uj , to

ensure that we leave sufficient space to perturb uj . This is no problem since Rui
and Ruj

have

a non-empty open intersection containing v (because they are both open regions containing v).

At the end, u0, u1, . . . , ut are not touching anymore. See Figure 3.16 (Right).
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n

m

ui

A(Cj
i , ui)

Cj
i

k

l

Figure 3.14: A cigar Cj
i with endpoint ui. The shaded area A(Cj

i , ui) is the region where ui

can be moved while maintaining the convexity of Cj
i .

Step 2. Perturbing the Remaining Converging Vertices. Now we must perturb the

remaining vertices of CB converging to u0 and to each u1 . . . , ut, independently. Let u be one

of the vertices u0, u1, . . . , ut. In this step, we want to spread all vertices converging to u.

Remark 3.2. The set of cigars is connected, otherwise they would have been already separated

in Step 1.

After the perturbation, all adjacencies must be preserved and each cigar must be a convex

closed polygon. Strict convexity is needed at those vertices incident to at least a boundary bar

which did not have zero length in CB. This is to avoid that chords overlap with the boundary

bars and between themselves. Those boundary vertices which in CB were incident to two zero

length bars need not be strictly convex. See Figure 3.17. Note that the zero length boundary

bars between vertices previously touching become short bars after the perturbation.

In this step we allow again every vertex to move within the interior a disk of radius δ/3

centered at its current position. As before we play with the fact that, for an endpoint x

of a convex cigar C which converges to u, there is an open area A(C, u) where x can be

drawn maintaining the convexity of C. Let C1, . . . , Csu
be the set of cigars with an endpoint

converging to u. For perturbing x within Bδ/3(u) while maintaining the convexity of all the

cigars with endpoint x, we consider the intersection of all A(Cj , u), j = 1, . . . , su.

Ru =




su⋂

j=1

A(Cj , u)


 ∩ Bδ/3(u) .

Since u is interior to each of these areas, the open region Ru is nonempty and there is always

space enough to perturb new vertices inside Ru.

The vertices converging to u are perturbed successively according to a hierarchy which is

defined later. Hence, when we look at some vertices and think how to perturb them, some

other vertices are already drawn in their final positions.

We give some rules for perturbing the vertices converging to u, although it can be done in

many ways. First we describe a procedure which is used later during the perturbation. Given
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Figure 3.15: In the example, ui is the endpoint of four cigars C1
i , . . . , C4

i . The shaded area

represents the open region Rui
where ui can be moved while maintaining the convexity of

C1
i , . . . , C4

i .

two cigars Ca and Cb that share at least one vertex already drawn in its final position, this

procedure describes how to perturb the remaining common endpoints.

Procedure A. Perturbing the common endpoints of two cigars Ca and Cb sharing a

vertex already drawn in its final position. Assume that the cigars Ca and Cb share

a vertex y already drawn in its final position. Let y, y1, . . . , ys be the endpoint vertices

shared by Ca and Cb. We choose a ray R starting at y and lying between Ca and Cb.

We place y1, . . . , ys on R (in this order, so that ys is the furthest vertex from y), within

Ru, redrawing the end of the cigars Ca and Cb. See Figure 3.18. Note that both cigars

are strictly convex at ys. Note that the vertex ys can be also an endpoint vertex of some

other cigars D1, . . . , Dr lying between Ca and Cb. Note also that, since y1, . . . , ys are

redrawn within Ru, the convexity of Ca, Cb, D1, . . . , Dr is maintained.

For spreading all vertices converging to u the strategy is as follows. We define a hierarchy

that gives the order in which we draw the vertices converging to u and their corresponding

cigars, whose ends must be redrawn. We classify the vertices converging to u into levels. We

draw the vertices level by level: First we perturb the vertices belonging to the starting level or

level 0. Then we perturb the vertices of the next level, and so on.

Definition of the hierarchy. Let x be a vertex converging to u. As in Step 1, let the

sector Sx of x be the smallest circular sector of the disk Bδ/3(u) containing all the cigars with

endpoint x. If the angle of this sector is greater than π (this corresponds to the case when x is

the endpoint of several cigars not contained in a halfplane), then we define Sx to be the whole

disk Bδ/3(u). We say that a vertex x is nested within a vertex y if Sx is contained in Sy.

The vertices belonging to the starting level, or level 0, are those vertices converging to u

which are not nested within any other vertex. Note that when u = u0 is a vertex of the upper
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δ/3
v

S2

S3S1

u3

u1

u2

u0

Figure 3.16: Left: The sectors S1, S2, S3 of the endpoint vertices converging to v. S1 is the

striped area, S2 is the checked area, and S3 is the area in zigzag. Since S2 ⊂ S1, the vertex u2

is nested within the vertex u1. Right: Spreading the vertices u0, u1, u2, u3.

Figure 3.17: Schematic drawing of a cigar after Step 2. Dotted circles enclose vertices which

converge to the same geometric position in CB. Chords are drawn in thin lines, and marked

angles must be strictly convex. Actually the cigar is much flatter and dotted circles are much

smaller.

or lower boundary of some cigar A, the vertices of A converging to u0 belong to the starting

level, since they cannot be nested within any other vertex.

The level i contains the vertices which are nested i times: Suppose the level i− 1 is already

defined. Then, at level i we have the vertices nested within the vertices of the (i − 1)th level.

There are vertices which belong only to one cigar, and they can be treated easily at the

very end, after all vertices have been drawn.

Perturbing the vertices of the starting level.

Case 1: u = u0 is a vertex of the upper or lower boundary of a cigar A. Let x1, . . . , xr

be the vertices of A converging to u0. They all belong to the starting level. By definition of

boundary vertex, x1, . . . , xr are also endpoint vertices of other cigars C1, . . . , Cp (assume they

appear in this order). The vertices shared by two consecutive cigars Cj and Cj+1, 1 ≤ j ≤ p−1,

also belong to the starting level.

Cut the cigar A at u0 by a segment L, sufficiently close to u0, and place the vertices
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Ru
y

R

y1

Ca
D1 D2

Cb

y3

y2

Figure 3.18: Procedure A. Placing on a common line R the endpoint vertices y1, y2, y3 common

to two cigars Ca and Cb. The original shape of Ca and Cb is represented by thin lines. The

angle between Ca and Cb at y3 is less than π. The marked angles must be strictly convex. The

boundary of the region Ru is drawn in dashed lines. In the picture, s = 3 and r = 2.

x1, . . . , xr on L ∩ Ru0 , such that one of these vertices lies on each of the two extremes of L.

See Figure 3.19. After this perturbation, the convexity of the cigars C1, . . . , Cp is maintained.

The convexity of A is also maintained because if we cut a vertex of a convex polygon by a

segment, the polygon remains convex.

Suppose there are vertices y1, . . . , ys at the starting level that do not belong to A but they

are common to two consecutive cigars Cj and Cj+1 that have some endpoint vertices on L,

1 ≤ j ≤ p − 1. If Cj and Cj+1 meet at an endpoint vertex lying on L, then y1, . . . , ys are

perturbed as described in Procedure A.

If, on the contrary, Cj and Cj+1 do not share any endpoint vertex on L, then let xj be the

vertex of Cj ∩ L nearest to Cj+1, and let xj+1 be the vertex of Cj+1 ∩ L nearest to Cj . We

choose a ray R starting at a point between xj and xj+1 on L, and lying between Cj and Cj+1,

and we place y1, . . . , ys on R (but not on L) within Ru0 . We redraw the end of the cigars Cj

and Cj+1 and connect the nearest vertex to L, say y1, to xj and xj+1 by two short edges. The

furthest vertex from y, say ys, can be also an endpoint vertex of some other cigars D1, . . . , Dr

lying between Cj and Cj+1. The required convexity for the cigars is maintained and Cj and

Cj+1 are strictly convex at ys. See Figure 3.20.

Case 2: u is one of the vertices u1, . . . , ut from Step 1, and a vertex converging to u is the

endpoint of several cigars not contained in a halfplane. Let x be the vertex converging to u

which is the endpoint of several cigars C1, . . . , Cp not contained in a halfplane, p ≥ 3. Then

we leave x fixed. Note that, by planarity, there exist at most one such a vertex, and obviously

it belongs to the starting level. Hence, x is the only vertex of the starting level, since Sx is

defined to be the whole disk Bδ/3(u).

Case 3: u is one of the vertices u1, . . . , ut from Step 1, and all cigars with endpoint con-
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C4

C5

A
x4 x5

x3x2x1
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C2

C3

C1

Figure 3.19: Perturbing the touching vertices x1, x2, x3, x4, x5, which are non-endpoint vertices

of the cigar A and also endpoint vertices of the cigars C1, . . . , C6.

R

Ru0

C1

C6

x6

C5

x5

Figure 3.20: Perturbing the vertices shared by C5 and C6 of Figure 3.19. Here, x5 = x4 and

x6 = x5 .

verging to u are contained in a halfplane. In this case we may have at the starting level 0 a

sequence of cigars C1, . . . , Cq, q ≥ 3, (assume they are ordered counterclockwise around u)

with endpoints converging to u, such that Cj has some vertices in common with the next cigar

and some other different vertices in common with the preceding cigar, 2 ≤ j ≤ q − 1. See

Figure 3.21. The cigar Cq can share some vertices with C1 or not. In the affirmative case,

these vertices are different from the non-empty set of vertices shared by C1 and C2, and the

non-empty set of vertices shared by Cq−1 and Cq.

We want to perturb now the endpoints of C1, . . . , Cq. Let vj be the vertex topologically

nearest to u, shared by two consecutive cigars Cj and Cj+1 (Cq and C1 are also considered

if they share some vertex). There can be other cigars D1, . . . , Dr between Cj and Cj+1 with

endpoint vj . We redraw the end of each cigar Cj as follows. Consider, for each Cj , a point

lj and a point rj which will belong to the left and right boundary of Cj respectively (left and

right when looking towards the center), such that rj = lj+1 lies within Ru. We draw a segment

from lj to rj . We place vj on rj = lj+1, and the rest of vertices shared by two consecutive
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Figure 3.21: Starting level: case when no vertex converging to u is the endpoint of several

cigars not contained in a halfplane. In this example, q = 6.

cigars lying between Cj and Cj+1, that is, vertices between Cj and D1, between Dk and Dk+1,

or between Dr and Cj+1, are perturbed as described in Procedure A. See Figure 3.22.

If such a sequence of cigars C1, . . . , Cq does not exist, then there are three possibilities.

First, there are at least three cigars, contained in a halfplane, with a common endpoint x. In

this case, x is the unique vertex of level 0, since by planarity x is the unique vertex contained

in all these cigars. Then we leave x fixed, as in Case 2. Second, the vertex x topologically

closest to u (if there are more than one such vertices, choose one of them), is the endpoint of

only two cigars Ca and Cb. Then we leave x fixed, and perturb the other common vertices to

Ca and Cb, if they exist, as in Procedure A. Third, a single cigar C has an end converging to

u. We place the endpoint vertices of C converging to u within Ru, ensuring that C is strictly

convex on those vertices incident to a boundary bar which had non-zero length in CB.

Perturbing the vertices of level i. Assume the vertices of level i − 1 are already

perturbed, and we are going to perturb the vertices of level i. All vertices of level i are nested

between two cigars sharing vertices of level i − 1 and forming an angle less than π. For any

two such cigars, the vertices in between are perturbed independently.

Let Ca and Cb be two cigars forming an angle less than π which are consecutive in level

i − 1 and share some vertices of level i − 1. We describe how to perturb the vertices at level i

between Ca and Cb.

If Ca and Cb share some vertices at level i, we perturb them as described in Procedure A.

If Ca and Cb have no vertex in common at level i, let x be the vertex belonging to both Ca

and Cb which has been perturbed furthest from u in level i − 1. Let C1, . . . , Cq be a sequence

of cigars between Ca and Cb (assume they are ordered counterclockwise around u) such that

Cj and Cj+1 share some vertices which are different from the set of vertices shared by Cj

and Cj−1, 2 ≤ j ≤ q − 1. Analogously, we assume Ca and C1 (resp. Cq and Cb) share some

vertices, which are different from the set of vertices shared by C1 and C2 (resp. Cq and Cq−1).

Note that there can exist a j0, 1 ≤ j0 ≤ q − 1, such that Cj0 and Cj0+1 are disjoint. (It
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Figure 3.22: How a perturbation at level 0 of the example in Figure 3.21 can look like. This is

a schematic drawing. The dashed line represents Bδ/3(u) and separates the vertices converging

to u from the vertices converging to other positions. This circle is actually much smaller and

cigars are much flatter.

can also happen that Ca and C1 are disjoint, or Cq and Cb.) In this case, there are no cigars

between Cj0 and Cj0+1, neither in this level nor in later levels. Such a j0 can only be found

once: if there would exist another j′0, j0 < j′0, such that Cj′0 and Cj′0+1 were disjoint, then

the set of cigars between Cj0+1 and Cj′0 would not share any vertex with the rest of cigars

converging to u. Hence it would have been already perturbed away in Step 1.

For perturbing the endpoints of C1, . . . , Cq we proceed similarly as before. Let vj be the

nearest vertex to x shared by Cj and Cj+1, 1 ≤ j ≤ q − 1. There can be cigars D1, . . . , Dr

between Cj and Cj+1 with endpoint vj . We redraw the end of each cigar Cj as follows.

Consider, for each Cj , a point lj and a point rj which will belong to the left and right boundary

of Cj respectively (left and right when looking towards the center), such that rj = lj+1 lies

within Ru. We draw a segment from lj to rj . We place the vertices converging to u that belong

only to Cj in the interior of this segment, although they actually belong to a posterior level.

We place vj on rj = lj+1. The remaining vertices of level i shared by two consecutive cigars

Cj and Cj+1, are perturbed as described in Procedure A. Note that we find these vertices at

level i only when there are no other cigars between Cj and Cj+1 with endpoint vj .

Let va be the nearest vertex to x shared by Ca and C1. The vertex va cannot be placed on

the current boundary of Ca, since any remaining vertices y1, . . . , ys shared by Ca and C1 will

be perturbed as described in Procedure A, and then Ca would have a non-convex boundary.

Note that a solution is not to place y1, . . . , ys also on the boundary of Ca, because then a chord

joining the next vertex z of the boundary of Ca, not converging to u, and any of the vertices

va, y1, . . . , ys−1, would overlap with the boundary bar {z, ys} (The boundary of Ca must be

then strictly convex at ys). We place va on a ray R starting at x and lying between Ca and C1.

The rest of the vertices of level i shared by Ca and C1 are perturbed as in Procedure A, on the
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same ray R. Note that if there are cigars between Ca and C1 with endpoint va, then any vertex

between Ca and C1 different from va must belong to a posterior level. We perturb the vertices

shared by Cq and Cb analogously. See in Figure 3.23 an example of how the perturbation of

the ith level can look like.

x

Ca Cb

z

C1

va

R

C2

Figure 3.23: Schematic drawing of a perturbation of the ith level. The dashed line represents

an arc of Bδ/3(u) and separates the vertices converging to u from the vertices converging to

other positions. This arc is actually much closer to x and cigars are much flatter. The marked

angles must be strictly convex.

Perturbing the remaining vertices that belong only to one cigar C. Finally we

place the endpoint vertices of C converging to u within Ru, ensuring that C is strictly convex

on those vertices incident to a boundary bar which had non-zero length in CB. (Note that it

can happen that the segment in which we must place some of these vertices is already drawn

in its final position.)

Step 3. Obtaining the Perturbation of CB′. Now, the vertices converging to v are all

perturbed. We do the same for all the vertices of the convexified drawing of C′
B.

Obtaining the Perturbation of CB

Any vertex p has been redrawn at most three times: a first time in the convexification of the

merged cigars, a second time in the spreading of cigars without vertices in common, and a third

time in the final vertex perturbation. Each time it has been perturbed a distance less than δ/3

from its current position. Then, each vertex has been perturbed at most a total distance of δ

with respect to its original position in C′
B. Therefore we obtain a δ-perturbation of CB where

the cigar boundaries are drawn as convex polygons.

Note that the obtained perturbation contains some vertices and bars that were not originally

in C.
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3.3.3 Second Stage: Perturbing the Interior of the Cigars

Any cigar can be seen as a one-dimensional self-touching configuration with a fixed convex

boundary.

If a cigar has chords, the chords divide it into smaller cigars which are also convex, because

any chord of a convex polygon divides the polygon into two convex polygons. See Figure 3.24.

In this case, we treat independently of each of these smaller cigars, and the chords play the

role of boundary bars.

Figure 3.24: Some chords between boundary vertices divide the cigar into smaller convex cigars.

We apply to each cigar independently the method described in Section 3.2 for perturbing

one-dimensional configurations. We choose as x-coordinate axis for each cigar the line through

its endpoints. Since the cigar boundary vertices are perturbed within δ-disks and the interior

vertices remain in the interior of the cigar, by choosing x-coordinates of the interior vertices

within δ-disks, the straight-line embedding of the interior of the cigar given by Theorem 3.3 is

a δ-perturbation. Note that some vertices of the cigar boundaries may not be strictly convex,

but this is not a problem since we have already ensured that they do not have incident chords

that could overlap with the other boundary bars.

Thus, we perturb the interior of the cigars independently, obtaining a δ-perturbation of the

whole self-touching configuration C. (The vertices and edges artificially added can be removed

at the end.) Therefore, Theorem 3.1 is proved.

3.4 Consequences of Theorem 3.1

Corollary 3.1. Self-touching polygonal chains and cycles are infinitesimally flexible.

Proof. Let C be a self-touching polygonal chain or cycle. Suppose it is infinitesimally rigid.

Then, by Theorem 1.2, it is rigid, and, by Theorem 1.1, it is strongly locked. By Theorem 3.1,

there exist a perturbation of C, which is locked by definition of strongly locked self-touching

configuration. But this perturbation is a simple polygonal chain or cycle, thus it is unlocked,

and we have a contradiction.

Corollary 3.1 is a first step towards the infinitesimal version of the Carpenter’s Rule problem.

Although we have proven the existence of an infinitesimal motion, we do not know how to find

an initial direction of movement (even for the one-dimensional case) or a global motion, which

is still more difficult.


