
Chapter 2

Unfoldability of Trees

2.1 Introduction

We say that a rooted tree embedded in the plane is in straight configuration if it consists of a

single vertex, or

• It lies completely in a cone with apex the root r, and

• All subtrees of the children of the root are straight, their cones are pairwise disjoint, and

the ray from each child c extending the line segment rc lies completely within the cone

belonging to c.

See Figure 2.1.

r

Figure 2.1: The structure of a tree in straight configuration.

We say that a tree is unfoldable if it can be moved into a straight configuration.

Alt, Knauer, Rote and Whitesides [2] showed that it is PSPACE-hard to decide whether

two given configurations of a tree in the plane can reach each other.

There are many nice questions about unfoldability of trees. In general, one would like to

know which conditions a tree must satisfy for being unfoldable.
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This is a very wide question, and one could try to answer more particular questions about

the unfoldability of trees of given characteristics. In this chapter we show that monotone trees

are unfoldable. This result was already published in 2002 by Kusakari et al. [38] but we were

not aware of it.

The algorithm given by Biedl et al. [8] for convexifying monotone polygons uses similar

ideas as the algorithm described here.

2.2 Monotone Trees are Unfoldable

As Snoeyink and Stolfi in [50], given two segments with disjoint interiors in R
2, we say that ej

is below ei (we denote ej � ei) if a vertical ray drawn downward from a point pi ∈ ei encounters

ej at a point qj ∈ ej (here both points are not necessarily in the interior of the segments, but

pi 6= qj must be satisfied). See Figure 2.2.
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Figure 2.2: The segment ej is below ei.

This relation is acyclic, as shown in de Bruijn [10]. Hence, given a set of segments, there is

an element without predecessor with respect to belowness, which we call �-minimal.

A planar embedding of a tree in R
2 is called monotone if there is a direction l such that

the root is the topmost vertex and every path from the root to the leaves intersects at most

once any line l′ perpendicular to l; in other words, every path from the root to the leaves

goes always downwards. Given a monotone planar embedding of a rooted tree, consider any

orthogonal coordinate system such that l is the y-axis and the root is the topmost vertex.

We say that an edge of a tree is final if it is incident to a leaf. We define two operations:

• Remove straight vertical parents of leaves. When we have an arc uvw such that uv, vw

are vertical, w is a leaf and v has degree 2, remove v and coalesce uvw into a single final

vertical edge uw. See Figure 2.3.

• Merge final vertical edges. When two final edges e1, e2 incident to the same node are

vertical, merge them in a single edge of length the maximum of the lengths of e1, e2. See

Figure 2.4.

We say that a monotone tree is reduced after applying recursively these two operations

until they can no longer be applied. Given a reduced tree T which is monotone with respect a

direction l, we denote by T ′ the tree resulting from omitting the vertical final edges.

Lemma 2.1. Let T ′ be a reduced monotone tree without vertical final edges. Then we can

always find in T ′ a �-minimal final edge.
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−→

Figure 2.3: Removing straight vertical parents of leaves.

−→

Figure 2.4: Merging final vertical edges.

De Bruijn’s acyclicity result [10] proves that we can always find in T ′ a �-minimal edge,

but this edge may not be a final edge. To prove that a �-minimal final edge can always be

found, we need the following lemma.

Lemma 2.2. Given a simple polygon C, consider the walk from a bottommost vertex b to

a topmost vertex t along the right (or the left) boundary chain. Let x be a rightmost vertex

(leftmost vertex) of C whose ingoing edge is not vertical. Let e−x and e+
x be the ingoing edge

and the outgoing edge of x respectively. Then the extremal vertex x has the property that its

outgoing edge e+
x lies in the upper half-plane defined by e−x .

Proof. The vertices b, t and x belong to the convex hull of C. Let R be the closed polygonal

region bounded by the path along C from b to x and the lower hull of C between b and x. The

top vertex t lies outside R; thus, the path along C from x to t must be totally exterior to R
since C is simple. Hence e+

x must lie in the upper half-plane defined by e−x , otherwise it would

get into R. See Figure 2.5. In the particular cases where x coincides with the bottommost or

the topmost vertex of C, this is also fulfilled.

Proof of Lemma 2.1. We use this easy algorithm:

Algorithm FindMinimalFinalEdge (T ′)

Input. A reduced monotone tree T ′ = (V, E) without vertical final edges

Output. A �-minimal final edge

1. Take a final edge ei
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Figure 2.5: A simple directed polygon C.

2. while ∃ ej ∈ E such that exist points pi ∈ ei, qj ∈ ej , pi 6= qj , where the directed

segment piqj points downwards in the direction l

3. Walk from pi to qj

4. if ej is not a final edge

5. Walk arbitrarily downwards along T ′ from qj until you get a final edge ei

and stop walking at the point qi where ei is reached

6. else ei := ej

7. return ei

The algorithm describes a directed walk, a simple polygonal chain in R
2. See Figure 2.6.

Let P be this simple polygonal chain.

l

Figure 2.6: The obtained polygonal chain P (in thick lines).

Walking along P , suppose we reach a rightmost (leftmost) vertex pi after a non-vertical

edge of the path, which belongs to an edge ei. This vertex pi does not satisfy Lemma 2.2:
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Once pi is reached, then we go vertically downwards (if ei is a final edge, from pi to qj ∈ ej

such that ej � ei), or downwards along T ′ (if ei is not a final edge). Then P is not a cycle.

Then we can prove the following theorem:

Theorem 2.1. Every monotone tree is unfoldable.

Proof. A monotone tree can be unfolded as follows:

Algorithm UnfoldMonotoneTree (T )

Input. A reduced tree T monotone with respect a direction l

Output. An unfolding of T

1. while T is not unfolded

2. Find a �-minimal final edge e = uv in T ′ (v is a leaf of T ′)

3. Rotate e in T until the directed segment uv is vertical pointing downwards

4. if the flexible joint v is adjacent to a final vertical edge ev in T

5. Keep ev also vertical during the rotation

6. Reduce T

7. return T

Step 4 is represented in Figure 2.7.
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Figure 2.7: Rotate e in T until it points down.

Note that obviously we do not have problems in the 4th step when e is not a final edge in

T . Note also that if e is �-minimal in T ′, then it is also �-minimal in T (leaving out ev if it

exists).

2.3 Open Problem

An arbitrarily flattened tree is a tree which is embedded within a strip of width ε, for ε arbitrarily

small. Another related question that one could study is the following.

Question 2.1. Is every arbitrarily flattened tree unfoldable?
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Note that if we could prove that every arbitrarily flattened tree can be flattened to a self-

touching configuration, then we would have a positive answer to Question 2.1. This is true since

all flat configurations can reach each other: one can show that if a tree linkage configuration

can be straightened, then it can be straightened using any vertex as the root [6].


