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Abstract

This thesis investigates two different techniques that can potentially be used for
the direct imaging of ultrafast structural dynamics of molecules at the femtosec-
ond time scale and with Ångström spatial resolution. Conventional ultrafast
diffraction and imaging techniques use elastically scattered energetic particles,
i.e. X-rays or electrons, to probe the molecular structure. The two techniques
studied in this thesis make use of inelastic processes to produce ionized (sec-
ondary) electrons, that are subsequently used to image the molecular structure.

The first technique studied in this thesis is Laser Induced Electron Diffrac-
tion (LIED). The ionization of a molecule in a strong, low-frequency laser field
leads to the creation of a photoelectron wavepacket that is driven by the laser
and can re-collide with its parent molecule. These re-scattered photoelectrons
display diffraction features, i.e. LIED, that can be used for the reconstruction
of the molecular structure [1, 2, 3].

A series of experiments was performed, investigating the effect of the molec-
ular frame on the Photoelectron Angular Distribution (PAD) of impulsively
aligned and strong-field ionized CF3I molecules using a Velocity Map Imag-
ing Spectrometer (VMIS). It is shown that using the impulsive laser alignment
technique enables taking differential measurements that bring out directly and
clearly LIED effects in the PAD, even for a relatively complex molecule such as
CF3I. The comparison of the experimental results at different laser intensities
and at two different probe wavelengths, i.e. 800 and 1300 nm, shows that the
LIED effect is robust and reproducible for a wide range of experimental condi-
tions, and at comparatively low re-collision energies. Moreover, the first results
from Time-Dependent Density Functional Theory (TDDFT) calculations indi-
cate that the ionization of multiple molecular orbitals, which have a distinct
shape and orientation with respect to the molecular frame, leads to significant
effects and can be identified in the experimental results.

The second technique investigated in this thesis proposes the use of sec-
ondary electrons produced by electron impact ionization for the imaging of the
molecular structure during a dynamical process. Specifically, Impact Ionized
Coherent Electron Emission (IICEE), which leads to the interference between
electrons that are ejected from two identical atomic centres within a molecule
[4], was investigated experimentally.

A commercially available table-top Ultrafast Electron Diffraction (UED)
source was used to produce a beam of (primary) electrons that subsequently
ionizes the target atom or molecule and generates energetic secondary elec-
trons. The table-top UED source was combined with a high-energy Velocity
Map Imaging Spectrometer (VMIS) and applied to the study of secondary elec-
tron emission. By comparing the spectra of Helium and H2 to theoretical calcu-
lations, it is shown that hints of IICEE effects due to the molecular structure of
H2 may be visible in the experimental data. However, possible systematic errors
in the experiment and the shortcomings of the theoretical model in reproducing
the low-energy part of the spectrum make an unambiguous assignment to IICEE
effects difficult. Simulations with perfectly aligned and partially aligned H2 were
used to illustrate the effect of alignment on the secondary electron spectrum.
It is shown that using molecular alignment enables clear and unambiguous ex-
traction of molecular effects from secondary electron spectra of impact ionized
molecules, in a similar fashion as demonstrated by the LIED experiments.
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Kurzfassung

Diese Arbeit untersucht zwei verschiedene Techniken, welche potenziell zur di-
rekten Abbildung von ultraschneller Strukturdynamik von Molekülen auf der
Zeitskala von Femtosekunden und mit Ångström räumlicher Auflösung verwen-
det werden können. Konventionelle ultraschnelle Beugungs- und Abbildung-
stechniken verwenden elastisch gestreute energetische Teilchen um die moleku-
lare Struktur zu untersuchen. Die in dieser Arbeit untersuchten Techniken
nutzen inelastische Prozesse um ionisierte (sekundäre) Elektronen zu erzeugen,
mittels derer anschließend die molekulare Struktur abgebildet wird.

Die erste Technik, die in dieser Arbeit untersucht wird, ist Laser Induced
Electron Diffraction (LIED). Die Ionisation eines Moleküls in einem starken,
niederfrequenten Laserfeld führt zur Erzeugung eines Photoelektronenwellen-
pakets, welches durch den Laser beschleuningt wird und mit dem ursprünglichen
Molekül wieder kollidieren kann. Diese gestreuten Photoelektronen zeigen Beu-
gungsmerkmale, d.h. LIED-Muster, welche für die Rekonstruktion der moleku-
laren Struktur verwendet werden können. Es wurde eine Reihe von Experi-
menten durchgeführt, in denen der Einfluss der molekularen Struktur auf die
Photoelektronen-Winkelverteilung von impulsiv ausgerichteten CF3I Molekülen
untersucht wurde. Die Technik der impulsiven Laserausrichtung ermöglicht
Differenzmessungen, mittels derer direkt und eindeutig LIED-Effekte in der
Photoelektronen-Winkelverteilung hervorgehoben werden, auch für ein relativ
komplexes Molekül wie CF3I. Der Vergleich der Versuchsergebnisse bei ver-
schiedenen Laserintensitäten sowie bei zwei verschiedenen Abfrage-Wellenlängen
von 800 nm und 1300 nm zeigt, dass der LIED-Effekt für einen weiten Bereich
von experimentellen Bedingungen und bei vergleichsweise niedrigen Wiederkolli-
sionsenergien robust und reproduzierbar ist. Darüber hinaus zeigen erste Ergeb-
nisse von Berechnungen zeitabhängiger Dichtefunktionaltheorie, dass die Ioni-
sation von mehreren Molekülorbitalen, die eine unterschiedliche Form und Aus-
richtung in Bezug auf das Molekül aufweisen, ebenfalls signifikant ist und in den
Versuchsergebnissen identifiziert werden kann.

Die zweite in dieser Arbeit untersuchte Technik basiert auf dem Vorschlag
Sekundärelektronen, welche durch Elektronenstoß-Ionisation erzeugt werden,
zum Abbilden der Molekülstruktur während eines dynamischen Prozesses zu
verwenden. Insbesondere wurden Interferenzeffekte zwischen Elektronen, welche
mittels kohärenter Stoßionisation aus zwei unterschiedlichen Atomzentren in-
nerhalb eines Moleküls ausgestoßen werden [4], experimentell untersucht. Eine
kommerziell erhältliche ultraschnelle Elektronenquelle wurde verwendet um einen
Primärstrahl von Elektronen zu erzeugen, welcher das Atom oder Molekül ion-
isiert und energetische Sekundärelektronen erzeugt. Durch den Vergleich der
Spektren von Helium und H2 mit theoretischen Berechnungen wird gezeigt,
dass Hinweise auf Interferenzeffekte in den experimentellen Daten sichtbar sind,
die von der molekularen Struktur von H2 herrühren. Allerdings erschweren
mögliche systematische Fehler im Experiment sowie Mängel des theoretischen
Modells im niederenergetischen Teil des Spektrums eine eindeutige Zuordnung
dieser Effekte zur molekularen Struktur. Simulationen mit perfekt und teilweise
ausgerichteten H2-Molekülen wurden verwendet, um zu zeigen dass molekulare
Effekte in den Sekundärelektronenspektren von ionisierten Molekülen klar und
eindeutig mittels molekularer Ausrichtung extrahiert werden können.
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Chapter 1

Introduction

1.1 Scientific objective

The subject of this thesis are two techniques that can potentially be used for
the direct imaging of ultrafast structural dynamics of molecules at the fem-
tosecond timescale and with Ångström spatial resolution. The motivation for
the development of ultrafast imaging techniques originated from the field of fem-
tochemistry. Femtochemistry tries to elucidate the basic processes underlying
the dynamics of chemical bonds and can be said to seek answers to these three
main questions [5]

1. How does the reaction energy redistribute within the molecule?

2. What are the detailed nuclear motions characterizing the chemical reaction
and its transition states?

3. What are the speeds of the chemical changes connecting the quantum
states in the reactants, through the transition states, to products?

Figure 1.1 shows one of the earliest experiments in femtochemistry that made
use of optical spectroscopy to successfully demonstrate photo-induced ultrafast
dynamics in NaI [6]. However, due to the relative complexity of extracting
molecular structure from spectroscopic information it was clear very early on
that techniques that could directly image the structure of a molecule undergoing
ultrafast dynamics would be highly desirable [7, 8].

In order to achieve the goal of ultrafast imaging of molecular reactions with
the required spatial and temporal resolution, femtosecond sources of electrons or
X-rays are required. Very soon after the first successes in ultrafast spectroscopy
ultrafast electron sources based on the photoemission from a solid photocathode
by irradiation with an ultrafast laser pulse were proposed [9]. This led to the
first experiments using Ultrafast Electron Diffraction (UED) to elucidate gas-
phase radical structures [10]. The UED technique has reached a certain level
of maturity since then and has been used to study a wide variety of systems,
ranging from the solid state to the gas-phase, with a time resolution down to 100
fs [11, 12, 13]. With the development of the X-ray Free Electron Lasers, the ex-
tremely bright and short X-ray pulses necessary for Ultrafast X-ray Diffraction
(UXD) have also become available. The UXD technique is especially promis-
ing for the imaging of the structural dynamics of biologically relevant systems
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1.1. Scientific objective

Figure 1.1: Ultrafast laser-induced fluorescence of NaI; image taken from [6].
(a) The NaI molecule is brought into a dissociative (covalent bonding) state by
the pump pulse, which initiates the dynamics and leads to a structural motion in
the molecule where the excited state is coupled to the ground state (ionic bond)
through an avoided crossing. (b) Fluorescence signal from the NaI radical (I),
showing the oscillatory motion across the avoided crossing, and Na (II) showing
the stepwise increment of the Na atom yield as the molecule dissociates.

(2.) Acceleration in strong field

Photoelectron
wavepacket

Strong laser 
field

(1.) Tunnelling ionization (3.) Re-collision & diffraction

Figure 1.2: Three-step model of Laser Induced Electron Diffraction (LIED).
After tunnelling ionization by the strong laser field (1), the photoelectron is
accelerated by the oscillating electric field (2) and is finally driven back to
the molecule where it scatters elastically (3). The multi-center nature of the
molecule, i.e. molecular structure, leads to diffraction features in the final pho-
toelectron spectrum.

[14], and in recent years the ability to image large and complex biomolecules
undergoing photoreactions has been experimentally demonstrated [15, 16].

The ’conventional’ approach to ultrafast imaging is to use elastically scat-
tered X-rays or electrons to form a diffraction image. In recent years sev-
eral promising techniques for ultrafast diffraction have been proposed that use
ionized (secondary) electrons to image the molecule with its own electrons
[1, 2, 3, 17, 18, 19]. This thesis investigates two such techniques that employ
ionized electrons to probe the molecular structure and that can potentially be
used for ultrafast molecular structure imaging.

The basic idea behind the first technique, Laser Induced Electron Diffraction

4



1.1. Scientific objective

(LIED), is illustrated in Fig. 1.2. The ionization of a molecule in a strong laser
field leads to the creation of a photoelectron wavepacket that is driven by the
laser to re-collide with its parent molecule [1, 2, 3]. The elastically scattered
photoelectrons display diffraction features that can be used for the reconstruc-
tion of molecular structure. The ultimate time resolution of this technique is
in principle on the order of one half of the laser cycle duration (e.g. 3.3 fs for
λlaser=2 µm). The spatial resolution depends on the de Broglie wavelength of
the re-colliding electron, which can reach sub-Å scales when long wavelength
strong laser fields are used that can achieve re-collision energies of more than a
hundred eV.

The second technique investigated in this thesis proposes the use of sec-
ondary electrons produced by electron impact ionization for the imaging of the
molecular structure during a dynamical process. The ultrafast diffraction tech-
niques proposed so far rely on the use of photoionization to generate the sec-
ondary electrons that are used to image the molecular structure. The recent de-
velopment of table-top Ultrafast Electron Diffraction (UED) sources, which are
readily available and can even be obtained commercially [20], has inspired the
idea of using these sources to generate energetic secondary electrons that may be
used for ultrafast molecular structure imaging. Secondary electrons produced
by electron impact ionization may carry information on the molecular structure
through different physical mechanisms, as illustrated in Fig. 1.3. Impact Ionized
Coherent Electron Emission (IICEE) leads to the interference between electrons
emitted from multiple, identical atomic centres within a molecule [4]. A second
mechanism that can give rise to molecular interference effects is Impact Ion-
ized Secondary Electron Diffraction (IISED). An impact ionized electron that is
ejected from one of the atomic centres within the molecule can scatter elastically
from another atomic center, which leads to interferences between the scattered

Secondary electron
(impact ionized)

primary 
electron

(2.) Impact Ionized Secondary 
Electron Diffraction

Secondary electron
(impact ionized)

primary 
electron

(1.) Impact Ionized Coherent 
Electron Emission

Figure 1.3: Schematic illustration of two processes that may give rise to molec-
ular interference effects in the spectrum of impact ionized electrons. Impact
Ionized Coherent Electron Emission (IICEE) leads to interferences between sec-
ondary electrons emitted from two distinct atomic centres within the molecule.
Impact Ionized Secondary Electron Diffraction (IISED) arises when a secondary
electron produced at one atomic centre is scattered by another atomic centre
within the same molecule.
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1.2. Thesis overview

and non-scattered electrons [4]. IISED can be seen as a generalization of the
photoelectron diffraction effect, see e.g. [21]. The IICEE and IISED effects,
which carry information on the molecular structure, could in principle be used
to image the molecular structure during a dynamical process.

Finally, another ingredient in the experiments and the theoretical calcula-
tions presented in this thesis is the use of molecular alignment as a means of
extracting molecular structure effects from electron spectra. Recent Free Elec-
tron Laser (FEL) [22] and UED [23, 24] experiments have demonstrated the
potential for using molecular alignment in combination with X-ray and electron
diffraction. The experiments presented in Chapter 3 demonstrate that the use
of molecular alignment enables taking differential measurements that bring out
directly and clearly LIED effects in the photoelectron spectra of a strong-field
ionized molecule. In Chapter 4 it is shown using theoretical calculations that
using the alignment effect should also enable clear and unambiguous extraction
of IICEE effects from the secondary electron spectra of electron impact ionized
molecules.

1.2 Thesis overview

Chapter 2 summarizes the basic principles of electron scattering theory and
highlights approaches and approximations which are specifically needed to un-
derstand theoretical considerations and calculations in this thesis. It introduces
all the necessary concepts and the basic theoretical models that are used in the
rest of the thesis such as differential cross-sections, Born series, partial wave
expansions, etc. The final section in this chapter also introduces some basic
concepts from strong-field theory, which are needed for the discussion on LIED
effects, and shows how the electron scattering theory is utilised within semi-
classical models of LIED.

Chapter 3 presents a series of experiments that investigate the effect of the
molecular frame on the Photoelectron Angular Distribution (PAD) of impul-
sively aligned and strong-field ionized CF3I molecules using a Velocity Map
Imaging Spectrometer (VMIS). It is shown that using the impulsive laser align-
ment technique enables taking differential measurements that bring out directly
and clearly LIED effects in the PAD, even for a relatively complex molecule
such as CF3I and using a non-coincident detection setup such as the VMIS. The
comparison of the experimental results at different laser intensities and at two
different probe wavelengths, i.e. 800 and 1300 nm, shows that the LIED effect
is robust and reproducible for a wide range of experimental conditions and at
comparatively low re-collision energies.

Chapter 4 presents some first results from the combination of a table-top
UED source with a Velocity Map Imaging Spectrometer (VMIS) that is applied
to the study of secondary electron emission. By comparing the spectra of Helium
and of H2 to theoretical calculations, it is shown that hints of IICEE effects
due to the molecular structure of H2 may be visible in the experimental data.
Because molecular structure effects are seen to be very weak, it is shown using
theoretical calculations how such effects can be brought out more clearly in the
secondary electron spectrum by aligning the molecules.
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Chapter 2

Electron scattering theory

2.1 Introduction

Laser induced electron diffraction and electron impact ionization can be under-
stood within the framework of electron scattering theory. Since the early days
of Quantum Mechanics, a vast body of theoretical work has been devoted to the
accurate modelling of electron scattering processes. Even nowadays, scattering
theory remains an active field of research, as it is necessary to treat continuum
states with a large range of possible kinetic energies, while taking many-body
interactions into account. Due to this complexity, many different theoretical ap-
proaches have been developed to treat the collisional problem that often make
use of simplifications applicable to the particular problem at hand. This chap-
ter summarizes some of the basic principles from electron scattering theory and
highlights approaches and approximations which are specifically needed to un-
derstand theoretical considerations and calculations in this thesis.

First, the basic ground work is laid out in Sec. 2.2, which summarizes some
basic requirements on the solution of the scattering problem and defines observ-
able quantities such as the differential cross-section. Section 2.3 then treats the
most basic scattering problem: the scattering of a free electron by an arbitrary
scalar potential. Techniques for solving the potential scattering problem, such
as the Born series and the partial wave expansion, form the basis for solving
scattering problems involving more complex targets. Section 2.4 proceeds with
the treatment of atom-electron scattering problems where the basic potential
scattering approach is extended in order to treat the possibility of the excita-
tion or ionization of an atom. The treatment of low-energy collisions, where
the projectile energy is comparable to the target electron energy, is relatively
different from that of high-energy collisions and is therefore treated separately.
Finally, Sec. 2.5 introduces the basic model for electron-molecule scattering used
in this thesis, i.e. the Independent Atom Model (IAM), and treats the effects of
molecular alignment on the observables.

2.2 Basic definitions

The typical scattering experiment is schematically represented in Fig. 2.1. The
incoming projectile, which in the current work is always assumed to be an

7



2.2. Basic definitions

Projectile 
electron

Scattered/ejected 
electron 

Target

Detector

Collimating slits

z

y

x

φ

θ

Figure 2.1: Basic scattering experiment.

electron, has a well-defined direction and energy. The target is an atom or
molecule A assumed to be in its ground state with one or more bound electrons.
These two conditions describe a well-defined initial state of the system.

The description of the final state is in general more complicated, as it can
involve different scattering channels that represent different possible reactions
of the target system. Assuming that there is no change in the internal state of
the target system one arrives at the possibility of elastic scattering

e− +A→ e− +A (2.1)

In the typical electron scattering experiment, the target, i.e. an atom or a
molecule, is much heavier than the projectile so that the center-of-mass frame
is approximately equal to the reference frame in which the target has zero ve-
locity [25]. Under these conditions the energy of the projectile is unaltered by
the elastic collision, but its direction may have been changed by some angle θ
so that the observable in such experiments is the scattered electron direction.
In the case of inelastic scattering, the internal state of the target is modified
through the interaction with the projectile, leading to many possible reaction
pathways. Some examples are

e− +A→ e− +A∗ (2.2)

→ 2e− +A+ (2.3)

→ 2e− +A∗+ (2.4)

. . .

where A∗ and A∗+ represent excited neutral and ionic target states respectively.
The two main reactions of interest in this thesis are (2.1) and (2.3) which repre-
sent elastic scattering and electron impact ionization respectively. The descrip-
tion of the initial and final states of the system in terms of scattering reactions
implies a basic constraint on the final state due to energy conservation. The
total initial energy must be equal to the final system energy, i.e.

k2i
2

+ Ei =
k2s
2

+ Ej (2.5)

where ki is the incoming electron momentum, ks the scattered electron momen-
tum and Ej is the final state energy of the target, including the kinetic energy
of ionized target electrons.
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2.2. Basic definitions

The full solution of the scattering problem requires the solution of the time-
dependent Schrödinger equation

i~
∂

∂t
Ψ(r, t) = H(r)Ψ(r, t) (2.6)

where Ψ(r, t) is the full many-body wavefunction, which includes the projectile,
and H(r) is the total system Hamiltonian. In typical experiments the electron
beam pulse duration is much longer than the time it takes the projectile to
cross the interaction region so that the time-dependent equation can be solved
by looking for stationary solutions of the form1 [26, 27]

Ψ(r, t) = ψ(r) exp(−iEt/~) (2.7)

The problem thus reduces to solving the time-independent Schrödinger equation

Eψ(r) = Hψ(r) (2.8)

where E is the system energy and H the full system Hamiltonian. For electron-
atom scattering the Hamiltonian is explicitly given by [28]

H =

N∑
p=0

(
− ~2

2m
∇2

rp
− Z

rp

)
+

1

2

N∑
p,q=0

1

rpq
(2.9)

where Z is the nuclear charge, r1, . . . , rN are the target electron coordinates and
r0 is the projectile coordinate. The first term in (2.9) is the sum of the electron
kinetic energy and the nucleus-electron potential energy operators, while the
second term gives the sum of the electron-electron potential energy operators.
In short, solving the electron-atom scattering problem requires obtaining the
total time-independent wavefunction ψ(r) of the many-particle Hamiltonian
(2.9).

A major difference between solving the many particle time-independent
Schrödinger equation for bound systems and for the scattering problem is, of
course, the involvement of continuum states. In fact, in scattering experiments
the observable is typically the energy or momentum of the outgoing electrons
at some macroscopic distance far away from the scattering region. In order to
obtain experimentally observable quantities it is therefore necessary to obtain
the asymptotic form of the wavefunction ψ(r). In most theoretical treatments
the asymptotic form of the solution is actually imposed on the general solutions
in the form of boundary conditions.

Two types of asymptotic forms for the scattering wavefunctions are consid-
ered in this thesis. Firstly, assuming that far from the scatterer there is no force
on the scattered particle, the total wavefunction can be asymptotically given
as a superposition of the incoming plane wave and a freely expanding outgoing
spherical wave [29]

ψ
(+)
f −→

r→∞
exp (ik · r) + f(k, θ, φ)

exp(ikr)

r
(2.10)

1Even for the case of ’ultrafast’ electron diffraction the typical electron pulse duration is on
the order of femtoseconds whereas the typical collision/interaction time between the projectile
and target electron is on the order of attoseconds.
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2.3. Potential scattering

The angular dependence of the scattering process is given by the scattering
amplitude f(k, θ, φ) which depends on the spherical polar angles θ and φ (Fig.
2.1) and the projectile momentum k. It can be shown that this asymptotic
form holds for any potential with a finite range, i.e. for potentials decreasing
faster than 1/r for r → ∞ [30]. Secondly, for the case of scattering from a
pure Coulomb potential of the form U0/r, which has an infinite range, it can be
shown (see also Sec. 2.3.3) that the correct asymptotic form of the wavefunction
is given by [29]

ψ
(+)
f −→

r→∞; θ 6=0
exp {ik · r + iγ log[kr(1− cos θ)]}+

f(k, θ)
exp{ikr − iγ log(2kr)}

r
(2.11)

where γ = U0/2k is the Sommerfeld parameter. The logarithmic phase factor
in this asymptotic form is a manifestation of the fact that for the Coulomb
potential neither the scattered nor the incoming wavefunction can be considered
to be a plane wave and that the potential has a distorting influence on the them
even at very great distance. The treatment of electron impact ionization in Sec.
2.4.2 is an example of a case where Coulomb effects can become important.

Having obtained the asymptotic forms of the scattered wavefunction it is
then possible to calculate the probability of detecting an outgoing electron with
a certain momentum, i.e. energy and direction. This probability is expressed
in terms of the differential cross-section which gives the probability flux of
scattered particles per unit time into a certain solid angle. For elastic scattering
the double differential cross-section is given by

d2σ

dk dΩ
= |f(k,Ω)|2 (2.12)

where Ω = (θ, φ) is the solid angle of the scattered electron and f(k,Ω) is
obtained from the asymptotic form of the wavefunction (2.10) or (2.11). The
concept of cross-section can be generalized to include further variables which are
relevant to the reaction at hand, e.g. molecular orientation in electron-molecule
scattering. For the electron impact ionization reaction, (2.12) must be modified
slightly in order to ensure probability flux conservation. The triple differential
cross-section for electron impact ionization is given by

d3σ

dke dΩe dΩs
=
kske
ki
|f(ke,Ωe,Ωs)|2 (2.13)

where ke and ks are the momentum magnitudes and Ωe and Ωs are the solid
angles of the ejected and scattered electron respectively. The projectile momen-
tum is considered here as a parameter and its magnitude is given by ki. The
magnitude of the scattered electron momentum ks depends on the values of ki
and ke through the energy conservation relation (2.5). The flux conservation
factor is given by the multiplicative term keks/ki [29].

2.3 Potential scattering

The simplest scattering problem is that of a single charged particle by an arbi-
trary scalar potential V (r). The charged particle is assumed to be structureless,

10



2.3. Potential scattering

e.g. an electron, so that it has no internal states or constituent parts that can
be affected by the collision. The scattering of such a particle by a potential is
therefore elastic. Though this is necessarily an idealized and simplified situation,
which rarely is present in real experiments, the theory of potential scattering
provides a basic framework within which generalizations involving more complex
systems can be understood.

This section will focus on two important approaches for calculating the po-
tential scattering cross-sections: the partial wave expansion (Sec. 2.3.1) and
the integral formulation which leads to e.g. the Born series (Sec. 2.3.2). These
two approaches are used for complementary energy ranges. For low energy
scattering partial wave expansions are usually more appropriate, whereas for
high energy scattering the integral formulation and the Born series are more
frequently used. Both the partial wave expansion and the integral formulation
assume a finite range for the scattering potential so that they can not be used
for scattering from the Coulomb potential without appropriate modification.
This case is treated in Sec. 2.3.3.

2.3.1 Partial wave formulation

The partial wave method specifies a procedure for solving the time-independent
Schrödinger equation that uses a spherical harmonic expansion of the scattered
particle wavefunction in order to calculate the so-called phase shifts for each
component of the angular momentum separately. The phase shifts are obtained
by comparing the asymptotic form of the radial part of the wavefunction to
that of a freely propagating plane wave. Determination of the phase shifts
completely specifies the scattering amplitude f(k, θ, φ), and thus the scattering
cross-section (2.12). Non-spherical potentials can also be treated with the par-
tial wave method, provided they are expanded in a spherical harmonic basis.
The derivation of the partial wave potential scattering equations below follows
largely that given by Bransden and Joachain [29].

The basic principles of the partial wave method can be nicely illustrated by
considering scattering from a simple spherically symmetric potential V (r). In
this case the time-independent Schrödinger equation is explicitly given by[

− ~2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (2.14)

where E is the energy of the projectile. It is well known that the Hamiltonian of
(2.14) is separable in spherical polar coordinates. Moreover, since the scattering
process possesses azimuthal symmetry around the incident projectile direction,
the unknown wavefunction ψ(r) must do so as well. Expanding the wavefunction
ψ(r) in spherical harmonics, and making use of the azimuthal symmetry, results
in the following expression

ψ
(+)
f (k, r, θ) =

∞∑
`=0

R`(k, r)P`(cos θ) (2.15)

The Legendre polynomials P`(cos θ) completely determine the angular depen-
dence of the wavefunction for each angular momentum value `. The radial
dependence of the wavefunction is given by R`(k, r), and by substituting (2.15)

11



2.3. Potential scattering

back into (2.14) it is found that the R`(k, r) satisfy the following equations[
d2

dr2
+

2

r

d

dr
− `(`+ 1)

r2
− U(r) + k2

]
R`(k, r) = 0 (2.16)

where U(r) = 2mV (r)/~2 and k2 = 2mE/~2.
As was pointed out at the beginning of this section, in order to obtain an

expression for the scattering amplitude, and hence the differential cross-section,
the asymptotic behaviour of the radial functions R`(k, r) must be examined. As-
suming that the potential has a finite range, the radial functions should asymp-
totically match those of the free particle solution. The free particle equation is
obtained from (2.16) by setting the potential function U(r) = 0. The general
solution to this equation is given by a linear combination of the spherical Bessel
function

j` =
( π

2kr

)1/2
J`+1/2(kr) (2.17)

and the spherical Neumann function

n` = (−1)`+1
( π

2kr

)1/2
J−`−1/2(kr) (2.18)

where Jν(kr) is a Bessel function of order ν. For kr →∞ these functions behave
asymptotically as

j` −→
kr→∞

1

kr
sin(kr − `π/2) (2.19)

n` −→
kr→∞

− 1

kr
cos(kr − `π/2) (2.20)

Returning to (2.15) it can be concluded that the asymptotic form of the
radial functions R`(k, r) outside the scattering potential range must also be
given by a linear combination of the spherical Bessel and Neumann functions,
so that

R`(k, r) −→
kr→∞

B`(k)jl(kr) + C`(k)nl(kr) (2.21)

where B` and C` are some constants of integration that do not depend on the
free variable r. Using the asymptotic expressions for j`(kr) and n`(kr) given by
(2.19) and (2.20), the asymptotic expression for R`(k, r) can be written as

R`(k, r) −→
r→∞

A`(k)

kr
sin [kr − `π/2 + δ`(k)] (2.22)

where A` =
√
B2
` + C2

` and tan δ` = −C`/B`. Finally, substituting this re-
sult back into the partial wave expansion (2.15), the asymptotic form of the
wavefunction is given by

ψ −→
r→∞

∞∑
`=0

1

2ikr

{
exp[i(kr − `π/2 + δ`(k)]−

exp[−i(kr − `π/2 + δ`(k)]
}
× P`(cos θ) (2.23)

In order to obtain an explicit expression for the scattering amplitude, which
can then be used to calculate the scattering cross-section, the two asymptotic

12



2.3. Potential scattering

expressions for the wavefunction given by (2.10) and (2.23) are compared to
each other. Using the expansion of a plane wave in Legendre polynomials

exp(ikz) =

∞∑
`=0

(2`+ 1)i`j`(kr)P`(cos θ) (2.24)

together with the asymptotic expression for the spherical Bessel function (2.19),
(2.10) can be rewritten as

ψ −→
r→∞

∞∑
`=0

(2`+ 1)i`
sin(kr − `π/2)

kr
P`(cos θ) + f(k, θ, φ)

exp(ikr)

r
(2.25)

Rewriting the sin term using complex exponentials, (2.25) can be brought to
the following form

ψ −→
r→∞

exp(ikr)

r

[
f(k, θ, φ)−

∞∑
`=0

i

2k
(2`+ 1)P`(cos θ)

]
+

exp(−ikr)
r

[ ∞∑
`=0

(−1)`
i

2k
(2`+ 1)P`(cos θ)

]
(2.26)

Finally, by matching the coefficients of the exp(ikr)/r and exp(−ikr)/r terms
in (2.26) and (2.23), the following expression for the scattering amplitude is
obtained

f(k, θ) =

∞∑
`=0

f`(k)P`(cos θ) (2.27)

where f`(k) is the partial wave scattering amplitude given by

f`(k) =
2`+ 1

2ik
{exp[2iδ`(k)]− 1} (2.28)

and δ`(k) are the partial wave phase shifts. The quantity exp[2iδ`(k)] is also
called the S-matrix element. To actually compute the phase shifts δ` one must
in general numerically solve the radial differential equation (2.16) in some inter-
nal region r < a where the potential is effective2. The internal solution is then
matched to the asymptotic expression for the phase-shifted, scattered wavefunc-
tion (2.23) at the boundary r = a so that the wavefunction and its derivative
are continuous, thereby obtaining the phase shifts δ`. Having thus obtained
the S-matrix elements all the information needed to calculate differential cross-
sections and determine experimental observables is available.

Figure 2.2 illustrates some interesting aspects of the partial wave method.
The two potential energy terms in the radial equation (2.16) are the scattering
potential term and a centrifugal term so that the effective potential each partial
wave sees is given by

Ueff = U(r) +
`(`+ 1)

r2
(2.29)

2This of course assumes that there is a finite internal region outside of which the potential
is assumed zero and the asymptotic form (2.25) correctly represents the wavefunction. This
assumption is valid for potentials decreasing faster than 1/r. For a pure Coulomb potential
the approach must be modified (see Sec. 2.3.3).
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Figure 2.2: (a) Total potential energy terms `(`+1)/r2 +U(r) from the radial
equation (2.16) for a Yukawa scattering potential U(r) = − exp(−αr)/r with
α = 0.1 and for different values of the angular momentum `. The dashed line
shows the centrifugal part of the potential only, i.e. `(` + 1)/r2. (b) Spherical
Bessel functions j`(kr) given by (2.17) for k = 0.5 a.u. and the same values of
` as in (a).

From Fig. 2.2(a) it is clear that for higher angular momentum ` the total effective
potential is dominated more and more by the centrifugal term. This implies that
the solution for the radial equation should resemble that of a free wave and thus
that the phase shifts δ` should eventually tend to zero. The question is: how
fast do the phase shifts tend to zero? This point is illustrated in Fig. 2.2(b)
which shows the spherical Bessel functions, which are the free particle solutions
of the radial equation, for a momentum of k = 0.5 a.u.3 For values of k or r
close to zero the behaviour of these functions is given by

j`(kr) −→
kr→∞

(kr)`

(2`+ 1)!!
(2.30)

In other words for small values of r or k and higher values of ` the wavefunction
goes rapidly to zero and does so for a larger range of r. Physically this is due to
the fact that the centrifugal barrier becomes larger and wider for high ` and/or
small k so that the projectile has to penetrate it to reach small r regions. At
the same time, as shown in Fig. 2.2(a), the difference between the true effective
potential, which includes the scattering potential, and the centrifugal term is
only appreciable for small r. This means that for high ` and/or small k the
partial waves effectively do not see this region. In the extreme case of a very slow
particle it can be sufficient to calculate the s-wave, i.e. ` = 0, partial wave phase
shift only. The partial wave formulation is therefore well suited for problems
which require a low number of angular momentum values to be calculated,
which is especially true for slow projectiles. For a high energy projectile a large
number of phase shifts needs to be calculated because high ` partial waves can

3Here, and elsewhere in this thesis, a.u. stands for Hartree atomic units. These are obtained
by setting the numerical value of the fundamental constants of the electron charge e and mass
me, the reduced Plank’s constant ~, and Coulomb’s constant ke = 1/(4πε0) to unity.
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2.3. Potential scattering

still penetrate far into the low r region where the scattering potential influence
is strong.

2.3.2 Integral equation formulation

As was shown in the previous section the partial wave method is well suited for
low energy collisions as it requires a relatively small number of phase shifts to
be computed. For high energy collisions an approach based on a perturbative
expansion may be more suitable. Such an approach follows naturally from the
Lippman-Schwinger equation, which is an integral equation formulation of the
time-independent Schrödinger equation for the scattering problem. The itera-
tive solution of the Lippman-Schwinger equation leads to the Born series which
is a well-known and frequently used method for solving scattering problems.
The derivation of the integral equation formulation for potential scattering in
this section largely follows the treatment by Merzbacher [26].

As in the previous section the starting point in this treatment is the Schrö-
dinger equation (2.14) which can be rewritten as

H0ψ = Uψ (2.31)

where H0 is the free particle Hamiltonian

H0 =
[
∇2 + k2

]
(2.32)

with k2 = 2mE/~2 and U = 2mV/~2. The reformulation of this equation to an
integral equation is most conveniently done by considering the term Uψ as an
inhomogeneity or source term. This differential equation can be solved using
the Green’s function formalism, which states that the solution to (2.31) can be
constructed from the solutions to the equation

H0G(r, r′) = −4πδ(r − r′) (2.33)

where G(r, r′) is a Green’s function. Once the Green’s function is known, a
particular solution of the original equation (2.31) is given by

− 1

4π

∫
G(r, r′)U(r′)ψ(r′) dr′ (2.34)

That this is a solution may be verified by substituting (2.34) for the wavefunction
ψ on the left hand side of (2.31) and using (2.33). It can be shown that the
explicit form of the Green’s function for (2.33) is given by [26, 29]

G(r, r′) =
exp(ik|r − r′|)
|r − r′|

(2.35)

which corresponds to a homogeneously expanding spherical wave centred at
r−r′. The general solution of the original Schrödinger equation (2.31) is a sum
of the particular solution (2.34) and an arbitrary solution of the homogeneous
differential equation

H0ψ0 = 0 (2.36)

This is a generalization of the standard approach to solving ordinary differential
equations with a source term, see e.g. [31]. The solution of (2.36) is a freely
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2.3. Potential scattering

propagating plane wave with momentum k that corresponds to the incoming
projectile. Adding the homogeneous equation solution to Green’s solution finally
leads to the following integral equation for the wavefunction

ψ(r) = N exp(ik · r)− 1

4π

∫
G(r, r′)U(r′)ψ(r′) dr′ (2.37)

Equation (2.37) is the Lippman-Schwinger equation that gives the solutions to
the original scattering problem in terms of an integral equation, and is completely
equivalent to the original Schrödinger equation.

In order to make the connection between the Lippman-Schwinger equation
and the scattering amplitude, the asymptotic behaviour of (2.37) for r → ∞
must be examined. Expanding the term in the exponent in (2.35) gives

k|r − r′| = kr − kr̂ · r′ + k(r̂ × r′)2

2r
+ . . . (2.38)

where r̂ is the unit vector of r. At this point it is necessary to assume that
the potential U(r′) becomes zero after some distance a. Since the potential
now has a finite range the expansion above may be truncated after the first two
terms, provided r is chosen such that r � ka2. This condition is easily fulfilled
for realistic experiments since r is the macroscopic distance to the detection
apparatus. Performing a similar expansion for the denominator in (2.35) and
only keeping the first term, the asymptotic form of the Lippman-Schwinger
equation is given by

ψ −→
r→∞

N exp (ik · r)− 1

4π

exp(ikr)

r

∫
exp(−ikf · r′)U(r′)ψ(r′) dr′ (2.39)

where kf = kr̂ represents the final momentum that is measured and which is
determined by the placement of the detector in a certain direction r̂. For the
case of potential scattering the final momentum is of course equal in magnitude
to the incoming momentum. Comparing (2.39) to (2.10) it is seen that the
scattering amplitude is given by the following expression

f = − 1

4π

∫
exp(−ikf · r′)U(r′)ψ(r′) dr′ ≡ − 1

4π
〈kf |U |ψ〉 (2.40)

where 〈kf | r〉 = exp(−ikf · r′).
Solving (2.37) is in general a non-trivial task, so that the reformulation of

the original Schrödinger equation in terms of the Lippman-Schwinger integral
equation seems not to be of particular use. However, the Born series can be
used to obtain an approximate solution to the Lippman-Schwinger equation in
many practical situations. To see how the Born series arises from the Lippman-
Schwinger equation the latter is first rewritten in Dirac notation as follows

|ψ〉 = |ψ0〉+ GU |ψ〉 (2.41)

where GU is a Green’s integral operator defined by (2.34) and 〈r |ψ0〉 = N exp(ik·
r), which corresponds to the incoming plane wave. Solving this equation for-
mally is very simple and results in the following expression for the wavefunction

|ψ〉 =
1

1− GU
|ψ0〉 (2.42)
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In order to get a practical expression for the inverse operator on the right hand
side of this equation its series expansion can be taken. Using the geometric
series4 this leads to the following result

|ψ〉 =

[
1 +

∞∑
n=1

(GU)n

]
|ψ0〉 (2.43)

which is also known as the Born series. The Born series also results quite
naturally from the Lippman-Schwinger equation (2.41) if one attempts to find
its solution iteratively [29]. Starting from the incident plane-wave as the zero-
order approximation the following sequence is obtained

|ψ1〉 = |ψ0〉+ GU |ψ0〉
...

|ψn〉 = |ψ0〉+ GU |ψn−1〉 (2.44)

Returning now to expression (2.40), which provides the necessary relation to ob-
tain the scattering amplitude, and substituting the Born series expansion (2.43)
the desired scattering amplitude can be written as the following summation

f =

∞∑
n=1

fBn (2.45)

where the Born scattering amplitude terms are given by

fBn = − 1

4π
〈kf |U(GU)n−1 |ψ0〉 (2.46)

The Born series expansion has a very intuitive physical picture where each
term in the series (2.46) represents a scattering amplitude where the scattering
particle has interacted n times with the scattering potential before ending up
in the final state |kf 〉 (see also Fig. 2.3). In order to see how this interpretation
follows from (2.46) this expression is written out explicitly for the first two Born
scattering amplitudes using the definition of the integral operator GU (2.34).
This leads to the following expressions

fB1 = − 1

4π

∫
ψ∗f (r′)U(r′)ψ0(r′) dr′ (2.47)

fB2 = − 1

4π

∫
ψ∗f (r′)U(r′)G(r′, r′′)U(r′′)ψ0(r′′) dr′ dr′′ (2.48)

where ψ∗f (r′) = 〈kf | r′〉. The integrand in the first term (2.47) can now be
interpreted as the possibility that the incoming plane wave ψ0 interacts with the
potential U a single time at some point r′ and then ends up in the final state ψf .
The total probability of this process is given by the integration over all possible
scattering points r′ and is modulated by the strength of the potential U at those
particular points. The integrand in the second term (2.48) can analogously be
interpreted as the possibility that the incoming plane wave ψ0 interacts with
the potential at some point r′′, then propagates in an intermediate form, which

4The geometric series is the infinite series expansion of 1
1−x

=
∑∞

n xn, see e.g. [31].
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Figure 2.3: Graphical illustration of the third Born scattering amplitude inter-
pretation in which the scattered particle sequentially interacts three times with
a potential U (whose magnitude at a point r is represented by the red gradient)
at points r′′′, r′′ and r′ and propagates as a freely expanding spherical wave
between these interactions (concentric circles). The initial and final states are
plane waves with momentum ki and kf respectively.

is specified by the Green’s function G(r′, r′′), before interacting a second time
at point r′ and ending up in the final state ψf . The actual form of the Green’s
function is specified by (2.33). For example, for the unperturbed Hamiltonian
given by (2.32) it is a homogeneously expanding spherical wave given by (2.35).
The total scattering amplitude (2.45) thus takes into account all possible number
of interactions n = 1, 2, . . . with the potential and integrates over all possible
intermediate paths that the particle can take.

Using this physical picture, one can conclude that the Born series should
converge faster if the projectile energy is high enough so that it cannot interact
with the scattering potential too many times, i.e. if the interaction is weak
enough. Depending on the strength of the interaction one should therefore be
able to take a finite number of Born series terms to calculate the total scattering
amplitude. The Born series is thus a perturbative expansion of the interaction
potential between the incoming projectile and the target. In many practical
cases, for which the projectile energy is large with respect to the interaction po-
tential, the first Born term is sufficient to calculate the scattering cross-section.
Assuming that the incoming and outgoing wavefunctions, ψ0 and ψf , can be
described by plane waves with momentum ki and kf , the First Born Approxi-
mation (FBA) can be written as

fB1 = − 1

4π

∫
exp(iq · r)U(r) dr (2.49)

where q = ki−kf is the momentum transfer variable. The first Born amplitude
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is therefore given by the Fourier transform of the interaction potential in the
variable q.

2.3.3 Coulomb scattering

In the previous two sections scattering amplitudes and cross-sections were ob-
tained by comparing the asymptotic form of the wavefunction to a certain
boundary condition given by (2.10). This boundary condition explicitly assumes
that the wave is free from the potential at some point. This treatment excludes
a quite important type of potential: the Coulomb potential. The Coulomb po-
tential is ’problematic’ because it has an infinite range. This means that in
principle the wavefunction is never completely free of the potential and that
the asymptotic form of the outgoing wavefunction cannot be represented by the
pure spherical wave assumed in (2.10). Fortunately, it is possible to solve the
Coulomb scattering problem analytically and derive the required modifications
to treat this important case. The solution of the Coulomb scattering problem
that is outlined below follows the treatment by Bransden and Joachain [29].

The Schrödinger equation for scattering of a simple particle from a Coulomb
potential V (r) = U0/r can be solved exactly using parabolic coordinates. The
parabolic coordinates (ζ, η, φ) are related to Cartesian coordinates (x, y, z) as
follows

x =
√
ζη cosφ y =

√
ζη sinφ z =

1

2
(ζ − η) (2.50)

ζ = r + z η = r − z φ = arctan y/x (2.51)

where r = 1
2 (ζ + η). By treating the Schrödinger equation in parabolic co-

ordinates one direction in space can be singled out for which the problem is
symmetric. The Coulomb scattering problem is azimuthally symmetric around
the propagation direction of the incoming projectile. From (2.50) it can be seen
that this direction is parallel to the z-axis, since the coordinate transformation
from parabolic to Cartesian coordinates does not depend on the azimuthal angle
φ. Writing the Schrödinger equation for scattering from the Coulomb potential
in parabolic coordinates leads to the following expression[

∇2 + k2 − 2U0

ζ + η

]
ψc = 0 (2.52)

where the Laplacian operator in parabolic coordinates is given by

∇2 =
4

ζ + η

[
∂

∂ζ

(
ζ
∂

∂ζ

)
+

∂

∂η

(
η
∂

∂η

)]
+

1

ζη

∂2

∂φ2
(2.53)

As the wavefunction ψc should exhibit azimuthal symmetry around the projec-
tile direction, the solution is assumed to be of the following form

ψc = f(ζ)g(η) (2.54)

Substituting this ansatz into the parabolic Schrödinger equation results in two
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differential equations

∂

∂ζ

(
ζ
∂f

∂ζ

)
+

(
1

4
k2ζ − ν1

)
f = 0 (2.55)

∂

∂η

(
η
∂g

∂η

)
+

(
1

4
k2η − ν2

)
g = 0 (2.56)

where ν1 and ν2 are separation constants such that

ν1 + ν2 = U0/2 (2.57)

It can be shown that a solution of (2.55) is given by the function

f(ζ) = exp

(
1

2
ikζ

)
(2.58)

provided ν1 = ik/2. Using (2.57) and introducing

g(η) = exp

(
−1

2
ikη

)
h(η) (2.59)

Eq. (2.56) is can be rewritten as

η
d2h

dη2
+ (1− ikη)

dh

dη
− γkh = 0 (2.60)

which is also known as the Kummer-Laplace differential equation where γ =
U0/2k is the Sommerfeld parameter. The regular solution of this equation is
given by the confluent hypergeometric function

h(η) = C 1F1(−iγ, 1, ikη) (2.61)

where C is an integration constant. Substituting (2.58), (2.59) and (2.61) into
(2.54), and normalizing so that the incoming wave amplitude is unity, results in
the following expression

ψc = exp(−πγ/2)Γ(1 + iγ) exp(ikz) 1F1(−iγ, 1, ikη) (2.62)

for the Coulomb wavefunction (see also Fig. 2.4).
As explained in Sec. 2.2, in order to obtain the scattering amplitudes and

cross-section it is necessary to examine the asymptotic behaviour of the Coulomb
wavefunction as r → ∞. It can be shown, using the asymptotic form of the
confluent hypergeometric function [29, 32], that the asymptotic form of the
Coulomb wavefunction is given by

ψ
(+)
f −→

r→∞; θ 6=0
exp {ik · r + iγ log[kr(1− cos θ)]}

[
1 +

γ2

ikr(1− cos θ)
+ . . .

]
+

fc(k, θ)
exp{ikr − iγ log(2kr)}

r

[
1 +

(1 + iγ)2

ikr(1− cos θ)
+ . . .

]
(2.63)
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Figure 2.4: Probability density, i.e. |ψc|2, of a Coulomb wavefunction with a
momentum of k = 6 a.u. directed along the y-axis direction. The position of
the scatterer at the origin is marked by the red cross.

where fc(k, θ) is the Coulomb scattering amplitude given by

fc(k, θ) = − U0

4k2 sin2(θ/2)
exp{−iγ log[sin2(θ/2)] + 2i arg[Γ(1 + iγ)]} (2.64)

Finally, the differential cross-section for scattering from the pure Coulomb po-
tential can be calculated and is given by

d3σc
dk dθ dφ

=
U0

16k4 sin4(θ/2)
(2.65)

This expression is identical to the Rutherford formula that gives the classi-
cal cross-section for scattering by a Coulomb potential. In both the quantum
mechanical and the classical treatment the Coulomb differential cross-section
increases without bound as θ → 0 because the potential has an infinite range5.

It is interesting to compare these results to the First Born Approximation
(FBA) for Coulomb scattering. The FBA scattering amplitude is given by (2.49)

fB1 = − 1

4π

∫
U0

exp(iq · r)

r
dr (2.66)

where q = ki − kf . This integral can be evaluated using the Bethe integral6

5Interestingly, the cross-section for classical scattering from a potential is always infinite as
θ → 0 unless the potential is strictly zero outside some finite range. In quantum mechanical
scattering this is not true, and for any potential that decreases faster than 1/r3 the cross-
section converges to a finite value.

6The Bethe integral can be derived by evaluating the FBA for a Yukawa potential U(r) =
U0 exp(−αr01)/r01 first. This is readily evaluated and gives −U0/(α2 + q2). The Bethe
integral follows from this result by taking the limit α→ 0.
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which gives the following relation

− 1

4π

∫
exp(iq · r0)

|r0 − r1|
dr0 = −exp(iq · r1)

q2
(2.67)

Using this expression to evaluate (2.66) and substituting q = 2k sin(θ/2), which
gives the momentum transfer magnitude in terms of the scattering angle θ for
elastic scattering, leads to the following expression for the FBA scattering am-
plitude

fB1
c = − U0

4k2 sin2(θ/2)
(2.68)

Comparing this expression to (2.64) it is clear that the true Coulomb scattering
amplitude deviates from the FBA amplitude by a logarithmic phase factor. This
phase factor has of course no influence on the differential cross-section which is
indeed again given by (2.65). However, when the Coulomb scattering amplitude
must be added coherently to other amplitudes, this phase factor does become
important.

The final point considered in this section is the treatment of Coulomb scat-
tering within the partial wave method. In the partial wave method phase shifts
are determined by matching the asymptotic form of the radial part of the wave-
function to that of a plane wave. It is possible to generalize this approach by
attempting to match the radial wavefunction to a spherical harmonic expansion
of the Coulomb wave instead. By defining an expression for the Coulomb scat-
tering amplitude that is identical to the previously obtained expressions (2.27)
and (2.28), the Coulomb phase shifts can be explicitly obtained as [30]

δc`(k) = arg [Γ(l + 1 + iγ)] (2.69)

Unfortunately, these Coulomb phase shifts do not go to zero as `→∞ so that
the sum of partial scattering amplitudes for the pure Coulomb potential still
does not converge. Nevertheless, the main application for Coulomb phase shifts
is the treatment of scattering from the modified Coulomb potential

Uc =
U0

r
+ Us(r) (2.70)

which is the sum of a pure Coulomb term and a short range potential Us(r). In
this case it can be shown that the scattering amplitude is given by the coherent
sum of the pure Coulomb scattering amplitude, given by (2.64), and a Coulomb
modified short range scattering amplitude given by

fs(k, θ) =

∞∑
`=0

2`+ 1

2ik
exp[2iδc`(k)] {exp[2iδs` (k)]− 1}P`(cos θ) (2.71)

where δs` (k) are additional phase shifts due to the short range potential. The
short range potential phase shifts are determined by matching the asymptotic
behaviour of the full radial wavefunction, which solves the radial equation for
(2.70), to the Coulomb radial wavefunction outside the range of the potential
Us(r). The short range potential phase shifts do go to zero as ` → ∞, so that
the summation over the partial scattering amplitudes giving fs does converge.
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2.4. Electron-atom collisions

2.4 Electron-atom collisions

So far, the scattering of a single particle by an arbitrary potential has been
considered. The electron-atom scattering problem requires finding the station-
ary states of a N + 1 electron time-independent Schrödinger equation (see also
Sec. 2.2). In order to calculate meaningful continuum quantities care must be
taken that the correct asymptotic boundary conditions are applied to the N
target electrons and to the projectile electron. Furthermore, as opposed to
the simple potential scattering problem considered in Sec. 2.3, electron-atom
scattering is concerned with a many-body system and in principle requires the
anti-symmetrization of the wavefunction according to the Pauli principle. Solv-
ing such a problem, which includes continuum states, represents a formidable
challenge and in practice different strategies have to be devised to obtain ap-
proximate solutions. Even with simplifying assumptions, obtaining approximate
solutions can nevertheless require sophisticated theoretical and numerical work.

The appropriate choice of strategy enabling the (approximate) solution of
the electron-atom scattering problem depends on the energy of the interacting
electrons. Section 2.4.1 starts with the treatment of low energy scattering
which is defined such that the incoming electron kinetic energy is up to several
times the ionization threshold of the target system. In this case the incoming
electron can interact strongly with a few of the lowest energy target states
and close coupling expansions may be used. Based on the basic close coupling
equations further simplifications can be introduced, e.g. the static-exchange
approximation, such that the basic physical features of the problem are retained
while the calculation and modelling effort is reduced. Section 2.4.2 continues
with the treatment of high energy scattering where the incoming electron kinetic
energy is much higher than the ionization energy of the target electrons. In the
high energy domain one can treat the interaction of the incoming electron with
the target system as a perturbation and use the Born approximation to define
and evaluate transition matrix elements for electron scattering from an atomic
target. Electron impact ionization is also considered a high energy scattering
problem and is also treated in this section using the Born approximation.

2.4.1 Low energy scattering

The derivation of the close coupling equations outlined in the following largely
follows the treatments found in Burke [33] and in Bransden and Joachain [29].
The target electrons, with the coordinates r1, . . . , rN , are initially assumed to be
in some eigenstate of the target atom, while the projectile, with the coordinate
r0, is a freely propagating electron with a specific kinetic energy. With this in
mind the full N + 1 electron Hamiltonian is partitioned as follows

H = Ht + T0 + Vint (2.72)

where Ht is the target Hamiltonian given by

Ht =

N∑
p=1

(
− ~2

2m
∇2

rp
− Z

rp

)
+

1

2

N∑
p,q=1

1

rpq
(2.73)

T0 is the kinetic energy operator of the projectile electron

T0 = − ~2

2m
∇2

r0
(2.74)
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2.4. Electron-atom collisions

and Vint is the projectile-target interaction potential given by

Vint = −Z
r0

+

N∑
p=1

1

r0p
(2.75)

In the above equations, attractive nuclear potential terms are given by −Z/rn
and it is assumed that the nucleus is infinitely heavy and located at the center
of the coordinate system. The repulsive electron-electron interaction terms are
given by the 1/rmn terms. The target eigenstates can be obtained by solving
the N electron target Schrödinger equation, using the Hamiltonian (2.73).

The general solution of the full Schrödinger equation with the Hamiltonian
H given by (2.72) can be obtained using the close coupling expansion which
states that the eigenfunction ψ can be expressed as a sum of products of target
eigenfunctions φi and corresponding projectile wavefunctions Fi as follows

ψ(rN , . . . , r0) =
∑
i

∫
φi(rN , . . . , r1)Fi(r0) (2.76)

where the sum runs over all discrete and the integral over all continuum eigen-
states of the target φi [33]. By substituting (2.76) into the full Schrödinger
equation and projecting onto the target eigenstates φi one obtains an infinite
set of coupled integro-differential equations for the unknown scattered electron
wavefunctions Fi given by

(∇2
r0

+ k2i )Fi(r0) = 2
∑
j

∫
Vij(r0)Fj(r0) dr0 (2.77)

where Vij is a potential matrix defined as follows

Vij(r0) = 〈φi(rN , . . . , r1)|
N∑
p=1

1

r0p
− Z

r0
|φj(rN , . . . , r1)〉 (2.78)

The value of the momentum ki in (2.77) follows from energy conservation for
each included channel and is given by

k2i = 2(E − Ei) (2.79)

where Ei is the energy of the target state that is involved, i.e. Ei = 〈φi|Ht |φi〉.
Expansion (2.76) is obviously problematic since it includes an infinite number

of coupled bound and continuum target states. Moreover, since this is a many-
body system of electrons, the total electronic wavefunction must satisfy the Pauli
exclusion principle, which is not explicitly taken into account in the expansion.
Trying to represent particle exchange between the incoming electron and one of
the target electrons results in a bound state wavefunction for the projectile r0
and a corresponding continuum state for one of the target electrons rN , . . . , r1.
It turns out that this leads to singularities in the integration over continuum
terms in (2.77) [33].

The formal, but impractical, infinite expansion (2.77) can be truncated to
a limited number of strongly coupled states. It was also shown that truncating
expansion (2.76) to a finite number of bound target states enables the generaliza-
tion of the Hartree-Fock treatment such that it can be applied to wavefunctions
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2.4. Electron-atom collisions

containing continuum states [33]. This leads to the following expression for the
full wavefunction

ψ(rN , . . . , r0) = A
N∑
i

φi(rN , . . . , r1)Fi(r0) (2.80)

where the sum now runs over a finite number of bound target states and the
total wavefunction is explicitly anti-symmetrised with the operator A defined
by

A =
1√
N + 1

1±
N∑
β=1

P0β

 (2.81)

where P0β is a permutation operator exchanging the spatial coordinates of elec-
trons 0 and β. The spatial wavefunction symmetry, which is given by the sign
within the operator A, depends on the spin of the two electrons that are ex-
changed and is chosen such that the total wavefunction, including spin, is anti-
symmetric.

The problem of determining which states are strongly coupled, and should
thus be retained in the truncated expansion (2.80), is quite non-trivial. Also,
since the expansion has been truncated to bound states only, it is strictly speak-
ing not possible to represent ionization of one of the bound electrons any longer.
Moreover, in some processes, such as long-range polarisation effects, continuum
states of the target electrons are involved as an intermediate step. In order
to partly represent relevant continuum and highly excited states it is possible
to introduce square integrable, anti-symmetrised wavefunctions χp which are
known as correlation functions. The expansion now becomes

ψ(rN , . . . , r0) = A
∑
i

φi(rN , . . . , r1)Fi(r0) +
∑
p

cpχp(rN , . . . , r0) (2.82)

The correlation functions χp can be chosen in such a manner that they diago-
nalize the full N + 1 electron Hamiltonian and that they are orthogonal to the
space spanned by the first expansion in (2.82) so that

〈χp|H |χq〉 = εkδpq (2.83)

and
〈χp|φiFi〉 = 0 (2.84)

The first step in obtaining the close coupling equations for the approximate
expansion (2.82) is to substitute it into the full Schrödinger equation and project
onto the square integrable correlation functions χp, i.e.

〈χp(rN , . . . , r0) |H − E |ψ(rN , . . . , r0)〉 = 0 (2.85)

Using the fact that the correlation functions diagonalize the Hamiltonian accord-
ing to (2.83), and that they are orthogonal to the first term in the expansion,
these equations can be used to yield the expansion coefficients cp giving

cp = ± 1

E − εp
〈χp|(H − E)

N∑
β=1

P0β |φj(rN , . . . , r1)Fj(r0)〉 (2.86)
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The second step is to substitute expansion (2.82) into the Schrödinger equation
and project onto the target eigenfunctions, i.e.

〈φi(rN , . . . , r1)|H − E |ψ(rN , . . . , r0)〉 = 0 (2.87)

which leads to a set of coupled equations for the unknown projectile functions
Fi(r0). These equations are a finite set of integro-differential equations that can
be written as follows

(∇2
r0

+ k2i )Fi(r0) = 2
∑
j

{
Vij(r0)Fj(r0) + Wij(r0) + Xij(r0)

}
(2.88)

where Vij is the direct potential matrix given by (2.78), and Wij and Xij are the
exchange potential and correlation potential matrices respectively. In analogy
with the Hartree-Fock treatment, the exchange potential matrix arises due to the
anti-symmetrization of the first term in (2.82) and is an explicit representation
of the exchange between the projectile and one of the target electrons. It is
given by

Wij(r0) = ±〈φi(rN , . . . , r1)|
(

1

r0β
+ Ei + Ej − E

) N∑
β=1

P0β

× |φj(rN , . . . , r1)Fj(r0)〉 (2.89)

The inclusion of square integrable, anti-symmetrised wavefunctions χk gives rise
to a correlation potential that, as mentioned above, represents the short-range
effects of electron correlation between the projectile and target electrons. This
potential is given by the expression

Xij(r0) =
∑
k

ck × 〈φi(rN , . . . , r1)|H − E |χk(rN , . . . , r0)〉 (2.90)

where ck are the expansion coefficients obtained previously in (2.86).
Clearly, it is only possible to solve the close coupling equations numerically.

Typically this is done by expanding the wavefunctions and potentials in spherical
harmonics and applying the partial wave method. Many different numerical
packages exist for this task using different degrees of approximation to solve
the close coupling equations. The Belfast atomic R-matrix package is a well
known example of a rather sophisticated one, which requires elaborate models
of the coupled atomic states and the correlation functions as input [34, 33].
Another example is the EPolyScat package, which applies a variational approach
based on the Lippman-Schwinger equation in order to solve the close coupling
equations. It is specifically designed to treat scattering from a molecular target
[35]. Though the mentioned packages are quite powerful and can calculate
cross-sections accurately, they are also relatively complicated to use and require
a large computational effort.

In the case of elastic scattering the problem may be simplified very much
by using the static-exchange approximation. This basically means that only a
single target state is retained in expansion (2.80) and the set of coupled integro-
differential equations (2.88) reduces to the single integro-differential equation

(∇2
r0

+ k2i )Fi(r0) = 2(Vii +Wii)Fi(r0) (2.91)
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Figure 2.5: Differential cross-sections for elastic scattering from C, F and I
atoms at projectile energy Ei = 50 eV. Calculated using the software package
ELSEPA [36].

The direct potential Vii is simply the static potential corresponding to the sum
of the average electron-electron repulsion between the projectile and target elec-
trons and an attractive nuclear term. The static-exchange approximation can
clearly only represent elastic scattering. Due to the lack of a correlation po-
tential it also does not take into account polarisation of the target atom due to
the interaction with the incoming projectile. These shortcomings are in practice
often alleviated through the use of approximate semi-empirical potentials, e.g.
Buckingham polarization potential. The static-exchange equation is actually
still quite computationally intensive due to presence of the non-local exchange
potential Wii. A further computational simplification is possible if one uses
an approximate potential for the exchange potential as well. Figure 2.5 shows
elastic scattering differential cross-sections calculated with the scattering code
ELSEPA [36]. This software package uses the static-exchange approximation in
combination with approximate exchange and polarization potentials in order to
calculate elastic scattering cross-sections for a wide range of atoms.

2.4.2 High energy scattering

The scattering of an electron by an arbitrary scalar potential using a perturba-
tive expansion, where the scattering potential is treated as a perturbation, was
considered in Sec. 2.3.2. It was shown that a simple and intuitive picture of the
resulting Born series is that it represent a multiple scattering series where the
nth term in the series corresponds to the situation where the projectile interacts
n times with the potential before ending up in the final state. The First Born
Approximation (FBA) assumes that the projectile interacts a single time with
the scattering potential and is given by

fB1
fi = − 1

4π
〈ψf |V |ψi〉 (2.92)
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where |ψi〉 and |ψf 〉 are the initial and final states of the projectile, and V is
an arbitrary scattering potential. The generalization of this FBA expression
to electron-atom scattering can be achieved by considering the following two
points. First, from the partitioning of the Hamiltonian given by (2.72) it is clear
that the projectile-atom interaction potential Vint, which is given by (2.75), can
be seen as a perturbation. The FBA scattering amplitude (2.92) for electron-
atom scattering can therefore be obtained by setting V = Vint. Second, in the
case of electron-atom scattering the initial and final states, |ψi〉 and |ψf 〉, must
be described by a many-body wavefunction, and should be constructed such
that they represent the bound atomic states and the continuum states for the
reaction under consideration. In the case of inelastic scattering the continuum
states may consist of more than one electron, which leads to a description of
electron impact ionization. This section will show how elastic and inelastic
scattering amplitudes for electron-atom scattering can be calculated using the
FBA and is mainly based on the treatment by Bransden and Joachain in [29]. It
is noted that the scattering reactions considered in this section are assumed to
be highly asymmetric, i.e. the final state kinetic energy of the projectile is much
larger than that of all the other electrons, so that electron exchange effects can
be neglected.

Elastic scattering

In order to evaluate the first Born amplitude (2.92) for elastic scattering it is
necessary to assume a form for the initial and final state wave functions |ψi〉 and
|ψf 〉. The initial state |ψi〉 can be taken as a product of the target ground state
and an incoming plane wave with momentum ki. In the case of elastic scattering
from a neutral atom the asymptotic form of the scattered electron wave function
is a plane wave with momentum ks which is equal in magnitude to the incoming
plane wave momentum, i.e. ks = ki. In a very first approximation we may thus
assume that the final state |ψf 〉 is a product of the target in the same atomic
ground state and an outgoing plane wave. Using this form for the initial and
final states implies that the incoming electron is not influenced by, or has an
influence on, the target atom except through an impulse-like interaction with
the perturbation potential Vint. In other words the initial and final plane waves
are not distorted in any way as they get closer to the atom, nor do the target
states feel any effect of the incoming electron. This approximation is called the
Plane Wave Born Approximation (PWBA). Writing out the PWBA scattering
amplitude (2.92) explicitly gives

fPWBA
ii = − 1

4π

∫
exp(−iks · r0)φ∗i (rN , . . . , r1)

(
−Z
r0

+

N∑
n=1

1

r0n

)
×

exp(iki · r0)φi(rN , . . . , r1) dN+1r0...N (2.93)

where φi is the initial state of the atom.
Before continuing with calculations using the PWBA approximation it is

interesting to compare (2.93) to the close coupling equations introduced in the
previous section. Using (2.78), which defines the direct potential matrix in the
close coupling equations, (2.93) can be rewritten as

fPWBA
ii = − 1

4π

∫
exp(iq · r0)Vii(r0) dr0 (2.94)
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where q = ki − ks is the momentum transfer vector. Thus in the PWBA, the
first Born scattering amplitude is given by the Fourier transform of the static
potential between the incoming electron and all the target electrons, plus the
attractive term of the nucleus. Comparing to (2.88) it is again made clear that
this approximation does not include exchange effects or any short-range electron
correlation effects.

Returning to (2.93) and performing the integration over projectile coordinate
r0 using the Bethe integral (2.67) leads to the following general expression for
the atomic scattering amplitude

fPWBA
ii (q) =

Z −Di(q)

q2
(2.95)

This expression contains two contributions: one Coulombic term Z/q2 which
takes scattering from the nucleus only into account and the term Di(q)/q2

which is the electron charge scattering factor7 Di(q) is given by

Di(q) =

∫
ρi(r) exp(iq · r) dr (2.96)

In this expression ρi(r) = |ψi|2 is the electron charge density. For the case of
an isolated atom the electron charge distribution ρi(r) is spherically symmetric
so that (2.96) becomes

Di(q) =

∫
r

r2ρi(r)
sin(qr)

qr
dr (2.97)

Using these relations it is straightforward to calculate PWBA atomic scatter-
ing amplitudes for any atom once its wavefunction, or an approximation, is
known. In practice the charge scattering factors, i.e. Di(q), can be retrieved
using reference tables such as [38, 39].

It is instructive to evaluate (2.93) for the two simple cases of hydrogen and
helium. The hydrogen 1s state is known exactly and is given by

φH,1s =
1√
π

exp(−r1) (2.98)

where r1 is the bound electron position coordinate. For the helium atom an
approximate wavefunction given by

φHe,1s =
Z3
e

π
exp[−Ze(r1 + r2)] (2.99)

with Ze = 1.69 is used. Substituting (2.99) into(2.93) and performing the
integration over the bound electron coordinates r1 and r2 leads to an expression
of the form (2.94) with the potential Vii given by

V1s,1s(r0) = −nZe
(

1 +
1

Ze r0

)
exp(−2Ze r0) (2.100)

7A perturbative approach to calculating elastic X-ray scattering by atoms results in the
expression fii(q) = Di(q)/q2 where Di(q) is the same as in (2.95) [37]. X-rays are almost
exclusively scattered by the electron charge distribution, which reacts much more readily to
the electro-magnetic field, so that the nuclear scattering factor becomes negligible.
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Figure 2.6: Elastic differential scattering cross-section (DCS) in the Plane
Wave Born Approximation for hydrogen and helium (full lines) for a scattered
electron energy of Ei = 250 eV. The scattering cross-sections for scattering
from the bare nuclear charge of hydrogen and helium, i.e. Z = 1 and Z = 2,
are shown as well (dashed lines).

where n = 2. The potential Vii for scattering from hydrogen is given by the
same expression, but with n = 1 and Ze = 1 [29]. The scattering amplitude
is obtained by performing the final integration over the projectile position co-
ordinate r0 which results in the Fourier transform of V1s,1s in the momentum
transfer variable q giving

fPWBA
1s,1s = 2n

q2 + 8Z2
e

(q2 + 4Z2
e )2

(2.101)

The total elastic cross-sections, given by the absolute square of the scattering
amplitude (2.101), for the hydrogen and helium atom are plotted in Fig. 2.6.
Using the Bethe integral, it is also possible to calculate the cross-section for
electron scattering from the nucleus only which is plotted with dashed lines.

It is interesting to observe that the scattering cross-section for hydrogen
is more concentrated around small scattering angles compared to that of he-
lium. This is a direct consequence of the fact that the helium wavefunction
is more tightly bound, i.e. more sharply defined in position, and thus has a
broader momentum-space representation. A simple physical picture is that in
the PWBA the difference in the momentum between incoming and outgoing
scattered electron, i.e. momentum transfer q, is provided by the initial mo-
mentum of the target electron. The scattering amplitude is therefore given by
the probability of the target electron having the required momentum. This is
directly obtained from (2.94), which gives the scattering amplitude as the mag-
nitude of the momentum-space representation of the potential Vii for a given
momentum transfer q. As may be inferred from the above discussion it is a gen-
eral feature of high energy electron-atom scattering that the cross-section tends
to be wider for heavier atoms because they have more tightly bound electrons,

30



2.4. Electron-atom collisions

and thus higher target electron momenta available for scattering.
Finally, Fig. 2.6 also shows that as the scattering angle increases, the cross-

section starts resembling more and more that of pure electron-nucleus scattering
(dashed lines). This can again be explained with a simple physical picture that
for a large momentum transfer the projectile has interacted rather strongly with
the target and thus starts seeing the unscreened nucleus. For small momentum
transfer values, the interaction is rather weak and the electron is mainly sees
the exponential tail of the static potential (2.100). Because the exponential tail
falls off faster than 1/r, the static potential is a short range potential (see Sec.
2.2) and the total cross-section remains finite for q = 0. This can be contrasted
to the cross-section for scattering from a Coulomb potential, e.g. pure electron-
nucleus scattering in Fig. 2.6 (dashed line), which diverges for q → 0 (see also
Sec. 2.3.3).

Inelastic scattering and ionization

The general high energy electron-atom ionization problem requires the treat-
ment of a three-body continuum system, consisting of the incoming and the
ejected electron, and the residual ion, for which there is no analytical solution.
In principle, the solution cannot a priori be obtained in a perturbative way
since, depending on the scattering conditions, there can be a strong interaction
over an extended range between any of the two fragments through the Coulomb
potential. For example, the two outgoing electrons may have an outgoing en-
ergy and direction that are very similar, e.g. in a symmetric (e,2e) reaction,
and will interact in a very extended region [40]. However, depending on the
initial and final conditions one can use simplifying assumptions which enable
the calculation of the differential cross-section for the specific process. The
main focus of this work are asymmetric reactions where the incoming electron
is very fast compared to the ejected electron. In this case one can ignore the
long-range Coulomb potentials acting on the projectile and treat the collision
perturbatively. In a first approximation the residual ionic potential acting on
the ejected electron may also be neglected, which leads to the Plane Wave Born
Approximation (PWBA) for impact ionization that is treated in the first part
of this section. Following this it will be shown that it is also possible to take
the ionic Coulomb potential acting on the ejected electron into account using
the Distorted Wave Born Approximation (DWBA). At the end of this section,
the PWBA and DWBA will be applied to calculate differential cross-sections
for electron impact ionization of the hydrogen atom. This will give some ba-
sic insight into the different contributions that make up the cross-section and
enable an interpretation of it in terms of reaction kinematics.

Before moving on to the main discussion, which is electron impact ionization,
inelastic electron scattering resulting in target excitation shall be considered.
Writing down the PWBA scattering amplitude for inelastic electron scattering
which to (2.93) is relatively straightforward. The main difference here is that
the initial and final state of the target are not the same any longer. Therefore,
assuming that the target states are orthogonal to each other, the projectile-
nucleus term Z/r0 in the perturbation potential does not contribute to the
scattering amplitude. Also, since the outgoing electron loses a part of its energy
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to the target electron, the final outgoing electron momentum is now given by

k2s = k2i + 2Eij (2.102)

where Eij is the energy difference between the initial and final target state.
Using these conditions, the PWBA amplitude for inelastic scattering is given as
follows

fPWBA
ij = − 1

4π

∫
exp(iq · r0)φ∗j (rN , . . . , r1)

(
N∑
n=1

1

r0n

)
×

φi(rN , . . . , r1) dN+1r0...N (2.103)

where q = ki − ks. Using the Bethe integral (2.67) to evaluate the integration
over r0 this expression can be rewritten as follows

fPWBA
ij = − 2

q2

N∑
n=1

〈φj | exp(iq · rn |φi〉 (2.104)

This expression shows a remarkable similarity to the transition matrix elements
describing the interaction of atoms with an electro-magnetic field in a standard
perturbative treatment [29]. In the limit q → 0, the dipole approximation
may be applied to the operator in (2.104) so that the transition can even be
linked directly to the optical oscillator strength. In the early years of research
on electron collisions this was especially interesting as it provided a convenient
method to investigate the optical properties of atoms and molecules at high
energies [41].

The PWBA may also be applied in the context of electron impact ionization
and is widely used in the field of (e,2e)-spectroscopy [42]. In this case plane
waves are used for the single incoming and the two outgoing electrons, and
the final target state ϕe is an ionic (ground) state. Within this approach the
influence of the ionic Coulomb field on both of the outgoing electrons, as well as
the Coulomb interaction between the two ejected electrons, is neglected. This
of course implies that the relative velocity between all three fragments is large.
Again writing out (2.93) for the case of electron impact ionization leads to

fPWBA
ie = − 1

4π

∫
exp(iq · r0) exp(−ike · rN )ϕ∗e(rN−1, . . . , r1)×(

−Z
r0

+

N∑
n=1

1

r0n

)
φi(rN , . . . , r1) dN+1r0...N (2.105)

where ke is the momentum of the ejected electron which is obtained from energy
conservation which is given by

k2s = k2i − k2e + 2Eie (2.106)

Integral (2.105) consists of two terms: a projectile-nucleus and a projectile-
electron interaction term. In contrast to the case of electron impact excitation,
the initial and final target states are not orthogonal, as one of the bound elec-
trons is promoted to the continuum, so that the projectile-nucleus term must
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2.4. Electron-atom collisions

be retained. The projectile-nucleus term represents an indirect interaction term
which leads to the ejection of electron rN via the interaction of the projectile
with the nucleus. Using the Bethe integral to effect integration over the projec-
tile coordinate r0, the projectile-nucleus term may be rewritten as follows

κPWBA
ie = Z

2

q2

∫
exp(−ike · rN )Φei(rN ) drN (2.107)

where

Φei(rN ) =

∫
ϕ∗e(rN−1, . . . , r1)φi(rN , . . . , r1) dN−1r1...N−1 (2.108)

is the spatial overlap integral between the initial and final (ionic) target state, i.e.
the Dyson orbital. The projectile-nucleus scattering amplitude (2.107) is thus
given by the Fourier component, or equivalently the momentum-space value, of
the Dyson orbital (2.108) at the momentum ke. The projectile-electron term
represents the interaction with one of the target electrons r1, . . . , rN leading
to ejection of electron rN and therefore includes direct and indirect interac-
tions. Proceeding in a similar fashion as with the projectile-nucleus term, the
projectile-electron term can be written as

ηPWBA
ie = − 2

q2

{∫
exp(i∆ · rN )Φei(rN ) drN +

N−1∑
n=1

∫
exp(−ike · rN )Υei(rN ) drN

}
(2.109)

where ∆ = q − ke = ki − ks − ke and

Υei(rN ) =

∫
exp(iq · rn)ϕ∗e(rN−1, . . . , r1)φi(rN , . . . , r1) dN−1r1...N−1

(2.110)
Comparing (2.109) to (2.107) it is first seen that the sign of the projectile-
electron scattering amplitude contributions is opposite to that of the projectile-
nucleus term. The first term in (2.109) is a direct interaction term which repre-
sents binary scattering between the incoming projectile and the ejected electron.
This integral may be interpreted in the same way as (2.107) as being given by the
momentum-space value of the Dyson orbital (2.108), but now at the momentum
value ∆ instead of ke. The remaining terms under the summation in (2.109)
represent indirect projectile-electron interactions, in which the projectile inter-
acts with a target electron rn that is not ejected but acts as an intermediary
instead and transfers the energy to the ejected electron rN . Comparing these
indirect terms to (2.107), which gives the indirect projectile-nucleus scattering
contribution, it is seen that they are again given by the Fourier transform of a
function at the momentum value ke. However, unlike in (2.107), this function
is not the Dyson orbital any longer. The function Υ(rN ) differs from the Dyson
orbital (2.108) in the fact that the integration over rn now includes a complex
exponential term. This can be interpreted as giving the momentum-space value
of the rn electron orbital at the momentum given by q.

In order to demonstrate basic features of the theory in a relatively simple
setting, the PWBA scattering amplitude for electron impact ionization of the
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2.4. Electron-atom collisions

hydrogen atom will be considered. The initial target wavefunction is given by
φ1s(r1) =

√
Z3/π exp(−Zr1), where Z = 1. As there is by definition only a

single target electron, the Dyson orbital is identical to the initial target wave-
function. The total scattering amplitude is the sum of the nuclear and electron
scattering amplitudes given by (2.107) and (2.109) which leads to the following
expression after the substitution of φ1s(r1)

fPWBA
H,1s =

2

q2
1√
π

{∫
exp(−ike · r1) exp(−r1) dr1−∫

exp(i∆ · r1) exp(−r1) dr1

}
(2.111)

The two integrals in (2.111) are given by the momentum-space representation
of the target wavefunction φ1s(r1), evaluated at the momentum value ke and
∆ respectively. Momentum-space representations of hydrogenic wave functions
have been obtained in analytical form by Podolsky and Pauling [43]. For the 1s
hydrogenic orbital it is given by

φ1s(p) =
23/2

πZ3/2

1

[(p/Z)2 + 1]2
(2.112)

where p is the momentum magnitude. The scattering amplitude integrals can
now be evaluated analytically and are found to be given by

fPWBA
H,1s =

2

q2
23/2

π

[
1

(k2e + 1)2
− 1

(∆2 + 1)2

]
(2.113)

Figure 2.7 shows the Triply Differential Cross-Section (TDCS) for electron
impact ionization of hydrogen calculated using (2.113) and (2.13) for the pro-
jectile energy Ei = 500 eV, scattering angle θs = 8◦ and ejected electron energy
Ee = 10 eV. The first observation that can be made from this plot is that
the projectile-nucleus term is independent of the ejected electron angle, while
the projectile-electron term peaks at a certain ejection angle giving rise to the
so-called binary peak. The behaviour of these contributions can be most easily
understood by considering the scattering amplitude expression (2.113) together
with the kinematics of the reaction using the graphical representation shown
in Fig. 2.8. From this graphical representation it is indeed obvious that the
projectile-electron interaction term should peak at some ejection angle θe which
minimizes the magnitude of ∆, and that the projectile-nucleus contribution
should be constant. Using basic trigonometry the binary peak angle can be
explicitly calculated as

θbin = − arctan

(
ks sin θs

ki − ks cos θs

)
(2.114)

An understanding of the kinematic conditions at which the magnitude of ∆
is minimized, and the corresponding location of the binary peak, can be very
useful for obtaining qualitative insight into the shape of the ejected electron
spectrum, see e.g. Sec. 2.5.2 or Sec. 4.3. The second observation that is made
with respect to Fig. 2.7 is that the interference between the two terms in (2.113),
which is due to the opposite sign of the two contributions, leads to a minimum
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Figure 2.7: Electron impact ionization Triply Differential Cross-Section
(TDCS) in the PWBA for atomic hydrogen. The projectile energy Ei = 500
eV, scattering angle θs = 8◦ and ejected electron energy Ee = 10 eV. The
total cross-section (red) is plotted together with the partial cross-sections for
projectile-electron (blue) and projectile-nucleus (green) scattering only. The bi-
nary peak location can be calculated using (2.114) and is at θe = −76◦ (dashed
gray), while the recoil peak is in the exact opposite direction at θe = 103◦

(dotted gray).
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Figure 2.8: Graphical representation of the hydrogen scattering amplitude
(2.113) where (a) is the projectile-electron and (b) the projectile-nucleus scat-
tering contribution. The possible values that the momentum variables ∆ in (a)
and ke in (b) can take as a function of the ejection angle θe are shown by the
dash-dotted line. The scattering amplitude for each contribution is a function
of the momentum-space Dyson orbital which is illustrated by the blue gradient.
Contribution (a) peaks at the minimum magnitude of ∆ (dashed gray line)
whereas contribution (b) is constant with respect to θe.
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Figure 2.9: Same as Fig. 2.7 but for scattering angle θs = 0◦. The partial cross-
sections for projectile-electron (green) and projectile-nucleus (red) scattering are
divided by 10 for visibility.

in the cross-section and the appearance of a local maximum in the opposite
direction to the binary peak. This is the so-called recoil peak. From the previous
discussion of kinematics it can be inferred that the relative contribution of the
projectile-nucleus term should become more important for small ke and/or for
small projectile scattering angle θs, i.e. small q. This is illustrated in Fig. 2.9
where all the scattering parameters are equal except for the scattering angle
θs, which is set to zero. The recoil peak is indeed seen to be much stronger
relative to the binary peak which is now located at θe = 0◦. The emission
pattern is actually starting to resemble a p-wave. This is consistent with the
’dipole like’ interaction regime at small momentum transfers mentioned in the
inelastic scattering treatment at the beginning of this section. Comparing the
absolute values of the cross-section it is also seen that they are much larger than
in Fig. 2.7 which is due to the q−2 dependence of the scattering amplitude on
the momentum transfer q = ki − ks.

In section 2.3.2 it was shown that the PWBA is just the first term in a
Born series and that improving the calculation accuracy would in principle re-
quire taking further series terms into account, i.e. Second Born Approximation.
Another powerful approach is to use a ’distorted’ form for the initial and final
wavefunctions which are an exact solution to some part of the perturbation
potential, e.g. the Coulomb potential of the core. This gives rise to the Dis-
torted Wave Born Approximation (DWBA) which is still a first-order perturba-
tion approach, but which improves the accuracy of the calculation by adapting
the wavefunction to the perturbation potential. The distorted initial and final
wavefunctions can for example be computed using the partial wave method as
continuum solutions to the static potentials given by the initial and final state
of the target atom respectively [44].

The DWBA is conveniently illustrated by treating electron impact ionization
of the hydrogen atom by a relatively fast projectile. Considering the asymmet-
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ric reaction where the ejected electron is slow compared to the projectile it is
expected that the parent ion Coulomb field has an important influence on the
ejected electron. A logical step would therefore be to use a Coulomb wavefunc-
tion, introduced in Sec. 2.3.3, for the slow ejected electron instead of the plane
wave assumed in the PWBA. The DWBA scattering amplitude for electron
impact ionization of hydrogen can therefore be written as

fDWIA
H,1s = − 1

4π

∫
exp(iq · r0)ψ∗c (r1)

1

r01
φ1s(r1) dr0 dr1 (2.115)

where ψc(r1) is the Coulomb wavefunction given by (2.62). Comparing this
expression to the PWBA scattering amplitude (2.105) it is seen that the 1/r0
interaction potential is eliminated from the DWBA integral due to the orthog-
onality of the Coulomb wave and the bound hydrogen state. This is a specific
example of a general feature of the DWBA approach, which eliminates a part
of the perturbation potential from the first-order Born term by adapting the
continuum electron wavefunctions to the problem at hand. The next step is
to use the Bethe integral to effect integration over the projectile coordinate r0
which leads to the following expression

fDWIA
H,1s =

2

q2
(2π)−3/2π−2 exp[πZ/(2k)]Γ(1− iZ/k)×∫
exp(i∆ · r0) 1F1[iZ/k, 1, i(ker1 + ke · r1)]φ1s(r1) dr1 (2.116)

This expression can be evaluated analytically for the 1s hydrogenic wavefunction
and the scattering amplitude is finally given by [29]

fDWBA
H,1s =

4
√

2

π
exp[π/(2ke)]Γ(1− i/ke) exp[−i/ke log v(∆,ke)]×

q[q− ke(1 + i/ke)]

[q2 − (ke + i)2][(q − ke)2 + 1]2
(2.117)

where v(∆,ke) is given by

v(∆,ke) =
q2 − k2e + 1− 2ike

(q − ke)2 + 1
(2.118)

The PWBA and DWBA calculations for electron impact ionization of the hy-
drogen atom are shown together in Fig. 2.10 for two projectile scattering angles.
Comparing the two approximations in Fig. 2.10(a) it can be seen that the main
features are comparable in the sense that both the calculations display the bi-
nary and recoil peaks. However, the PWBA calculation clearly overestimates
the total magnitude of the cross-section and the relative strength of the recoil
peak. This is attributed to the lack of screening of the nucleus by the electron
charge, because the PWBA considers the cross-section as given by a coherent
sum of scattering from the bare nucleus and from the electron charge distribu-
tion separately. For larger scattering angles of the incoming projectile, shown
in Fig. 2.10(b), the projectile-nucleus contribution dominates the total PWBA
cross-section so that the binary peak has almost disappeared while the recoil
peak is very strong. On the other hand, in the DWBA this behaviour is absent
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Figure 2.10: Comparison of the electron impact ionization Triple Differential
Cross-Section (TDCS) in the PWBA (blue) and DWBA (red) for the hydrogen
atom. The projectile scattering angles are (a) θs = 3◦ and (b) θs = 13◦. In
(b) the partial PWBA scattering amplitudes for the projectile-electron (green)
and projectile-nucleus (purple) contribution are also plotted. The projectile and
ejected electron energies are Ei = 250 eV and Ee = 5 eV.

and on comparing the DWBA cross-section to the PWBA partial contributions
from projectile-electron (green line) and projectile-nucleus (purple line) inter-
action terms it is concluded that the DWBA curve can largely be attributed to
the projectile-electron interaction term from the PWBA.

2.5 Electron-molecule collisions

The general theoretical tools introduced in the treatment of electron-atom col-
lisions, are of course, also applicable to the treatment of electron-molecule col-
lisions. In practice the treatment of electron-molecule collisions brings with it
its own complexities. One major difference in the treatment of the electron-
molecule problem is the inherent multi-center nature of the molecule, which
defines its structure and is also the property of interest in the study of struc-
tural dynamics. Many powerful Quantum Chemistry packages exist which can
solve for the molecular nuclear and electronic structure providing molecular
properties such as the electronic charge distribution. Such a target molecule
description may be used directly to calculate scattering amplitudes and cross-
sections with software packages such as EPolyScat [35]. However, this approach
can require a large amount of computing power and does not give a very di-
rect physical insight into the relation between the molecular structure and the
experimentally observed quantities.

This section will concentrate on the Independent Atom Model (IAM) of
electron-molecule scattering, which gives a very direct and intuitive relation be-
tween the molecular structure and the differential cross-section. The IAM is
an approximation that treats molecular scattering by assuming that each atom
within the molecule scatters the projectile independently so that the total scat-
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Figure 2.11: Graphical representation of the Independent Atom Model (IAM)
for elastic electron scattering. The electron with incident momentum ki is
elastically scattered by two independent atomic centres (blue) which results in
a path length difference (yellow) that is given by the scalar product between
the inter-atomic displacement vector and the momentum transfer, i.e. R · q =
R · (ks − ki).

tering amplitude is a coherent sum of the atomic scattering amplitudes. Section
2.5.1 treats the IAM in case of elastic scattering and shows how diffraction arises
from the molecular structure. Section 2.5.2 will introduce a simple theoretical
treatment of the effects of the molecular structure on the impact ionized elec-
tron and will show how this is related to the IAM in elastic scattering. In both
sections, the effects of averaging over the molecular frame on the experimentally
observable cross-sections will also be discussed.

Before continuing it is worth mentioning an important limitation of the IAM.
In the case of bound atoms the assumption that the atomic charge distribution
remains identical to the free atom distribution is obviously not true. The per-
turbation is not very large for core electrons, which are not influenced much by
chemical bonding, but for higher-lying orbitals the influence may be especially
significant. In traditional X-ray and electron diffraction this limitation is not
very severe, because typically high energy projectiles are used which penetrate
deeper into the molecule and map out the core potential [45, 37].

2.5.1 Independent Atom Model of diffraction

The Independent Atom Model (IAM) is an electron diffraction model used tra-
ditionally to describe high-energy X-ray and electron diffraction due to elastic
scattering from a molecular target [45, 37]. The IAM scattering amplitude for
a molecule is obtained as a coherent superposition of the scattered wave con-
tributions from each independent atom within the molecule. Elastic electron
scattering from atoms was treated in Sec. 2.4.2 where it was shown that in the
Plane Wave Born Approximation (PWBA) the scattering amplitude is given by
the integral (2.93). The scattering amplitude from a single displaced atomic
centre can be derived from this expression by a change of coordinates so that
the scattering centre is located at a point −R. Applying the coordinate trans-
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formation rn 7→ rn +R to (2.93) the integral is modified to

fPWBA
ii,+R = − 1

2π

∫
exp[−iks · (r0 +R)]φ∗i (rN , . . . , r1)

(
−Z
r0

+

N∑
n=1

1

r0n

)
×

exp[iki · (r0 +R)]φi(rN , . . . , r1) dN+1r0...N (2.119)

In rewriting this expression use was made of the fact that the perturbation po-
tential and the bound state wavefunction φi only depend on the relative position
of the atomic core with respect to the integration coordinates. These terms in
the integrand are therefore invariant with respect to the change of coordinates.
The exponential plane wave terms, on the other hand, acquire an additional
phase term. This phase shift can be taken out of the integral so that the scat-
tering amplitude in the displaced coordinate system can simply be written as

fPWBA
ii,+R = exp(iq ·R)× fPWBA

ii (2.120)

where q = ki − ks. This result is also illustrated graphically in Fig. 2.11,
from which it is seen that the phase factor can in fact be interpreted as a path
length difference. Generalizing this result to a multi-atomic molecule consisting
of N atomic scattering centres located at positions Rn leads to the following
expression for the total scattering amplitude

f IAM =

N∑
n=1

fn exp(iq ·Rn) (2.121)

where fn are individual atomic scattering amplitudes which can be calculated
using any of the techniques described in Sec. 2.4. Substituting (2.121) in
(2.12) from Sec. 2.2 gives the total Differential Cross-Section (DCS) for elec-
tron molecule scattering in the IAM as

dσIAM

dk dΩs
=

N∑
n=1

|fn|2 + 2

N∑
n=1

N∑
m=n+1

Re
{
fnf

∗
m exp(iq ·Rnm)

}
(2.122)

where Rnm = Rn−Rm. The first factor in this expression is simply the sum of
the differential cross-sections for scattering from each of the constituent atomic
centres within the molecule independently. This factor does not depend on the
structure of the molecule and is inherent to the atoms only. The second term in
this expression is the structural interference term, which arises from the coherent
addition of the scattering amplitudes from all pairs of atomic scattering centres
within the molecule.

The general DCS expression (2.122) assumes a particularly simple form in
the case of a homo-nuclear diatomic molecule which is given by

dσIAMA2

dk dΩs
= |f(q)|2[2 + 2 cos(q ·R)] (2.123)

where R is the position coordinate of the second atom relative to the first one,
and |f(q)|2 is the atomic cross-section. The first term in (2.123) is twice the
atomic cross-section while the second term is a two-centre interference factor
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Figure 2.12: Differential cross-section of I2 (red) within the Independent Atom
Model (IAM) and of the two independent Iodine atoms only (blue), i.e. first
term in (2.123). Atomic cross-sections were calculated using reference data
from [38, 39] with a projectile energy of Ei = 100 eV. The inter-nuclear vector
R is parallel to the projectile momentum ki, and has a magnitude of 2.67 Å.

with an oscillation period depending on the inter-nuclear distance. The calcu-
lated (DCS) for the homo-nuclear diatomic molecule I2 using the IAM is shown
in Fig. 2.12. The atomic term is calculated using reference data from [38, 39]
and is monotonously decreasing over the whole range of scattering angle θs (blue
line). The total DCS (red line) on the other hand shows pronounced oscillations
which result from the cosine term in (2.123).

The DCS calculated using (2.122) assumes that the molecule is completely
fixed in space with the atomic positions given by Rn. For gas-phase targets,
but also for unordered solid state targets, this is obviously not the case and
(2.122) must be suitably averaged to obtain experimental DCS expressions. It
is therefore expected that the structural interference oscillations that are so
pronounced in Fig. 2.12 will wash out to a certain degree. It turns out that
molecular interference oscillations are not washed out completely in the DCS
even for randomly oriented, i.e. unaligned, molecules. In order to see this (2.122)
is integrated over all the molecular frame angles in polar coordinates. The first
term in (2.122) does not depend on the atomic positions Rnm and can thus be
taken out of the integral. The terms in the summation do depend on molecular
orientation and the integration over molecular frame angles gives for each term
the expression

σnm =
1

4π

∫
φ

∫
θ

fn(q)f∗m(q) exp(iq ·Rnm) sin θ dφdθ (2.124)

where the integration is performed over the molecular polar and azimuthal angle
coordinates θ and φ with respect to an appropriately chosen reference frame.
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For unaligned molecules one can take the direction of q as the reference axis
to which the integration variables refer and this can be done for each atomic
pair term Rnm separately. This crucial observation allows one to write the dot
product in the exponential as q ·Rnm = qRnm cos θ where θ is the angle between
the momentum transfer vector and the atomic distance vector Rnm. Equation
(2.124) now simplifies to

σnm = fn(q)f∗m(q)
1

4π

∫
φ

dφ

∫
θ

exp(iqRnm cos θ) sin θ dθ (2.125)

which can be integrated using the variable substitution x = iqRjk cos θ, leading
to the final expression

σnm = fn(q)f∗m(q)
1

2

(
−1

iqRnm

)∫ −iqRnm

iqRnm

exp(x) dx

= fn(q)f∗m(q)
sin(qRnm)

qRnm
(2.126)

The total cross-section for randomly oriented molecules is therefore given by

dσIAMU

dk dΩs
=

N∑
n=1

|fn(q)|2 + 2

N∑
n=1

N∑
m=n+1

Re
{
fn(q)f∗m(q)

}sin(qRnm)

qRnm
(2.127)

The second term in this expression shows that for randomly oriented molecules
there are residual oscillatory terms which have an oscillation period that depends
on the distances between all the atomic pairs Rnm within the molecule. For the
homo-nuclear diatomic molecule this expression reduces to

dσIAMU,2A

dk dΩs
= |f(q)|2

[
2 + 2

sin(qR)

qR

]
(2.128)

Figure 2.13 shows the calculated DCS for unaligned I2 (red line). Compared
to the perfectly aligned molecule calculation plotted in 2.12 it is clear that the
molecular interference is much less pronounced, but that it is nevertheless still
there.

Traditional gas-phase diffraction experiments were necessarily performed on
unaligned molecules, but the recent development of new techniques capable of
partially aligning gas-phase molecules has enabled a new class of diffraction
experiments [24, 22]. Intuitively one would expect that the partially aligned
molecule DCS is somewhere between the two extremes of perfectly aligned
molecules (2.122) and unaligned molecules (2.127). Unfortunately, for partially
aligned molecules it is not possible to obtain a simple analytical expression for
the DCS such as the one for unaligned molecules (2.127) any longer. A part
of the difficulty is that the momentum transfer vector can not be taken as the
arbitrary reference axis any longer because the integration over the molecular
angular coordinates is referenced to the alignment axis. The relative orientation
between q, the alignment axis, and the inter-atomic vector Rnm must now ex-
plicitly be taken into account when expanding the dot product q ·Rnm, giving
rise to much more complex expressions. Nevertheless, these integrals can be
evaluated numerically with relative ease and the effect of partial alignment I2
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Figure 2.13: Differential cross-section for I2 under the same conditions as in
2.12, but for unaligned (red) and partially aligned (blue and green) molecules.

on its elastic scattering DCS is shown in Fig. 2.13 (green and blue lines). For a
relatively low degree of alignment of 〈cos2 θ〉3D = 0.85 (blue line) the difference
from the unaligned molecular DCS is, as expected, quite small. For a larger
degree of alignment 〈cos2 θ〉3D = 0.97 (green line) the molecular oscillations be-
come much stronger and the nodes that are visible in the perfectly aligned case
in Fig. 2.12 are starting to form.

A powerful way of visualising the influence of the molecular frame on the
DCS is to look at the contrast between the DCS for aligned and unaligned
molecules. The molecular oscillations in the case of unaligned molecules (red
line) and for low degrees of alignment (green line) in Fig. 2.13 approach the
atomic DCS (grey dashed line) very quickly for increasing scattering angle, i.e.
momentum transfer. In experiments this small difference of the molecular DCS
from the atomic case can quickly be drowned out by noise sources. Moreover,
the extraction of the molecular oscillatory factor from the DCS requires know-
ing very precisely the atomic DCS factors. Manipulating the molecular frame,
through partial alignment of the molecules, offers the extremely useful advan-
tage of being able to extract the molecular factor from the DCS is a very direct
way. One way to do this is by calculating the normalized difference between
two experimental DCS curves as follows

δnorm =
σA − σU
σA + σU

(2.129)

where σA is the partially aligned molecular DCS and σU some reference DCS,
e.g. for unaligned molecules. Figure 2.14 shows the normalized difference be-
tween the DCS for unaligned I2 and the two partially aligned cases shown in Fig.
2.13. Figure 2.14 shows that the enhanced oscillations caused by the change in
molecular frame distribution are indeed brought out very cleanly through the
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Figure 2.14: Normalized difference (2.129) between the differential cross-
sections for elastic electron scattering from partially aligned and unaligned I2
molecules shown in Fig. 2.13.

normalized difference. In experimental settings, the normalized difference can
typically be acquired easily by simply delaying or switching off the means of
alignment. This has the major advantage that all other experimental conditions
are unaltered so that systematic sources of error can be minimized effectively.

2.5.2 Molecular effects in electron impact ionization

Secondary electrons produced by electron impact ionization may carry infor-
mation on the molecular structure through different physical mechanisms, as
illustrated in Fig. 2.15. Impact Ionized Coherent Electron Emission (IICEE)
leads to the interference between electrons emitted from two distinct atomic
centres within a molecule, which depends on the relative position of the two
emitters. It is a generalization of the well-known Cohen-Fano interference ef-
fect, which is due to coherent photoelectron emission from molecules, to the case
where the ionized electron is produced by charged particle impact [46, 4]. IICEE
has been demonstrated in a number of experiments using heavy ions [47, 48, 49]
as well as electrons [50, 51, 52] as projectiles. A second mechanism that can
give rise to molecular interference effects is Impact Ionized Secondary Electron
Diffraction (IISED). An impact ionized electron that is ejected from one of the
atomic centres within the molecule can scatter elastically from another atomic
center, which leads to interferences between the scattered and non-scattered
electrons. IISED can be seen as a generalization of the photoelectron diffrac-
tion effect, see e.g. [21]. Though there are some experimental observations that
may be attributed to IISED effects [48, 49], a conclusive demonstration of the
effect has not yet been provided [53, 4]. The theoretical description of IISED,
or other higher-order scattering effects, is very limited and one of the first theo-
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Figure 2.15: Schematic illustration of two processes that may give rise to
molecular interference effects in the spectrum of impact ionized electrons. Im-
pact Ionized Coherent Electron Emission (IICEE) leads to interferences be-
tween secondary electrons emitted from two distinct atomic centres within the
molecule. Impact Ionized Secondary Electron Diffraction (IISED) arises when a
secondary electron produced at one atomic centre is scattered by another atomic
centre within the same molecule.

retical publications specifically dealing with this problem was only published in
2016 by Agueny et al. [54]. From both the theoretical treatments and the exper-
imental data published so far it is clear that the IISED effect is relatively weak
compared to IICEE interference effects8. The theory in this section will focus
on the treatment of the more established and experimentally more accessible
IICEE mechanism.

Theoretical treatments on the topic of IICEE are relatively sparse and tend
to focus on the fundamental case of H2. The molecular electron impact ioniza-
tion of H2 and H+

2 was treated theoretically in a series of papers by Rivarola,
Joulakian et al. [55, 56, 57, 58]. In these papers the first Born amplitude for
electron impact ionization of H2 and H+

2 is evaluated using special forms of the
ejected and scattered electron wavefunctions based on the Briggs, Brauner and
Klar (BBK) treatment of a three-body Coulomb system [59]. The BBK theory
uses products of Coulomb waves to describe the final continuum wavefunctions
in order to take long range interactions of the outgoing particles into account
and can thus be classified as a type of Distorted Wave Born Approximation
(DWBA) treated in Sec. 2.4.2. In the last paper in the series by Stia et al. [58]
the treatment of electron impact ionization H2 is finally distilled into a treat-
ment of structural diffraction effects and its signature in the Triple Differential

8In the case where the IICEE effects are suppressed, such as in electron impact ionization
of N2 where contributions from multiple orbitals tend to cancel IICEE effects, it can happen
that IISED effects become more dominant [49].
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2.5. Electron-molecule collisions

Cross-Section (TDCS)9. The TDCS is given by Stia et.al. as

dσM
dke dΩe dΩs

= σA
[
2 + 2 cos(∆ ·R)

]
(2.130)

where σA is the atomic hydrogen TDCS, ∆ = ki − ks − ke is a momentum
variable depending on the incoming, scattered and ejected electron momentum
and R is the molecular axis vector. This expression is very similar to the
traditional expression for elastic scattering from homo-nuclear molecules in the
IAM given by (2.123). In both cases there are two terms in the equation, the
first of which describes independent scattering from the atomic centres, and the
second, the interference between the outgoing waves originating from the two
centres.

Using the same reasoning as in the previous section it will now be shown
that the expression for H2 derived by Stia et al. is a generalization of the IAM
expression for elastic scattering from a homo-nuclear diatomic molecule for the
case of electron impact ionization. Following the approach to deriving the IAM
for elastic scattering outlined in the previous section, the coordinate transfor-
mation rn 7→ rn + R is applied to the PWBA for electron impact ionization
given by (2.105). This results in

fPWBA
ie,+R = − 1

2π

∫
exp

[
iq · (r0 +R)

]
exp

[
−ike · (rN +R)

]
×

ϕ∗e(rN−1, . . . , r1)

(
−Z
r0

+

N∑
n=1

1

r0n

)
φi(rN , . . . , r1) dN+1r0...N (2.131)

where again use was made of the fact that the perturbation potential and the
bound state wavefunctions φi and ϕe only depend on the relative position of
the atomic core with respect to the integration coordinates and are therefore
invariant with respect to the change of coordinates. Taking the phase shift in
the plane wave factors resulting from the coordinate displacement out of the
integral, the scattering amplitude can be written as

fPWBA
ie,+R = exp(i∆ ·R)× fPWBA

ie (2.132)

which is analogous to (2.120) for the case of elastic scattering. Generalizing this
to the multi-atomic molecule one obtains the IAM cross-section for electron
impact ionization as follows

dσIAM

dke dΩe dΩs
=

N∑
n=1

|fn|2 + 2

N∑
n=1

N∑
m=n+1

Re
{
fnf

∗
m exp(i∆ ·Rnm)

}
(2.133)

where fn are the individual atomic scattering amplitudes, which are in general
a function of the three momenta ki, ke and ks and can be calculated using the
techniques outlined in Sec. 2.4.2. Applying (2.133) to the case of a homo-nuclear
diatomic molecule one readily retrieves (2.130) which was derived by Stia et.al.
for the case of H2 [58].

9Here it is assumed that ki and the atomic position vectors Rn are parameters. The mag-
nitude of the scattered electron momentum is fixed through energy conservation constraints.
The remaining three degrees of freedom are the magnitude and direction of the ejected electron
ke and Ωe and the direction of the scattered electron Ωs.
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2.5. Electron-molecule collisions

Though the IAM expressions derived for electron impact ionization of molec-
ules and those for elastic scattering are quite similar, there are important dif-
ferences that need to be borne in mind. The momentum variable ∆ appearing
in the molecular structure terms in (2.133) is a function of all three contin-
uum electron momentum vectors. The structural terms, which depend on the
kinematics of the reaction, are therefore more complex as compared to elastic
scattering where ke ≡ 0 and ∆ reduces to the momentum transfer variable
q = ki − ks = 2k sin(θs/2). Besides the structural interference terms, the
atomic terms fn are also triply differential and depend on the ejected as well as
the scattered electron momenta, as was shown in Sec. 2.4.2. This means that in
evaluating (2.133) to obtain experimentally accessible information these extra
degrees of freedom must be properly taken into account through suitable aver-
aging. In principle the information contained in (2.130) can only be completely
accessed through an experiment that can determine all three momentum vectors
ki, ks, ke and the molecular frame vectors Rn simultaneously.

To get an impression of the effect of averaging on the molecular electron im-
pact ionization TDCS, molecular frame orientation averaging will be considered
and compared to the case of elastic electron scattering. In their publication Stia
et.al. also provide an expression for the TDCS of randomly oriented H2 [58]

dσM
dke dΩe dΩs

= σA

[
2 + 2

sin(∆R)

∆R

]
(2.134)

This expression can easily be derived following the same approach as in the
previous section on elastic electron scattering from unaligned molecules. Again
the total cross-section is a sum of an atomic term that describes scattering
from the two independent atoms and an oscillatory term due to the residual
two-center interference effect. However, this term is now a function of the
momentum variable ∆ which has some important implications. Figure 2.16
shows a plot of the two-centre interference factor 2 sin(∆R)/(∆R) from (2.134)
as a function of the ejected electron angle θe for several values of the scattered
electron angle θs. The reaction is constrained to be coplanar, meaning that
the incoming, scattered and ejected electron are in one plane. From this plot
it becomes clear that the interference factor behaves quite differently from the
elastic case treated in the previous section. The θs = 4◦ curve resembles the
elastic case the most as there is a strong peak in the interference term followed
by oscillations which decrease in magnitude rapidly. The strong peak is due to
the fact that ∆ = 0 at a specific ejection angle so that the 2 sin(∆R)/(∆R) term
reaches its maximum value of two. This can also be understood by considering
the kinematics of this case as illustrated in Fig. 2.17. From this figure it is
also inferred that there is always a specific scattered electron angle for which
the ejected electron wavevector with a fixed magnitude will reach ∆ = 0. The
position of the peak can also be calculated using kinematics and is the same
as that for the binary peak discussed in 2.4.2 given by (2.114). The case of
θs = 4◦ is unique in the sense that the momentum variable ∆ goes through
zero. For other scattered electron angles, the momentum variable ∆ will have a
specific range of values with a non-zero minimum that depends on the specific
kinematics of that situation. Especially interesting is the fact that the apparent
oscillation frequency of the curves in Fig. 2.16 also varies with the scattered
electron angle, and does not depend on the inter-atomic distance R only. For
θs = 0◦ the oscillation has a very long period compared to the other curves,
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Figure 2.16: Plot of the structural interference factor 2 sin(∆R)/(∆R) from
(2.134), where ∆ = |ki − ks − ke|, as a function of the ejected electron angle
for four different scattered electron angles θs. The projectile energy Ei = 100
keV, the ejected electron energy Ee = 500 eV and the inter-nuclear distance
RH2 = 0.74 Å.
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Figure 2.17: Illustration of kinematics for θs = 0◦ (red) and 4◦ (blue) shown
in Fig. 2.16. Dashed-dotted circles indicate the possible values that the sum
of ks and ke can take in the two cases. ∆ = ki − (ks + ke) is given by the
difference between points on the dashed-dotted circles and ki, as indicated by
the two example vectors.
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2.6. Strong field ionization and electron scattering

which is because the magnitude of ∆ is barely changing. This situation is also
illustrated in Fig. 2.17.

From the above discussion it is clear that any further averaging of the un-
aligned electron impact ionization TDCS (2.134) with respect to the other de-
grees of freedom, such as the scattered electron angle, will have very strong in-
fluence on the visibility of the molecular structure in the experimental spectra.
For example, in experiments which use a Velocity Map Imaging Spectrometer
to detect the ejected electron one must average over all the scattered electron
angles. This topic will be treated in more detail in Chapter 4.

2.6 Strong field ionization and electron scatter-
ing

One of the main topics of this thesis is Laser Induced Electron Diffraction
(LIED). This is a new and promising technique for the realization of the long-
standing goal of imaging structural dynamics in molecules at femtosecond time
scales and with Ångström spatial resolution [60, 3]. Fig. 2.18 illustrates the
three-step model of LIED where the laser field-induced tunnelling ionization
of a molecule is followed by subsequent acceleration and re-scattering of the
photoelectron under the influence of the strong laser field. The photoelectrons
that scatter elastically can be used to construct ultrafast diffraction images of
the parent molecule. This section will introduce some of the basic concepts of
strong field theory and show how photoelectron scattering and LIED can be
treated within the framework of the semi-classical three-step model [61, 62].
The semi-classical model described in this section gives an intuitive and insight-
ful picture of strong field physics and is used in Chapter 3 for the analysis of
LIED experiments on aligned molecules.

One of the earliest and most influential theoretical works on the ionization
of atoms by an intense, low-frequency laser field was that of Keldysh in 1965
[63]. The Strong Field Approximation (SFA) introduced by Keldysh describes
the ionization process in a strong laser field using, somewhat paradoxically, per-
turbation theory. This can be qualitatively understood in the following way.

(2.) Acceleration in strong field

Photoelectron
wavepacket

Strong laser 
field

(1.) Tunnelling ionization (3.) Re-collision & diffraction

Figure 2.18: Three-step model of Laser Induced Electron Diffraction (LIED).
After tunnelling ionization by the strong laser field (1), the photoelectron is
accelerated by the oscillating electric field (2) and is finally driven back to
the molecule where it scatters elastically (3). The multi-center nature of the
molecule, i.e. molecular structure, leads to diffraction features in the final pho-
toelectron spectrum.
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2.6. Strong field ionization and electron scattering

The initial electronic state is strongly bound and localized around the atom so
that the laser field can be treated as a perturbation. However, once the photo-
electron has reached the continuum the laser field dominates its behaviour and
the atomic potential can be seen as a perturbation. The process of dividing the
full Hamiltonian into a dominant reference term and a small perturbative term
is well-known from conventional perturbation theory and is called Hamiltonian
partitioning, see e.g. [30, 26, 28]. The SFA, as initially developed by Keldysh,
completely neglects the influence of the parent ion on the photoelectron once
it is in the continuum, and can be seen as a solution to first order in pertur-
bation theory. Keldysh’s SFA is therefore not able to explain effects in which
re-scattering plays a crucial role. Improved versions of the theory, i.e. SFA2,
were introduced to effectively include further perturbation terms and account
for re-scattering effects [64, 65]. The success of the SFA has culminated in
Intense-field Many-body S-matrix Theory (IMST) that formalizes the process
of Hamiltonian partitioning, which was implicit in the work of Keldysh, and
provides a consistent and powerful formulation of strong field theory [66]. The
interested reader is referred to Appendix A for a summary of the IMST, or to
the excellent textbook by Joachain et al. [28], for a more in-depth discussion of
strong field theory.

The SFA admits a very insightful and useful semi-classical interpretation,
which was pointed out in the seminal work by Corkum [61]. Using the saddle-
point approximation, it can be shown that the SFA perturbation integrals, which
arise from a Quantum Mechanical treatment of strong-field ionization, can be
interpreted in terms of the classical motion of the photoelectron in the laser
field [67]. The semi-classical model proposed by Corkum makes use of this
interpretation, treating the photoelectron motion in the continuum classically,
and is particularly useful in modelling the effects arising from photoelectron re-
scattering. The Quantitative Re-scattering Theory (QRT), which was proposed
by C.D. Lin et al. [62], is based on the semi-classical model and is specifically de-
veloped to enable the extraction of (field-free) electron scattering cross-sections
from the photoelectron spectrum of a strong-field ionized target. The QRT
has been successfully used to interpret experimental results in some of the first
works demonstrating the LIED technique [68, 69]. The rest of this section will
be devoted to developing the semi-classical three-step model, which includes
re-scattering effects, and applying the QRT procedure to extract electron scat-
tering Differential Cross-Sections (DCS) from the photoelectron spectrum of a
strong-field ionized molecule.

The first step in the semi-classical model is tunnelling ionization. Tunnelling
ionization of an atom in a static electric field is a standard problem in Quantum
Mechanics and is usually treated using the Wentzel-Kramers-Brillouin (WKB)
approximation, see e.g. [29, 30]. Tunnelling in a low-frequency laser field can
be seen as quasi-static, so that the adiabatic approximation can be applied
to obtain a tunnelling rate that is a function of the instantaneous value of
the oscillating electric field [70, 28]. The Ammosov-Delone-Krainov (ADK)
adiabatic tunnelling ionization rate for an atom in a strong laser field is given
by

ΓADK(t) ∝ κ2

2

(
3|E(t)|
πκ3

)1/2(
2κ3

|E(t)|

)2n∗−|m|−1

exp

[
− 2

3

κ3

|E(t)|

]
(2.135)
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2.6. Strong field ionization and electron scattering

In this equation κ = (2Ip)
1/2, where Ip is the ionization potential of the atom,

and E(t) is the electric field vector. The ADK expression was derived using
quantum defect atomic orbitals as a description of the initial state of the tun-
nelling electron [71, 28]. A quantum defect orbital is an approximate description
of the valence orbital of a multi-electron atom that is obtained by using an effec-
tive central-field potential to model the effect of the inner-shell electrons on the
valence electron. In (2.135) the parameter n∗ = Zc/κ is an effective principal
quantum number, where Zc is the effective charge parameter of the approximate
quantum defect central field potential, and m is the magnetic quantum number
of the quantum defect orbital. The ADK expression gives the ionization rate for
photoelectrons with zero momentum after tunnelling. More general tunnelling
rate expressions can be derived, which show that the probability of ionization
with a non-zero momentum is exponentially suppressed [29]. The ADK the-
ory of tunnelling ionization of an atom can be extended to molecular systems
[72, 73]. The ionization rate of a molecule depends explicitly on the molecular
orbital orientation with respect to the laser field.

In the second step of the semi-classical model, the photoelectron is treated
as a classical particle that is driven exclusively by the electric field of the laser.
From classical electrodynamics it is known that the momentum of an electron
in an electric field at any instant in time, i.e. kinetic momentum, is given by
[28, 67]

π(t) = p+A(t) (2.136)

where A(t) is the vector potential, which is in the dipole approximation given
by

A(t) = −
∫ t

E(τ) dτ (2.137)

The vector p in (2.136) is the canonical momentum, which is a constant of the
motion and can be determined from the initial conditions. As mentioned above,
from adiabatic tunnelling theory it follows that the ionization rate is largest
for photoelectrons that have a momentum of zero at the time of ionization, i.e.
π(t0) = 0. For these photoelectrons the canonical momentum is given by

p = −A(t0) (2.138)

If the vector potential returns to zero10 as the laser field is switched off, it
follows from (2.136) that the final momentum of the photoelectron is equal to
the canonical momentum and that its kinetic energy is given by Ef = 1

2 |A(t0)|2.
For an electric field given by

E(t) = E0 cosωt (2.139)

the vector potential (2.137) is given by

A(t) = −A0 sinωt (2.140)

where A0 = E0/ω is the vector potential amplitude. The maximum final kinetic
energy that a photoelectron with an initial kinetic momentum of zero can attain
in such a field is therefore

Emaxf =
1

2
A2

0 (2.141)

10This is true for a laser pulse duration which is long with respect to the period of the laser
field and is switched on and off adiabatically.
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Figure 2.19: Photoelectron energy spectrum of unaligned CF3I ionized by a
1300 nm wavelength probe pulse with an intensity of 7.0± 0.6× 1013 W/cm2

(Up =11± 1 eV).

Using the definition of the ponderomotive potential Up = 1
4A

2
0, which is the

cycle averaged kinetic energy of a free electron in an oscillating electric field,
it is seen that Emaxf = 2Up. This simple classical picture gives direct physical
insight into experimentally observed photoelectron spectra. Fig. 2.19 shows an
experimental photoelectron energy spectrum of unaligned CF3I ionized by a
1300 nm wavelength probe pulse (see also Chapter 3). The photoelectron yield
is rather constant up to a cut-off energy of ≈ 22 eV (dashed grey line), after
which it drops off rapidly. Using the semi-classical picture outlined above, this
cut-off energy can be interpreted as the maximum kinetic energy attainable by
a classical photoelectron that is ionized with zero kinetic momentum, i.e. 2Up
[74].

The influence of the parent ion on the photoelectron motion has been ne-
glected so far. Photoelectrons that are ionized at a time t0 before the peak of
the electric field never return to the exact location of the parent ion. Within
the semi-classical approximation it is assumed that these photoelectrons do not
interact with the parent ion after ionization, and are called direct electrons. A
photoelectron created after the peak of the field does return to the parent ion
and may re-scatter from it. The final step in the semi-classical model consists of
an approximate treatment of re-scattering for those photoelectrons that return
to the parent ion. For an electric field given by (2.139), and assuming that the
initial position and velocity of the photoelectron at the time of ionization t0
are zero, the position of the photoelectron at subsequent times can be obtained
from the classical equations of motion and is given by

r(t) =
A0

ω
(cosωt− cosωt0) +A0(t− t0) sinωt0 (2.142)

For a given time of ionization t0 this equation can be evaluated numerically to
obtain the time tr at which the electron returns to its parent ion, i.e. r(tr) =
0. Using (2.138), which gives the canonical momentum of the photoelectron
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with zero kinetic momentum after ionization, and substituting into (2.136) an
expression for the photoelectron momentum at the time of re-scattering tr is
obtained

πr = −A0(sinωtr − sinωt0) (2.143)

At this point it is assumed that the photoelectron scatters elastically and in-
stantaneously from the parent ion so that the direction of its momentum is
changed by an angle θs. The momentum of the photoelectron immediately after
re-scattering is given by

πs = πr

[
cos θs
sin θs

]
(2.144)

which is a vector specified in terms of its components parallel and perpendicular
to the electric field direction. After this point-like scattering event at the first
return time, it is assumed that the photoelectron does not interact with the
parent ion any further. Using (2.136), and assuming that the vector potential
goes to zero at the end of the laser pulse, the final momentum at the detector
is obtained

pf =

[
A0 sinωtr + πr cos θs

πr sin θs

]
(2.145)

The perpendicular component of the photoelectron momentum is not affected
by the electric field so that the perpendicular component of pf is identical to
that of πs. The parallel component of pf has an additional offset term of
A0 sinωtr that is due to the abrupt change of the propagation direction and
subsequent propagation of the re-scattered photoelectron in the strong laser
field. This offset can lead to a much larger final kinetic energy for a re-scattered
photoelectron than can be achieved by direct photoelectrons. By numerically
evaluating Equations (2.142)-(2.145) it can be shown that photoelectrons that
have back-scattered, i.e. for which θs = 180◦, can reach a maximum kinetic
energy of ≈ 10.01Up.

Again, the simple classical picture gives direct physical insight and can be
used to explain the significant number of photoelectrons with kinetic energies
well above 2Up that can be observed in the experimental spectrum in Fig. 2.19.
After a sharp drop in the photoelectron yield above the 2Up cut-off, the yield
plateaus in the energy range of 50 – 100 eV before dropping off more rapidly
again. The cut-off energy at which the yield of these high-energy photoelectrons
starts to drop rapidly corresponds to the 10Up kinetic energy attainable by the
re-scattered electrons in the semi-classical model. By estimating the position of
the 2Up and 10Up cut-off energies it is possible to obtain an approximate laser
field intensity from an experimental photoelectron spectrum. This technique
was used to estimate the laser field intensity from the spectrum shown in Fig.
2.19 and yields 7.0± 0.6× 1013 W/cm2.

Figure 2.20 graphically illustrates the semi-classical model superposed on
an experimental Photoelectron Angular Distribution (PAD) of unaligned CF3I
molecules (see also Chapter 3). For a fixed photoelectron re-scattering momen-
tum πr, the momentum immediately after scattering πs maps out a circle in
momentum space as a function of the scattering angle θs that is centred around
the origin. However, subsequent propagation of the scattered electron in the
strong laser field leads to an offset of its momentum of A0 sinωtr parallel to the
laser field. The final photoelectron momentum pf therefore lies on a circle of
radius πr with the appropriate offset.
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Figure 2.20: Scattered electrons with a fixed re-scattering momentum πr have
a final momentum pf that lies on a circle with the radius πr and an offset of
A0 sinωtr parallel to the laser field. The angle between the vectors πr and πs

is given by the scattering angle θs. The experimental Photoelectron Angular
Distribution (PAD) is that of unaligned CF3I ionized by a 1300 nm wavelength
probe pulse with an intensity of 7.0± 0.6× 1013 W/cm2 (see Chapter 3 for ex-
perimental details). The coloured circles correspond to a scattering energy of
(red) 10 eV, (blue) 20 eV and (green) 30 eV. White iso-energy circles are plotted
at 2Up (dashed circle) and 10Up (dash-dotted circle) energies.

The semi-classical model introduced above is the cornerstone of the QRT
procedure for extracting electron scattering cross-sections from strong-field ion-
ized targets because it gives a fixed relation between the re-scattering momen-
tum, scattering angle, and final momentum of the re-scattered photoelectrons
[62]. According to the QRT, the electron scattering Differential Cross-Section
(DCS) can be extracted from the PAD by plotting the photoelectron yield on
a circle of fixed re-scattering energy as a function of the scattering angle. Fig-
ure 2.21 shows the electron scattering DCS extracted using the QRT procedure
from two of the circular re-scattering cuts shown in Fig. 2.20 (red dots). The
DCS for elastic electron scattering from the CF3I molecule obtained from tra-
ditional electron beam experiments [75] (blue dots) is also plotted and shows a
qualitative match with the QRT cross-sections.

In anticipation of the discussion in Chapter 3, the expected effects of molecu-
lar structure on the DCS shown in Fig. 2.21 are illustrated using simulated DCS
curves (green lines). The simulation uses the IAM introduced in Sec. 2.5.1 in
combination with atomic cross-sections obtained with the ELSEPA scattering
code introduced in Sec. 2.4.1 [36]. It can be seen that the simulated molecu-
lar DCS (full green lines) and the ’atomic’ DCS, which contains no molecular
structure information, (dashed green lines) are very similar. Especially for large
scattering angles, i.e. large momentum transfers, the curves are almost indistin-
guishable. Moreover, it is observed that strong oscillatory structure is clearly
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Figure 2.21: Electron scattering DCS for the CF3I molecule as extracted from
Fig. 2.20 (red dots) and from traditional electron beam experiments (blue dots)
[75] for (a) 20 eV and (b) 30 eV scattering energy. The simulated molecular
DCS calculated with the IAM and using atomic scattering amplitudes obtained
from ELSEPA is also plotted (full green lines) together with the ’atomic’ DCS,
which is the incoherent sum of the C,F and I atomic DCS (dashed green lines).

visible in the ’atomic’ DCS curves, which contain no molecular structure in-
formation. This means that it is in general not possible to directly extract
molecular structure effects by simply looking at the oscillatory features within
the DCS. In order to extract molecular structure information from the DCS
as shown in Fig. 2.21, one must have highly accurate calculations of molecu-
lar cross-sections and be able to compare them to high fidelity experimental
data with a noise level below the magnitude of the variations caused by molec-
ular structure effects. Fortunately, in experiments with aligned molecules such
difficulties can be very effectively alleviated by looking directly at the effect
of changing molecular frame distributions on the DCS. Non-structural effects,
such as ’atomic’ scattering factors, can then be effectively subtracted from the
experimental signal itself. This is the approach followed in Chapter 3 where
experimental results from strong-field ionized and partially aligned molecules
are presented.

There are two important points in the extraction procedure proposed within
the QRT framework that must be mentioned here. First, the number of pho-
toelectrons that has returned to the parent ion and experienced a hard re-
collision11 is small compared to the number of photoelectrons that have not
returned to the parent ion, i.e. direct electrons. Consequently, the direct elec-
trons, which do not contain LIED effects, constitute a major part of the total
yield of photoelectrons in an experiment. However, from the semi-classical pic-
ture discussed above it is clear that re-scattered photoelectrons can reach much
higher final kinetic energies than direct electrons. From the experimental spec-
trum in Fig. 2.19 it can be seen that direct photoelectrons dominate the total
yield up to an energy of ≈ 4Up. The QRT picture is thus expected to be a valid

11A hard re-collision leads to a large momentum transfer, and thus to a higher spatial
resolution in diffraction imaging (see Sec. 2.5.1).
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2.6. Strong field ionization and electron scattering

description of the PAD in the kinetic energy range above 4Up. Second, for each
final momentum pf there are in fact two possible sets of solutions for the time
of birth and re-collision (t0, tr). This means that there are also two distinct
re-scattering momentum πr solutions for each final momentum pf . Such an
indeterminacy is of course unwanted in the case of LIED, where a one-to-one
mapping between πr and pf is required in order to extract electron scattering
cross-sections. Fortunately, the ionization time t0 for one of set of the tra-
jectories is closer to the peak of the laser electric field so that these normally
dominate the photoelectron yield and scattering cross-sections can be extracted
without ambiguity [76].
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Chapter 3

Laser Induced Electron
Diffraction in aligned
molecules

3.1 Introduction

Laser Induced Electron Diffraction (LIED) is a new and promising technique
for the realization of the long-standing goal of imaging structural dynamics in
molecules at femtosecond time scales and with Ångström spatial resolution. It
was theoretically proposed more than a decade ago1 following the discovery
that strong-field ionized atoms and molecules display a pronounced plateau
in their photoelectron spectrum that could be ascribed to re-scattering of the
photoelectrons driven by the laser field [1, 2, 3]. The basic theoretical concepts
of LIED were introduced in Sec. 2.6 using a semi-classical model developed in
some of the earliest theoretical publications on this subject [2, 3]. Sec. 2.6 also
introduced the Quantitative Re-scattering Theory (QRT) proposed by Chen et
al. [62] that has been used successfully in a number of experimental publications
on LIED to date [77, 69, 78, 79, 80]. The QRT is also used as a basis for the
description of the LIED experiments presented in this chapter and is applied to
the simulation of experiments with aligned molecules using an approach similar
to that found in the recent publication by Yu et al. [81].

Table 3.1 gives an overview of publications with experimental work related
to LIED and some of their relevant experimental details. Though the work by
Niikura et al. [1] did not provide direct evidence for LIED effects, it was the first
experimental work that explored the use of re-scattered photoelectrons for ultra-
fast imaging of the molecular structure. The first direct experimental evidence
of LIED effects in the Photoelectron Angular Distribution (PAD) of N2 and O2

molecules was provided by Meckel et al. [68]. In this pioneering experiment the
use of impulsive laser alignment [82, 83] played a crucial role. In Sec. 2.5.1 it

1The publication by Zuo et al. [60] in 1996 that introduced the term Laser Induced Electron
Diffraction (LIED) describes a technique that would extract molecular structure from the
interference of photoelectrons that are coherently emitted from the individual atomic centres
within the molecule. This is conceptually different from what is understood by LIED today,
which is a technique that crucially relies on diffraction by the re-scattered photoelectrons.
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was shown that manipulating the molecular frame, through partial alignment of
the molecules, can be used to extract the molecular structure factors from the
electron scattering cross-section in a very direct way. Meckel et al. were able to
identify LIED effects in the PAD of strong-field ionized N2 and O2 by looking at
the normalized difference, i.e. the difference divided by the sum, of the PADs of
aligned and anti-aligned molecules. Though most subsequent LIED experiments
have employed aligned molecules in some way, the use of molecular alignment
as a tool to directly extract molecular structure effects was only, unsuccessfully,
employed in the work by Lee et al. [84]. All other experiments listed in Table 3.1
use the QRT to extract an electron scattering Differential Cross-Section (DCS)
from the PAD of a strong-field ionized molecule. By applying the Independent
Atom Model (IAM) and subtracting a simulated ’atomic’ DCS from the exper-
imental data the molecular structure was then recovered [77, 69, 78, 79, 80].

Table 3.1: Overview of publications with experimental work on LIED.

Ref. Year Molecule λ (µm) Aligned Detection

Niikura
et al. [1]

2002 H2 0.8 - H+-TOF

Meckel et
al. [68]

2008 O2, N2 0.8 Yes COLTRIMS [85]
(e− + O+

2 /N+
2 )

Okunishi
et al. [77]

2011 O2, CO2 0.8 Yes e−-TOF

Blaga et
al. [69]

2012 O2, N2 2.0/2.3 No e−-TOF

Lee et al.
[84]

2012 O2, N2, CO2 0.8 Yes VMI [86]

Xu et al.
[78]

2014 O2, N2 2.0/2.3 Yes e−-TOF

Pullen et
al. [79]

2015 C2H2 3.1 Yes COLTRIMS [85]
(e− + C2H+

2 )

Ito et al.
[80]

2016 C6H6 1.65 No e−-TOF

The experiment by Blaga et al. [69] is a milestone experiment that demon-
strated the advantages of performing LIED experiments using long wavelength
probe pulses. The first LIED experiments were performed using probe pulses
with a wavelength of 800 nm, which resulted in photoelectron re-collision ener-
gies in the 30 – 40 eV range. By using probe pulses of 2.0 and 2.3 µm wavelength
Blaga et al. succeeded in increasing the re-collision energy of the photoelectrons
to 100 – 200 eV, while keeping the laser intensity at a similar level as in the 800
nm experiments. The bond length retrieved by Blaga et al. for the O2 target was
0.1 – 0.15 Å shorter than that of the O2 neutral molecule, which is significant
considering their estimated spatial resolution of 0.05 Å. This was interpreted

58



3.1. Introduction

as a possible indication for structural dynamics after ionization. The O+
2 bond

length is 0.1 Å smaller than that of the neutral molecule so that the contraction
of the molecule after ionization, and within the few femtoseconds it takes for the
photoelectron to return and re-collide with the parent ion, would explain the
observed discrepancy. The retrieved bond length for the N2 target agreed with
the neutral molecule geometry within the estimated experimental error. This
is consistent with the interpretation of the O2 results because the N+

2 ion bond
length differs by less than 0.025 Å from that of the neutral molecule. The suc-
cess of Blaga et al. in increasing the spatial resolution and observing a possible
hint of structural dynamics using LIED has led to the use of long wavelength
laser pulses in most subsequent experiments.

The majority of LIED experiments performed to date used simple diatomic
target molecules such as N2 and O2. Recent publications by Pullen et al. [79]
on acetylene (C2H2) and by Ito et al. [80] on benzene (C6H6) represent the
first attempts to apply the LIED technique to larger, more complex systems.
The experiment by Pullen et al. was performed using a Cold Target Recoil Ion
Momentum Spectroscopy (COLTRIMS) setup that is capable of detecting all
electron and ion fragments, and their momenta, resulting from an individual
ionization event [85]. When considering all detected electrons Pullen et al. were
unable to derive the molecular structure from the DCS, but when considering
only those electrons coinciding with the production of a singly charged molec-
ular ion, i.e. C2H2 → e− + C2H+

2 , they were able to observe LIED effects
and extract the C–C and C–H bond lengths successfully. They therefore sug-
gested that coincidence detection techniques are necessary in order to perform
LIED experiments, at least with more complex molecules, because one must
select those electrons that are coincident with the singly charged molecular ion
in order to distinguish from those that are generated by other processes and
result in experimental background. The first LIED experiments by Meckel et
al. were indeed performed with a COLTRIMS setup and considered electrons
that coincided with the O+

2 and N+
2 ion production, though Meckel et al. did

not explicitly state that using such a detection scheme was necessary. On the
other hand, the experiments by Blaga et al., which were performed with an
electron Time-Of-Flight (TOF) setup that can only detect the total electron
yield, seemed to suggest that coincident detection is not a necessary require-
ment. More recently, Ito et al. [80] performed experiments on benzene using an
electron TOF detector and were able to extract the C–H and C–C bond lengths
by applying the same QRT procedure as Pullen et al., though certain parts of
the experimental data for backscattered photoelectrons were omitted because
they deviated too much from the theoretical curves.

In this chapter a series of experiments are presented that investigate the
effect of the molecular frame on the PAD of impulsively aligned and strong-field
ionized CF3I molecules using a Velocity Map Imaging Spectrometer (VMIS).
It is shown that using the impulsive laser alignment technique enables taking
differential measurements that bring out directly and clearly LIED effects in
the PAD, even for a relatively complex molecule such as CF3I and using a non-
coincident detection setup such as the VMIS. The comparison of the experimen-
tal results at different laser intensities and at two different probe wavelengths,
i.e. 800 and 1300 nm, shows that the LIED effect is robust and reproducible for
a wide range of experimental conditions and at comparatively low re-collision
energies. Moreover, the first results from Time-Dependent Density Functional
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Theory (TDDFT) calculations performed by DeGiovannini et al. [87] indicate
that the contributions from multiple molecular orbitals can also be identified in
the experimental PADs due to the distinct dependence on the molecular frame
of the individual orbitals.

Section 3.2 will give a short overview of the experimental setup and the
data acquisition and processing methods employed in obtaining the experimen-
tal data. The experimental results are presented in Sec. 3.3. In Sec. 3.4 a
semi-classical model based on the QRT description of the re-scattering process
is applied in order to simulate the experiments on aligned CF3I molecules and
identify LIED effects. Besides the molecular-frame-dependent features in the
high-energy range of the PAD, which are attributed to LIED effects using the
semi-classical model, pronounced features in the low-energy range of the PAD
are also observed. These low-energy features cannot be described by the semi-
classical QRT model that is used to identify the LIED effects because it does not
take direct electrons, i.e. electrons that have not re-scattered with the ion, into
account. An attempt to use the Molecular Strong Field Theory (MSFT) devel-
oped by Milošević et al. [88, 89, 90, 91] to improve the theoretical description of
the experiment at the low-energy range met with some difficulties. Section 3.5
presents the MSFT calculation results and analyses them by comparing them
to experimental results. The first results from Time-Dependent Density Func-
tional Theory (TDDFT) calculations are presented in Sec. 3.6 and show a good
match with the experimental data at all photoelectron energies. The TDDFT
calculations indicate that the contribution of not only the Highest Occupied
Molecular Orbital (HOMO) but also of the lower lying HOMO-1 are significant
and can be identified in the experimental results.

3.2 Experimental setup

3.2.1 Experimental apparatus

The experiment was performed using a pump-probe setup shown schematically
in Fig. 3.1. A commercially available ultrafast Ti:Sapphire laser system provid-
ing 2 mJ, 30 fs laser pulses at a repetition rate of 1–1.5 kHz2 was used. The
Ti:Sapphire laser output was split into a pump and a probe beam that are used
to align and ionize the CF3I molecules, respectively. The pump-probe delay was
introduced using a mechanical linear stage with a 10 cm range of motion and a
1 µm positioning resolution.

The CF3I molecules were aligned through the use of the impulsive laser
alignment technique [92, 83]. Impulsive laser alignment is achieved by using
a short and intense laser pulse to give the molecule a strong rotational ’kick’
through its induced dipole moment. This leads to the population of a rotational
wavepacket that re-phases periodically, giving rise to alignment revival peaks
at specific time-delays following the alignment pulse. The alignment laser pulse
must be short with respect to the rotational period of the molecule, and should
be as intense as possible without leading to multi-photon ionization3. To achieve

2The acquisition speed in these experiments was not limited by the repetition rate of the
laser, but rather by the repetition rate of the pulsed molecular beam source.

3The wavelength of the alignment pulse must be such that single photon ionization is not
possible.
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Figure 3.1: Schematic of the experimental pump-probe setup. The Optical
Parametric Amplifier (OPA) is used for the 1300 nm experiments to down-
convert the pump pulse wavelength.

high degrees of alignment while avoiding ionization of the CF3I molecule, the
pump pulse duration is stretched to 1.2 ps, which is short compared to the CF3I
rotational period of 327.4 ps, by propagation through a 10 cm long (SF11) glass
block. The pump beam is then telescoped to an appropriate size so that its focal
size is approximately twice as large as that of the probe beam. This increases
the effective degree of alignment because the molecules that are ionized by the
probe pulse have been illuminated more uniformly with the highest pump pulse
intensities. Any residual ionization by the pump pulse observed with the VMIS
was eliminated by reducing the size of the pump beam with an iris.

For experiments using a 1300 nm probe wavelength, the pump and probe
pulse energies were both 1 mJ. A commercially available Optical Parametric
Amplifier (OPA) was used to down-convert the wavelength with approximately
20% efficiency, resulting in probe pulse energies of ∼200 µJ. The probe intensity
was adjusted using a λ/2-waveplate and polarizer in order to perform experi-
ments at a range of probe intensities of 4× 1013 – 2× 1014 W/cm2. The probe
intensity was estimated from the experimental PADs by looking for the 2Up and
10Up cut-off energies in the photoelectron spectrum, as detailed in Sec. 2.6. The
pump and probe pulses were re-combined collinearly using a dichroic mirror and
focused into the VMIS with an uncoated UVFS plano-convex lens with a 200
mm focal length.

For experiments using an 800 nm probe wavelength, the pump and probe
pulse energies were 1.4 and 0.6 mJ, respectively. The OPA was not required in
this case. Because both the pump and the probe arms have the same wavelength,
it was not possible to use a dichroic mirror to recombine the two arms collinearly.
The two beams were steered such that they were as close as possible and parallel
to each other before being focused with a lens into the VMIS. The foci of the
two beams would then overlap at a small angle of ∼6◦ within the detector. The
final focusing lens was a BK-7 plano-convex lens with a broadband anti-reflective
coating and a 200 mm focal length.

The photoelectron and photoion momentum distributions were recorded us-
ing a Velocity Map Imaging Spectrometer (VMIS) [86]. The VMIS consists of
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two electrodes, i.e. the repeller and the extractor, that are shaped such that they
form an electrostatic lens that projects the full 3-D momentum distribution of
the charged particles onto the 2-D detection plane. The detector consists of a
Multi-Channel Plate (MCP), which acts as a charged particle amplifier, and a
phosphor screen, which converts the electron current signal from the MCP into
a light image that is digitized with a CCD camera. The detector image I is
given by

I(px, py) =

∫
ρ(px, py, pz) dpz (3.1)

where ρ is the full 3-D momentum distribution as a function of the Cartesian
momentum vector components px, py and pz. That is, the momentum distribu-
tion is ’flattened’ such that the momentum of the charged particles in the plane
perpendicular to the optical axis of the VMIS, i.e. px and py, can be directly
observed in the detector image, while the momentum parallel to this axis, i.e.
pz, cannot. If the full momentum distribution of the particles is cylindrically
symmetric4 and if the symmetry axis lies in the xy-plane, (3.1) is equivalent to
the Abel projection. The full 3-D momentum distribution may then be obtained
by applying an Abel inversion. The Abel inversion code used to recover the 3-D
PADs in this thesis is based on the BASEX method introduced by Dribinski et
al. [95].

The VMIS used in these experiments is specifically designed to image pho-
toelectrons with very high kinetic energies of up to 1.5 keV. The imaged kinetic
energy range can be varied by changing the voltages applied to the repeller
and extractor electrodes. Using lower voltages reduces the imaged kinetic en-
ergy range and increases the image size. The ratio between the repeller and
extractor voltages is rather constant, i.e. Vext/Vrep ≈ 0.92, and can be used to
optimize the image focus. In order to convert from the image pixel units to
absolute momentum units, the VMIS must be calibrated using known features
from the recorded spectra. The PADs of strong-field ionized atoms or molecules
show pronounced Above-Threshold Ionization (ATI) peaks, which are successive
peaks that are due to the multi-photon ionization with an increasing number of
absorbed photons . By measuring the distance between the observed ATI peaks
in the image and setting this equal to the photon energy it is possible to obtain
a calibration constant for the conversion from image pixel units to energy units.

A cold, dense sample of CF3I molecules is produced by a supersonic molecu-
lar beam source [96]. The target molecules are seeded in helium with a ratio of
1:200 – 1:1000 and expanded into the vacuum at backing pressures of 6 – 9 bar.
The supersonic expansion of the gas from the high pressure valve chamber into
the vacuum results in collisional cooling of the CF3I molecules [96]. The gas
sample is introduced into the vacuum chamber by an Even-Lavie valve [97] op-
erated at a repetition rate of 300 Hz and with a nozzle size of 100 µm. The valve
is located in a separate vacuum compartment, i.e. source chamber, that is con-
nected to the VMIS compartment, i.e. detector chamber, by a baffle equipped
with a molecular beam skimmer. The expanding gas originating from the valve
passes through the 1 mm diameter skimmer and forms a well-defined molecular
beam that is intersected by the pump-probe laser beams at an interaction point

4Non-cylindrically symmetric momentum distributions may be recovered using tomo-
graphic re-construction, which requires obtaining the 2-D projections at different rotations
with respect to the projection axis [93, 94].

62



3.2. Experimental setup

within the VMIS. The source and detector chambers are pumped differentially
by two 400 l/s turbomolecular pumps. This ensures that the detector chamber
pressure is below the 10−6 mbar that is required for VMIS operation, while al-
lowing for higher pressures of 10−4–10−3 mbar in the source chamber containing
the valve. The valve is mounted on a XYZ vacuum manipulator that is used to
align the valve nozzle axis with the skimmer and to adjust its distance to the
interaction point. The distance to the interaction point is adjusted such as to
maximize the molecular beam density while maintaining the degree of molecular
alignment and the low pressure in the detector chamber.

3.2.2 Data acquisition and processing

Molecular structure effects are very small compared to the overall signal in LIED
experiments. As discussed in Sec. 2.6, the photoelectron spectrum is in fact dom-
inated by direct electrons that do not re-scatter from the molecular ion after
ionization and thus form a background contribution. Experiments on unaligned
molecules make use of the fact that there are regions of the photoelectron spec-
trum where re-scattered photoelectrons are dominant. However, even in spectra
containing only scattered electrons, molecular structure effects are very small
compared to the ’atomic’ background that does not contain molecular structure
information, as was shown in Sec. 2.5.1. In experiments on unaligned molecules,
the atomic background needs to be known very precisely in order to extract
molecular structure effects from the data. Using impulsive laser alignment of
the molecules presents the unique opportunity to enhance molecular contribu-
tions within the PAD by looking at the normalized difference of the momentum
distributions for aligned and anti-aligned molecules (see also Sec. 2.5.1). Nor-
malized difference images are constructed directly from the experimental data
as follows

Iδ =
IA − IB
IA + IB

(3.2)

where IA and IB are the momentum distributions at the alignment and anti-
alignment revival peaks, respectively. The normalized difference images convey
in a direct way the dependence of the photoelectron spectrum on the molecular
frame and are used in the following sections to extract LIED effects from the
raw photoelectron spectra.

Long-term stability of the experimental setup is another key factor in per-
forming LIED experiments. The normalized difference images are background
subtracted in the sense that in principle they represent the molecular-frame de-
pendent signal only, which eliminates some important background contributions
from the spectra. However, long-term drifts can still lead to systematic errors
in the difference images if the acquisition of the individual momentum maps of
which it consists takes place on a similar time scale. In order to suppress effects
of the long-term drifts in laser power and beam pointing, molecular beam den-
sity, etc. the acquisition is performed repetitively. Individual momentum maps
for each pump-probe delay, e.g. IA and IB , are acquired with a relatively short
averaging period of 30 s. This averaging time is long enough to average out
short-term variations, but is short with respect to the long term drifts in the
system, which take place on the order of tens of minutes. The acquisition of the
full pump-probe delay sequence is then repeated up to 60 times, resulting in a
total acquisition time of 2 to 3 hours.
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Figure 3.2: Example of the repetitive sequence scanning method. (a) The
total average intensity per pump-probe delay point around the alignment revival
period. (b) Average intensity per individual acquisition within the repetitive
sequence (red line). The long-term drift component (blue line) is calculated by
averaging over all 6 pump-probe delay points for each sequence.

Figure 3.2 shows an example of an experimental sequence obtained with the
repetitive acquisition scheme. This acquisition sequence consists of 6 pump-
probe delay points where the middle two points coincide with the alignment
and anti-alignment revival peaks respectively. The total photoelectron yield per
delay point is plotted in Fig. 3.2(a). Each delay point consists of 60 individual
acquisitions with a total of 360 acquisitions for the full sequence. Figure 3.2(b)
shows the photoelectrons yield for some of the individual acquisitions (red
line). Long-term system drift causes an overall signal level shift (blue line) that
is clearly distinguishable from the intensity variations caused by the alignment
revivals. The repetitive acquisition scheme also enables statistical analysis of
the data illustrated in Fig. 3.2(a) in which the standard deviation of the average
intensity, after subtraction of the long-term drift component, is plotted.

3.3 Experimental results

3.3.1 Alignment characterization

The 1.2 ps pump (alignment) pulse gives the CF3I molecule a strong rotational
’kick’ through its induced dipole moment, and populates a rotational wavepacket
which re-phases periodically [92]. This leads to alignment peaks at which the C–
I molecular axis is aligned parallel to the pump polarization, and anti-alignment
peaks at which the C–I molecular axis is perpendicular to the pump polarization.
The molecules are not oriented, so that they point up and down with equal
probability, and are free to rotate along the C–I axis. Probing the molecules
during alignment/anti-alignment revival peaks also ensures that they are ionized
under field-free conditions and avoids the influence of the alignment field on the
photoelectron spectra.

The degree of alignment was experimentally characterized by imaging the
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Figure 3.3: I+ 2-D momentum maps at the (a) alignment and (b) anti-
alignment revival peaks, and (c) the degree of alignment

〈
cos2 θ
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2D

as a func-
tion of pump-probe delay. The probe wavelength and intensity were 800 nm
and 7.5± 0.8× 1013 W/cm2. The alignment pulse polarization is along the p‖
axis, and the probe polarization is perpendicular to the image plane. The white
iso-energy circle at 2.37 eV indicates the expected kinetic energy release result-
ing from the the Coulomb explosion of the I+/CF+

3 pair from the equilibrium
I–C distance in the molecule of 2.14 Å.

I+ momentum distributions as a function of the pump-probe delay. The I+ 2-D
momentum maps at the alignment and anti-alignment revival peak delay times
are shown in Fig. 3.3(a) and (b), respectively. The polarization of the probe
pulse is here perpendicular to the VMIS image. This means that the I+ 2-D
momentum map obtained with the VMIS cannot be Abel-inverted, because the
symmetry axis of the full 3-D momentum distribution, which is parallel to the
probe polarization, is not in the xy-plane of the spectrometer. However, this
arrangement of the probe polarization results in a 2-D view of the I+ momentum
distribution that is circularly symmetric in the absence of the alignment pulse,
which is polarized along the p‖ axis. The anisotropy in the 2-D momentum
images shown in Fig. 3.3(a) and (b) is caused by the change in the molecular
axis distribution that results from the application of the alignment pulse, and
may be used to quantify the degree of molecular alignment [22]. The sharp
feature in the I+ distribution around 2.37 eV (dotted circle) matches the I+
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kinetic energy release expected from the Coulomb explosion of the I+/CF+
3

pair from the equilibrium I–C distance of 2.14 Å. The degree of alignment is
quantified by calculating the expectation value

〈
cos2 θ

〉
2D

of the 2-D momentum
map for a small range of momenta around the Coulomb explosion channel and
is shown in Fig. 3.3(c) as a function of the pump-probe delay.

3.3.2 Photoelectron spectra

In order to bring out molecular frame effects in the Photoelectron Angular
Distribution (PAD) these distributions are recorded at the alignment and anti-
alignment revival peaks. The experimental PADs taken at the alignment and
anti-alignment peaks that were observed in the I+ momentum maps shown in
Fig. 3.3, are shown in Fig. 3.4(a) and (b), respectively. Whereas the difference
between these two PADs is relatively hard to observe directly from these images,
the normalized difference image of these two PADs, shown in Fig. 3.4(c), displays
clear modulations that are related to the change in the molecular alignment
distribution. The PADs taken at the alignment and anti-alignment peaks for an
experiment using a 1300 nm probe wavelength are shown in Fig. 3.5(a) and (b).
The difference between these two PADs is even harder to observe than was the
case for the 800 nm probe wavelength experiment, but the normalized difference
image, shown in Fig. 3.5(c), again shows clear modulations.

Using a semi-classical picture of molecular strong-field ionization, it was
shown in Sec. 2.6 that photoelectrons that have not interacted with the parent
molecule, i.e. direct electrons, may reach final kinetic energies that are much
lower than that attainable by the photoelectrons that have re-collided with the
parent ion. It was shown that the total photoelectron yield is dominated by
the direct electrons up to an energy of ≈4Up, where Up is the ponderomotive
potential of the laser field. Re-scattered photoelectrons dominate the photoelec-
tron yield above the 4Up energy, and may reach, according to the semi-classical
picture, final energies of up to 10Up. The normalized difference images may
therefore roughly be divided in a low (< 4Up) and a high energy region (4–10Up)
that are indicated in Figs. 3.4(c) and 3.5(c) by the dashed and dash-dotted cir-
cles, respectively. In the low-energy region (< 4Up) direct and re-scattered
photoelectrons both contribute to the modulations observed in the normalized
difference images. Factors such as molecular orbital shape [68] and photoelec-
tron holographic interference [98], which is due to the interference between the
direct and the re-scattered photoelectrons, may significantly contribute to the
observed modulations in this energy range. This complicates the interpretation
of the experimental data in terms of the LIED effect. However, in the high-
momentum region (4 – 10Up), where re-scattered photoelectron contributions
dominate, a pronounced variation of the electron signal along the polarization
axis (p‖) can be seen in both the 800 and the 1300 nm data. Along this axis
the contribution of photoelectrons that have experienced a hard re-collision, i.e.
θs ≈ 180◦, with the parent ion is dominant and should therefore be very suitable
for diffraction imaging [76].

At both the 800 and 1300 nm probe pulse wavelengths, the experiments
were performed for several intensities in the range of 4× 1013 – 2× 1014 W/cm2.
The probe intensities were estimated from the experimental data by estimating
the position of the 2Up and 10Up cut-off energies in the photoelectron energy
spectrum, as detailed in Sec. 2.6. Figures 3.6 and 3.7 show the normalized
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Figure 3.4: Photoelectron Angular Distributions (PADs) at the (a) alignment
and (b) anti-alignment revival peak, and (c) their normalized difference. The
probe wavelength and intensity were 800 nm and 7.5± 0.8× 1013 W/cm2, re-
spectively. Both the probe and the alignment pulse are polarized parallel to the
p‖ axis. The iso-energy circles plotted in (c) indicate the 4Up (dashed circle)
and 10Up (dash-dotted circle) energies.
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Figure 3.5: Photoelectron Angular Distributions (PADs) at the (a) alignment
and (b) anti-alignment revival peak, and (c) their normalized difference. The
probe wavelength and intensity were 1300 nm and 7.0± 0.6× 1013 W/cm2, re-
spectively. Both the probe and the alignment pulse are polarized parallel to the
p‖ axis. The iso-energy circles plotted in (c) indicate the 4Up (dashed circle)
and 10Up (dash-dotted circle) energies.
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Figure 3.6: Normalized difference images at 800 nm probe wavelength for
four different probe intensities: (a) 3.7± 0.4× 1013 , (b) 7.5± 0.8× 1013 , (c)
9.6± 1.1× 1013 and (d) 2.1± 0.3× 1014 W/cm2.

difference images for different intensities recorded using the 800 and 1300 nm
probe wavelengths, respectively. The normalized difference images at probe
intensities below ∼1× 1014 W/cm2 show a relatively similar picture in both the
800 and the 1300 nm experiments. In the 800 nm case, the normalized difference
images in Figs. 3.4(a), (b) and (c) show a clear positive contribution along the
p‖ axis for momenta > 1 a.u. In 3.4(c) a dip in the signal for momenta > 1.8
a.u. that follows this positive contribution can also be seen. In the 1300 nm
case, the low probe intensity image shows a level shift with respect to the mid-
intensity one. That is, the signal in the low-intensity image is mostly around zero
or below, whereas in the mid-intensity image there are much stronger positive
contributions. However, in both images there is a relative enhancement in signal
along the p‖ axis for momenta > 1 a.u., followed by a dip in the signal for
momenta > 2 a.u. These signal variations are robust and do not depend strongly
on the probe intensity, which should be the case for structural effects such as
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Figure 3.7: Normalized difference images at 1300 nm probe wavelength for
three different probe intensities: (a) 4.9± 0.5× 1013 , (b) 7.0± 0.6× 1013 and
(c) 1.9± 0.3× 1014 W/cm2.

diffraction. In the next section a semi-classical model will be used to show that
diffraction effects should indeed result in modulations such as those observed in
the experimental data.

At high probe intensities, the normalized difference images Figs. 3.6(d) and
3.7(c) become qualitatively different from the lower intensity images. The mod-
ulations that were visible in the lower intensity normalized difference images,
which are attributed to LIED effects, are almost completely washed out. Fig-
ure 3.8 shows the photoelectron energy spectra corresponding to the normalized
difference images shown in Fig. 3.7. In the energy spectra for the two lowest
probe intensities, shown in Figs. 3.8(a) and (b), a clear re-collision plateau with
a 10Up cut-off can be identified. The modulations in the normalized difference
images that are attributed to LIED effects are indeed located in the energy
range of the re-collision plateau. In the energy spectrum for the highest probe
intensity, shown in Fig. 3.8(c), only the 2Up cut-off for direct electrons is clearly
visible. The 10Up cut-off could not be identified, even though the VMIS settings
were such that it should have been possible to measure up to this energy range.
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Figure 3.8: Photoelectron energy spectrum at 1300 nm probe wavelength for
three different probe intensities: (a) 4.9± 0.5× 1013 , (b) 7.0± 0.6× 1013 and
(c) 1.9± 0.3× 1014 W/cm2.

The normalized difference image corresponding to this spectrum, i.e. Fig. 3.7(c),
does not show significant modulations in the energy range in which the partially
visible re-collision plateau should be located.

3.4 Semi-classical model calculations

To understand the high-momentum features observed in the photoelectron spec-
tra and make the connection to LIED effects a semi-classical model can be
used which is based on theory from [3, 62, 76]. The principles of the semi-
classical model were introduced in Sec. 2.6. In Sec. 3.4.1 the concrete form of
the semi-classical QRT model used to simulate the LIED experiments will be
first outlined. In this model the re-collision step is distinct from the field-driven
photoelectron dynamics and was modelled using two different approaches. The
first simulations, presented in Sec. 3.4.2, use the Plane Wave Born Approxi-
mation (PWBA) in combination with the IAM to obtain molecular scattering
amplitudes (see also Sec. 2.4.2). This model shows a rather large disagreement
with the experimental data when all the atoms in the molecule are included in
the calculation. Interestingly, removing the fluorine atoms from the molecule
resulted in a reasonable quantitative match with the experimental data. One
possible cause for this discrepancy comes from the atomic scattering amplitudes
that are calculated using the PWBA, which becomes increasingly inaccurate for
lower scattering energies. The results of simulations using atomic scattering
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amplitudes obtained from the partial wave calculations with the ELSEPA code
[36] are presented in Sec. 3.4.3. These calculations indeed show that the fluorine
atom contributions are much smaller than indicated by the PWBA model, and
lead to a more accurate model of the experiment.

3.4.1 Model summary

In this section a semi-classical (QRT) model is described that will be used to
calculate difference spectra for aligned and anti-aligned molecules, which can
be directly compared to the experimental difference images. In Sec. 2.6 it was
shown that using the semi-classical model it is possible to obtain for each re-
scattered photoelectron with final momentum pf the momentum at the time
of re-scattering πr and the angle at which it has scattered from the parent
ion. This is done by solving Eqs. (2.142)–(2.145), which describe the classical
motion of the re-scattered photoelectron in the strong laser field. The photo-
electron re-scattering momentum and angle are subsequently used as an input in
the calculation of the electron scattering Differential Cross-Section (DCS). The
molecular DCS is calculated using the IAM treated in Sec. 2.5.1, which gives
the molecular electron scattering cross-sections as a coherent superposition of
scattered wave contributions from each atom separately. As mentioned in Sec.
2.6, for each final momentum pf there are in fact two distinct solutions of the
classical equations of motion, which lead to different re-scattering momenta. In
the current model the contribution from both solutions is included by using the
ADK tunnelling rate, given by (2.135), as a weighting factor when summing the
DCSs for each distinct solution in order to obtain the total DCS value. Because
the ionization time for one of the contributions is closer to the peak of the laser
electric field it was found that this dominates most of the features observed in
the simulated difference images.

The final step in the model is the averaging of the molecular DCS over the
molecular-frame distribution in the alignment and anti-alignment case, and the
construction of the simulated normalized difference images as defined by (3.2).
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Figure 3.9: An illustration of the molecular-frame distribution given by (3.3)
for (a) aligned and (b) anti-aligned molecules.
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The alignment distribution is assumed to be given by [99]

ρalign(θ) = exp

(
− 1

2

sin2 θ

σ2

)
(3.3)

where θ is the angle between the C–I axis and the alignment pulse polarization,
and σ is the parameter specifying the degree of alignment. The anti -alignment
distribution are obtained from (3.3) by replacing the sin2 θ factor in the expo-
nential by cos2 θ [99]. The alignment and anti-alignment distributions obtained
from (3.3) are illustrated in Fig. 3.9. The averaging over this distribution is ac-
complished in the model by uniformly sampling the molecular axis distribution
at 4800 different orientations.

3.4.2 Plane Wave Born Approximation scattering

The result of simulations corresponding to the 800 nm probe experimental data
from Fig. 3.4 are shown in Fig. 3.10. The simulation in this section uses atomic
form factors given as crystallographic reference data [38] for the use in con-
ventional high-energy electron diffraction. These form factors are calculated
using the Plane Wave Born Approximation (PWBA) introduced in Sec. 2.4.2.
A simulation using the equilibrium geometry of the CF3I molecule is shown
in Fig. 3.10(a). As expected, in the region below 4Up (dashed line) the sim-
ulation is qualitatively quite different from the experimental data due to the
dominant influence of the direct photoelectrons. For momenta above 1.0 a.u.
the simulation becomes qualitatively similar to the experimental data, show-
ing a clear maximum around 1.4 a.u. along the polarization axis p‖. However,
in the experimental data the corresponding maximum is shifted to somewhat
higher momenta, which can be clearly seen in the plot of the signal along the p‖
axis for the experiment and the full molecule simulation shown in Fig. 3.10(c).
Looking at the signal modulation in the simulation, it is seen to complete a
full oscillation between approximately 0.5 and 1.6 a.u. This modulation period
can be explained by the fact that the simulation contains a strong contribu-
tion from the I–F scatterer pairs within the molecule. A simple calculation of
the oscillation period expected from the diffraction due to the I–F pair gives
2π/rIF = 1.15 a.u., where rIF = 2.89 Å. Figure 3.10(b) shows a simulation in
which all fluorine atoms are removed from the molecule. The modulation period
that is expected from the rCI distance of 2.15 Å is 1.55 a.u. This indeed explains
the observed shift of the simulated maximum from 1.4 to more than 1.7 a.u.
(blue line) in Fig. 3.10(c). Unfortunately, the C–I only simulation shows a shift
of the maximum which is too strong, resulting in significant mismatch with the
experimental curve for momenta between 1.1 and 1.5 a.u. In the next section
it will be shown that the difference between the experiment and simulation can
be explained by a reduced cross-section of the fluorine atoms at low scattering
energy, which results in an intermediate shift of the simulation curve.

PWBA-IAM simulations for the 1300 nm probe wavelength experimental
data from Fig. 3.5(c) have also been performed and are shown in Fig. 3.11. The
full molecule simulation in Fig. 3.11(a) shows a very clear deviation from the
experimental data, indicating a local minimum around 1.9 a.u. that is absent
from the experiment. The contribution from this minimum could partially be
seen in the 800 nm probe simulations, where it was already causing a clear
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Figure 3.10: Comparison between the experiment at 800 nm probe wavelength
with an intensity of 7.5± 0.8× 1013 W/cm2 and the PWBA-IAM model: (a)
CF3I molecule simulation, (b) C–I fragment only simulation, and (c) signal
variation along the polarization axis p‖ for the experiment (green dots) and the
two simulations (red and blue lines, CF3I and C–I simulations respectively).
The experimental normalized difference image, see Fig. 3.4(c), is inverted using
the BASEX method [95] and is plotted on the left half of Figs. (a) and (b). The
4Up and 10Up energies are indicated in all figures by the dashed and dash-dotted
circles/lines, respectively. The signal variation along the p‖ axis is obtained by
angular integration of the images over an opening angle of 20◦.
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Figure 3.11: Comparison between the experiment at 1300 nm probe wave-
length with an intensity of 7.0± 0.6× 1013 W/cm2 and the PWBA-IAM model.
The experimental normalized difference image is from Fig. 3.5(c). See Fig. 3.10
for further plot description.

deviation from the experimental data at momenta above 1.5 a.u. On the other
hand, the simulation with the C–I fragment only, shown in Fig. 3.11(b), matches
quite well with the experimental data and again indicates that the discrepancy
between simulation and experiment is linked to fluorine atom effects.

3.4.3 Partial wave scattering

By looking directly at the effect of the changing molecular frame distribution
on the PAD, non-structural effects can be effectively suppressed from the ex-
perimental signal. Nevertheless, non-structural effects are not fully eliminated
and, as will be shown here, can have an important influence on the features
observed in the normalized difference momentum maps. The PWBA atomic
form factors used in the simulations in the previous section are based on the
perturbative Born approach and are in principle not very suitable for low en-
ergy electron scattering, as explained in Sec. 2.3. An inaccuracy in the atomic
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Figure 3.12: Comparison between the experiment at 800 nm probe wavelength
with an intensity of 7.5± 0.8× 1013 W/cm2 and the ELSEPA-IAM model: (a)
CF3I molecule simulation, (b) C–I fragment only simulation, and (c) signal
variation along the polarization axis p‖ for the experiment (green dots) and the
two simulations (red and blue lines, CF3I and C–I simulations respectively).
The experimental normalized difference image, i.e. Fig. 3.4(c), is inverted using
the BASEX method [95] and plotted on the left half of Figs. (a) and (b). The
signal variation along the polarization axis is calculated by integration of the
normalized images over an angle of 20◦.

form factors may well explain the discrepancy between simulations of the ex-
periment in Figs. 3.10 and 3.11. To explore this possibility, the QRT simulation
was performed using scattering amplitudes calculated with the elastic electron-
atom scattering code ELSEPA developed by Salvat et al. [36]. This software
package uses a partial wave expansion to calculate scattering amplitudes in
the static-exchange approximation and incorporates approximate exchange and
correlation-polarization potentials. The resulting simulations and the compari-
son with experimental data are shown in Figs. 3.12 and 3.13.

The ELSEPA-IAM simulation for the 800 nm probe wavelength experiment
is shown in Fig. 3.12 and indeed shows an improved agreement with the exper-
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imental data as compared to the PWBA-IAM simulations. The full molecule
simulations show a very good match in the momentum range between 1.1 and
1.5 a.u. in Fig. 3.12(c). The C–I fragment only simulation is very similar to the
PWBA simulation and shows a relatively large deviation from the experiment
in the lower momentum range. It is interesting that the ELSEPA simulation
seems to reproduce some of the angular features observed in the experimental
difference map, such as the box-like shape of the experimental maximum 1.4
a.u. This is an example where residual non-structural contributions affect the
features observed in the normalized difference momentum maps.

The ELSEPA-IAM simulation for the 1300 nm probe wavelength experiment
is shown in Fig. 3.13. The full molecule simulation in Fig. 3.13(a) now shows
significant deviation from the experimental image in the 4–10Up energy range .
Nevertheless, the deviation from the experiment is much less pronounced than in
the full molecule PWBA calculations. At the position of the very strong local
minimum in the PWBA calculations around p‖ =1.9 a.u., the full molecule
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Figure 3.13: Comparison between the experiment at 1300 nm probe wave-
length with an intensity of 7.0± 0.6× 1013 W/cm2 and the ELSEPA-IAM
model. The experimental normalized difference image is from Fig. 3.5(c). See
Fig. 3.12 for further plot description.
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Figure 3.14: ELSEPA (full lines) and PWBA (dashed coloured lines) elastic
scattering Differential Cross-Section (DCS) for the C, F and I atoms along the
polarization axis p‖ corresponding to the 1300 nm simulation shown in Fig.
3.13(c). The 4Up (dashed grey line) and 10Up (dash-dotted grey line) are also
plotted.

ELSEPA simulation indicates a plateau around zero for the momentum range
of p‖ =1.8–2.3 a.u. For higher longitudinal momenta the ELSEPA simulation
now shows a minimum that matches well with the experimental data. Again,
the fluorine atoms can be removed from the molecule and the results are shown
in Figs. 3.13(b) and 3.13(c) (blue line). The simulation with the C–I fragment
only shows a better fit with the experiment close to the 4Up energy, where the
full molecule simulation shows a plateau that deviates significantly from the
experiment. The plateau in the full molecule model is therefore assigned to
residual fluorine atom effects.

In order to understand the difference between the PWBA and ELSEPA sim-
ulations in more detail it is necessary to look at the behaviour of the atomic
scattering cross-sections. These are plotted in Fig. 3.14 for the 4–10Up photo-
electron momentum range corresponding to Fig. 3.13(c). The PWBA atomic
scattering cross-sections (dashed coloured lines) show a very monotonic decrease
and have a similar ratio over the entire range, with the iodine having an approxi-
mately ten times larger cross-section than carbon or fluorine. On the other hand,
the ELSEPA simulations show a very different picture, where the cross-section
ratios are exactly opposite for a rather large range of photoelectron momenta
around 2 a.u. This is the region where the I–F related minimum from the 1300
nm PWBA simulations is seen to be suppressed in the ELSEPA-IAM simula-
tion, becoming a plateau rather than a full-fledged minimum. It is therefore
concluded that this effect is caused by the reduced magnitudes of the iodine
and fluorine cross-sections, which leads to the situation where the molecular
structure interference factors for the I–F pairs (see also Sec. 2.5.1) are much less
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Figure 3.15: Simulated normalized difference maps for experiments with 2300
nm probe wavelength and 9.3× 1013 W/cm2 intensity with aligned, 〈cos2 θ〉3D ≈
0.9, CF3I molecules: (a) equilibrium molecular geometry and (b) molecular
geometry with the angle ∠ICF of 100◦ instead of the equilibrium value of 110◦.

strong with respect to the interference factors containing carbon. The difference
between the 800 nm PWBA and ELSEPA simulations are similarly explained
by the reduced magnitude of the cross-section of the fluorine atom as compared
to the carbon.

In conclusion, comparison with experimental results indicates that the
ELSEPA-IAM model is a step in the right direction in interpreting the ex-
perimental data. To improve the match with experiment, a more sophisticated
model is required which should go beyond the IAM. This may for example be
accomplished by using the EPolyScat package to compute low energy electron
scattering cross-sections for the molecular ion as a whole [35]. Another source
of inaccuracy is the QRT approach which uses a classical photoelectron propa-
gation model. More accurately modelling the strong field process, and including
direct photoelectrons and their interference with the re-scattered photoelectrons,
is expected to significantly improve the simulations in the regions below the
4Up threshold.

Before continuing with strong field theory calculations, it is interesting to
discuss in a more general way how molecular structure manifests itself in nor-
malized difference maps and use the current model to simulate possible future
experiments with highly aligned molecules. All the simulations presented so far
have one striking feature in common, which is the manifestation of structural ef-
fects as oscillations in the difference image along the polarization axis p‖. From
the classical picture of photoelectron re-scattering illustrated in Fig. 2.20 it can
be seen that the photoelectrons on this axis have been scattered by a fixed angle
of 180◦ and have a varying re-scattering energy, i.e. de Broglie wavelength. Of
course, using full momentum map detectors, such as the VMIS, one simultane-
ously obtains the angular and energy distribution of the photoelectrons gaining
access to even more information. In the current experiment, molecular structure
effects were strongest along a single scattering angle. However, it is expected
that future experiments with a high degree of molecular alignment and high
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re-collision energy will benefit greatly from the availability of the full momen-
tum distribution. This is illustrated in Fig. 3.15, which simulates an experiment
using a probe with a 2300 nm wavelength and a 9.3× 1013 W/cm2 intensity on
aligned CF3I molecules with a degree of alignment of

〈
cos2 θ

〉
2D

=0.94. Due to
the long probe wavelength, the photoelectron re-collision energy in this simula-
tion is up to 145 eV, which is much larger than the maximum re-collision energy
of 35 eV that was reached in the 1300 nm experiment at 7.0± 0.6× 1013 W/cm2

presented above. The normalized difference map for the molecules at equilib-
rium geometry (a) and for molecules with a slightly smaller angle ∠ICF (b)
changes in a significant way in the radial as well as the angular direction. Us-
ing all the information contained in the full momentum distribution, it would
be possible to perform a 3-D reconstruction of a relatively complex molecule
in a similar fashion as recently demonstrated in Ultrafast Electron Diffraction
experiments on aligned molecules [23, 24].

3.5 Molecular Strong Field Theory

A more accurate model of the strong field process that drives LIED and which
goes beyond the semi-classical QRT model is required in order to understand the
photoelectron spectrum in the region below the 4Up threshold. In this region,
the experimental normalized difference images reveal a particularly rich pattern
of features. Factors such as molecular orbital shape [68] and photoelectron
holographic interference [98], which is due to the interference between the direct
and the re-scattered photoelectrons, may significantly contribute to the observed
modulations in this energy range. This section will present some first results
of Molecular Strong Field Theory (MSFT) simulations of the current LIED
experiments on aligned CF3I molecules. The MSFT used in these calculations
was initially developed by Milošević et al. for the case of diatomic molecules
[88, 89] and was recently generalized to poly-atomic molecules by Hasović et
al. [90, 91]. A short and general introduction to the theory will be given first
in Sec. 3.5.1 in order to establish the main features and approximations of the
theory. The interested reader is referred to the original works for a detailed
exposition of the theoretical method [88, 89, 90, 91]. Numerical results and the
comparison with experiments are presented in Sec. 3.5.2.

3.5.1 Theory summary

The simple semi-classical model that was introduced in Sec. 2.6 and used in
the previous section follows from the more general Strong Field Theory (SFT).
At the foundation of Strong Field Theory (SFT) is the process of Hamiltonian
partitioning. Hamiltonian partitioning is well-known from conventional pertur-
bation theory where the full system Hamiltonian can be divided in two terms:
a dominant reference term, which is often exactly solvable, and a small pertur-
bation term, see e.g. [30, 26, 28]. The crucial difference between conventional
perturbation theory and the SFT is the application of different Hamiltonian
partitioning schemes for the initial, intermediate and final states, such that the
SFT perturbation series includes the relevant interactions in its leading terms
[66]. The interested reader is referred to Appendix A for a summary of the
Intense-field Many-body S-matrix Theory (IMST), which provides a consistent
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and powerful formulation of the SFT based on a formalized process of Hamil-
tonian partitioning, for a more in-depth discussion of this topic.

To represent the process of the ionization of an electron by a strong laser
field, which includes the re-scattering with the remaining ionic core as an inter-
mediate step, it is necessary to adopt three Hamiltonian partitioning schemes.
In the initial partitioning scheme the field-free target Hamiltonian HT , which
corresponds to an electron bound by the ionic core, is taken as the reference and
the laser field VL as the perturbation. In the intermediate and final partitioning
schemes the laser-electron Hamiltonian HL, which corresponds to a single elec-
tron in a classical laser field, is taken as the reference, and the field-free target
Hamiltonian VT , i.e. the ionic core potential, is taken as the perturbation. Us-
ing the IMST approach it is possible to obtain an expression for the evolution
operator of the photoelectron. An evolution operator describes the temporal
behaviour of a system and is defined as follows

|ψ(t)〉 = U(t, t′) |ψ(t′)〉 (3.4)

That is, the electronic wavefunction at time t is given by the application of the
evolution operator on the wavefunction at time t′, which may be specified as an
initial condition. The IMST evolution operator for the ionization of an electron
by a strong laser field that includes re-scattering with the ionic core is given by

U(t, t′) = Ui(t, t
′)− i

~

∫ t

t′
UL(t, τ0)VL(τ0)UT (τ0, t

′) dτ0

−
(

i

~

)2 ∫ t

t′

∫ t

τ0

UL(t, τ1)VT (τ1)UL(τ1, τ0)VL(τ0)UT (τ0, t
′) dτ0 dτ1

−
(

i

~

)3 ∫ t

t′

∫ t

τ0

∫ τ1

τ0

UL(t, τ2)VT (τ2)U(τ2, τ1)VT (τ1)UL(τ1, τ0)

× VL(τ0)UT (τ0, t
′) dτ0 dτ1 dτ2 (3.5)

where UT and UL are the evolution operators corresponding to the field-free
target and the laser-electron Hamiltonians, HT and HL, respectively.

The first term in the IMST expression of the full evolution operator (3.5) is
simply the evolution operator of the initial electronic (target) state and repre-
sents the part of the system that is not affected by the laser. The second term
in this equation represents a transition at time τ0 from the initial target state,
through an interaction with the laser field perturbation VL, to a final continuum
state governed by the laser-electron Hamiltonian HL. This term describes the
direct photoelectrons that do not interact with the ionic core after being ionized.
In the third term, the initial state interacts with the laser at time τ0, leading
to a transition to an intermediate continuum state governed by HL. The in-
termediate state evolves freely from τ0 to τ1, at which time a transition takes
place from the intermediate to the final continuum state through an interaction
with the perturbation VT , i.e. the ionic core. After the re-scattering interaction
at τ1, the final state evolves freely again according to UL. The third term rep-
resents the re-scattered photoelectrons and leads to a description of the LIED
effect in molecules. The final term in (3.5) represents all higher order processes,
which includes, for example, further interactions of the photoelectron with the
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parent ion. The evolution operator given by the integral equation (3.5) is an
exact solution of the Time-Dependent Schrödinger Equation describing the sys-
tem consisting of a single active (photo)electron, the ionic core potential and
the strong laser field. An approximate solution for the evolution operator is
readily obtained by neglecting the last term in (3.5), which leads to the second
order Strong Field Approximation (SFA2) [64, 65]. The Molecular Strong Field
Theory (MSFT) is a SFA2 theory applied to the case of molecules.

Having established the broader theoretical context in which the MSFT can
be placed, the concrete form of the calculations will be roughly outlined. The
initial state of the molecular system is assumed to be a single orbital, i.e. the
Highest Occupied Molecular Orbital (HOMO), and is modelled by a Linear
Combination of Atomic Orbitals (LCAO) centred on each atom within the
molecule. The molecular wavefunction is expressed as the sum

ψi(r) =

N∑
j=1

∑
k

cjkφk(r −Rj) (3.6)

where j runs over the N atoms within the molecule centred at Rj , and k runs
over the set of atomic orbitals φk with LCAO coefficients cjk. The transition of
the active electron from the HOMO into a continuum state takes place through
the dipole operator so that

VL(t) = E(t) · r (3.7)

In the intermediate state, the ionized photoelectron is assumed to be solely
driven by the strong laser field. It is therefore represented by the non-relativistic
solution to the Schrödinger equation for an electron in a classical electro-magnetic
field, i.e. the Volkov wavefunction. In the length gauge and dipole approxima-
tion this is given by

χ(r, t) = exp

[
iπ(t) · r − 1

2

∫ t

π(τ)2 dτ

]
(3.8)

where π(t) = p+A(t) is the kinetic momentum of the electron in the field and
p is the canonical momentum, which is a constant of the motion. The vector
potential A(t) is, in the dipole approximation, given by

A(t) = −
∫ t

E(τ) dτ (3.9)

where E(t) is the electric field component of the laser. From (3.8) it can be
seen that the Volkov wavefunctions are plane waves with an instantaneous,
time-dependent momentum π(t) and a phase factor. The Volkov phase is ac-
cumulated during the laser driven motion of the electron and is given by an
integral over its instantaneous value of kinetic energy 1

2π(t)2. Using the explicit
form of the Volkov wavefunction (3.8), the Volkov evolution operator is given in
its spectral representation by

UL(t, t′) =

∫
|χp(t)〉 〈χp(t′)|dp (3.10)

Substituting (3.6), (3.7) and (3.10) into (3.5), and neglecting the final term in
accordance with the SFA2, gives the expression for the photoelectron wavefunc-
tion in the MSFT. To obtain the transition amplitude from the initial molecular
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state into a final Volkov state with canonical momentum pf , the full wavefunc-
tion must be projected onto

∣∣χpf
(t)
〉

which finally results in the basic MSFT
expression

Tfi = − i

~

∫ t

t′

〈
χpf

(τ0)
∣∣E(τ0) · r |ψi(τ0)〉dτ0

−
(

i

~

)2 ∫ t

t′

∫ t

τ0

∫ 〈
χpf

(τ1)
∣∣VT (τ1) |χpm(τ1)〉

× 〈χpm(τ0)|E(τ0) · r |ψi(τ0)〉 dτ0 dτ1 dpm (3.11)

The first term in (3.11) represents direct photoelectrons which do not interact
with the ionic core after ionization and is a generalization of Keldysh’s SFA
to molecules5. The atomic orbitals φk are modelled using a Gaussian basis set
so that the dipole transition matrix elements 〈χp(τ0)|E(τ0) · r |ψi(τ0)〉 can be
calculated analytically [90]. The second term in (3.11) represents re-scattered
photoelectrons which are ionized into an intermediate Volkov state with canoni-
cal momentum pm before scattering off the static potential of the molecular ion
VT and ending up in the final Volkov state pf . At the moment of re-scattering
τ1, the Volkov wavefunctions are plane waves with momentum π(τ1). Conse-
quently, scattering of the intermediate Volkov state from the target molecule
and the transition into the final Volkov state described by the matrix element〈
χpf

(τ1)
∣∣VT (τ1) |χpm(τ1)〉 is equivalent to the Plane Wave Born Approximation

(PWBA). The PWBA was introduced in Chapter 2 and was also used in the
semi-classical LIED model presented in Sec. 3.4.2. The molecular re-scattering
matrix element is calculated in the MSFT code using parametrized analytical
model potentials for each atom, in combination with the IAM [101, 102]. The
integration over τ0 and τ1 is performed numerically, while the integration over
pm is performed using the saddle-point approximation [90, 91]. Similarly to
the semi-classical models presented in the previous section, the final step in the
calculation is the averaging of the PAD over the molecular axis distribution in
the alignment and anti-alignment case, and the construction of the simulated
normalized difference images. The averaging over this distribution is accom-
plished by uniformly sampling the molecular axis distribution at 300 different
orientations.

3.5.2 Calculation results

The comparison between the MSFT simulation and experimental PADs for three
different intensities is shown in Fig. 3.16. The simulated PADs show a pro-
nounced positive lobe in a large part of the spectrum. However, this feature
does not match any of the maxima observed in the experimental spectra. It
shows a certain similarity in shape with a strong positive feature in the exper-
imental images that is located within the 4Up circle in the momentum range
p‖=0–0.8 and p⊥=0–0.4 a.u. However the simulated peak is located at much
higher longitudinal and transverse momenta for all three probe intensities. At

5The straight-forward application of atomic SFA to molecules leads to the appearance of
spurious phase factors from the application of the dipole operator on the spatially displaced
atomic centres within the molecule [100]. This difficulty is addressed by MSFT through the
use of a dressed molecular state (see [88] for details).
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Figure 3.16: Comparison between the experiment at 800 nm probe wave-
length (left half) and the MSFT simulation (right half) for three simu-
lated probe intensities: (a) 5.1× 1013 W/cm2, (b) 7.7× 1013 W/cm2 and
1.2× 1014 W/cm2. Each simulation is compared to the experiment with the
closest probe intensity, which are (a) 3.7± 0.4× 1013 , (b) 7.5± 0.8× 1013 and
(c) 9.6± 1.1× 1013 W/cm2. The 4Up (dashed) and 10Up (dash-dotted) iso-
energy circles for the simulated probe intensity are indicated.

the same time, the positive feature with longitudinal momentum between 1.1
and 1.8 a.u. in the experimental spectra, that was identified as a diffraction fea-
ture by the semi-classical models, is at much higher momenta than the positive
feature in the simulations. Finally, the experimental image in Fig. 3.16(c) clearly
indicates a negative feature along the polarization axis for momenta above 1.8
a.u. At the position of this minimum in the experimental image, the simulation
shows a strongly oscillatory feature instead.

A comparison of the signal variation in the experiment and simulation along
the polarization axis is plotted in Fig. 3.17. The experimental peak located
between 1.1 and 1.8 a.u. is very robust against changes to the the probe intensity.
The rising edge of this peak is seen to remain at virtually the same position for
all three probe intensities. The falling edge of this peak is also at an almost
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Figure 3.17: Signal variation along the polarization axis for the three experi-
mental (dots, connected by dotted lines as guide to the eye) and simulated (solid
lines) PADs shown in Fig. 3.16.

identical position for the two highest probe intensity experiments (green and
blue dots). This behaviour is consistent with the idea that diffraction peaks
are a molecular structure feature that should not be affected strongly by the
intensity of the probing laser field. In the lowest probe intensity experiment
(red dots), the falling edge is seen to be shifted to lower momenta with respect
to the higher intensity experiments. However, it can be seen in Fig. 3.16(a)
that the 10Up cut-off in this experiment is below the position of the falling edge
observed in the higher probe intensity experiments. This indicates that the
observed position of the falling edge in the lowest probe intensity experiment is
determined by the photoelectron cut-off, rather than by diffraction effects. The
position of the positive peak in the simulations shows a pronounced dependence
on the probe intensity, as can be seen from the plots in Fig. 3.17 (solid lines).
Such a strong probe intensity dependence suggests that the simulated maximum
may not be attributed to LIED effects, which are expected to be relatively robust
against changes in the probe intensity.

The MSFT simulation has also been performed for the experiment at 1300
nm probe wavelength and is shown in Fig. 3.18. The simulation again indi-
cates a pronounced positive lobe, which now coincides with the experimental
maximum along the polarization axis at 1.7 a.u. However, the experimental
minimum at higher momenta is not reproduced by the simulation. The simu-
lation shows a strong oscillatory feature similar to that observed in the 800 nm
wavelength simulation in Fig. 3.16(c). In order to check whether the positive
lobe in the simulated PAD may be linked to molecular structure, MSFT simula-
tions of the photoelectron spectrum along the polarization axis were performed
at two additional probe intensities. The result is shown in Fig. 3.19. The ex-
perimental maximum (blue dots) and the simulated maximum (blue solid line)
coincide at 8.7× 1013 W/cm2 probe intensity. For a somewhat lower intensity
of 6.3× 1013 W/cm2 (red solid line) and a higher intensity of 1.2× 1014 W/cm2
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Figure 3.18: Comparison between the experiment at 1300 nm probe wave-
length and 7.0± 0.6× 1013 W/cm2 intensity (left half) and the MSFT simu-
lation at 8.7× 1013 W/cm2 (right half). The 4Up (dashed) and 10Up (dash-
dotted) iso-energy circles are also indicated.

(green solid line), the simulated maximum shifts by a significant amount. All
three simulated curves also show strong oscillatory behaviour at high momenta
and do not show a clear minimum, as is present in the experiment.

Neither the pronounced intensity dependence nor the strong oscillatory be-
haviour of the simulation are at the moment understood. One possible cause
for the lack of diffraction information in the simulated spectra is the fact that
the electron scattering process is not necessarily elastic in the current MSFT
model [103, 104]. That is, when evaluating the scattering matrix element〈
χpf

(τ1)
∣∣VT (τ1) |χpm(τ1)〉 in (3.11), the magnitude of the kinetic momentum

in the intermediate and final state at the time of re-scattering τ1, i.e. πm =
|pm +A(τ1)| and πf = |pf +A(τ1)|, are not necessarily equal. This means that
photoelectrons with a range of intermediate state momenta can contribute to a
single final state with the canonical momentum pf . This can affect the visibil-
ity of diffraction features because they depend on the value of the momentum
transfer (see Sec. 2.5.1) that is given by πf − πm. Implementing the MSFT
model such that the integral over the re-scattering time τ1 is performed using
the saddle-point approximation would effectively enforce the elastic scattering
condition.
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Figure 3.19: Signal variation along the polarization axis for the experimental
PAD at 1300 nm probe wavelength and 7.0± 0.6× 1013 W/cm2 intensity (blue
dots, connected by dotted lines as guide to the eye) and MSFT simulations
(solid lines) at 1300 nm probe wavelength and three different probe intensities.

3.6 Time-Dependent Density Functional Theory

The first experiment demonstrating the LIED technique showed that the shape
of the molecular orbital had a distinct influence on the normalized difference
between PADs of aligned and anti-aligned molecules in the energy range where
direct photoelectrons are dominant [68]. In more recent experiments, Pullen
et al. [79] suggested that photoelectrons resulting from processes that do not
lead to the creation of a ground state molecular ion, e.g. ionization from lower
lying molecular orbitals, would result in experimental background masking the
LIED effect. To investigate the role of multiple electronic ionization channels in
the current LIED experiments on aligned CF3I molecules, ab-initio calculations
based on the Time-Dependent Density Functional Theory code developed by
DeGiovannini et al. [87] have been performed. The first attempts at these
calculations had limited success due to the large amount of computing resources
required to obtain numerically converged simulation results. The TDDFT code
of DeGiovannini et al. was very recently improved so that the photoelectron
momentum distributions can be obtained using the time-dependent surface flux
method (t-SURFF) [105], which enabled a significant reduction in the required
simulation resources. This section will present some first simulation results
obtained with the improved TDDFT code.

The dynamics of the photoelectrons originating from the ten Highest Oc-
cupied Molecular Orbitals (HOMOs) of CF3I were simulated. The two highest
orbitals, i.e. HOMO and HOMO-1, were found to contribute significantly to the
simulated normalized difference images. The TDDFT calculation yields a 3-D
PAD for a fixed orientation of the molecule with respect to the alignment pulse
polarization. The averaging over the molecular frame distribution for aligned
and anti-aligned molecules is done using the same distributions as in the semi-
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Figure 3.20: TDDFT simulation results for three different combinations of
probe pulse intensity and wavelength: (top row) I=3.4× 1013 W/cm2 and
λ=800 nm, (middle row) I=7.7× 1013 W/cm2 and λ=800 nm, and (bottom
row) I= 4.7× 1013 W/cm2 and λ=1300 nm. The experimental images with the
corresponding probe pulse properties are plotted on the left half of the figures
in the first column. The second and third columns show the individual contri-
butions from the HOMO and HOMO-1 orbitals to the total simulated image
that is plotted on the right half of the figures in the first column.

classical model (see Fig. 3.9). The averaging is accomplished by performing
the TDDFT calculation for three different angles between the C–I axis and the
alignment pulse polarization, and constructing a weighted average of the sim-
ulated PADs using the molecular-frame distribution given by (3.3). The 3-D
PADs are then rotationally averaged around the alignment pulse polarization
axis, as the molecule can rotate freely around this axis. Finally, the normalized
difference images are constructed from the simulated PADs of the aligned and
anti-aligned molecules.

The results of the TDDFT simulations for three different combinations of
probe pulse intensity and wavelength, which correspond to the experimentally
available data, are shown in Fig. 3.20. The contributions of the HOMO and
the HOMO-1 were found to significantly contribute to the observable features
in the total normalized difference images and are shown in the middle and right
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Figure 3.21: Signal variation along the polarization axis for the three
TDDFT simulations (solid lines) shown in Fig. 3.20 with a probe pulse in-
tensity and wavelength of: (a) I=3.4× 1013 W/cm2 and λ=800 nm, (b)
I=7.7× 1013 W/cm2 and λ=800 nm, and (c) I= 4.7× 1013 W/cm2 and λ=1300
nm. The experimental signal variation corresponding to the experimental im-
ages plotted on the left half of the plots in the first column of Fig. 3.20 are also
plotted (red dots with errorbars).

columns in Fig. 3.20. It is striking that the HOMO contribution is almost
entirely negative in value for all three experimental conditions, whereas the
HOMO-1 contribution is almost exclusively positive. This may be understood
by the fact that the HOMO orbital has a nodal plane that is parallel to the C–I
axis, so that the tunnelling ionization from this orbital is suppressed when the
molecules are aligned, and enhanced when they are anti-aligned. The HOMO-1
on the other hand has a nodal plane perpendicular to the C–I axis, which leads
to the opposite behaviour.

The features that were assigned to LIED effects using the semi-classical
models can also be identified in the TDDFT simulations. In the total normalized
difference images for the two simulations using an 800 nm probe wavelength
(top and center left plots in Fig. 3.20) there is a positive feature along the
polarization axis for longitudinal momenta p‖ > 1.1 a.u. This can also be seen
in Fig. 3.21, which shows the signal variation along the p‖ axis for the simulated
and experimental normalized difference images corresponding to the three cases
shown in Fig. 3.20. This positive feature is attributed to LIED effects by the
semi-classical model calculations that were shown in Sec. 3.4. Looking at the
individual contributions of the HOMO and the HOMO-1 to the total normalized
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difference image, it is observed that this positive feature is mainly due to a strong
contribution from the HOMO-1. In the total normalized difference image for
the simulation using a 1300 nm probe wavelength (bottom left plot in Fig.
3.20) there is no clear positive contribution. This disagrees somewhat with the
experiment, which does show a weak positive feature for longitudinal momenta
of p‖ =1.4–1.9 a.u., see also Fig. 3.21(c). However, there is a rather strong
negative feature in the simulated image for p‖ > 1.9 a.u. that does match well
with the experiment. This negative feature is attributed to LIED effects by the
semi-classical model. Looking at the individual orbital contributions for this
simulation it is observed that the negative feature is mainly due to a strong
contribution from the HOMO.

It is concluded that though the TDDFT simulations show a certain similar-
ity to the semi-classical model results, they also clearly illustrate the limitations
of the semi-classical model and the importance of molecular orbital effects in the
experiments. It is expected that the TDDFT calculations will be used in con-
junction with the current experimental results to improve on our understanding
of strong-field ionization processes in molecules, and develop extended semi-
classical LIED models that can accurately represent molecular orbital effects
and multiple ionization channels.

3.7 Conclusion

The experiments presented here demonstrate a very powerful combination: Laser
Induced Electron Diffraction (LIED) and molecular alignment. It was shown
that even for a relatively complex molecule such as CF3I and for low photoelec-
tron re-collision energies, it is possible to extract structural information from
complex photoelectron spectra resulting from the ionization in a strong laser
field. Molecular alignment is an essential ingredient as it enables the effective
extraction of diffractions effects, which would have been very challenging oth-
erwise.

A semi-classical model, in which the strong field motion of the photoelec-
tron is treated classically and re-scattering and diffraction off the molecule is
modelled quantum mechanically, reproduces experimental features in the high
energy range of the spectrum. It was shown that oscillations along the polariza-
tion axis in the experimental PADs, can be interpreted as diffraction features.
Scattering of the photoelectron with the molecule was modelled using the In-
dependent Atom Model (IAM), with atomic elastic scattering cross-sections
obtained by two different methods. Plane Wave Born Approximation (PWBA)
atomic cross-sections showed significant deviations from the experimental data.
More accurate atomic cross-sections, obtained using the ELSEPA package [36],
lead to an improved match with the experiment and provided an explanation for
the deviations seen with the PWBA model. It is expected that the use of better
electron-molecule scattering cross-sections will further improve the accuracy of
the semi-classical model.

In order to understand the photoelectron spectrum in the region close to or
below the 4Up cut-off energy, an accurate model of the strong field process going
beyond the semi-classical approach is required. In this region, the experimen-
tal normalized difference images reveal a particularly rich pattern of features
which may be linked to effects such as molecular orbital imprinting [68] and
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photoelectron holographic interference [98]. The first simulations of the current
LIED experiments on CF3I molecules using the Molecular Strong Field Theory
(MSFT) developed by Milošević et al. [88, 89, 90, 91] were presented. The sim-
ulated spectra show important deviations from the experimental data and the
semi-classical models, so that it is currently not possible to compare the results.
Nevertheless, the MSFT remains an attractive possibility to model and interpret
strong field related features and influences in these photoelectron spectra.

The results from ab-initio Time-Dependent Density Functional Theory
(TDDFT) calculations performed by DeGiovannini et al. are promising and
show a relatively good match with the experimental data at all photoelectron
energies. The TDDFT calculations indicate that the contribution of not only
the Highest Occupied Molecular Orbital (HOMO) but also of the lower lying
HOMO-1 are significant and can be identified in the experimental results. This
clearly illustrates the importance of molecular orbital effects in these experi-
ments and is expected to lead to the development of extended semi-classical
LIED models that can accurately represent molecular orbital effects and multi-
ple ionization channels.

Future experiments combining alignment and the imaging of ultrafast struc-
tural dynamics of molecules during photoinduced reactions (e.g. dissociation)
are being pursued. Introducing molecular orientation as well as improving the
degree of alignment may lead to a powerful technique capable of full 3-D recon-
struction of molecules undergoing ultrafast motion on their natural time and
space scales.
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Chapter 4

Velocity map imaging of
electron impact ionization –
search for coherent emission

4.1 Introduction

When a molecule is ionized its structure becomes imprinted on the ejected elec-
tron. This was first discovered almost a century ago through the study of the
X-ray absorption fine-structure, i.e. the oscillatory structure of the X-ray ab-
sorption cross-section in the energy region following an ionization threshold.
Kronig showed in 1932 that the absorption fine-structure could be explained by
the diffraction of the ejected electron within the molecular frame [106]. The
diffraction effect described by Kronig forms the basis for techniques such as
Extended Absorption Fine-Structure (EXAFS) spectroscopy, see e.g. [107], and
photoelectron diffraction, see e.g. [21], that have been used extensively for ma-
terial structure studies over the past decades. In 1966, Cohen and Fano [46]
identified another molecular structure effect in the photoabsorption spectra of
of O2 and N2. They showed that the coherent emission of a photoelectron from
distinct atomic centres within the molecule leads to an interference effect that
causes oscillations in the photoabsorption spectrum.

In Sec. 2.5.2 it was shown that electrons that are produced by impact ion-
ization using a charged particle, e.g. an electron or an ion, may carry molecular
structure information in similar ways as the photoelectrons. Impact Ionized
Coherent Electron Emission (IICEE) is a generalization of the Cohen-Fano ef-
fect and leads to the interference between electrons that are ejected from two
distinct atomic centres within a molecule [4]. A second mechanism that can
give rise to molecular interference effects is Impact Ionized Secondary Electron
Diffraction (IISED), which is a generalization of the photoelectron diffraction
effect. That is, an impact ionized electron that is ejected from one of the atomic
centres within the molecule can scatter elastically from another atomic center,
which leads to interferences between the scattered and non-scattered electrons
(see also Fig. 2.15).
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Table 4.1: Overview of publications with experimental work on molecular
structure effects in impact ionized electrons.

Ref. Year Projectile Molecule Detection

Stolterfoht
et al. [47]

2001 Kr34+ H2 e−-TOF

Stolterfoht
et al. [48]

2004 Kr33+ H2 e−-TOF

Hossain et
al. [108]

2005 H+ H2 e−-TOF

Tanis et al.
[53]

2006 Kr34+ H2 e−-TOF

Milne-
Brownlie
et al. [50]

2006 e− H2 (e−,2e−)

Chatterjee
et al. [109]

2008 e− H2 e−-TOF

Baran et
al. [49]

2008 H+ N2 e−-TOF

Hargreaves
et al. [52]

2009 e− N2 (e−,2e−)

Nandi et
al. [110]

2012 C6+ O2 e−-TOF

Table 4.1 shows an overview of some of the most important experimental
results with regard to the effect of the molecular structure on impact ionized
(secondary) electrons produced using ion or electron impact. The first exper-
imental demonstration of the IICEE effect in 2001 resulted from experiments
with heavy ion impact, i.e. Kr34+, on H2 and Helium [47]. Stolterfoht et al. [47]
obtained secondary electron energy spectra of H2 and Helium at several fixed
angles with respect to the incoming Kr34+ projectile using an electron elec-
tron Time-Of-Flight (e−-TOF) detector. They showed that IICEE interference
effects could be observed in the ejected electron spectrum of H2 as an oscilla-
tion around an effective ’atomic’ term, which consists of twice the theoretical
cross-section of a Hydrogen atom. No such oscillation was visible in the ejected
electron spectrum of Helium after subtraction of its theoretical cross-section
from the experimental data.

The pioneering experiment demonstrating the IICEE effect in 2001, was fol-
lowed in 2004 and 2005 by two further experiments from the same group that
claimed to show first experimental indications for the IISED effect [48, 108].
Stolterfoht et al. and Hossain et al. observed that superposed on the oscillation
in the secondary electron spectrum of H2 that was attributed to IICEE effects,
there was another, smaller oscillatory component. This additional oscillatory
component had a frequency that was double that of the IICEE oscillation and
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was attributed to the interference between the secondary electrons that have
scattered from the neighbouring atom and those that have not, i.e. IISED. How-
ever, additional measurements and a detailed analysis of all the experimental
data by Tanis et al. [53] did not find conclusive evidence for the higher-frequency
oscillations observed in the former experiments. Furthermore, ab-initio theoret-
ical calculations did not reproduce the double frequency oscillatory component
attributed to IISED, so that the interpretation of these results is still a matter
of debate [4].

The first experiment using electron impact ionization to demonstrate coher-
ent emission effects followed soon after the ion impact experiments in 2006 [50].
Milne-Brownlie et al. used an (e−,2e−) spectrometer, capable of detecting the
momentum of all the outgoing electrons resulting from an individual ionization
event [42], to measure the Triply Differential Cross-Section (TDCS) of Helium
and H2. The experimental TDCS was compared to Molecular 3-body Distorted
Wave (M3DW) calculations [111] that indicated that the shape of the H2 TDCS
is slightly modified by the coherent emission interference effect. Chatterjee et al.
[109] also looked for IICEE effects in electron impact ionization of H2, but using
an electron TOF detector. Compared to the experiments by Milne-Brownlie et
al., the experiment by Chatterjee et al. obtained incomplete information on the
scattering process, because the scattered (primary) electron direction and en-
ergy is not observed. Nevertheless, they observed oscillations in the secondary
electron spectrum that were attributed to IICEE effects using a similar analysis
as Stolterfoht et al. in the ion impact experiments. This indicates that IICEE
effects remain visible in the secondary electron energy spectrum of electron im-
pact ionized H2, even after averaging over the primary electron momentum.

The majority of experiments looking for molecular effects in impact ionized
electrons used the H2 molecule due to its simplicity with regard to theory. The
experiments by Baran et al. [49], Hargreaves et al. [52], and Nandi et al. [110]
undertook the next step in complexity by studying the impact ionization of N2

and O2 molecules. Baran et al. and Nandi et al. performed ion impact ionization
experiments in combination with an electron TOF detector. In both cases it was
found that there is a strong suppression of IICEE effects in these molecules com-
pared to H2. Baran et al. did observe some oscillations in the ejected electron
spectra of N2 after the subtraction of the ’atomic’ contribution, but found that
they did not match the theoretical predictions for the IICEE effect. Moreover,
when comparing the experimental data to the theoretical predictions for the
IICEE effect, it appeared that the experimentally observed oscillations had a
higher frequency. It was concluded that the IICEE effect was suppressed due to
the partial cancellation of the coherent emission effect from orbitals with gerade
and ungerade symmetry. The experimentally observed oscillations were instead
attributed to IISED effects, though no quantitative comparison with theory
was provided. Nandi et al. observed no apparent oscillations in the secondary
electron spectra of O2. The comparison of the experimental data with IICEE
calculations showed a qualitative match with the experiment, from which it was
concluded that the cancellation of the contributions from orbitals with different
symmetries was responsible for the lack of IICEE interferences. Finally, Harg-
reaves et al. performed electron impact ionization experiments on N2. Using the
(e−,2e−) detection scheme they studied the TDCS for the impact ionization of
specific molecular orbitals. Comparing the experimental TDCS to the theoret-
ical atomic Nitrogen TDCS, they identified IICEE effects in the experimental
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data for the individual orbitals.
The effect of the molecular structure on the secondary electrons, that was

demonstrated in the experiments described above, could in principle be used
to image the molecular structure during a dynamical process. Photoelectron
diffraction has in particular seen renewed interest with the recent development
of intense, ultrafast X-ray sources, as a prospective candidate for direct imaging
of nuclear motion with femtosecond temporal and Ångström spatial resolution
[17, 18, 19]. However, the hard X-ray source required for successful implementa-
tion of ultrafast photoelectron diffraction means that such experiments must be
performed at large user facilities, with the associated drawbacks of experimen-
tal complexity and restricted beam-time availability. This offers the interesting
prospect of using table-top Ultrafast Electron Diffraction (UED) sources, which
are readily available and can even be obtained commercially [20], to generate
energetic secondary electrons that may be used for ultrafast molecular structure
imaging.

This chapter presents some first results from the combination of a table-top
UED source with a Velocity Map Imaging Spectrometer (VMIS) that is applied
to the study of secondary electron emission. The VMIS is capable of obtain-
ing the full momentum distribution of the secondary electrons generated by
electron impact ionization, and can provide more complete spectral information
compared to the electron TOF detectors used in some of the earlier experiments
introduced above. By comparing the spectra of Helium and of H2 to theoretical
calculations, it is shown that hints of IICEE effects due to the molecular struc-
ture of H2 may be visible in the experimental data. Because molecular structure
effects are seen to be very weak, it is shown using theoretical calculations how
such effects can be brought out more clearly in the secondary electron spectrum
by aligning the molecules.

Section 4.2.1 gives a short summary of the experimental setup and its main
specifications. Some of the more challenging aspects of the experiments pre-
sented here were the low signal levels and the large amount of background signal,
which are treated in Sec. 4.2.2 and Fig. 4.2.3, respectively. The experimental
secondary electron spectra of the atoms Helium and Xenon, and the molecules
H2 and N2 are presented in Sec. 4.3, together with a qualitative discussion of the
spectra based on the theory of electron impact ionization. In Sec. 4.4 Distorted
Wave Born Approximation (DWBA) calculations are used to get to a quantita-
tive understanding of the spectra of Helium and H2. The Helium case is used as
a benchmark and shows a good match between theory and experiment. Using
the DWBA theory, together with the Independent Atom Model (IAM) to treat
the two-center emission effect in H2, it is shown that molecular structure effects
are possibly visible in the shape of the secondary electron spectrum. Finally,
in Sec. 4.5 the DWBA model is used to simulate secondary electron spectra of
aligned H2, showing that, analogously to the LIED experiments presented in
Chapter 3, fixing or restricting the molecular frame in space can bring out the
structural effects in a much clearer way.
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Figure 4.1: Illustration of the experimental setup consisting of a table-top
Ultrafast Electron Diffraction source and a high-energy Velocity Map Imaging
Spectrometer (VMIS).

4.2 Experimental setup

4.2.1 Experimental apparatus

The experimental setup is based on a commercially available electron source de-
veloped for Ultrafast Electron Diffraction (UED) [20, 112]. The setup consists
of a 100 keV electrostatic field accelerator and a microwave cavity for the tem-
poral compression of the electron bunches. The microwave cavity is essentially
a temporal lens which produces a time-dependent electric field such that the
fast electrons, which are at the front of an expanding electron bunch, are de-
celerated, while the slower electrons, at the back of the bunch, are accelerated.
A detailed description of the electron source design and its characterization can
be found in [113].

A summary of the design specifications for this version of the electron source
is shown in Table 4.2. This electron source was designed to accommodate tighter
focusing of the electron beam, as required for the operation of the source in com-
bination with a Velocity Map Imaging Spectrometer (VMIS). The estimated
pulse duration and focal size are based on an initial simulation report for this
version of the electron source with the General Particle Tracer (GPT) code
[114, 115]. It must be remarked that the total temporal resolution of the elec-
tron source setup is affected by synchronization jitter between the laser and the
compression cavity, which was not included in the aforementioned GPT simu-
lation. Based on publications using a similar microwave cavity compressor, the
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jitter contributions can be as large as 200 fs [116, 117].

Table 4.2: Ultrafast electron source specifications [115].

Specification Value

Electron energy 100 kV
Repetition rate (max.) 30 kHz
Bunch charge 40 fC (∼ 105 e−)
Pulse duration1 50 fs
Focal size 50 µm

Due to experimental limitations, i.e. low signal levels, the electron source
was not operated in a time-resolved manner in the current experiments. In
order to get the highest possible signal level a bunch charge of ∼4000 fC was
used, which is two orders of magnitude larger than the nominal specified bunch
charge of 40 fC. Moreover, to maximize the cross-section, which is inversely
proportional to the the primary electron beam energy, the electron source was
operated at a lower acceleration voltage of 30 kV.

The accelerator is a simple solid Copper photo-cathode biased at the ac-
celeration voltage and pumped by the third harmonic (266 nm) of the main
laser system. The ultrafast laser system is an 800 nm, 1 kHz repetition rate
system with a total of 3 mJ pulse energy and 30 fs pulse duration. The third
harmonic pulses were produced by 10% – 30% of the main laser output using
a Type-I BBO crystal for Second Harmonic Generation (SHG) and a Type-
II BBO for Sum Frequency Generation (SFG). The quantum efficiency of the
photo-cathode was measured to be approximately 10 pC/µJ, which is close to
the value of 5 pC/µJ provided by [113].

The main feature of this setup is the unique combination of an ultrafast
electron source with a high-energy VMIS capable of measuring up to 1.5 keV
secondary electrons produced by the initial fast electron beam. A more detailed
description of the VMIS can be found in Sec. 3.2.1. One main concern with this
combination is the effect of the VMIS electric fields on the primary electron beam
propagation. Two sets of electrostatic beam deflectors were integrated with the
VMIS in order to guide the incoming electron beam through the spectrometer
(see Fig. 4.2). A set of deflectors consists of an in-plane deflector and an out-
of-plane deflector, which are mounted vertically and horizontally, respectively,
inside the VMIS vacuum chamber. Each beam deflector consists of a pair of
1.5 cm wide aluminium parallel plates that are separated by 1 cm dielectric
spacers. One set of deflectors at the VMIS entrance is used to intersect the
incoming electron beam with a molecular beam at the interaction point within
the spectrometer. The second set of deflectors at the VMIS exit ensures that
the outgoing beam does not hit the spectrometer chamber walls and is directed
onto a Faraday cup assembly attached behind the spectrometer to measure the
primary beam current.

The molecular beam is produced by an Even-Lavie valve [97] operated at
a repetition rate of 750 Hz, with an opening time of 26 µs, and with a nozzle

1Excludes the contribution from synchronization jitter.
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Figure 4.2: Photograph of the electrostatic beam deflectors within the VMIS
vacuum chamber that are used to steer the electron beam through the spectrom-
eter. The VMIS, which was removed in order to take this picture, is located
between the two deflector sets.

size of 100 µm. Pure samples of the target molecule at backing pressures of 3
– 4 bar were used. The molecular beam is passed through a 1 mm diameter
skimmer before entering the detector chamber. The total distance between the
valve nozzle and the interaction region was kept as small as possible, i.e. ∼15
cm, to maximize the target density at the interaction point.

4.2.2 Signal level estimates

One of the challenging aspects of the presented experiments was the relatively
low signal level. The two main factors required to estimate the signal level in
these experiments are the molecular beam density and the total electron impact
ionization cross-section. The molecular beam density can be estimated using
the idealized continuum model for supersonic expansion from circular nozzles
given by Morse [96]. The density of the molecular beam ρ after some distance
d is in this semi-empirical model given by the following equations

ρ

ρ0
= W−1/(γ−1)

W = 1 +
1

2
(γ − 1)M2

M = β − 1

2

(γ + 1)

(γ − 1)β

β = A

(
x− x0
D

)γ−1
(4.1)
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In these equations ρ0 is the molecular density of the gas in the reservoir, D
is the nozzle diameter, γ is the heat capacity ratio2, and x0 and A are fitting
parameters. Using the experimental parameters provided in the previous sec-
tion, and the fitting parameters provided by Morse [96], the molecular beam
density at the interaction point in the current experiments is estimated to be
4.8× 1012 cm−3 for the atomic and 3.7× 1012 cm−3 for the diatomic gases.

The total ionization cross-section can be estimated using Lotz’s empirical
formula [118] for the high-energy electron impact ionization of atoms given by

σ =

N∑
i

aiqi
log(E/Pi)

EPi
(4.2)

In this equation E is the primary (projectile) electron energy and the sum runs
over the N electron shells of the atom where qi is the number of electrons in the
shell, Pi is the ionization energy, and ai is an empirical fitting parameter (see
also [119, 120]). The molecular cross-section is assumed to be given by the sum
of the cross-sections of the constituent atoms. The cross-sections for the atoms
and molecules used in the current experiments at primary electron energies of
30 and 100 keV are shown in Table 4.3.

Table 4.3: Total electron impact ionization cross-sections for the atoms and
molecules used in the current experiments.

Cross-section (10−18 cm−2)

Species 30 keV 100 keV

Helium 0.77 0.27
Xenon 7.2 2.5
H2 1.5 0.5
N2 5.2 1.8

Using the molecular beam density ρ and the cross-sections σ obtained using
(4.1) and (4.2), respectively, the total number of ionization events per second,
i.e. signal level, can be calculated and is given by

R = Ne fexp dint ρ σ (4.3)

where Ne is the number of electrons per bunch, fexp is the repetition rate
of the experiment, and dint is the interaction region length. The interaction
region length is given by the molecular beam diameter, while the experimental
repetition rate is limited by the opening frequency of the pulsed molecular valve.

2The heat capacity ratio for an ideal gas is 5
3

for a mono-atomic gas and 7
5

for a diatomic
gas at room temperature.
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Table 4.4: Calculated signal level for the current experimental conditions.

Species
Signal

(104 s−1)

Helium 0.69
Xenon 6.5
H2 1.0
N2 2.7

Assuming that it is necessary to record a momentum map with a resolution of
500 by 500 pixels and with a total number of 100 events per pixel, the acquisition
time per momentum map for the signal levels listed in Table 4.4 is calculated
to be between 6 and 60 minutes. The calculated acquisition times are lower
than the acquisition times used during the experiments, which were between
20 minutes and 2 hours. This discrepancy is not understood and may be due
to an overestimation of some of the experimental parameters, or due to sub-
optimal experimental conditions. Another factor that must be kept in mind is
that for the study of molecular structure effects it is necessary to observe the
momentum map at relatively high momenta, i.e. > 1 a.u. As will be shown
in Sec. 4.3, the cross-section drops off very quickly as the kinetic energy of
the ejected electron increases. As a result, the effective signal level for the
momentum range of interest is at least one order of magnitude lower than the
total number calculated above.

4.2.3 Data acquisition and processing

Another challenging aspect of the current experiments was the large amount of
background signal in the images. The two main background contributions to
the spectrum were found to be (primary) electron beam scattering from surfaces
and from residual gas.

When the primary electron beam scatters from a surface it produces large
amounts of secondary electrons. Due to the large electron beam currents em-
ployed in these experiments, space-charge effects were very pronounced. The
electron beam could get very hard to control and a diffuse cloud surrounding
the main beam produced rather strong background contributions due to surface
scattering. Moreover, though the primary electrons are dumped into a Fara-
day cup at a rather large distance of >50 cm from the interaction region, the
secondary electrons generated by this process were also visible in the VMIS
images.

The second strong background contribution was found to be the ionization
of the residual sample gas in the VMIS chamber. In order to maximize the
signal level the molecular valve was operated at a high repetition rate and was
placed very close to the skimmer separating the molecular source chamber from
the spectrometer. Unfortunately, this also results in a rather high background
gas load in the spectrometer chamber because of the continuous leaking of gas
from the source chamber. Due to the strongly ionizing character of the primary
electrons, and the much longer propagation length over which the primary elec-
trons can ionize the background gas, this results in a significant signal from

100



4.3. Experimental results

6 4 2 0 2 4 6
p  (a.u.)

6

4

2

0

2

4

6
p

 (a
.u

.)
(a)

6 4 2 0 2 4 6
p  (a.u.)

(b)

10-3

10-2

10-1

100

Figure 4.3: N2 secondary electron spectrum with background subtraction by
(a) turning the valve on and off and (b) delaying the valve timing by 200 µs.

the interaction of the primary electron beam with the residual gas in the spec-
trometer chamber. Trying to subtract background contributions by switching
off the molecular beam is effective in the case of the previously described sur-
face scattering contributions, because these contributions remain visible after
the molecular beam has been switched off. However, once the molecular beam
is off, the background gas load in the VMIS chamber, and the corresponding
contribution in the acquired background image, is also eliminated. This re-
sults in a strong presence of the background gas load contributions in spectra
where the background image is acquired with the molecular valve switched off,
as illustrated in Fig. 4.3(a).

The experimental data is therefore acquired in a specific way so as to enable
both the subtraction of background gas load and surface scattering contributions
from the spectrum. This is done by introducing a delay between the electron
bunches and the molecular beam pulses when acquiring the background image,
such that the molecular beam pulse arrives 200 µs after the electron bunches.
The background image then contains both the surface and background gas con-
tributions. Subtracting this background spectrum from the spectrum at op-
timum overlap between the electron and molecular beams produces relatively
clean secondary electron spectra, as illustrated in Fig. 4.3(b). Furthermore, to
avoid the effect of long-term system drift the background data was acquired in
a repetitive fashion, which was also discussed in Sec. 3.2.2 in the context of the
LIED experiments.

4.3 Experimental results

In order to understand the main features of a secondary electron spectrum, the
VMI spectra of atomic targets as well as that of simple homo-nuclear diatomic
molecules have been obtained. Moreover, several experimental studies on Im-
pact Ionized Coherent Electron Emission (IICEE) made use of the comparison
between the spectrum of Helium and H2 in order to demonstrate the effect of
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Figure 4.4: Helium; electron impact ionized secondary electron VMI spectrum.
The incoming electron beam energy is 30 keV and its propagation direction is
along the p‖ axis in the positive direction, i.e. from bottom to top. The VMIS
repeller and extractor voltages were 8.0 and 7.44 kV, respectively.

molecular structure on the spectrum [47, 50, 51, 121]. This approach will be
followed in Sec. 4.4, where it will be shown that the Helium spectrum can be
reproduced rather well with a Distorted Wave Born Approximation (DWBA)
model. In the case of H2 it will be shown that there may be some small two-
center interference effect that is visible as a slight narrowing of the spectrum.

The secondary electron spectrum of Helium is shown in Fig. 4.4 . The
incoming electron beam propagation axis is along p‖, with the propagation di-
rection in the positive direction, i.e. from page bottom to top. The conversion
from image pixel units to absolute momentum units was performed using the
VMIS energy calibration constants obtained from the LIED experiments pre-
sented in the previous chapter. The shape of the spectra can be qualitatively
understood by considering the momentum distribution of the target electrons
and the kinematics of the ionization process. As discussed in Sec. 2.4.2, electron
impact ionization can be divided into two main kinematic arrangements (see also
Figs. 2.7, 2.8 and 2.9). The first kinematic arrangement leads to ’dipole like’
emission in which the emitted electron resembles a p-wave. This type of emis-
sion is dominant for ejection momenta comparable in magnitude to the width
of the momentum distribution of the ejected electron before ionization; which
is also inversely proportional to its ionization energy. As can be seen in Fig. 4.4
for the case of Helium the secondary electron spectrum at momenta below ∼2
a.u. is indeed dominated by dipole-like emission perpendicular to the incom-
ing electron beam axis p‖. The second kinematic arrangement is one in which
the outgoing electron momentum is significantly larger than the bound electron
momentum distribution. Secondary electrons with a large outgoing momentum
are produced through a relatively hard, classical-like, interaction of the bound
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Figure 4.5: Xenon; electron impact ionized secondary electron VMI spectrum
(see Fig. 4.4 for experimental details).

electron with the fast projectile. The secondary electron spectrum is then domi-
nated by a single binary3 peak, i.e. the Bethe-ridge. The binary peak is centred
around the angle at which an electron with zero initial momentum would be
scattered after interaction with the incoming projectile, and has a width deter-
mined by the momentum distribution of the bound state. In these experiments
the primary beam has such a large initial momentum that an electron with
zero initial momentum is ejected almost perpendicular to the primary beam,
but with a small forward angle. This can indeed be observed in the Helium
spectrum in Fig. 4.4. As the momentum distribution of the bound electron has
a fixed width, determined by its ionization energy, it can also be seen in Fig. 4.4
that the binary peak is angularly more defined for higher outgoing momentum
values.

The secondary electron spectrum of Xenon is shown in Fig. 4.5 and is seen to
be rather uniform when compared to Helium. This implies that the secondary
electrons are ejected through interactions involving orbitals with a very broad
momentum distribution, i.e. high ionization energy. On the other hand, the
ionization energy of the valence electrons of Xenon is only 12.1 eV, so that using
the kinematic arguments above would lead to the conclusion that secondary
electrons ejected from the valence shell should show a narrower distribution as
compared to that of Helium. The secondary electron spectrum of Xenon in Fig.
4.5 therefore shows a strong contribution from electrons in lower lying shells,
which have a very broad momentum distribution. Referring to the electron
impact ionization theory outlined in Sec. 2.4.2, the contribution of lower lying
shells can be due to direct ejection of electrons from those shells or due to

3The name binary peak refers to the fact that this feature arises from a kinematic arrange-
ment where the projectile-electron interaction dominates, and the projectile-nucleus interac-
tion can be neglected (see Sec. 2.4.2).
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Figure 4.6: H2; electron impact ionized secondary electron VMI spectrum.
The VMIS repeller and extractor voltages were 2.0 and 1.86 kV, respectively.

indirect interaction of the projectile with lower lying electrons, which then leads
to the ejection of electrons from higher shells.

The secondary electron spectra from the two molecular targets, H2 and
N2, are shown in Figs. 4.6 and 4.7. The spectrum of H2 shows the strongest
anisotropy, i.e. narrowness of the spectrum, of all the target species used. This
can of course be understood by the fact that it has a single binding orbital with
an ionization energy of only 13.6 eV, and thus a correspondingly narrow bound
electron momentum distribution. It is therefore also narrower than the Helium
spectrum from Fig. 4.4, as the binding energy of Helium electrons is almost
twice as large as that of Hydrogen. The spectrum of N2 is relatively broad
and reflects the presence of strongly bound electrons with wide momentum
distributions besides its relatively loosely bound valence electrons, analogously
to the case of Xenon.

Unfortunately, due to the low imaging voltages, the H2 spectrum also dis-
plays some distortion, i.e. asymmetry around the p‖ axis, which is likely due
to stray electric and magnetic fields. The hydrogen spectrum was recorded at
relatively low VMI voltages because its momentum distribution decays rather
fast with outgoing momentum magnitude. This is of course a consequence of
the narrow momentum distribution of its single molecular orbital. The N2 spec-
trum was recorded at much higher VMI voltages and is consequently much more
symmetric around the p‖ axis. Due to imperfect background subtraction some
artefacts can nevertheless also be seen in the N2 spectrum, especially along the
electron beam propagation axis p‖. The N2 spectrum shows a sharp circular
feature at 5.2 a.u., which is indicated by the dotted white semi-circle. The po-
sition of this feature matches well with the N2 K-shell Auger peak observed by
Baran et al. [49].
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Figure 4.7: N2; electron impact ionized secondary electron VMI spectrum (see
Fig. 4.4 for experimental details). The dotted white semi-circle has a radius of
5.2 a.u.

4.4 Distorted Wave Born Approximation calcu-
lations

In this section a model based on the First Born Approximation will be used to
calculate the ionization spectra of the Helium atom and H2. The Helium atom
ionization spectra may be considered as a benchmark case and it will be shown
that the model spectra are indeed in good agreement with the experimental
results. A comparison between the H2 calculations, using a similar model, and
the experimental data indicate that molecular two center interference effects
may be visible as a slight narrowing of the secondary electron spectral shape.

In Sec. 2.4.2 an introduction was given to the theory of atomic and molecular
impact ionization. The Distorted Wave Born Approximation (DWBA) was in-
troduced and expressions for the ionization of atomic Hydrogen were given [29].
The main feature of this treatment was the use of the Coulomb wavefunction
ψc(ke, r2) for the ejected electron to take the effect of the ionic potential into
account. This is especially important for the spectrum at low ejection momenta.
The treatment of the Helium atom follows roughly the same lines as that of the
Hydrogen atom and its DWBA scattering amplitude is given by the following
integral

fDWBA
He = − 1

2π

∫
exp(iq · r0)ψc(ke, r2)ϕ∗e(r1)×(

− 2

r0
+

1

r01
+

1

r02

)
φi(r1) d3r0...2 (4.4)

where r0, r1 and r2 are the coordinates of the projectile, remaining bound
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Figure 4.8: Comparison between the experimental (left half) and simulated
(right half) secondary electron spectrum of Helium.

and ejected electron respectively, ke is the ejected electron momentum, and
q = ki−ks, where ki and ks are the incoming and scattered electron momenta.
These integrals, involving the Coulomb wavefunction, can actually be evaluated
analytically and expressions are given in [122]. Care must be taken to include the
projectile-nucleus term 2/r0, which leads to dipole like emission and is especially
important for the spectrum at low momenta.

The simulated VMI spectrum of secondary electrons from Helium is shown
in Fig. 4.8. The VMI spectrum is obtained by averaging the differential cross-
section, calculated using (4.4), over the scattering angle of the projectile elec-
tron. The kinetic energy of the projectile is fixed by energy conservation. In
order to compare the simulation with the raw VMI spectrum, the simulated
spectrum was Abel projected. The advantage of this approach is that experi-
mental data regions with very low signal levels are not contaminated by any
additional noise introduced by Abel inversion procedures. To compare the sim-
ulated and experimental spectra in a more quantitative way, the signal along
the p‖ axis, i.e. the electron beam propagation axis, is considered in Fig. 4.9.
The plotted signal is from a cut along the p‖ axis that is integrated in the p⊥
axis direction for momenta in the range of -0.2 to 0.2 a.u. Fig. 4.10 shows
the relative difference between the simulated spectrum and experimental data,
i.e. (σexp − σsim)/σsim. For momenta of up to 2 a.u. the relative difference
tends toward zero, indicating a good match between theory and experiment.
At momenta above ∼2 a.u. the experimental data starts going below the noise
level, which is visible as an increase in the standard deviation and a stronger
deviation of the experimental data from the simulated curve.

For H2, a model of electron impact ionization introduced by Stia et al. [58]
is used. This gives the molecular ionization cross-section as a product of the
atomic Hydrogen cross-section σA and an oscillatory two-center interference
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Figure 4.9: Comparison between the DWBA simulation (blue line) and the
experiment (red dots) of the Helium secondary electron spectrum along the p‖
axis. The plotted curves are obtained from a cut of the spectrum along the
p‖ axis that is integrated along the p⊥ axis direction from -0.2 to 0.2 a.u. The
simulated spectrum is normalized and then scaled with a fixed pre-factor to take
the low-energy peak in the experimental data into account.
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Figure 4.10: The relative difference between the experimental data and sim-
ulated curve, i.e. (σexp − σsim)/σsim, shown in Fig. 4.9.
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4.4. Distorted Wave Born Approximation calculations
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Figure 4.11: Comparison between the experimental (left half) and simulated
(right half) secondary electron spectrum of H2.

term
dσM

dke dΩe dΩs
= σA(ki,ks,ke)

[
2 + 2 cos(∆ ·R)

]
(4.5)

In this equation ∆ = ki−ks−ke, where ki,ks, and ke are the incoming, scat-
tered and ejected electron momenta, respectively, and R is the molecular axis
vector. In Sec. 2.5 it was shown that this formulation is in fact an Independent
Atom Model (IAM) applied to the case of IICEE. The electron impact ionization
cross-section of atomic Hydrogen is calculated using analytical DWBA expres-
sions [29]. Fig. 4.11 shows the resulting simulated VMI spectrum of secondary
electrons from H2. The VMI spectrum is obtained by averaging the differential
cross-section given by (4.5) over the scattering angle of the projectile electron
and the molecular axis orientation.

In order to look for two-centre interference effects in the spectrum, a com-
parison between the experimental and simulated VMI spectrum along the p‖
axis of atomic Hydrogen and H2 is shown in Fig. 4.12. Firstly, an intense low-
energy peak, which is not represented by the DWBA model, can again be seen in
the experimental spectrum. Secondly, the experimental data does not provide
an absolute cross-section and only the shape of the simulated spectra can be
compared to the experiment. This is an important difference from some of the
previous experiments which use the fact that the absolute cross-section of H2

can be significantly larger than that of two separate Hydrogen atoms for certain
outgoing momenta [109]. In Fig. 4.12 the two simulated curves are therefore
normalized to each other and scaled with a single pre-factor to take care of the
low-energy peak.

The exact mechanism responsible for the low-energy peak is currently not
known and a more comprehensive theoretical model seems to be necessary to
quantitatively reproduce the data at the lowest energies. The DWBA model is a
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Figure 4.12: Comparison of the DWBA-IAM simulation of the secondary
electron VMI spectrum of atomic Hydrogen (blue line) and H2 (green line) and
the experiment (red dots). The plotted curves are obtained from a cut of the
spectrum along the p‖ axis that is integrated along the p⊥ axis direction from
-0.2 to 0.2 a.u. The simulated spectra are normalized and then scaled with
a fixed pre-factor to take the low-energy peak in the experimental data into
account.
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Figure 4.13: The relative difference between the atomic Hydrogen simulation
and both the H2 simulation (blue line) as well as the experimental data (red
dots) that are shown in Fig. 4.12.
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4.4. Distorted Wave Born Approximation calculations

perturbative model based on the Born series, which assumes that the ionization
proceeds through a single interaction of the incoming projectile with one of the
bound electrons, followed by its immediate ejection. As mentioned previously,
the DWBA model also takes the effect of the ionic Coulomb potential on the
ejected electron into account. It would seem that the low-energy peak originates
from other types of interactions that are not represented in this model. One
possibility, which is not included in the DWBA model, is that the ejected elec-
tron is not ionized immediately, but is first excited into an intermediate state
before it is finally ejected. Finally, it is noted that the spectra of N2 and of
Xenon display a similar low-energy peak (see Figs. 4.5 and 4.7), so that the
mechanism behind this phenomenon does not necessarily require the presence
of molecular structure.

From the simulated curves in Fig. 4.12 it can be seen that a two-center inter-
ference effect in the H2 spectrum should manifests itself as a slight narrowing of
the distribution as compared to atomic Hydrogen. The experimental spectrum
indeed seems to be slightly more narrow than the atomic Hydrogen simulation
would suggest. To show this effect more clearly, the relative difference between
the atomic Hydrogen simulation and both the H2 simulation and the experi-
mental data is shown in Fig. 4.13. The relative difference between the atomic
Hydrogen simulation and the experimental data is consistently below zero for
momentum magnitudes between 0.5 and 1 a.u. The H2 simulation suggests that
this difference could be explained by coherent emission interference effects.

The simulated and experimental spectra of Helium and H2 along the along
the p⊥ axis, i.e. perpendicular to the electron beam propagation axis, are con-
sidered in Figs. 4.14 and 4.15. As before, the simulated curves are multiplied
with a fixed pre-factor and matched to the experimental data. The simulations
are matched to the experiments in the same momentum range as was done for
the spectra along the p‖ axis, i.e. 1–2 a.u. and 0.5–1 a.u. for Helium and H2,
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Figure 4.14: Comparison between the DWBA simulations (lines) and the
experiments (red dots) of the (a) Helium and (b) H2 secondary electron spectrum
along the p⊥ axis. The plotted curves are obtained from a cut of the spectrum
along the p⊥ axis that is integrated along the p‖ axis direction from -0.2 to 0.2
a.u.
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Figure 4.15: The relative difference between the experimental data and simu-
lated curve for (a) Helium and (b) atomic Hydrogen for the corresponding plots
shown in Fig. 4.14. The relative difference between the atomic Hydrogen and
H2 simulations is shown in (b) as the blue line.

respectively. It is clear that the discrepancy between the simulations and ex-
periments is in this case larger than observed when looking along the p‖ axis.
The Helium simulation matches the data relatively well up to a momentum of
∼2.5 a.u., after which it lies significantly above the experimental data (see Figs.
4.14(a) and 4.15(a)). In the case of H2 a similar situation is observed, where the
simulations are significantly above the experimental curve for momenta above
∼1.5 a.u. (see Figs. 4.14(b) and 4.15(b)). The agreement between the simula-
tions and experiments for the intermediate momentum range, i.e. 1–2 a.u. and
0.5–1 a.u. for Helium and H2 respectively, is better, though not as good as was
the case when considering the spectrum along the p‖ axis. In particular, the ex-
perimental curve for H2 shows a local peak in the momentum range of 0.5–1 a.u.
that is not reproduced by the simulation. The deviation of the H2 experimental
data with respect to the simulation is also much larger than the expected effect
of molecular structure (see Fig. 4.15(b), blue line), so that it is not possible to
draw any conclusion with regard to the presence of IICEE effects. Comparing
the simulated molecular curves in Fig. 4.15(b) and Fig. 4.13, it can be seen that
the expected molecular effects are much smaller when considering the signal
along the p⊥ axis, rather than the p‖ axis. Simulations with aligned molecules,
which are presented in the following section, indeed indicate that IICEE effects
should be most pronounced in the spectral region along the p‖ axis.

The reason for the lack of agreement between the simulation and experiment
in the spectrum along the p⊥ axis is not clear. It is possible that the discrepan-
cies are due to a physical effect that is not represented by the DWBA model, as
is the case for the low-energy peak. However, the first Born approximation is
expected to be more accurate for the high energy range considered here, and is
used extensively in the field of (e,2e)-spectroscopy under similar conditions [42].
Another possible explanation for the observed discrepancy between the simu-
lation and experiment at high momenta is VMIS imaging distortion. Radial
distortions in the recorded image could in principle lead to the ’compression’
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4.5. IICEE with aligned molecules

of the recorded spectra at high momenta and result in an effective shift of the
experimental curves at these momenta. The experimental data in both cases
displays a left/right asymmetry, which is especially pronounced in the case of
H2, that indeed indicates the presence of some imaging distortions in the ex-
periments (see also Figs. 4.4 and 4.6). However, the level of radial imaging
distortions required to explain the observed deviation is rather severe. A more
detailed characterization of the VMIS at the relevant experimental conditions
would be required for future experiments to exclude the possibility of such ex-
perimental errors.

As may be clear from the above discussions, the two-center interference effect
is rather subtle in these experiments and a firm assignment is made difficult by
several factors. Firstly, the low-energy peak is not represented by the DWBA
model and this could introduce important systematic deviations in the compar-
ison between simulation and experiment. Secondly, the experimental apparatus
may also introduce systematic errors. For example, local variations in efficiency
of the large-area detector, or background ’leakage’, which is due to imperfect
subtraction of the background contributions discussed in Sec. 4.2.3, could cause
local signal modulations that are visible in the experimental spectra. VMIS
imaging distortions are another possible source of error in the experimental
spectra. However, the two-center interference effect should become more ap-
parent as the momentum of the ejected electron increases. Unfortunately,
the signal level also decreases exponentially with increasing ejection momen-
tum. When considering the spectrum along the p‖ axis, which is where the
strongest molecular effect is expected, the current experimental signal-to-noise
ratio (SNR) of 2 orders of magnitude is not sufficient to see above ≈1.3 a.u.
of momentum. Increasing the SNR to above 3 orders of magnitude, as well as
making sure that background load and other systematic error contributions are
decreased to a minimum, should enable future experiments with this setup that
are capable of clearly observing IICEE effects in H2.

4.5 IICEE with aligned molecules

For unaligned molecules the molecular structure interference effects become very
small due to averaging over two degrees of freedom, namely the molecular ori-
entation and the scattering angle of the fast incoming electron (see also Sec.
2.5.2). Fixing, or restricting, the molecular frame orientation in space can help
to overcome this restriction and bring out structural effects in a much clearer
way. Fig. 4.16 shows a comparison between the secondary electron spectrum of
unaligned H2 and that of H2 molecules that are aligned parallel to the primary
beam propagation direction p‖. Two-center interference effects can be clearly
observed as a nodal plane in the secondary electron spectrum. The location of
the nodal plane can be estimated by considering the molecular structure term
[2 + 2 cos(∆ ·R)] from (4.5). This term is zero when ∆ ·R = (2n+ 1)π, where
n = 0, 1, . . . When the ejected electron momentum is small with respect to that
of the projectile, the momentum of the projectile before and after scattering is
almost equal so that ∆ ≈ −ke. The position of the first nodal plane in Fig.
4.16 is therefore approximately at ke = π/R, which is 2.2 a.u. for the H2 bond
length R = 0.74 Å.

The effect of rotating the molecular frame with respect to the primary elec-
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Figure 4.16: Comparison of the simulated secondary electron spectrum of
unaligned H2 (left half) and of H2 perfectly aligned along the primary electron
beam axis (right half).

tron beam propagation axis p‖ is shown in Fig. 4.17. As one would expect
from traditional diffraction imaging, the nodal planes rotate together with the
molecular frame. However, unlike in conventional electron diffraction, the nodal
planes are suppressed in modulation strength as the rotation angle approaches
90◦. Such an effect has also been described in previous theoretical studies of
IICEE effects in ion impact ionization of H2 [4, 123]. The effect was explained
as an increased sensitivity of the molecular interference factor in (4.5) to averag-
ing over the projectile scattering angle for the perpendicular orientation of the
molecule. Nevertheless, in experimental studies the perpendicular arrangement
of the molecular frame could be interesting because the overall signal level is
much higher at the position of the partially suppressed nodal plane at 2 a.u. In
the parallel molecular frame arrangement this node is located in a region where
the total signal level has decreased by more than 4 orders of magnitude, which
may lead to more stringent SNR requirements.

It is interesting to investigate the visibility of molecular interference effects
as a function of the degree of alignment of the molecular frame. Achieving
high degrees of alignment is experimentally very challenging and often comes
at the expense of achievable signal level. Fig. 4.18 shows a simulated spectrum
of partially aligned H2 with a degree of alignment of 〈cos2 θ〉 = 0.7. This
is a moderate level of alignment which can be achieved for example with the
impulsive laser alignment technique using moderate laser pulse energies. Fig.
4.18(a) shows that interference effects are in fact already visible in the raw
spectra. Using a normalized difference image, such as employed very successfully
in LIED experiments in Chapter 3, shows the pronounced effect of alignment
on the spectrum. Further simulations indicate that molecular alignment effects
should lead to variations in electron yield of up to 10% at degrees of alignment
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Figure 4.17: Simulated secondary electron spectrum of perfectly aligned H2

rotated in-plane at an angle with respect to the primary electron beam propa-
gation direction of (a) 30◦, (b) 60◦ and (c) 90◦.

as low as 〈cos2 θ〉 = 0.5. This is indeed encouraging and it is expected that the
application of molecular alignment techniques to IICEE experiments will lead
to a powerful approach enabling clear and unambiguous extraction of molecular
effects from secondary electron spectra of impact ionized molecules.

114



4.6. Conclusion

6 4 2 0 2 4 6

p  (a.u.)

6

4

2

0

2

4

6

p
 (

a
.u

.)
(a)

6 4 2 0 2 4 6

p  (a.u.)

(b)

10-6

10-5

10-4

10-3

10-2

10-1

100

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4.18: Simulated secondary electron spectrum of (a; left half) un-aligned
and (a; right half) partially aligned H2 with a degree-of-alignment of 〈cos2 θ〉 =
0.7 and (b) normalized difference image between the aligned and un-aligned H2

spectra.

4.6 Conclusion

This work demonstrates the combination of a table-top ultrafast electron source
and a VMIS that can be used to study electron impact ionization processes
in molecules. This setup is specifically interesting in combination with the
IICEE technique and can potentially be used for studies of structural dynamics
in gas-phase systems. Spectra of atomic and molecular targets were acquired,
demonstrating the capability of the experimental setup to image the momentum
distribution of impact ionized secondary electrons.

In order to identify possible IICEE effects in the spectrum of H2, a DWBA
model was applied. The Helium spectrum along the p‖ axis could be reproduced
very well by the DWBA model, after accounting for the low-energy peak. In the
case of H2, DWBA calculations show that a two-center molecular interference
effect should manifest itself as a slight narrowing of the secondary electron
distribution as compared to atomic Hydrogen. This narrowing of the spectrum
was possibly also visible in the experimental data along the p‖ axis, though
sources of systematic error in the experiment, and shortcomings of the DWBA
model in reproducing the low-energy peak, make an unambiguous assignment
difficult. The match between the Helium and H2 simulations and experiments
along the p⊥ axis was not as good as that for the p‖ axis. Due to the lack of
agreement between simulation and experiment in this case, and the relatively
small effect of the molecular structure, no IICEE effects could be observed.

The IICEE effects are expected to be more pronounced for higher ejected
electron momenta, but due to a sharp decrease of the experimental signal it was
not possible to observe the ejected electron spectrum at such high momenta.
Increasing the signal-to-noise ratio in the experiment, as well as making sure
that background load and other systematic error contributions are decreased to
a minimum, should enable future experiments with this setup that are capable
of clearly observing IICEE effects in H2.
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4.6. Conclusion

Fixing, or restricting, the molecular frame orientation in space can help to
overcome systematic errors in the experiment and ease the comparison with
theory. Simulations with perfectly aligned and partially aligned H2 were used
to illustrate the effect of alignment on the secondary electron spectrum. It is
demonstrated that using the alignment effect leads to a powerful experimental
approach that will enable clear and unambiguous extraction of molecular effects
from secondary electron spectra of impact ionized molecules.
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Chapter 5

Conclusion and outlook

This thesis investigated two different techniques that can potentially be used for
the direct imaging of ultrafast structural dynamics of molecules at the femtosec-
ond time scale and with Ångström spatial resolution. Conventional ultrafast
diffraction and imaging techniques use elastically scattered energetic particles,
i.e. X-rays or electrons, to probe the molecular structure. The two techniques
studied in this thesis make use of inelastic processes to produce ionized (sec-
ondary) electrons, that are subsequently used to image the molecular structure.

Chapter 3 investigated the use of molecular alignment in combination with
Laser Induced Electron Diffraction (LIED) [1, 2, 3]. A series of experiments
were presented that consider the effect of the molecular frame on the Pho-
toelectron Angular Distribution (PAD) of impulsively aligned and strong-field
ionized CF3I molecules using a Velocity Map Imaging Spectrometer (VMIS).
It was shown that using the impulsive laser alignment technique enables tak-
ing differential measurements that bring out directly and clearly LIED effects
in the PAD, even for a relatively complex molecule such as CF3I and using a
non-coincident detection setup such as the VMIS. A semi-classical model, in
which the strong-field driven motion of the photoelectron in the continuum is
treated classically and the re-scattering with the parent molecule is modelled
quantum mechanically, reproduced the experimentally observed features in the
high-energy range of the spectrum. It was shown that oscillations in the ex-
perimental PADs along the polarization axis can be interpreted as diffraction
features. A comparison of the experimental results at different laser intensities
and at two different probe wavelengths, i.e. 800 and 1300 nm, shows that the
LIED effect is robust and reproducible for a wide range of experimental con-
ditions and at comparatively low re-collision energies. In order to understand
the PAD in the low-energy region, where the direct electrons that have not
re-scattered with the parent molecule dominate the total signal, an accurate
model of the strong-field ionization going beyond the semi-classical approach
is required. Simulations of the current LIED experiments on CF3I molecules
using the Molecular Strong Field Theory (MSFT) developed by Milošević et
al. [88, 89, 90, 91] were presented. The MSFT simulations showed important
deviations from the experimental data and the semi-classical models that are
currently not understood. The results from ab-initio Time-Dependent Density
Functional Theory (TDDFT) calculations performed by DeGiovannini et al.
show a relatively good match with the experimental data at all photoelectron
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energies. The TDDFT calculations indicate that the contribution the Highest
Occupied Molecular Orbital (HOMO) and of the lower-lying HOMO-1 are sig-
nificant and can be identified in the experimental results, clearly illustrating the
importance of molecular orbital effects in these experiments.

The experimental work on LIED presented in this thesis only considers the
use of the technique in constructing static snap-shots of the molecular structure.
Further experiments are needed to establish firmly the ability of the LIED tech-
nique to image structural dynamics in molecules. The only experiment so far to
observe a possible indication of structural dynamics in a molecule using LIED
was performed by Blaga et al. [69]. The bond length retrieved by Blaga et al.
for the O2 molecule was 0.1 – 0.15 Å shorter than its equilibrium bond length.
This was interpreted as a possible indication of a contraction of the molecule
following photoionization, and within the few femtoseconds it takes for the pho-
toelectron to return and re-collide with the parent ion. These observations are
indirect in the sense that there is no pump pulse that initiates a specific struc-
tural change in the molecule. Experiments that induce structural dynamics in
a molecule with a pump pulse, and subsequently probe the molecular structure
using LIED are therefore needed. The first follow-up experiments attempting
to use LIED to image the structure of an I2 molecule during photoinduced dis-
sociation have already been performed using the experimental setup presented
in this thesis, though without the use of molecular alignment. In future experi-
ments it would be insightful to study such dynamical processes in combination
with molecular alignment, because this can help to bring out molecular-frame
effects more clearly and ease the comparison with theory. The combined use of
aligned molecules and LIED is especially interesting when attempting to apply
the technique to ever larger and more complex molecules. Using highly aligned
molecules is expected to lead to a better understanding of the limitations and
possibilities for applying the LIED technique to more general systems, and will
offer a more stringent test for theoretical models that describe the strong-field
ionization of such complex molecules.

On the theoretical side, further effort is needed to develop ab-initio calcu-
lations capable of modelling the strong-field ionization of relatively large and
complex molecules, e.g. TDDFT. The development of the ab-initio models needs
to be supplemented by the development of semi-classical and Strong Field Ap-
proximation (SFA) models that can be used to analyse and interpret the results
of ab-initio calculations and of experiments. In particular the development of
extended semi-classical LIED models that can accurately represent molecular
orbital effects and multiple ionization channels would be very useful.

The second technique considered in this thesis proposes the use of secondary
electrons produced by electron impact ionization for the imaging of the molec-
ular structure during a dynamical process. Secondary electrons produced by
electron impact ionization may carry information on the molecular structure
through different physical mechanisms. Impact Ionized Coherent Electron Emis-
sion (IICEE) is a generalization of the Cohen-Fano effect and leads to the inter-
ference between electrons that are ejected from multiple, identical atomic centres
within a molecule [4]. A second mechanism that can give rise to molecular in-
terference effects is Impact Ionized Secondary Electron Diffraction (IISED). An
impact ionized electron that is ejected from one of the atomic centres within
the molecule can scatter elastically from another atomic center, which leads to
interferences between the scattered and non-scattered electrons [4].
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Chapter 4 presented some first results from the combination of a table-top
Ultrafast Electron Diffraction (UED) source with a Velocity Map Imaging Spec-
trometer (VMIS) that is applied to the study of secondary electron emission.
The spectra of atomic and molecular targets were acquired, demonstrating the
capability of the experimental setup to image the momentum distribution of sec-
ondary electrons generated by electron impact ionization. In order to identify
possible IICEE effects in the spectrum of H2, a Distorted Wave Born Approx-
imation (DWBA) model was applied. The Helium spectrum along the p‖ axis
could be reproduced very well by the DWBA model. In the case of H2, DWBA
calculations show that a two-center molecular interference effect should manifest
itself as a slight narrowing of the secondary electron distribution as compared
to atomic Hydrogen. This narrowing of the spectrum was possibly also visible
in the experimental data along the p‖ axis, though sources of systematic error
in the experiment, and shortcomings of the DWBA model in reproducing a low-
energy peak, make an unambiguous assignment difficult. The match between
the Helium and H2 simulations and experiments along the p⊥ axis was not as
good as that for the p‖ axis. Due to the lack of agreement between simulation
and experiment in this case, and the relatively small effect of the molecular
structure, no IICEE effects could be observed. Fixing, or restricting, the molec-
ular frame orientation in space can help to overcome systematic errors in the
experiment and ease the comparison with the theory. Simulations with perfectly
aligned and partially aligned H2 were used to illustrate the effect of alignment
on the secondary electron spectrum. It is demonstrated that using the align-
ment effect leads to a powerful experimental approach that will enable clear
and unambiguous extraction of IICEE effects from secondary electron spectra
of impact ionized molecules.

The use of secondary electrons produced by electron impact ionization to
obtain information on the structure of the parent molecule is a rather recent
development. Of all the different physical effects that can lead to molecular
structure effects in the secondary electrons, IICEE is the only one that has been
demonstrated consistently in a number of experiments [47, 50, 52]. Though
several experiments have investigated IISED effects, a conclusive experimental
demonstration has not yet been provided [48, 53, 4]. From the limited exper-
imental and theoretical work considering IISED it is clear that these effects
are rather weak, and that a lot of fundamental ground-work remains to be
done. Consequently, the experiments performed so far have focused on the rel-
atively strong IICEE effect in the simplest diatomic molecules, i.e. H2, N2 and
O2. Even in these ’simple’ molecules the observation of IICEE effects can be
challenging due to the partial cancellation of the coherent emission effect from
orbitals with gerade and ungerade symmetry, as was shown for the case of N2

and O2 molecules [49, 110]. Future experiments that aim to observe IICEE ef-
fects in more complex molecules such as N2 and O2 may therefore require (e,2e)
detectors that can identify the specific orbital from which the ionized electron
originates by simultaneous detection of the energy of the projectile electron
[52]. From the point of view of developing a more generally applicable tech-
nique, the IISED effect seems to be a more attractive option because it does
not require the emission of electrons from identical atomic centres within the
molecule. One important limitation for this development is the lack of avail-
ability of an accurate and simple theoretical model that can be used to analyse
and interpret IISED effects. On the experimental side it would be necessary to
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perform measurements with a very high signal-to-noise ratio, where systematic
error contributions have been carefully minimized and calibrated, so that the
experimental results and theoretical model predictions can be compared with
the high precision required for the extraction of the molecular structure effects.
The use of alignment, as in the LIED experiments, may significantly aid in the
identification and extraction of IICEE and IISED effects in the spectra and will
offer a more stringent test for the theoretical models.
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Appendix A

Intense-field Many-body
S-matrix Theory

The centerpiece of Strong Field Theory (SFT) is the process of Hamiltonian
partitioning, such that the developed perturbation series includes the relevant
interactions in its leading terms [66]. The crucial difference between conven-
tional perturbation theory and the SFT is the application of different Hamilto-
nian partitioning schemes for the initial, intermediate and final states. This can
be qualitatively understood in the following way. The initial electronic state
is strongly bound and localized around the atom so that the laser field can be
treated as a perturbation. However, once the photoelectron has reached the
continuum the laser field dominates its behaviour, whereas the atomic potential
can be seen as a perturbation. The success of the initial SFT approach has cul-
minated in Intentse-field Many-body S-matrix Theory (IMST) which formalizes
the process of Hamiltonian partitioning and provides a consistent and powerful
formulation of the SFT [66]. IMST was developed specifically as a method to
deal with problems that require multiple Hamiltonian partitioning schemes. In
contrast, conventional perturbation theory taught in most text books on Quan-
tum Mechanics, e.g. [30, 26, 28], is based on the concept of a single Hamiltonian
partitioning. IMST is a very elegant and powerful method to understand and
apply perturbation theory to multi-domain problems.

As IMST arises as a generalization of conventional perturbation theory, this
shall be shortly introduced first. The starting point for the development of stan-
dard time-dependent perturbation theory is the Time-Dependent Schrödinger
Equation (TDSE)

i~
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 (A.1)

where H(t) is a time-dependent Hamiltonian. For the purpose of describing
the temporal behaviour of this system the evolution operator U(t, t′) will be
introduced, which is defined as

|ψ(t)〉 = U(t, t′) |ψ(t′)〉 (A.2)
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From this definition it also follows that

U(t′, t′) = I (A.3)

U(t, t′) = U(t, τ)U(τ, t′) (A.4)

U−1(t, t′) = U(t′, t) (A.5)

where I is the unit operator. Moreover, conservation of probability requires
that the operator is unitary so that

U†(t, t′)U(t, t′) = U(t, t′)U†(t, t′) = I (A.6)

Finally, multiplying (A.6) on both sides by U−1(t, t′) and using (A.5) leads to
the identity

U†(t, t′) = U−1(t, t′) = U(t′, t) (A.7)

Substituting (A.2) into (A.1) it is seen that the evolution operator must satisfy
the Schrödinger equation

i~
∂

∂t
U(t, t′) = H(t)U(t, t′) (A.8)

in order to describe the time-evolution of the original system described by the
Hamiltonian H(t). Formally then, integrating the above equation leads to the
following integral equation for the evolution operator

U(t, t′) = I − i

~

∫ t

t′
H(τ)U(τ, t′) dτ (A.9)

The unit operator I in this expression originally arises as an integration constant.
That this integration constant must be the unit operator follows from the fact
that applying the evolution operator given by (A.9) to some state and letting t→
t′, that same state must be returned unchanged. This is in fact the specification
of the initial state of the system. A second form of the integral equation for
the evolution operator can be obtained by taking the Hermitian conjugate of
(A.9) and using identity (A.7). This leads to the following equivalent integral
equation

U(t, t′) = I − i

~

∫ t

t′
U(t, τ)H(τ) dτ (A.10)

Obtaining the full evolution operator is equivalent to solving the original
TDSE. However, the re-formulation of the original problem in terms of the
evolution operator which satisfies the integral equations (A.9) and (A.10) is
particularly useful in the application of perturbation theory. The first step in
applying time-dependent perturbation theory is the partitioning of the original
Hamiltonian into two parts

H(t) = H(0)(t) + V (t) (A.11)

where H(0)(t) is an exactly solvable main Hamiltonian, with evolution operator
U0(t, t′), and V (t) is a weak, time-dependent perturbation. The second step
would be to obtain an expression for the full evolution operator in terms of the
known operator U0(t, t′). This is done by transforming the system states to the
so-called interaction picture defined by the transformation

|ψ(t)〉 = U0(t, t′)
∣∣ψN (t)

〉
(A.12)
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Substituting this into the original TDSE (A.1) and using (A.11) leads to the
Tomonaga-Schwinger equation

i~
∂

∂t

∣∣ψN (t)
〉

= V N (t)
∣∣ψN (t)

〉
(A.13)

where V N (t) = U†0 (t, t′)V (t)U0(t, t′). Defining an evolution operator in the
interaction picture ∣∣ψN (t)

〉
= UN (t, t′)

∣∣ψN (t′)
〉

(A.14)

and substituting into (A.13) leads to two integral equation equations for the
evolution operator in the interaction picture which are analogous to (A.9) and
(A.10)

UN (t, t′) = I − i

~

∫ t

t′
V N (τ)UN (τ, t′) dτ (A.15)

UN (t, t′) = I − i

~

∫ t

t′
UN (t, τ)V N (τ) dτ (A.16)

Transforming these integral equations from the interaction picture back to the
original picture requires obtaining an expression for the evolution operator in the
interaction picture UN (t, t′) in terms of the original evolution operator U(t, t′).
Using definitions (A.2) and (A.14), together with the interaction picture trans-
formation (A.12) leads to

UN (t, t′)
∣∣ψN (t′)

〉
= U†0 (t, t′)U(t, t′) |ψ(t′)〉 (A.17)

Furthermore, from (A.12) and (A.3) it also follows that∣∣ψN (t′)
〉

= U†0 (t′, t′) |ψ(t′)〉 = |ψ(t′)〉 (A.18)

so that the evolution operator in the interaction picture is indeed given by

UN (t, t′) = U†0 (t, t′)U(t, t′) (A.19)

which is the desired relation. Substituting this into the integral equations (A.15)
and (A.16) finally leads to the following expressions for the original evolution
operator in terms of the perturbation V (t) and the known evolution operator
U0(t, t′) corresponding to the main Hamiltonian H(0)(t)

U(t, t′) = U0(t, t′)− i

~

∫ t

t′
U0(t, τ)V (τ)U(τ, t′) dτ (A.20)

U(t, t′) = U0(t, t′)− i

~

∫ t

t′
U(t, τ)V (τ)U0(τ, t′) dτ (A.21)

This integral equation formulation of the original TDSE is particularly suited
to be solved by iterative approximation. That is, simply taking be the evolution
operator for the unperturbed system U0 as a first guess and substituting it on
the right-hand side of (A.21) leads to an approximate expression for the full
evolution operator. This approximate solution can then be substituted again,
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leading to the next approximate solution, etc. Formally, this leads to the Dyson
series expansion of the full propagator given by

U(t, t′) = U0(t, t′)− i

~

∫ t

t′
U0(t, τ0)V (τ0)U0(τ0, t

′) dτ0−(
i

~

)2 ∫ t

t′
U0(t, τ1)V (τ1)U0(τ1, τ0)V (τ0)U0(τ0, t

′) dτ0 dτ1 + . . . (A.22)

where t > τn > τn−1 . . . τ0 > t′.
According to the discussion above, applying the conventional time-dependent

perturbation treatment based on a single partitioning of the Hamiltonian to
strong field interactions with atoms and molecules leads to difficulties. This is
due to the fact that, depending on the domain that the active electron is in,
either the atomic potential or the laser field is dominant. It will now be shown
how this case can be treated using multiple Hamiltonian partitionings, leading
to the development of the IMST [66]. First, the initial Hamiltonian partitioning
is defined as

H = H
(0)
i + Vi (A.23)

and the final partitioning as

H = H
(0)
f + Vf (A.24)

where H
(0)
i and H

(0)
f are the main Hamiltonian for the initial and final system

configurations and Vi and Vf are the initial and final perturbation terms. In
Strong Field Theory (SFT) the initial main Hamiltonian represents the field-free
target system, whereas the final main Hamiltonian represents a free continuum
electron in the laser field. Using the initial partitioning scheme (A.23) and sub-
stituting in (A.21) leads to the following integral equation for the full evolution
operator

U(t, t′) = Ui(t, t
′)− i

~

∫ t

t′
U(t, τ)Vi(τ)Ui(τ, t

′) dτ (A.25)

where Ui(t, t
′) is the evolution operator corresponding to H

(0)
i . Similarly, using

the final partitioning scheme (A.24) and substituting in (A.20) leads to

U(t, t′) = Uf (t, t′)− i

~

∫ t

t′
Uf (t, τ)Vf (τ)U0(τ, t′) dτ (A.26)

The final step is to substitute (A.26) into the right-hand side of (A.25), which
leads to an exact expression for the full evolution operator

U(t, t′) = Ui(t, t
′)− i

~

∫ t

t′
Uf (t, τ0)Vi(τ0)Ui(τ0, t

′) dτ0

−
(

i

~

)2 ∫ t

t′

∫ t

τ0

Uf (t, τ1)Vf (τ1)U(τ1, τ0)Vi(τ0)Ui(τ0, t
′) dτ0 dτ1 (A.27)

The first term in this expression is simply the evolution operator of the initial

state which is governed by the main Hamiltonian H
(0)
i and represents the part

of the system which is not affected by the perturbation. The second term in
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the equation is due to the first term in (A.26) and represents the transition at

time τ0 from the initial state governed by H
(0)
i to a final state governed by H

(0)
f

through the perturbation Vi. The final term in (A.27) represents all remaining
higher order interactions through the full evolution operator U(t, t′) which acts
as an intermediate between the initial and final configurations.

An approximate solution for the evolution operator can immediately be con-
structed from (A.27) by simply neglecting the final term representing higher
order processes. Alternatively, based on some insight with regard to the dom-
inant physical process during the intermediate system evolution, it is possible
to introduce an intermediate Hamiltonian partitioning

H = H(0)
m + Vm (A.28)

Repeating the same procedure as above and substituting the expression for the
full evolution operator obtained from the intermediate Hamiltonian partitioning
into the right-hand side of (A.27) leads to the expression

U(t, t′) = Ui(t, t
′)− i

~

∫ t

t′
Uf (t, τ0)Vi(τ0)Ui(τ0, t

′) dτ0

−
(

i

~

)2 ∫ t

t′

∫ t

τ0

Uf (t, τ1)Vf (τ1)Um(τ1, τ0)Vi(τ0)Ui(τ0, t
′) dτ0 dτ1

−
(

i

~

)3 ∫ t

t′

∫ t

τ0

∫ τ1

τ0

Uf (t, τ2)Vf (τ2)U(τ2, τ1)Vm(τ1)Um(τ1, τ0)

× Vi(τ0)Ui(τ0, t
′) dτ0 dτ1 dτ2 (A.29)

The first two terms in this expression are identical to (A.27), and can be inter-
preted in the same way. The third term can be interpreted in a similar fashion.
At time τ0 the initial state interacts with the laser and leads to the transition
from the initial state governed by H

(0)
i to an intermediate state governed by H

(0)
m

through the perturbation Vi in the initial partitioning (A.23). The intermediate
state is propagated from τ0 to τ1, being governed fully by the intermediate main

Hamiltonian H
(0)
m . Finally, at time τ1 a transitions from the intermediate state

to the final state is induced through the perturbation Vf in the final partition-
ing (A.24), after which the final state evolves freely according to Uf . The full
evolution operator can again be approximated by simply leaving out the final
term in (A.29), or one could introduce further intermediate Hamiltonian parti-
tions. Finally, it is also possible to take the Dyson series expansion (A.22) of the
evolution operator in the intermediate partitioning scheme, and obtain higher
order interactions in the intermediate state in which multiple interactions with
the perturbation potential Vm are taken into account.

To represent the process of ionization in a strong field, including re-scattering
of the photoelectron from the remaining ionic core as an intermediate step, it
is necessary to adopt three Hamiltonian partitioning schemes. In the initial
partitioning scheme the field-free target Hamiltonian HT is taken as the refer-
ence and the laser field VL as the perturbation. In the intermediate and final
partitioning schemes the laser-electron Hamiltonian HL, which corresponds to
a single electron in a classical laser field, is taken as the reference, and the
field-free target Hamiltonian VT is taken as the perturbation. This partitioning
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scheme can be summarized as follows

H
(0)
i = HT Vi = VL (A.30)

H(0)
m = H

(0)
f = HL Vm = Vf = VT (A.31)

Substituting this partitioning scheme into the IMST expression for the full evo-
lution operator (A.29) leads to the following expression

U(t, t′) = Ui(t, t
′)− i

~

∫ t

t′
UL(t, τ0)VL(τ0)UT (τ0, t

′) dτ0

−
(

i

~

)2 ∫ t

t′

∫ t

τ0

UL(t, τ1)VT (τ1)UL(τ1, τ0)VL(τ0)UT (τ0, t
′) dτ0 dτ1

−
(

i

~

)3 ∫ t

t′

∫ t

τ0

∫ τ1

τ0

UL(t, τ2)VT (τ2)U(τ2, τ1)VT (τ1)UL(τ1, τ0)

× VL(τ0)UT (τ0, t
′) dτ0 dτ1 dτ2 (A.32)

where UT , UL are the evolution operators corresponding to the field-free target,
and the laser-electron Hamiltonian HT and HL respectively. The first term in
this expression is simply the evolution operator of the initial target state and
represents the part of the system which is not affected by the laser. The second
term in this equation represents the transition at time τ0 from the initial target
state, through an interaction with the laser field perturbation VL, to a final con-
tinuum state governed by the laser-electron Hamiltonian HL. In the third term,
the initial state interacts with the laser at time τ0, leading to a transition to an
intermediate continuum state governed by HL. The intermediate state evolves
freely from τ0 to τ1, at which time a transition takes place from the intermediate
to the final continuum state through an interaction with the perturbation VT ,
i.e. the parent ion. After this, the final state evolves freely again according to
UL. The final term in (A.32) represents higher order processes in which further
interactions with the parent ion are included.

In his treatment of the ionization of an atom by a strong laser field, Keldysh
approximates the full propagator by the first two terms in (A.32) [63]. Since
the final perturbation term VT does not appear in the first two terms of the
full evolution operator (A.32), Keldysh’s final partitioning scheme was implicit
in the choice of the final state wavefunctions, i.e. Volkov wavefunctions. This
is the so-called Strong Field Approximation (SFA). As it became clear that the
Keldysh’s SFA was not able to explain High-order Above Threshold Ionization
(HATI), and other effects in which re-scattering plays an crucial role, improved
versions of the theory, i.e. SFA2, were introduced to effectively include the third
term in (A.32) [64, 65]. The MSFT is in fact a SFA2 theory applied to the case of
molecules. Higher order versions of the theory which go beyond the SFA2 have
also been proposed. For example, it is possible to introduce a fourth partitioning
scheme so that in addition to the perturbative interaction, treated by the third
term in (A.32), a strong interaction, i.e. hard scattering, between the target and
the photoelectron can be treated more appropriately [103, 124, 125].
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T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der
Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov,
O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking. Time-
resolved holography with photoelectrons. Science, 331:61–64, 2011.

[99] B. Friedrich and D. Herschbach. Alignment and trapping of molecules in
intense laser fields. Phys. Rev. Lett., 74(23):4623, 1995.

[100] O. Smirnova, M. Spanner, and M. Ivanov. Coulomb and polarization
effects in sub-cycle dynamics of strong-field ionization. Journal of Physics
B: Atomic, Molecular and Optical Physics, 39(13):S307, 2006.

[101] A. E. S. Green, D. L. Sellin, and A. S. Zachor. Analytic independent-
particle model for atoms. Physical Review, 184(1):1, 1969.
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