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Zusammenfassung 

Die topographische Repräsentation von Stimulusfeature in sensorischen Arealen ist
ein generelles Prinzip neuronaler Codierung. Auch für olfaktorische Systeme gibt es
zahlreiche Hinweise auf eine topographische Organisation. Jedoch hat sich bis jetzt
noch keine endgültiges  Prinzip einer funktionellen Topographie herauskristallisiert.
Die vorliegende Arbeit trägt zu einem erweiterten Verständnis topographischer Prin­
zipien in olfaktorischen Systemen bei. Zum einen wird in dieser Arbeit die Topogra­
phie des ersten olfaktorischen Verschaltungszentrums von Mäusen, des olfaktorischen
Bulbus, untersucht, zum anderen jene von einem sekundären olfaktorischen Zentrum
in Drosophila, des Lateralen Horns. Dabei stützt diese Arbeit insbesondere die Hypo­
these,   dass   räumlich   benachbarte   rezeptive  Felder   im   olfaktorischen  Bulbus   eine
Überschneidung in ihren Antwortspektren aufweisen. Im Weiteren wird auch gezeigt,
dass  ein topographisches Auslesen des Antennallobus, des olfaktorischen Verschal­
tungszentrum in Drosophila, zu lokalen, mit Verhalten assozierten Antwortarealen im
Lateralen Horn führt. Insgesamt hebt diese Arbeit die funktionelle Bedeutung einer
topographischen Organisation in olfaktorischen Systemen hervor.
Entlang dieser biologischen Fragestellung werden in der vorliegenden Arbeit zwei al­
gorithmische Methoden eingeführt und optimiert. Dies ist zum einen „regularized non­
negative Matrix Factorization“ zur automatischen Extraktion von Antwortregionen in
Zeitreihen funktioneller Bildgebung. Und zum anderen sind es Quantitative Struktur­
Wirkungs­Beziehungs (QSAR) Modelle, die eine quantitative physikalisch­chemische
Beschreibung von olfaktorischen rezeptiven Feldern ermöglichen.



Summary

Topographic representation of stimuli features along the neural sheet is a commonly
observed paradigm in sensory coding. Although there is growing evidence of such a
topographic  arrangement  in  olfactory  systems,  no definite   functional   topographies
have yet been established. To this end this thesis contributes towards establishing to­
pographic coding principles in olfactory systems.
This thesis investigates both functional topography in the olfactory relay centre of
mice, the olfactory bulb, as well as in a secondary olfactory centre of drosophila, the
lateral horn. Thereby it provides additional evidence to the hypothesis that receptive
fields in the olfactory bulb are spatially grouped according to their response spectra
overlap.  Furthermore   it   shows   that   a   topographic   readout  of   the  olfactory   relay
centre in drosophila, the antennal lobe, yields local response areas in the lateral horn
associated with innate valence. All in all this thesis emphasizes the functional role of
topography in olfactory systems.
Within this biological question two computational methods are introduced and re­
fined that assist olfactory research. First regularized non­negative matrix factoriza­
tion is introduced as a tool to automatically disaggregate functional imaging measure­
ments into response domains.  And second quantitative structure­activation relation­
ship (QSAR) models are employed to obtain a quantitative physico­chemical descrip­
tion of olfactory receptive fields.
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Introduction

1.1 Neural maps in sensory coding

Sensory systems serve organisms to link themselves with their environment. They create sen-

sations of relevant environmental stimuli which form the basis of behavioural decisions and/or

higher cognitive processes. Ultimately sensory systems provide an organism with an efficient

sensation that facilitates adaptation to the environment.

Therefore in studying a sensory system two major questions arise: Which are the relevant

stimuli encoded and how does this encoding facilitate neuronal processing? For many organisms

and sensory systems the receptive fields of individual neurons have been extensively character-

ized. Furthermore the subsequent emergence of receptive fields of upstream neurons, that is the

subsequent extraction of more and more complex stimulus features, has been elucidated.

For example a well studied sensory system is the mammalian visual system [Hoffman and

Wehrhan, 2001]. Mammals sense light stimuli with photoreceptor cells whose receptive fields

are characterized by wavelength and visual field position of the light source. Intrinsically, by the

eye’s physical design, neighbouring photoreceptors in the retina are activated by neighbouring

points in the visual field. Based on this topography, retinal ganglion cells (RGCs) provide a

contrast enhanced read-out as they are excited by their corresponding central receptors and

laterally inhibited from surrounding receptors [Kuffler et al., 1953]. A second population of

RGCs provides an inverse read-out by central inhibition and surround excitation. These two

instances of the visual field map (retinotopic map) are relayed onwards to the corpus geniculatum

laterale. A local topographic read-out of those two maps then results in orientation sensitive

receptive fields of neurons in visual cortex V1 [Jin et al., 2011], which are arranged in pinwheels

according to their orientation preference. A subsequent local topographic read-out of V1 by

neurons of visual cortex V4 [Motter, 2009] then facilitates the emergence of curvature sensitive

receptive fields [Carlson et al., 2011; David et al., 2006].

In general the visual system provides numerous examples of neural maps which are arranged

according to stimulus properties. In many cases they are converted to higher order receptive

fields by topographic read-outs [Nauhaus and Nielsen, 2014]. Such topographic maps are not

only observed in visual but also in many other sensory systems [Fitzpatrick and Ulanovsky,

2014]. Amongst others this includes tonotopic maps of frequency sensitivity in auditory sys-
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tems [Ehret, 2001], somatotopic maps of body position in somatosensory systems [Vander-

haeghen et al., 2000] or gustotopic maps of taste quality of gustatory systems [Chen et al.,

2011]. Therefore feature maps seem to be a fundamental principle of sensory neural coding al-

though some consider them little more than epiphenomena of neural development [Fitzpatrick

and Ulanovsky, 2014].

For olfactory systems the current knowledge of neural feature maps is still very basic. To

a large extend this is because already our knowledge about receptive fields of olfactory sensory

neurons (OSNs) is still very incomplete [Peterlin et al., 2014]. For this reason I elaborate

on those two topics in this thesis. First this chapter provides an introduction of the current

knowledge about topography in the olfactory systems. Then Chapter 2 and 3 introduce two

methods for enhancing the capability to determine olfactory receptive fields. Utilizing these

methods chapter 4 elaborates on principles of topographic organization at the relay center of

olfactory information. Chapter 5 provides an example for the emergence of subsequent receptive

fields by topographic read-out of an upstream olfactory map. And finally chapter 6 summarizes

and discusses the findings of neural feature maps in olfaction.

This thesis resorts to two extensively studied animal models: the common fruit fly, Drosophila

melanogaster, and the house mouse, Mus musculus. Both species provide the advantage that

there is a large array of genetic tools available to visualize and manipulate neural activity [Zhang

et al., 2007; Hadjantonakis et al., 2003; Keene and Waddell, 2007]. Furthermore both species

exhibit both innate [Mandiyan et al., 2005; Semmelhack and Wang, 2009] and learned behaviour

[Abraham et al., 2004; Quinn et al., 1974] to odour stimuli. Thus both are suitable to study

the neural substrates of these phenomena. Due to a considerably lower complexity it is more

tractable to follow chemosensory information processing in the Drosophila brain. Conversely the

mouse brain is suitable for studying the neural adjustments responsible for a larger behavioural

repertoire and extended abilities of learning.

1.2 The olfactory system of Drosophila

Drosophila heavily relies on chemosensation in its behaviour. Chemosensation helps to locate

and identify food and to asses its quality and nutritious value. Furthermore it triggers avoid-

ance of toxins and pathogens and governs courtship, aggression and oviposition. To this end

Drosophila possesses an olfactory system to detect airborne chemicals together with a gusta-

tory system for contact chemosensation. The next sections will introduce the neuroanatomy and

functional organization of the olfactory system with a special emphasize on its topographical

layout.

1.2.1 Neuroanatomy

Olfactory sensing

In Drosophila airborne chemosensation is performed by two different classes of receptors: odor-

ant receptors (ORs) and ionotropic receptors (IRs).Usually an olfactory sensory neuron (OSN)
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expresses one of these receptors together with a co-receptor, but a few receptors are co-expressed

in designated pairs or triples [Vosshall and Stocker, 2007; Rytz et al., 2013]. As a result there

are ≈ 50 distinct OSN types, defined by their receptor composition.

Most OSNs are housed in specialized hairs, called sensilla. Based on their morphology

the sensilla can be grouped into three categories (basiconic, coeloconic, trichoid) [Shanbhag

et al., 1999], with the basiconic sensilla being further subdivided into large anntenal, small

anntenal and palp basiconic sensilla. Each category of sensilla is located at distinct but strongly

overlapping zones on the antennae, except the palp basiconic sensilla which are, as their name

implies, located at the maxillary palps. Each sensillum houses one to four OSNs in fixed

combinations, such that sensilla can be categorized into 21 groups based on their specific OSN

composition: 10 antenna basonic OSNs (ab1-ab10), 3 palp basonic OSNs (pb1-pb3), 4 antenna

trichoid OSNs (at1-at4) and 4 antenna coeloconic OSNs (ac1-ac4) [Couto et al., 2005]. The

ac sensilla are predominantly occupied by OSNs containing IRs [Rytz et al., 2013] whereas the

OSNs of the remaining sensilla express almost only ORs [Vosshall and Stocker, 2007]. Besides

this differentiation there is no further relationship between genetic OR similarity and sensillum

category or group [Couto et al., 2005].

Finally there is a last type of OSNs (expressing IR64a) which is not housed in sensilla, but

located on the sacculus, a special structure atop the antenna [Rytz et al., 2013].

Olfactory relay

The basic perception of the sensory neurons is collected, modulated and redistributed in the

antennal lobes (AL). The ALs are spherical structures filled with distinct spherical neuropil,

called glomeruli.

In the AL all of the OSNs of each type converge into a single glomerulus. Conversely each

glomerulus is only innervated by one type of OSNs [Martin et al., 2013]. Therefore there are in

total ≈ 50 glomeruli which are stereotypically placed across animals.

In this general topographic arrangement glomeruli are clustered according to their sensilla

type: ab-type-glomeruli at the medial region, at-type glomeruli at the lateral anterior region,

pb-type glomeruli at the central-medial region, and ac-type glomeruli at the posterior region

[Couto et al., 2005]. Notably, while ac-type IR-expressing coeloconic OSNs and OR-expressing

basiconic and trichoid OSNs are intermingled in the antenna, their corresponding glomeruli

are fully spatial segregated [Rytz et al., 2013]. Furthermore, within the basiconic domain the

glomerular arrangement reflects genetic sequence distance. The smaller the sequence divergence

between the corresponding receptors the more likely the glomeruli are located close to each other

[Couto et al., 2005].

Olfactory projections

From the AL projection neurons (PNs) project the olfactory sensation further on to the mush-

room body calyx (MBc), the lateral horn (LH) and to a minor extend to other higher brain

areas like the ring neuropil, the posterior lateral protocerebum (plP) and the ventro lateral

3



protocerebum (vlP) [Tanaka et al., 2012b]. The majority of these projections occur within

three different tracts [Stocker et al., 1990; Tanaka et al., 2012a]: (1) Via the medial antennal

lobe tract (mALT; formerly inner antennocerebral tract, iACT) excitatory PNs project first to

the MBc and then further to the LH. (2) Via the medial lateral antennal lobe tract (mlALT;

formerly middle antennocerebral tract, mACT) inhibitory PNs project to the LH. (3) Via the

lateral antennal lobe tract (lALT; formerly outer antennocerebral tract, oACT) excitatory PNs

project first to the LH and then to the MBc.

The PNs of the mALT are mostly uniglomerular, i.e. they arborize into a single glomerulus,

whereas the dendrites of mlALT and lALT PNs arborize into multiple glomeruli. This involves

both arborizations into local areas of the AL as well as panglomerular arborizations that span

the entire AL [Tanaka et al., 2012a].

Both uniglomerular mALT-PNs as well as multiglomerular mlALT-PNs transfer en gross the

topography of the AL to the LH. PNs originating from the medial glomeruli tend to terminate in

the dorsal LH, whereas those from the dorsolateral glomeruli mostly innervate the ventral LH.

The same topographic transformation of the AL’s medial-dorsolateral axis to a dorsal-ventral

axis is also observed in the projection pattern of the uniglomerular mALT PNs in the MBc

[Tanaka et al., 2012a]. Given the topographic organization of the AL according to sensilla types

this directly induces also a rough compartmentalization of LH and MBc according to sensilla

types [Jefferis et al., 2007].

Interestingly although the AL topography is roughly kept by second order neurons that

project to both higher olfactory centres, it only persists in third order neurons of the LH

[Fişek and Wilson, 2013] whereas third order neurons of the MBc seem to establish synaptic

connections ignoring this topography [Caron et al., 2013].

Olfactory modulation

In the AL olfactory information is not only relayed further on, but also modulated laterally

by local interneurons and via centrifugal feedback neurons from various brain regions [Tanaka

et al., 2012b].

The AL interneurons display a large diversity in terms of electrophysiolgical, morphological

and neurochemical characteristics, though their main effect is inhibitory [Wilson, 2013]. In

general there is no topographic restriction of lateral modulation as most interneurons exhibit

panglomerular innervations patterns across the whole AL. Nevertheless some interneurons show

locally confined multiglomerular innervations [Chou et al., 2010].

Also the innervation patterns of centrifugal neurons are mostly panglomerular [Tanaka et al.,

2012b; Hu et al., 2010], indicating rather a global feedback modulation than a local refinement.

Synopsis

The AL is a topographic sensory array in the sense that it allocates the activation of olfactory

receptors on a stereotypic map. Its glomerular arrangement reflects en gross the peripheral
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arrangement of receptors. In addition the layout adheres even more strongly to the genetic

distance of the corresponding receptors than to the arrangement of OSNs at the periphery.

There is no clear anatomical evidence that this topography governs modulations within the

AL, but the feed-forward projections, especially those to the LH, conserve the AL topography.

That is, the topography of the AL also governs local circuits in higher olfactory centres.

1.2.2 Functional organization

Olfactory pathway

In a simple functional view of the olfactory pathway, the AL provides a preprocessed olfactory

sensation which both facilitates olfactory learning in the mushroom body calyx [Heisenberg

et al., 1985] and builds a substrate for innate behaviours in the lateral horn [Heimbeck et al.,

2001].

Thereby the preprocessing of the AL includes an enhancement of the signal-to-noise ratio

and therefore an increased dynamic range of the odour sensation. This is mainly achieved

by the strong convergence of OSNs to PNs at the glomeruli [Wilson, 2013]. Additionally the

inhibitory lateral network provides a gain control mechanism to adjusts glomerular sensitivity

to the global input level, such that odour representations become more concentration invariant

[Olsen et al., 2010].

Antennal lobe

As the AL provides topographic input into higher olfactory centres the receptive fields of in-

dividual glomeruli and their spatial relations are of special interest, yet not fully deciphered.

The available information on glomerular input, i.e. OSN odour activations, ranges from only a

handful to about two hundred measured molecules [Galizia et al., 2010]. Some of the OSNs are

sharply tuned to pheromones or relevant ecological signals [Ruta et al., 2010; Stensmyr et al.,

2012] whereas most are broadly tuned to diverse odours with different chemical groups [Hallem

and Carlson, 2006]. Notably most odours are not only encoded by a single glomerulus, but each

odour activates a specific combination of glomeruli. As a result the receptive fields of glomeruli

are strongly overlapping.

With a fragmentary knowledge of the receptive fields of individual glomeruli there comes

an uncertainty about the functional relation between proximal glomeruli. Nonetheless some

weak trends have been observed: (1) broadly tuned glomeruli are located rather dorso-medial

[Fishilevich and Vosshall, 2005], (2) glomeruli tuned to aromatic molecules cluster in the central-

ventral region, (3) chain-length preference of glomeruli increases along the posterior-anterior axis

[Couto et al., 2005] and (4) there is a weak tendency of glomeruli with correlated receptive fields

to lie spatially close to one another [Galizia et al., 2010].
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Lateral horn

Whereas there is no clear functional compartmentalization of the AL, in the LH a subdivision

into a posterior-dorsal fruit odour region and an anterior-ventral mating odour region has been

observed [Jefferis et al., 2007; Grosjean et al., 2011]. Additionally an anterior-medial region of

acidity responsiveness also has been described [Min et al., 2013].

1.3 The olfactory system of mice

Similar to flies, chemosensation in mice provides means to locate and identify food and to asses

its quality and nutritious value. It also triggers avoidance of toxins, pathogens and predators

and governs intra species communication. But compared to flies chemosensation in mice has to

provide extended functionality. First, as mice are omnivores, the range of possible food sources

to be evaluated is both larger and more diverse. Second, social interaction of mice is much more

versatile than in flies. It involves a considerably lager array of specific pheromones. But it also

includes the social transmittance of hedonic values for odours, such as socially transmitted food

preferences [Arakawa et al., 2013].

To fulfil those demands mice posses an array of chemosensory systems. That involves for

one a gustatory system that detects five qualities of taste: umami, sweetness, bitterness, sour-

ness and saltiness [Chandrashekar et al., 2006]. Second there is the trigeminal system, which

exhibits chemosensitivity besides its responsiveness to thermal and mechanical stimuli. It inner-

vates most of the face including the nasal cavities and is mainly triggering protective reflexes in

response to irritating chemical vapors [Keverne et al., 1986; Tizzano and Finger, 2013]. Third

there are four olfactory subsystems originating at distinct locations in the nose (see also Fig. 1.1):

the Main Olfactory Epithelium (MOE), the Vomeronasal Organ (VNO), the Gruenberg Gan-

glion (GG) and the Septal Organ of Masera (SO). The following sections will give a description

of their neuroanatomy and function.

1.3.1 Neuroanatomy

Olfactory sensing

In all subsystems sensory neurons detect olfactory stimuli by means of chemical receptors.

These comprise of five multigene families of G-protein coupled receptors (GPCRs): canonical

olfactory receptors (ORs), vomeronasal receptors type 1 and 2 (V1Rs, V2Rs), trace amine-

associated receptors (TAARs) [Nei et al., 2008] and formyl peptide receptors (FPRs) [Liberles

et al., 2009; Rivière et al., 2009]. The largest of those families, canonical ORs, are commonly

sub-grouped into class 1 ORs (’fish type’) and class 2 ORs (’terrestrial type’) [Glusman et al.,

2000]. Furthermore some sensory neurons express receptor guanylyl cyclase type D (GC-D) and

type G (GC-G) [Yu et al., 1997; Fleischer et al., 2009], but it is unclear if they act as receptors

or are modulated by an unidentified GPCR activation [Munger et al., 2009].

For most sensory neurons it holds the one neuron - one receptor rule: Each neuron only
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MOE
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GG

AOB

MOB
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OR class 2
GC-D GC-G
V1R V2R 

TAAR

Figure 1.1: Location of the different olfactory organs and receptor types in mice.
For abbreviations see text. Figure adapted from [Matsuo et al., 2012; Tirindelli et al., 2009;
Brennan and Zufall, 2006]

expresses a single receptor gene. Most prominently this rule is violated by the V2R receptors

which are mainly co-expressed.

In general sensory neurons expressing a specific type of receptor are restricted to certain

subsystems (see Fig. 1.1). In the MOE ORs, Taars and GC-D are expressed, in the Vomeronasal

Organ VRs and FPRs, in the Septal Organ of Masera a small subset of class 2 ORs and in the

Gruenberg Ganglion V2R83, Taars and GC-G receptors [Munger et al., 2009; Liberles, 2013].

Typically within a subsystem sensory neurons expressing different receptor genes are inter-

mingled. This holds both for OSNs expressing receptors of the same as well as of different gene

families. Nonetheless also within subsystems, receptor expression is still structured. Expression

of individual receptors in the MOE is restricted to distinct but highly overlapping zones along

the dorsomedial-ventrolateral axis [Miyamichi et al., 2005]. Furthermore the VNO is subdivided

into a basal and an apical region with expression of V2Rs in the first and V1Rs as well as most

of the FPRs in the latter [Dulac and Torello, 2003; Dietschi et al., 2013].

Olfactory allocation

Analogue to the antennal lobes in Drosophila, in mice the basic sensation of the sensory neurons

is collected and redistributed in the olfactory bulbs.
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The sensory neurons of the MOE, SO and GG project to the Main Olfactory Bulb (MOB)

whereas VNO neurons project to the adjacent Accessory Olfactory Bulb (AOB). Exactly as in

the AL, sensory neurons of specific receptor types converge into distinct glomeruli, which are

exclusively innervated by those type of OSNs. But in contrast to the AL each type of OSNs

forms not only one but a few glomeruli in each ipsilateral bulb (mostly 2-4 in the MOB and

6-20 in the AOB) [Del Punta et al., 2002; Mombaerts et al., 1996; Wagner et al., 2006].

The arrangement of the glomeruli in the bulbs reflects the compartmentalisation of the

olfactory subsystem in the nose and even renders it more pronounced: The basal and apical

domains of the VNO are transferred to a posterior and anterior domain in the AOB [Dietschi

et al., 2013]. The dorsomedial-ventrolateral axis of OE receptor expression is conveyed to a

dorso-ventral arrangement of glomeruli in the MOB [Miyamichi et al., 2005]. Moreover glomeruli

of class 1 OR, class 2 OR and Taar neurons occupy mostly separated domains in the MOB

[Johnson et al., 2012; Pacifico et al., 2012] with the domains of class 1 ORs and Taars located in

the dorsal part. The class 2 OR expressing neurons of the SO also project to the class 2 domain

in the MOB, both as separate glomeruli and as additional input to MOE glomeruli [Breer et al.,

2006]. Finally GC-D expressing neurons of the MOE and GC-G expressing neurons of the GG

both project to distinct populations of so called ‘necklace’ glomeruli at the border of AOB and

MOB [Matsuo et al., 2012; Munger et al., 2010].

In addition to the domain organization according to receptor family, the arrangement of

glomeruli within MOB domains also follows a stereotypic layout across animals [Belluscio and

Katz, 2001; Soucy et al., 2009]. Interestingly this layout appears twice in each MOB with

a medial-lateral mirror symmetry [Lodovichi et al., 2003]. Thereby in general glomeruli of

homologoues ORs map to similar positions [Tsuboi et al., 2011; Strotmann et al., 2000], although

there are exceptions to this principle [Zhang et al., 2012]. Similarly in the anterior domain of

the AOB the glomeruli are topographically arranged according to clades of the V1R gene family

[Wagner et al., 2006].

All in all the AOB and MOB embody a stereotypic topographic representation of the ol-

factory perception. These precise layouts are obtained during ontogenesis by exploiting both

genetic identity as well as correlated neural activity of OSNs [Mori and Sakano, 2011; Bozza

et al., 2009; Yu et al., 2004; Zheng et al., 2000; Zou et al., 2004; Serizawa et al., 2006].

Olfactory projections

The sensory array of the MOB and AOB is projected further downstream by mitral and tufted

(M/T) cells. M/T cells of the AOB target areas of the limbic system (especially the medial

amygdala) whereas those of the MOB project mainly to areas of the paleocortical olfactory

cortex (i.e. anterior olfactory nucleus (AON), piriform cortex (PC), entorhinal cortex , olfactory

tubercule and lateral amygdala) [Dulac and Wagner, 2006].

Although there is not yet a complete picture of the topographical layout of these projections,

two different patterns became apparent: For one topography of the MOB is kept en gros in the

AON [Miyamichi et al., 2011] and especially in the AON pars externa [Yan et al., 2008] as well
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as in the anterior and posterolateral cortical amygdala [Sosulski et al., 2011]. Thereby input

to the amygdala stems merely from the dorsal MOB [Miyamichi et al., 2011]. On the other

hand projections to the PC are distributed across its entire sheet without any regard to the

topographic origin in the MOB [Miyamichi et al., 2011; Davison and Ehlers, 2011; Sosulski

et al., 2011]. That is both a topographic and a scattered readout of the bulbs is prevalent.

M/T cells of the AOB cells integrate the excitatory signals of different glomeruli [Del Punta

et al., 2002; Wagner et al., 2006], whereas M/T cells of the MOB convey mainly the excitatory

input of a single glomerulus [Dhawale et al., 2010]. Nonetheless the few dozen M/T cells that

receive input of the same glomerulus (called sister cells) show diverging response profiles on

account of different modulations. These modulations are gradually dependent on the location

of the M/T cell bodies due to the specific targeting of the lateral interneuron network [Kikuta

et al., 2013]. The next section will give a brief introduction to this network.

Olfactory modulation

In the olfactory bulbs information is not only relayed forward, but also shaped by modulation.

This modulation is mediated by a variety of interneurons at different layers of the olfactory bulb

[Parrish-Aungst et al., 2007]. In spite of the immense complexity of this circuitry, some basic

mechanism have been revealed.

At the glomerular layer inhibitory periglomerular (PG) cells and excitatory external tufted

(ET) cells provide an intra-glomerular signal relay [Gire et al., 2012] and gain control [Murphy

et al., 2005]. In addition excitatory [Aungst et al., 2003] and inhibitory [Whitesell et al., 2013]

short axon (SA) cells mediate inter-glomerular interaction in a range of about 600µm (∼ 9

glomeruli). Despite SA cells being partly excitatory their main effect on M/T cells is still

inhibitory as excitatory SA primarily synapse to inhibitory PG cells.

At the next stage, the external plexiform layer (EPL), M/T cells exhibit strong dendritic

arborizations which are exposed to dendro-dendritic inhibition. For one thing parvalbumin-

expressing (PV) cells mediate areal inhibition in a range of 200− 300µm (∼ 4 glomeruli) [Kato

et al., 2013; Miyamichi et al., 2013]. For another thing granule cells of the granule cell layer

provide next neighbour inhibition at a scope of about 100µm (∼ 1 glomeruli) [Egger and Urban,

2006; Miyamichi et al., 2013].

Additionally the glomerular layer and the granule cell network are also targets of excitatory

cortical feedback projections from the AON [Markopoulos et al., 2012] and the PC [Boyd et al.,

2012]. As the centrifugal feedback mainly targets the lateral networks it effects the bulbs on

the same length scales [Cazakoff et al., 2014].

In contrast to this local modulation, the olfactory bulbs are also subject to global centrifugal

neuromodulatory input including noradrenealine, serotonin and acetylcholine releasing fibres

[Matsutani and Yamamoto, 2008]. The release of these neuromodulators takes place all along

the fibres such that they simultaneously effect wide areas within the bulb.
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Synopsis

Analogue to the antennal lobe the olfactory bulbs are a sensory array which allocates the

olfactory sensation on a stereotypic topographic map. Its arrangement reflects to a great extent

genetic identities of the OSNs.

Thereby the topographic layout builds a substrate for local circuits of lateral and centrifugal

integration of information at different length scales. Furthermore the topography of the MOB

is transferred en gross in projections to the AON and the cortical amygdala, whereas it is lost

in the projections to the piriform cortex.

1.3.2 Functional Organization

Olfactory Subsystems

For most of the olfactory subsystems major functional roles have been identified. The VNO in

general is strongly involved in innate social behaviours [Chamero et al., 2012; Stowers et al.,

2013; Sokolowski and Corbin, 2012] detecting a large number of con- and heterospecific cues as

for example steroids (V1Rs), peptides and major urinary proteins (V2Rs) [Isogai et al., 2011;

Chamero et al., 2011]. The importance of the VNO in eliciting innate behaviours is emphasized

by its direct projections to the limbic system [Keverne, 1999]. Also for the Gruenberg Ganglion

(i.e the necklace glomeruli) there is growing evidence that it is crucially involved in innate

responses to alarm pheromones and kairomones containing heterocyclic sulphur or nitrogen

containing compounds generated by meat digestion [Brechbühl et al., 2008, 2013].

No specific functionality of the SO has been discovered yet, but due to its location at the

sopalatine duct, which connects the mouth with the nasal cavity, it is hypothesised to be involved

in detection of non-volatile food components [Breer et al., 2006].

The MOE is believed to accomplish general odour detection and thus provide means for

associative learning especially in the PC [Su et al., 2009]. Nonetheless there is also some

evidence that the MOE takes an essential part in mediating different innate behaviours [Stowers

and Logan, 2010]. For example the TAAR domain is involved in mediating both aversive [Dewan

et al., 2013] and attractive [Li et al., 2013] behavioural responses. However it still has to be

elucidated if this reflects rather true innate or (neonatally) socially learned olfactory behaviour

[Stensmyr and Maderspacher, 2013; Sanchez-Andrade and Kendrick, 2009]. For instance the

GC-D expressing neurons, associated with the necklace glomeruli, detect odors like carbon

disufide and uroguanylin and seem to be crucially involved in learning socially transmitted food

preferences [Munger et al., 2010; Arakawa et al., 2013].

Olfactory Bulb

Even worse than for Drosophila for most glomeruli in mice no activating molecules are known

[Peterlin et al., 2014]. Nevertheless a general assessment of OSN responses has shown that both

broadly and narrowly tuned OSN types exist, with many of them not being restricted to odours
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of a specific functional group [Nara et al., 2011]. Thereby, just like in Drosophila, most odours

activate a combination of multiple types of OSNs (i.e. glomeruli) [Malnic et al., 1999].

The lack of knowledge about individual receptive fields of glomeruli renders it difficult to in-

vestigate their functional arrangement. On the one hand there is evidence that nearby gomeruli

exhibit a significant overlap in their receptive fields [Ma et al., 2012] or are even tuned to com-

mon functional groups [Matsumoto et al., 2010]. But on the other hand both hypotheses are

also disputed and in some studies nearby glomeruli seem to be as diverse in their odor tuning

as to distant ones [Soucy et al., 2009].

1.4 Conclusion

1.4.1 Topography in olfactory systems

In both mice and Drosophila a coarse arrangement of various receptors at the periphery is

transformed into a stereotypic sensory array of glomeruli at the olfactory relay centres (olfacory

bulbs in mice and antennal lobe in drosphila). Interestingly in both species their arrangement

reflects to a great extent the genetic distance of the corresponding receptors. That may lead to

the hypothesis that the obtained topography is a side effect of the axon-guidance in the process

of separating different types of OSNs into individual glomeruli [Zhang et al., 2012]. But on the

contrary there is evidence that the topography also plays a functional role. In particular the

topographic arrangement is the substrate local circuits are acting upon and thus it strongly

influences neural computation. Such topographic computations are in mice most pronounced

in the OB’s lateral network, in its projections to the AON and amgygdala and in Drosophila in

the projections from the AL to the LH.

The following chapters investigate the functional relevance of topography in olfactory sys-

tems in two ways. First in chapter 4 it is investigated whether spatial proximity in the dorsal

olfactory bulb of mice implies functional similarity. And second in chapter 5 the emergence of

specific response areas in the LH by a topographic readout of the AL are explored.

1.4.2 Olfactory receptive fields

A major drawback in investigating the functional layout of the olfactory relay centres is the

experimental limitation to the number of measured odours. Although the number of odourous

molecules has been estimated to be more than 240000 [Boyle et al., 2013] or even 60 million

[Ruddigkeit et al., 2014], currently not more than a few hundred odours have been measured for

any glomerulus. Therefore all conclusions on functional similarities thus far have been drawn

from only fragmentary olfactory receptive fields.

Even though improvements in experimental procedures will drastically increase the known

odour responses [Peterlin et al., 2014], it seems intractable to measure all possible odour

molecules. Thus it is highly desirable to obtain quantitative models of olfactory receptive

fields, that is models that can interpolate the responses of unmeasured molecules from known

responses [Boyle et al., 2013]. To this end chapter 3 explores ways to obtain such models.
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Segmentation of functional parts in image series of functional activity is a common problem in neuro-
science. Here we apply regularized non-negative matrix factorization (rNMF) to extract glomeruli in intrin-
sic optical signal (IOS) images of the olfactory bulb. Regularization allows us to incorporate prior knowledge
about the spatio-temporal characteristics of glomerular signals. We demonstrate how to identify suitable
regularization parameters on a surrogate dataset. With appropriate regularization segmentation by rNMF
is more resilient to noise and requires fewer observations than conventional spatial independent compo-
nent analysis (sICA). We validate our approach in experimental data using anatomical outlines of glomeruli
obtained by 2-photon imaging of resting synapto-pHluorin fluorescence. Taken together, we show that rNMF
provides a straightforward method for problem tailored source separation that enables reliable automatic seg-
mentation of functional neural images, with particular benefit in situations with low signal-to-noise ratio as in
IOS imaging.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).

Introduction

Measuring the activity of large neuronal ensembles is a fundamental
problem in neuroscience. Functional optical imaging is a widely used
tool to measure spatio-temporal responses of neuronal ensembles
distributed over extended brain areas. Many neuroscientific questions
require identification of regions in the imaged areas which exhibit cor-
related activity, for example groups of neurons which are functionally
related or anatomically grouped. For an efficient work-flow it is desir-
able that large volumes of recorded ensemble activity are automatically
disaggregated into functional/anatomical parts, with each part charac-
terized by its associated pixels (spatial location) and their common
time-course (Dorostkar et al., 2010). The automatic segmentation of
neuronal activity is not only important to increase experimental
throughput, but also to increase the reproducibility and reliability of
the results.

For instance, this problem arises in extracting individual glomeruli
and their response time-course from optical recordings of the olfactory
bulb, a system extensively studied using functional imaging (for a

review see Pain et al., 2011). Glomeruli are the first relay station in the
olfactory pathway, with each glomerulus relaying the convergent
input of a distinct type of olfactory sensory neurons (OSNs) expressing
the same olfactory receptor (Firestein, 2001). Thus, the input to the glo-
merular ensemble represents the basic sensory representation of the ol-
factory world. Our understanding of this representation is still
rudimentary and disputed (Ma et al., 2012; Murthy, 2011; Soucy et al.,
2009). This circumstance demands large-scale studies of chemical re-
ceptive fields of glomeruli and their spatial arrangement, a task conve-
niently achieved using optical imaging of neuronal activity.

A well established technique for imaging the dorsal olfactory bulb is
to measure reflectance at about 700 nm, the so-called intrinsic optical
signal (IOS) (Rubin and Katz, 1999).

The IOS comprises both a global diffuse signal and a local signal orig-
inating in the glomeruli (Meister and Bonhoeffer, 2001). The local signal
is related toOSN glutamate release and its uptake by astrocytes (Gurden
et al., 2006). It has been demonstrated that the IOS corresponds well to
both pre-synaptic calcium signals (Wachowiak and Cohen, 2003) and
pre-synaptic exocytosis measured using synapto-pHluorin (Soucy
et al., 2009). However, the intrinsic optical signal is by a factor of three
to ten (calcium) up to twenty (synapto-pHluorin) weaker, implying a
smaller signal-to-noise ratio which poses a significant challenge to
data analysis. The advantage of IOS imaging is that it doesn't require
an ion-sensitive dye, which significantly simplifies the experimental
procedure.
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A range of algorithms and techniques have been applied with the
aim of identifying both the location of glomeruli and the time course
of their activation from the noisy optical imaging data. In the most
straightforward approach the image is de-noised and spatial regions
of interest are selected as local maxima of odor induced activation,
crossing a defined threshold (Bathellier et al., 2007; Belluscio and
Katz, 2001; Ma et al., 2012; Meister and Bonhoeffer, 2001; Wachowiak
and Cohen, 2001). The corresponding time courses are then extracted
from the surrounding pixels. However, choosing the right threshold
is difficult. A high threshold delivers robust segmentation of single
spatial peaks in the signal, but small activations may not be detected.
In contrast, neighboring strong response regions merge when using
a low threshold (Dorostkar et al., 2010). Furthermore biological
responses to stimuli are often superimposed onto biological and
technical noise sources (Grinvald et al., 1999). The manual choice
of a threshold may also complicate the reproduction of results in in-
dependent experiments even if experimental conditions vary only
slightly.

Techniques for blind source separation (BSS) offer an elegant way
out of this dilemma. Using BSS techniques it is possible to separate
distinct sources which compose a signal, allowing the simultaneous
determination of spatial extent and temporal response of the sources
(i.e. glomeruli in our case). For example spatial independent component
analysis (sICA) was successfully applied to analyze IOS odor responses
in the mouse olfactory bulb (Reidl et al., 2007) and to extract glomeruli
in calcium imaging experiments in the honeybee antennal lobe
(Strauch and Galizia, 2012). The sICA approach relies on the spatial
structures of the sources being independent, i.e. that they are located
at different positions or have different shapes (e.g., blood vessels
vs. glomeruli). Instead of assuming spatial independence, other
approaches in optical imaging segmentation have been proposed
which separate sources by assuming temporal (Strauch and Galizia,
2012) or spatio-temporal (Mukamel et al., 2009) independence. But
since glomeruli can exhibit largely overlapping ligand spectra and
hence correlated odor responses (Ma et al., 2012), the assumption of
temporal independence is violated and thus requires at least an addi-
tional step of image segmentation. Also the convex cone analysis
(Strauch et al., 2012) suffers from the demand of additional post-
processing steps.

We propose regularized non-negative matrix factorization (rNMF)
(Cichocki and Anh-Huy, 2009) as an alternative approach to identify
the spatial location and temporal activity of glomeruli in the olfactory
bulb. rNMF allows incorporating a priori knowledge about the source
characteristics through appropriate regularization terms. In our case,
this knowledge comprises both the spatial arrangement of glomeruli,
largely side to side with a diameter of 40–190 mm (Royet et al., 1988),
and the excitatory response characteristic of OSNs to odor stimulation
(Nara et al., 2011). Because the accuracy of BSS depends critically on
the suitability of the assumption underlying the factorization algorithm,
the incorporation of prior knowledge renders rNMF a well suited
approach for glomerulus extraction.

In this study, we introduce regularization terms specific to our BSS
problem of identifying glomeruli and extracting their response time-
courses in IOS imaging. We elucidate how suitable parameters can be
chosen in a data-driven fashion. In addition, we compare the rNMF ap-
proach to conventional sICA and examine the application domain of
both approaches.

Materials and methods

Mathematical notation

Matrices are denoted in bold capital letters and bold small letters in-
dicate column vectors. Therefore aTx represents the dot product and axT

the outer product.

Experiments

Functional intrinsic optical signal imaging
Three OMP-SpH-mice (9–22 weeks) (Bozza et al., 2004) were anaes-

thetized using urethane (1.5 g/kg i.p.). Anaesthetic was supplemented
throughout the experiments and the body temperature was kept be-
tween 36.5 °C and 37.5 °C using a heating pad and a rectal probe. For im-
aging a craniotomy over one olfactory bulbwas cut. The duramater was
removed and the imaging chamber was filled with agar (1.5%) and cov-
eredwith a glass cover slip. The prepared skull was fixatedwith cement
to a metal plate under the microscope. All animal care and procedures
were in accordancewith the animal ethics guidelines of theMax Planck
Society.

Instant JChem was used for searching, managing and property pre-
diction of odorants in a chemical database (Instant JChem 5.9.4, 2012,
ChemAxon, http://www.chemaxon.com).

Odors were presented with a two armed robot (Combipal, CTC-
Analytics, Zwingen, Switzerland) using the Software Chronos (Axel
Semrau, Sprockhoevel, Germany). 2.5 ml of the odor headspace
was injected into a constant carrier flow of filtered and humidified
air (21/min) towards the mouse's nose. After each odor presentation
the syringe used for odor transfer was flushed with nitrogen for 72 s
to minimize contamination. Odor responses were recorded in the
dorsal olfactory bulb for 12 s at 5 Hz using a macroscope (Pentax
Zoom lens 12–48 mm, f = 1:1.0 and Nikkor 135 mm, f = 1:2.0)
and an Orca-R2 camera (Hamamatsu, Japan; 1024 × 1344 pixels,
field of view 1.63 mm × 1.24 mm) under illumination with red light
(690 nm). Odor molecules reached the nose 2.5 ± 0.3 s after recording
onset as measured by a photoionization detector (Aurora Scientific,
Canada). In each animal the response to a stimulus set of 46 to 47
odors was recorded (for odor list see supplemental table T1). Each
odor stimuluswas repeated at least twice and stimuli were represented
in a pseudo-randomized sequence. Before and after each presentation
of the entire stimulus set, the pattern of blood vessels was recorded
using green illumination (546 nm, ‘green image’) and controlled for
shifts to exclude movement artifacts.

Anatomical SpH imaging
In addition to functional imaging we performed an anatomical

scan in all mice. Synapto-pHluorin labeled OB glomeruli were im-
aged using a 2-photon laser scanning microscope (Prairie Technolo-
gies, Middleton, TN, USA), a 16× water immersion objective (N.A.
0.8, Nikon, back aperture overfilled) and a MaiTai DeepSee laser
(50–170 mW, tuned to 880 nm, 80 MHz repetition rate of pulses
120 fs in length; Spectra-Physics/Newport, Santa Clara, CA, USA). Im-
ages (512 × 512 pixels) were acquired at 3 μm steps in z-direction.
Multiple Z-stacks were stitched and aligned to the functional imag-
ing data using custom written Matlab scripts. For alignment we
used the blood vessel pattern obtained by illuminating the olfactory
bulb using the ‘green image’ recorded at a wavelength of 546 nm.We
manually outlined glomeruli in the Z-stacks (see Supplementary
movie). To avoid a bias in the outlining procedure the glomeruli
were identified with the experimenter blinded to the results of
factorization.

Data preprocessing
To increase signal-to-noise ratio and reduce computational load the

raw data was filtered by binning with an 8 × 8 pixel spatial and a 12
frame temporalwindow. Then theodor induced activationwas calculat-
ed as the relative decrease of reflectance− ΔR/R=− (R− R0)/R. R0 is
the mean reflectance on the first 2 s after recording onset, well before
the odors reached the nose (see above). Furthermore the data was spa-
tially bandpass filtered with two Gaussian filters (σlow = 10 pixels,
σhigh = 1 pixels) and down-sampled by a factor of 2. The final resolu-
tion of the measurement time series was thus 64 × 84 pixels at
0.42 Hz. The concatenation of the preprocessed frames for all odors
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leads to the measurement matrix Y ∈ RF × P with element Yf,p being the
observed value of the pth pixel in the fth frame. Every fifth frame is the
start of a new odor oi, in the following denoted as f oi .

After preprocessing we estimated the remaining pixel noise as the
standard deviation of pixel activation in response to the ‘non-odor’
Argon.

Surrogate data

To evaluate the factorization performance we created surrogate
datasets resembling the main characteristics of the biological case.
That is we randomly placed 40 sources side by side on a regular 9 ×

9 grid in a 50 × 50 pixel image (Fig. 1a). A source s contributes
to the activation of a pixel p with a decaying pixel participation xs
around the source's center xs,p = exp(−0.1(p − ps

center)2)
(Fig. 1d). For a set of i = 1, … n surrogate stimuli oi, we drew
peak activations aoi ;s from a gamma distribution (μ = 0.2, σ =
0.28) (Fig. 1b), resulting in a narrowly tuned response spectrum
specs ¼ ao1 ;s; ao2 ;s;…; aon ;s

� �
. A temporal correlation between groups

of sources, as depicted in Fig. 1b, was introduced via a Gaussian
copula (Nelsen, 1998). Furthermore each stimulus response was
expanded to a six frame time series mimicking the shape of an
experimentally observed time course (Fig. 1c). The concatenation
of these single stimuli responses yielded the overall time series as

(a)

(d)

(e)

(f)

(b) (c)

Fig. 1. Surrogate data. (a) 40 Gaussian shaped sources randomly placed on a regular 9 × 9 grid in a 50 × 50 pixel image. Crosses mark centers of pixel participation and circles
indicate half maximum. (b) Distribution of per-stimulus peak activations (in arbitrary units au) (gamma distribution with μ = 0.2, σ = 0.28). Inset: Gaussian copula with cor-
relations ρ used to induce temporal correlation within four groups of sources. (c) Six-point model time-course for stimulus activation. (d) Pixel participation (left) and full ac-
tivation time series of a source instance (50 odors in 300 frames f). (e) Surrogate signal for five example stimuli at peak activation, including gaussian pixel noise (σnoise = 0.2).
(f) Left panels: recovered source in rNMF (top) and sICA (bottom). Right panels: reconstructed source activation time series. Temporal correlation rtmp to true source is given in
upper left corners.
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of a source s, modeling the response of a single glomerulus through-
out a series of measurements. Finally the summed activation of all
sources gave the overall spatio-temporal observation Y = ∑s asxsT +
N additionally corrupted by gaussian pixel noise Nf ;p∈N 0;σnoiseð Þ
(Fig. 1e).

Matrix factorization

The objective of matrix factorization is to obtain a decomposition of
observation Y into K components with time-courses Â∈RF�K and pixel
participations X̂∈RK�P. Therein â f ;k is the activation value of component
k in the fth frame and x̂k;p the participation of the pth pixel in it. Accord-
ingly âk is the full time-course of this component and x̂k the participation
strength for all pixels. The reconstruction of a measurement is then

given by Ŷ ¼ ∑kâkx̂
T
k ¼ ÂX̂ and a measurement is described as its re-

construction and the unexplained residual data Y ¼ ÂX̂þ R. After fac-
torization we rescaled x̂0

k ¼ x̂k=max x̂kÞð and â0k ¼ max x̂kð Þ � âk which

leaves the contribution of a component â0kx̂
0T
k ¼ âkx̂

T
k invariant and

allows for reading the pixel-participation as relative strength of partici-
pation in the common time series.

Spatial ICA (sICA)
In sICA, factorization is performed under the objective that all pixel

participations x̂k are mutually independent. We employed the FastICA
implementation of scikit-learn (Pedregosa et al., 2011) to obtain such
a factorization. First the data is whitened and reduced to K components
via principal component analysis. The choice of K determines the num-
ber of unique components extracted by ICA. The resulting factorization
Y = APCAXPCA + R has minimal variance in residual R and orthogonal
pixel participations xkPCA of zero mean and unit variances. To obtain
pixel participations x̂k which are not only uncorrelated but indepen-
dent, FastICA estimates an unmixing matrix W maximizing the
nongaussianity/negentropy of the ‘unmixed’ components X̂ ¼ WXPCA

(Hyvärinen, 1999). This yields thefinal factorizationY ¼ ÂX̂þ R ¼ APCA

W−1WXPCA þ R.

Regularized NMF (rNMF)
In non-negative matrix factorization the values of factorization are

restricted to be positive (af,k ≥ 0, xk,p ≥ 0 ∀ f, k, p). Positive pixel partic-
ipations enable straightforward physiological interpretation, reading
the pixel values in each component as contribution values of the
extracted physiological source. Positive time-courses reflect the as-
sumption that source responses are excitatory. To obtain such a factor-
ization the HALS algorithm iteratively minimizes the reconstruction

error R ¼ Y−ÂX̂
��� ������ ���2

F
under the non-negativity constraint (Cichocki

and Anh-Huy, 2009), with ‖‖F denoting the Frobenius Norm. To further
constrain the factorization to known characteristics of the hidden sources
the algorithm allows the imposition of additional regularization to the es-
timation. This is achievedby jointlyminimizing the reconstruction errorR

together with a constraint C in the form Y−ÂX̂
��� ������ ���2

F
þ αC Â; X̂

� �
, with α

determining their trade off.
In general there is no unique solution of the NMF problem

(Donoho and Stodden, 2004). Especially if two sources have a similar
activation profile, a valid factorization would be a component
reflecting the common ground activation and components contain-
ing the deviation.

To avoid the explanation of pixel group activations inmore than one

component, a good solution X̂ contains only minimal off-diagonal ele-

ments in the components' spatial overlap matrix X̂X̂
T
, leading to the

global sparseness regularization term Csp X̂
� �

¼ ∑ j∑k≠ jx̂ jx̂k (Chen

and Cichocki, 2005). This term reflects the assumption that glomerular
signals recorded by IOS imaging show only weak overlap. As a further

physiological constraint we took into account that neighboring pixels
are likely to belong to the same source. This was reflected in a smooth-
ness regularization,minimizing the spatial variation of each component

Csm ¼ ∑k∑p x̂k;p−lTp x̂k

� �2
with lp being the neighborhood vector of

the pth pixel reflecting its 2D connectivity (Cichocki and Anh-Huy,
2009). Taking both regularizations together, a solution is preferred
where the activation of a pixel is either attributed to a single source or
the mixed signal of neighboring sources.

We used the hierarchical alternating least squares (HALS) frame-
work (Cichocki and Anh-Huy, 2009) to optimize our regularized objec-
tive function. The full algorithm is provided in Appendix A.

The HALS algorithm can be initialized with any guess of Â and X̂. We
chose a deterministic approach to obtain reproducible results and avoid
any chance effects of random initialization (see Appendix B). In detail,
we started with the pixel with the maximal peak activation in the
signal and selected its time-course to initialize the first component.
Then the participation of all pixels in this time-course was calculated
and their contributions to the signal was subtracted from the data to
obtain the unexplained residuals R ¼ Y−âkx̂

T
k . We repeated this pro-

cedure on the residuals R until we initialized all k components. This
approach is similar to convex cone analysis (Strauch et al., 2012).
Strauch et al. selected the pixel with the highest euclidean norm, es-
sentially choosing the pixel with the highest variance. We instead
chose the maximum norm (highest peak activation) to address
the expected sources' activation characteristics of few but strong
(i.e. sparse) activations.

Sequential compositions of rNMF and sICA

Both sICA and rNMF might provide complementary aspects of a
solution. Therefore we created various sequential compositions of
these approaches. The first composition we assessed was to perform
one approach on the reconstructed data Ŷ ¼ ÂX̂ ¼ Y−R of the other
one. It implies the assumption that the residual R of the first factoriza-
tion mainly contains noise, and removing it is equivalent to de-noising
the data.

The second compositionwe usedwas to initialize rNMF by the recti-
fied factorization [XsICA]+, [AsICA]+ of sICA. Vice versa, sICA was per-
formed directly on the pixel participation XrNMF of rNMF (instead of
performing it on the data Y). This procedure yielded a total of four se-
quential compositions of rNMF and sICA: 1) rNMF initialized with the
rectified sICA components, 2) rNMF performed on the sICA reconstruc-
tion (‘de-noising by sICA’), 3) sICA performed on pixel participations
obtained with rNMF, and 4) sICA performed on rNMF reconstructions
(‘de-noising by rNMF’).

Performance criteria

We employed different measures to evaluate the performance
of factorization. In rNMF we estimated the efficiency of the sparse-
ness constraint by calculating the spatial correlation (pixel-wise
Pearson's r) of components. Especially the highest correlation rcomp

k ¼
max jr x̂k; x̂ j

� �
highlights shared explanation of pixel groups in the fac-

torization, which is in opposition to the assumption of locally sparse
signals.

In case of the surrogate dataset where the ground truth is known
we furthermore directly assessed how well the true sources were
reconstructed in factorization. Therefore each source was assigned to
the component to which it exhibited the highest spatial correlationes ¼
argmaxir x̂i;xsð Þ. The recovery error of a source was then calculated as
the relative mean squared error of reconstruction for all time-points

and pixels MSEs ¼ ∑ f ;p a f ;sxs;p−â f ;~sx̂~s;p
� �2

=∑ f ;p af ;sxs;p
� �2 . As x̂~s in

sICA exhibits small but many non-local values (see Fig. 1f), this mea-
sure would indicate worse performance than actually could be
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achieved by simple post-processing like thresholding. To ensure a fair
performance comparison between sICA and rNMF, we therefore
accounted for potential post-processing improvements by calculating

the sICA recovery error only for the local source region MSEsICAloc
s ¼

∑ f ;ploc af ;sxs;ploc−â f ;~sx̂~s;ploc
� �2

=∑ f ;ploc af ;sxs;ploc
� �2

for pixels ploc =

{p|xs,p N 0.05} which have a substantial participation in the original
source. Instead of recovery error, we will report the counterpart source
recovery SR = 1 − MSE. Furthermore we characterized coincidence of
source and matched component by evaluating their mutual spatial
and temporal correlation, rspts ¼ r x̂~s;xsð Þ and rtmp

s ¼ r â~s; asð Þ.
For the experimentally obtained IOS data the ground truth is

unknown. Nevertheless we were able to utilize the exactly defined
experimental design of repeated stimuli and the generally high
reproducibility of odor responses on single trial basis (Spors and
Grinvald, 2002) for evaluating temporal characteristics of a component.
For each component k we calculated its response spectrum speck ¼
ao1 ;k; ao2 ;k;…; aon ;k
� �

to the first and second stimulus repetition. The re-
sponse to an odor oi was the mean activation 4.8 s–12 s after odor mea-

surement onset: aoi ;k ¼ ∑ f oiþ4

f¼ f oiþ2â f ;k=3. The trial-to-trial correlation of

response spectra rk
t2t = r(speck1st, speck2nd) reflects then the stimulus cor-

related fraction of activation in the component. Low rk
t2t indicates sources

with weak coupling to odor stimulation, for example blood vessels.

Source code

Source code (Python) for performing rNMF, including a GUI ver-
sion, is available online at https://github.com/jansoe/FUImaging/
tree/Neuroimage2014. In the "examples" subfolder of this repository,
we provide IPython Notebooks to reproduce the data analysis per-
formed in this manuscript. Supplemental file 3 contains the necessary
data. Online inspection of this code is possible at http://nbviewer.
ipython.org/github/jansoe/FUImaging/blob/master/examples/
IOSsegmentation/regNMF.ipynb.

Results

The purpose of this studywas to incorporate appropriate regulariza-
tion in the NMF framework to improve automatic segmentation
of glomeruli in the mouse olfactory bulb in IOS imaging. We first use
surrogate data to analyze the benefits of rNMF, including the
performance-critical choice of appropriate regularization. In a practical
IOS imaging scenario we illustrate the capability of rNMF to infer glo-
merular positions and responses, and verify the results using anatomical
measurements. At all stages, we compare the performance of the rNMF
approach to conventional sICA.

Segmentation of surrogate data

It is generally difficult to assess factorization performance for
experimentally obtained imaging data because the ground truth is un-
known. To obtain nevertheless a detailed picture on the terms of perfor-
mance for rNMF and sICA we constructed a parameterized surrogate
dataset in which we have full control over the sources composing the
signal. With this dataset we could address two important questions:
First, what is the influence of method inherent parameters and how
can we choose their values for a given dataset? And second, what is
the application domain of both methods with respect to strength of
pixel noise and number ofmeasured stimuli? To answer these questions
we constructed surrogate sources resembling the main characteristics
of our biological object of research. Surrogate glomeruli are arranged
side by side with overlapping spatial signal distribution (Fig. 1a). This
induces a spatial correlation of 0.29, i.e. a small dependence, to neigh-
boring sources. Their response spectra are narrowly tuned and groups

of glomeruli exhibit correlation in their response spectra (Fig. 1b).
Each glomerulus rises to peak activation with a model time-course
that mimics measured response dynamics (Fig. 1c). The data to enter
factorization is the concurrent observation of 40 glomeruli in response
to nstim stimuli (e.g. odors) corrupted by additional pixel noise σnoise

(Fig. 1e).
We started our analysis with a dataset roughlymimicking the proper-

ties of our intrinsic optical signal (IOS) imaging datawith nstim=50 stim-
ulus observations and a noise level of σnoise = 0.2. Fig. 1f shows an
example of a recovered source from both rNMF (αsm = 2, αsp = 0.5)
and sICA, illustrating the general characteristics of themethods. rNMF in-
deed showed the desired properties of a localized, sparse and smooth
pixel participation, accurately reproducing the spatial and temporal char-
acteristics of the source. In contrast plain sICA (with no additional pro-
cessing applied) generates more holistic pixel participations, containing
global noise contributions besides the local source contribution. While
the non-local aspects could probably be mitigated using suitable post-
processing, this result points out a more noisy reconstruction of the acti-
vation courses by sICA, especially for weaker signals.

Choice of regularization parameters
The outcome of rNMF factorization depends on the choice of regular-

ization. On the basis of problem-specific knowledge we devised two reg-
ularization terms on the basis of expected source characteristics: spatial
sparseness and spatial smoothness (see Materials and methods). The
relative influence of those regularization terms is governed by the param-
eters αsp (sparseness) and αsm (smoothness). We systematically evaluat-
ed their effect on factorization results on the surrogate data in order to
provide a heuristic for choosing useful parameter values.

We first started with the parameter for smoothness regulariza-
tion αsm. With αsm = αsp = 0, that is without any regularization,
pixel participations of the NMF components spread across the
whole image, containing small scale structures of one pixel size.
These small scale structures progressively disappeared as we in-
creased the smoothness regularization to αsm = 8 (Fig. 2a). None-
theless, the extracted components contained contributions from
different sources even with strong smoothness regularization.
Therefore we introduced sparseness regularization, which controls
the number of components a pixel is participating through the pa-
rameter αsp. Withmoderate regularization (αsp = 0.5), a component
exactly described a single source (Fig. 2b, left panel). Setting its value
too high (e.g. αsp = 4) resulted in components covering only part of a
source, as any overlap of components is prevented by the regularization
(Fig. 2b, right panel).

To further quantify the effect of sparseness regularization we
employed two measures. First, we calculated the recovery of the actual
surrogate sources by the components, SRk. Second, wemeasured shared
explanation of pixel groups in multiple components via spatial correla-
tion between components rkcomp (seeMaterials andmethods). This is an
uninformed measure not depending on any knowledge of actual
sources, and hence is also applicable when the ground truth is not
known, i.e. in real experimental data.

We found that themean source recovery SRk, starting at almost zero
without any sparseness regulation, increased to a maximum at about
αsp = 0.25 (2−2) and then decreased again (Fig. 2c). In contrast, the
maximal mutual correlation between components rkcomp started to de-
crease to zero at sparseness regularization values of αsp N 0.125 (2−3)
(Fig. 2c). The range of maximal source recovery was thus in a regime
where all strong component correlations became eliminated but some
residual correlation was left. This reflects the fact that neighboring
sources actually have a spatial correlation of r=0.26 due to their spatial
overlap. The interdependency of both measures suggests the simple
heuristic to choose αsp in a regimewhere spatial component correlation
starts to be significantly reduced. In the following we implemented
this by choosing αsp

opt as the first value of αsp where maxkrkcomp drops
below 0.5.
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We next asked how sensitive the results are on the initial choice of
smoothness regularization αsm and number of components k. Setting
αsp=αsp

opt according to the above derivedheuristic, the factorization per-
formance was robust to the exact choice of k as long as it substantially
exceeded the number of sources, e.g. by a factor of 1.5 to 3 (Fig. 2d).
With respect to smoothness regularization the best results were obtain-
ed for values of αsm between 0.5 and 2. This is a regime where most, but
not all small scale structures are removed.

Taken together, we suggest the following heuristic to choose rNMF
parameters: set the number of components k well above the number
of expected sources (as a rule of thumb a factor of two), tune smooth-
ness regularization to just remove most small scale structures and ad-
just sparseness regularization to just remove any strong component
correlation.

With parameters corresponding to these heuristics (k=80,αsm=2,
αsp = αsp

opt = 0.5) we obtained near optimal factorizations of the surro-
gate data with very good source recovery. This especially implied an ex-
tremely high temporal accuracy with 99.5% of components exhibiting a
temporal correlation to their corresponding source higher than 0.9.
Fig. 2e shows that for components with moderate source recovery
values the temporal correlation to the source was always larger than
0.85.

Comparison of rNMF and sICA
Having demonstrated the benefits of appropriate regularization

in rNMF, we next compare the performance of rNMF to that of con-
ventional sICA on the surrogate data set. In sICA both spatial and

temporal reconstruction of sources were more noisy, as already
pointed out in the example above (cf. Fig. 1f). Due to the many but
small non-local pixel participation values, the performance measure
we used for rNMFmight underestimate sICA's recovery performance
compared to what could be achieved by simple post-processing like
thresholding. To account for such post-processing and enable a fair
comparison we only computed source recovery for localized sICA
components (sICAloc, see Materials and methods). Nonetheless
sICAloc components showed significantly lower source recovery
than rNMF components (Fig. 3a) (p = 4 ∗ 10−41, Kolmogorov–
Smirnov test). This result was independent of the number of compo-
nents k chosen to initialize the method (Fig. 3b). In particular, rNMF
outperformed sICA regarding the reconstruction of the true time
course of the sources, as measured by the temporal correlation rtmp

(Fig. 3c).
In general matrix factorization consists of the objective function

to be optimized and the optimization procedure thereof. In FastICA
the optimization procedure is further sub-divided in a first step
of data reduction to k components via PCA and subsequent optimiza-
tion of the component's independence. To better understand
the particular influence of these steps we performed various sequen-
tial combinations of rNMF and sICA (see Materials and methods).
Initializing rNMF with sICA components had no effect on recovery
performance (Fig. 3d, sICA ini). In contrast, recovery was impaired
when rNMF was applied on the data reconstruction from the sICA
factorization (Fig. 3d, sICA dat). Since the sICA dat condition implies
removing the part of the data that sICA reconstruction did not

(a) (d)

(b)

(c) (e)

Fig. 2. Regularization parameter choice for surrogate data set (nstim = 50, σnoise = 0.2). (a) Effect of smoothness regularization parameter αsm on an rNMF-extracted compo-
nent (k = 80, αsp = 0). (b) Effect of sparseness regularization through αsp on the rNMF component (k = 80, αsm = 2). (c) Maximal spatial component correlation rcomp

and standard deviation for five different dataset instances (blue) respectively mean recovery SRk (green) in dependence of αsp (k = 80, αsm = 2). (d) Mean source recovery
SR in dependence of number of components k and smoothness regularization αsm. (e) Spatial and temporal correlation of matched components (k = 80, αsm = 2, αsp =
0.5) to 200 sources of five dataset instances. The color of each dot indicates the corresponding SR value (colorbar see (d)). Histograms on axes depict per-axis marginal
distributions.
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explain (the residual), this effect shows that in sICA part of the sparse
signal is lost in the noise due to the variance driven dimensionality
reduction of PCA. We also evaluated the reverse procedures, i.e. ini-
tializing sICA with rNMF pixel participations (Fig. 3e, rNMF ini),
and performing sICA on rNMF reconstructions (Fig. 3e, rNMF dat).
We found that both procedures improved the performance of plain
sICA, showing that de-noising the data with rNMF is beneficial for
sICA segmentation. On the other hand, the resulting sICA segmenta-
tion is worse than the results of the prior rNMF step, i.e. before apply-
ing sICA. This indicates that the objective function of rNMF better
suits the source characteristics than the spatial independence objec-
tive of sICA.

Finally we asked how dataset statistics influenced the performance
of rNMF and sICA.

In particularwe asked towhich extent themethodswere affected by
noise and the number of stimuli used for dataset generation (nstim).
Both rNMF and sICA performed well in low noise regimes and when
the number of stimuli was larger than the number of sources (Figs. 3f,
g). However, rNMFwasmore resilient to pixel noise and also coped bet-
ter with the ‘overcomplete’ case when the number of stimuli nstim was
smaller than the number of sources (which was set to 40 in all exam-
ples). This result points out that the rNMF method is particularly suited
to studying odormaps in the olfactory bulbwithwide-field IOS imaging,
when the expected number of sources (glomeruli) is in the same range
or greater than the number of stimuli (unique odorants) used in one re-
cording session.

In-vivo imaging data

The surrogate data provided insight into the application domain
of the methods and yielded a heuristic for parameter choice. But ex-
perimentally obtained in-vivo IOS data is more complex than the sur-
rogate data. With respect to spatial characteristics, glomeruli have
varying sizes and shapes and also the exact spatial signal distribution
is unknown. Furthermore the temporal characteristics of glomeruli
do not obey an unique probability distribution but vary strongly in
overall peak activation strength and odor selectivity (Nara et al.,
2011).

Since IOS imaging alone doesn't reveal the ground truth re-
garding glomerulus locations, we performed 2-photon synapto-
pHluorin imaging of the resting fluorescence and obtained outlines
of anatomical glomerulus positions (Fig. 4a). While the anatomical
outlines naturally can't provide full information on the actual con-
tribution of individual glomeruli to each pixel in the IOS recording,
they do provide reliable information about glomerular position.
The process of manual outlining and alignment of functional
and anatomical measurements (Fig. 4b) may introduce a small
error, complicating a ‘hard’ assessment of reconstruction quality.
Nevertheless these outlines allowed for visual inspection of the
match between anatomical glomerulus positions and extracted
components.

We thus asked whether our general observations on the surro-
gate dataset still held for the IOS data. To answer this question, we

(a)

(d)

(f) (g)

(e)

(b) (c)

Fig. 3. Comparison of rNMF and sICA performance in source reconstruction. Data is pooled for five independently drawn surrogate datasets. (a) Histogramof source recovery values SRk for
rNMF (solid gray, k=80, αsm= 2,αsp= 0.5) and localized sICA components sICAloc (black line, k=80). (b) Dependence ofmean source recovery SRk on the number of components k in
the surrogate data. (c) Temporal correlation of rNMF components rtmprNMF vs. rtmpsICA of sICA components. (d,e) Violin plots of distribution on source recovery values SRk for (d) plain rNMF,
rNMF initialized with sICA components (sICA ini) and rNMF performed on sICA data reconstruction (sICA dat) and (e) for plain sICA, sICA performed on pixel participation of rNMF com-
ponents (rNMF init) and sICA performed on rNMFdata reconstruction (rNMF dat). (f,g)Mean source recovery SRk in (f) rNMF and (g) sICAloc for different amounts of pixel noise σnoise and
number of stimuli used for dataset generation nstim.
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performed sICA and rNMF for three measurements (termed animal
a, b, and c) according to our deduced heuristic. Both the pixel noise
(σnoise = 0.15 (animal a), σnoise = 0.15 (animal b), σnoise = 0.19
(animal c), estimated from the response to the ‘non-odor’ Argon)

as well as the range of observed activations were in the range of
the surrogate dataset (Fig. 4c).

We chose k = 150 to initialize rNMF and sICA, well above the esti-
mated number of around 60 activated glomeruli.

(a)

(d)

(f)

(g)

(h)

(i) (j)

(e)

(b) (c)

Fig. 4. Factorization of IOS mouse olfactory bulb imaging. (a) Z-frame of the synapto-pHluorin resting fluorescence image stack and manually outlined glomeruli (yellow con-
tours, scale bar: 200 μm). (b) Glomerulus outlines (yellow) aligned to green image of the dorsal OB. (c) Examples of odor response maps obtained with IOS; mean −ΔR/R 6 s
after odor delivery. (d) Two exemplary extracted rNMF components. Top: glomerulus-like component with localized activity (left panel) and high trial-to-trial correlation.
Bottom: blood vessel-like component with low trial-to-trial correlation (right panel). (e) Similar components extracted by sICA. (f,g) Stacked histograms of observed trial-
to-trial correlations of (f) rNMF and (g) sICA components. Vertical lines indicate thresholds for contour plots in (i,j). (h) Odor responses of reliably extracted glomeruli
(rt2t N 0.7) obtained by sICA vs. responses of matched glomeruli obtained by rNMF. (i) Contour plot of extracted pixel participation compared to anatomical glomerulus outlines
(yellow) for rNMF in two animals. Black/dark gray contours indicate components with trial-to-trial correlation (rkt2t N 0.7), light gray contours correspond to components with
rk
t2t N 0.5. Greenmarks highlight glomeruli that only appeared in rNMF. Redmarks highlight glomeruli better recovered in sICA.Magentamarks highlight components with 0.5 b rt2t b 0.7
that do not resemble glomeruli. (j) Same as (i) for sICA.
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In addition we set αsm = 2 in rNMF to avoid one-pixel scale
structures and αsp = 0.5 to prohibit any component correlation
above 0.5. In both rNMF and sICA we found some components
that resembled glomeruli regarding their spatial extent and the
activation course, while others looked like parts of blood vessels
or measurement artifacts (‘noise’) (Figs. 4d,e). To distinguish
putative glomerulus components from non-glomeruli we exploited
the trial-to-trial correlation rk

t2t of the components' odor spectra.
The distributions of rk

t2t values were roughly bimodal for both
methods with a population of highly stimulus dependent compo-
nents (Figs. 4f,g). Those stimulus dependent components exhibited
good overlap with the anatomical outlines (Figs. 4i,j and Supplemen-
tal Fig. S1), taking into account the ambiguity of the outlines along
the z-axis.

We made three observations: First, components with rt2t N 0.7
corresponded well to anatomical glomerulus outlines. The same
holds true for components with 0.5 b rt2t b 0.7 except in a few cases
where components rather resembled blood vessels or other artifacts
(magenta marks in Figs. 4i,j). Second, many glomeruli were detected
by both methods, but some were solely extracted by rNMF (green
marks in Figs. 4i,j) or exhibited higher trial-to-trial correlation rt2t

in rNMF than in sICA. Third, in rare cases we observed that two
rNMF components were located within one anatomical outline (red
marks in Figs. 4i,j) indicating different temporal activation of these
parts, potentially due to underlying blood vessels or as an artifact
of bandpass filtering.

In general these observations matched the results obtained using
the surrogate dataset. rNMF yielded higher source recovery than sICA
with a more precise temporal reconstruction, i.e. a higher trial-to-trial
correlation. These results were robust over a range of parameter values
(see Supplemental Fig. S2).

Finally, we asked whether the confinement of rNMF to positive
activations had an effect on the extracted components compared to
those extracted by sICA. To asses this we matched the most reliable
components extracted with sICA (rt2t N 0.7) to the respective rNMF
component with which it exhibited the highest spatial correlation.
The odor response spectra of the matched components were highly
similar for both methods (Fig. 4h, r = 0.95). Furthermore, sICA ex-
tracted only a few and small negative signals which are not present
in rNMF. Although this could indicate that our assumption of observ-
ing purely excitatory responses with IOS imaging has been mildly
impaired, negative values in sICA might just as well be artifacts of
the initial highpass filtering.

Discussion

In this study we demonstrated how to introduce prior knowledge
about source characteristics through regularization in the NMF frame-
work. We showed that regularized NMF outperformed standard sICA
as a blind source separation approach for the automatic segmentation
of glomeruli from IOS images of the olfactory bulb. We achieved this
by reducing the approach's ‘blindness’ through incorporating knowl-
edge about the spatial continuity and spatial separation of glomeruli.
As a result of the regularization, the rNMF approach was more resilient
to pixel noise and required fewer independent observations than sICA
to reliably extract the locations and odor response spectra of individual
glomeruli. Since the number of measurable stimuli is often restricted by
experimental constraints, the reduced demand in stimulus number
makes rNMF an interesting choice for other techniques with high
signal-to-noise ratio, e.g. calcium sensitive dye imaging (Spors et al.,
2006).

The combination of smoothness and sparseness regularization
promoted factorizations in which observations were explained by
neighboring pixels. In our case the almost two dimensional arrange-
ment of glomeruli on the surface of the olfactory bulb justifies this
approach. Nevertheless this assumption holds also in many 3D

imaging scenarios like functional 2-photon imaging or fMRI.
Moreover, tuning the introduced regularizations to the expected
distribution of activity in the imaged tissue allows for a fine-
grained adjustment of the methods' sensitivity in a broad range of
applications.

We have demonstrated that the rNMF results remained stable
over a wide range of parameters. But we also showed that regulari-
zation is absolutely necessary in NMF to obtain good results. Given
a sufficiently large set of stimuli and/or low noise levels, sICA
will also yield robust and fast segmentation, with no regularization
parameters to tune. Hence, there is a tradeoff between the
benefits of rNMF and the additional effort required for appropriate
regularization.

In general sICA and NMF are closely related (in particular sparse-
ness regulated NMF Hoyer, 2002, 2004). Therefore instead of alter-
nating the basic NMF approach, one might also modify standard
ICA to obtain a problem specific objective function. Indeed there
exist numerous ICA variations addressing specific aspects of our reg-
ularization, e.g. non-negative ICA (Plumbley, 2003), sparse ICA
(Babaie-Zadeh et al., 2006) spatio-temporal tomographic non-
negative ICA (Valdés-Sosa et al., 2009) or overcomplete ICA (Lee
et al., 1999). However, the sICA assumption of spatial independence
is violated in our data set because the sources show partial overlap.
The advantage of rNMF is that it allows the gradual adjustment of
the spatial correlation of the segmented components to the expected
spatial correlation of the true sources.

In general rNMF stands out by its straightforward implementa-
tion of constraints from prior knowledge. It allows for the addition
or replacement of further modifications like temporal decorrelation
or temporal smoothness and hence provides an opportunity to tailor
factorization to known source statistics. While the assumption of
non-negative responses in our data is in agreement with the litera-
ture (Nara et al., 2011) and our own results (see the In-vivo
imaging data section), it is also straightforward to relax this assump-
tion in the HALS algorithm by dismissing the rectification step
(Cichocki and Anh-Huy, 2009). This would allow for negative source
signals to be covered while still keeping the interpretability of non-
negative pixel participations. Such an approach may prove useful to
apply rNMF in cases where inhibitory signals are expected, such as
using calcium imaging to measure odor maps in the insect antennal
lobe (Sachse and Galizia, 2002).

The great flexibility in generating problem tailored factorization
makes rNMF a promising approach for automated analysis in many
functional imaging situations. In our case it facilitates an automatic
and reliable high throughput investigation of chemical receptive fields
of glomeruli in the mouse olfactory bulb.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.04.041.

Acknowledgments

This work was supported by grants of Deutsche
Forschungsgemeinschaft (MS: DFG SCHM2474/1-1, SCHM2474/1-
2 (SPP 1392); HS: FOR 643, SP1134/1-1, SP1134/2-1 (SPP1392)).
We thank Alexander Lehmann for sharing Matlab functions and
Stephan Gabler for developing a graphical interface to the analysis
method. We also thank Anna D'Errico, Martin Vogel, Thomas Rost
and Joachim Haenicke for helpful discussions on the manuscript.
We thank Jürgen Reichert and his team for excellent technical
support, Christiane Kalmbach for electronic support, and Bolek
Zapiec for IT support. We thank Peter Mombaerts for generous
financial support, for providing infrastructure and resources for
mouse breeding and genotyping, and for scientific discussions.
We thank Prof. M. Nawrot for his general support and insightful
comments.

287J. Soelter et al. / NeuroImage 98 (2014) 279–288

27

http://dx.doi.org/10.1016/j.neuroimage.2014.04.041
http://dx.doi.org/10.1016/j.neuroimage.2014.04.041


Appendix A. Regularized NMF algorithm

Symbols are defined in theMaterials andmethods section. Addition-
ally matrix L contains the neighborhood vector lp of pixel p in it's pth
row and x̂prev

k denotes the estimation of x̂k in the previous iteration.

Appendix B. Initialization

Initialization procedure for Â and X̂. rp denotes the pth row of matrix
R and therefore the residual time-course of pixel p.

References

Babaie-Zadeh, M., Jutten, C., Mansour, A., 2006. Sparse ICA via cluster-wise PCA.
Neurocomputing 69 (13–15), 1458–1466.

Bathellier, B., Van De Ville, D., Blu, T., Unser, M., Carleton, A., 2007. Wavelet-based multi-
resolution statistics for optical imaging signals: application to automated detection
of odour activated glomeruli in the mouse olfactory bulb. NeuroImage 34 (3),
1020–1035.

Belluscio, L., Katz, L.C., 2001. Symmetry, stereotypy, and topography of odorant represen-
tations in mouse olfactory bulbs. J. Neurosci. 21 (6), 2113–2122.

Bozza, T., McGann, J.P., Mombaerts, P., Wachowiak, M., 2004. In vivo imaging of neuronal
activity by targeted expression of a genetically encoded probe in the mouse. Neuron
42 (1), 9–21.

Chen, Z., Cichocki, A., 2005. Nonnegative matrix factorization with temporal smoothness
and/or spatial decorrelation constraints. Technical Report, Laboratory for Advanced
Brain Signal Processing, RIKEN, pp. 1–10.

Cichocki, A., Anh-Huy, P., 2009. Fast local algorithms for large scale nonnegative matrix
and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E92-A (3), 708–721.

Donoho, D., Stodden, V., 2004. When does non-negative matrix factorization give a cor-
rect decomposition into parts? In: Thrun, S., Saul, L., Schölkopf, B. (Eds.), Advances
in Neural Information Processing Systems, 16. MIT Press, Cambridge, MA.

Dorostkar, M.M., Dreosti, E., Odermatt, B., Lagnado, L., 2010. Computational processing of
optical measurements of neuronal and synaptic activity in networks. J. Neurosci.
Methods 188 (1), 141–150.

Firestein, S., 2001. How the olfactory system makes sense of scents. Nature 413 (6852),
211–218.

Grinvald, A., Shoham, D., Shmuel, A., Glaser, D., Vanzetta, I., Shtoyerman, E., Slovin, H.,
Wijnbergen, C., Hildesheim, R., Arieli, A., 1999. In-vivo optical imaging of cortical ar-
chitecture and dynamics. In: Windhorst, U., Johansson, H.K. (Eds.), Modern Tech-
niques in Neuroscience Research. Springer, Berlin Heidelberg, pp. 893–969.

Gurden, H., Uchida, N., Mainen, Z.F., 2006. Sensory-evoked intrinsic optical signals in the
olfactory bulb are coupled to glutamate release and uptake. Neuron 52 (2), 335–345.

Hoyer, P.O., 2002. Non-negative sparse coding. Proceedings of the 12th IEEEWorkshop on
Neural Networks for Signal Processing. IEEE. IEEE, pp. 557–565.

Hoyer, P.O., 2004. Non-negative matrix factorization with sparseness constraints. J. Mach.
Learn. Res. 5, 1457–1469.

Hyvärinen, A., 1999. Fast and robust fixed-point algorithms for independent component
analysis. IEEE Trans. Neural Netw. 10 (3), 626–634.

Lee, T.-W., Lewicki, M., Girolami, M., Sejnowski, T., 1999. Blind source separation of more
sources than mixtures using overcomplete representations. IEEE Signal Process. Lett.
6 (4), 87–90.

Ma, L., Qiu, Q., Gradwohl, S., Scott, A., Yu, E.Q., Alexander, R., Wiegraebe,W., Yu, C.R., 2012.
Distributed representation of chemical features and tunotopic organization of glo-
meruli in themouse olfactory bulb. Proc. Natl. Acad. Sci. U. S. A. 109 (14), 5481–5486.

Meister, M., Bonhoeffer, T., 2001. Tuning and topography in an odor map on the rat olfac-
tory bulb. J. Neurosci. 21 (4), 1351–1360.

Mukamel, E.A., Nimmerjahn, A., Schnitzer, M.J., 2009. Automated analysis of cellular sig-
nals from large-scale calcium imaging data. Neuron 63 (6), 747–760.

Murthy, V.N., 2011. Olfactory maps in the brain. Annu. Rev. Neurosci. 34, 233–258.
Nara, K., Saraiva, L.R., Ye, X., Buck, L.B., 2011. A large-scale analysis of odor coding in the

olfactory epithelium. J. Neurosci. 31 (25), 9179–9191.
Nelsen, R.B., 1998. An Introduction to Copulas, 1st edition. Springer, New York.
Pain, F., L'heureux, B., Gurden, H., 2011. Visualizing odor representation in the brain: a re-

view of imaging techniques for the mapping of sensory activity in the olfactory glo-
meruli. Cell. Mol. Life Sci. 68 (16), 2689–2709.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning in Python.
J. Mach. Learn. Res. 12 (Oct), 2825–2830.

Plumbley, M.D., 2003. Algorithms for nonnegative independent component analysis. IEEE
Trans. Neural Netw. 14 (3), 534–543.

Reidl, J., Starke, J., Omer, D.B., Grinvald, A., Spors, H., 2007. Independent component
analysis of high-resolution imaging data identifies distinct functional domains.
NeuroImage 34 (1), 94–108.

Royet, J.P., Souchier, C., Jourdan, F., Ploye, H., 1988. Morphometric study of the glomerular
population in the mouse olfactory bulb: numerical density and size distribution along
the rostrocaudal axis. J. Comp. Neurol. 270 (4), 559–568.

Rubin, B.D., Katz, L.C., 1999. Optical imaging of odorant representations in themammalian
olfactory bulb. Neuron 23 (3), 499–511.

Sachse, S., Galizia, C.G., 2002. Role of inhibition for temporal and spatial odor representa-
tion in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87 (2),
1106–1117.

Soucy, E.R., Albeanu, D.F., Fantana, A.L., Murthy, V.N., Meister, M., 2009. Precision and di-
versity in an odor map on the olfactory bulb. Nat. Neurosci. 12 (2), 210–220.

Spors, H., Grinvald, A., 2002. Spatio-temporal dynamics of odor representations in the
mammalian olfactory bulb. Neuron 34 (2), 301–315.

Spors, H., Wachowiak, M., Cohen, L.B., Friedrich, R.W., 2006. Temporal dynamics and la-
tency patterns of receptor neuron input to the olfactory bulb. J. Neurosci. 26 (4),
1247–1259.

Strauch, M., Galizia, C.G., 2012. Fast PCA for processing calcium-imaging data from the
brain of Drosophila melanogaster. BMC Med. Inform. Decis. Mak. 12 (Suppl. 1), S2.

Strauch, M., Rein, J., Galizia, C.G., 2012. Signal extraction from movies of honeybee brain
activity by convex analysis. Computational Advances in Bio and Medical Sciences
(ICCABS), 2012 IEEE 2nd International Conference on. IEEE, pp. 1–6.

Valdés-Sosa, P.A., Vega-Hernández, M., Sánchez-Bornot, J.M., Martínez-Montes, E., Bobes,
M.A., 2009. EEG source imaging with spatio-temporal tomographic nonnegative in-
dependent component analysis. Hum. Brain Mapp. 30 (6), 1898–1910.

Wachowiak, M., Cohen, L.B., 2001. Representation of odorants by receptor neuron input
to the mouse olfactory bulb. Neuron 32 (4), 723–735.

Wachowiak, M., Cohen, L.B., 2003. Correspondence between odorant-evoked patterns of
receptor neuron input and intrinsic optical signals in the mouse olfactory bulb. J.
Neurophysiol. 89 (3), 1623–1639.

288 J. Soelter et al. / NeuroImage 98 (2014) 279–288

28

http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0005
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0005
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0010
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0010
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0010
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0010
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0015
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0015
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0020
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0020
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0020
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0170
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0170
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0170
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0030
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0030
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0030
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0175
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0175
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0175
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0040
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0040
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0040
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0045
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0045
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0180
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0180
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0180
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0050
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0050
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0185
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0185
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0055
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0055
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0060
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0060
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0065
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0065
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0065
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0070
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0070
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0075
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0075
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0080
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0080
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0085
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0090
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0090
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0095
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0100
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0100
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0100
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0105
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0105
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0110
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0110
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0115
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0115
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0115
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0120
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0120
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0120
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0125
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0125
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0130
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0130
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0130
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0135
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0135
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0140
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0140
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0145
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0145
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0145
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0190
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0190
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0195
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0195
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0195
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0155
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0155
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0160
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0160
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0165
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0165
http://refhub.elsevier.com/S1053-8119(14)00310-3/rf0165


Supplemental Material

Supplemental Movie M1

This movie shows 3D stack of resting synaptho-pHluorin fluorescence in the dorsal bulb. Yellow contours
show hand drawn outlines of glomeruli on the surface.

Supplemental Table T1

List of odours which were presented to the animals.

Odour CAS Odour CAS

Isopropyl ethanoate 108-21-4 Ethyl hexanoate 123-66-0
Isobutyl propanoate 540-42-1 3-Hexanone 589-38-8
Citronellal 106-23-0 2,3-Heptadione 96-04-8
Isobutyl ethanoate 110-19-0 Isobutyl formate 542-55-2
1,2-Propandione 78-98-8 Prop-2-enyl ethanoate 591-87-7
2-Pentanone 107-87-9 (R)-(+)-Pulegone 89-82-7
Propyl ethanoate 109-60-4 Methyl 2-methylbut-2-enoate 6622-76-0
3-Methylbutanal 590-86-3 Prop-2-enyl propanoate 2408-20-0
2,3-Hexadione 3848-24-6 2,3-Pentanedione 600-14-6
Butanethiol 109-79-5 Methyl butanoate 623-42-7
Propyl propanoate 106-36-5 Methyl ethanoate 79-20-9
Ethyl pentanoate 539-82-2 Methyl benzoate 93-58-3
Ethanal 75-07-0 Methyl propanoate 554-12-1
2-Methyl-pent-2-enal 623-36-9 Ethyl propanoate 105-37-3
Phenylethanol 60-12-8 2,3-Butandione 431-03-8
1,4-Cineole 470-67-7 Butyl ethanoate 123-86-4
Pentyl ethanoate 628-63-7 Butyl propanoate 590-01-2
(-)-Geosmin 19700-21-1 2-Ethyl-3-methoxy pyrazine 25680-58-4
Prop-2-enyl 2-methylbut-2-enoate 7493-71-2 Ethyl 2-methylbutyrate 7452-79-1
Hex-2-enyl ethanoate 2497-18-9 Ethyl 2-mercapto propanoate 19788-49-9
Ethyl prop-2-enoate 140-88-5 Ethyl ethanoate 141-78-6
Paraldehyde 123-63-7 Diethyl carbonate 105-58-8
Diethyl oxalate 95-92-1 Methyl prop-2-enyl carbonate 35466-83-2
Argon 14320-37-7
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Supplemental Figure S1
a
n
im
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c

(a) NMF (b) sICA

Figure S1: Same illustration as in Figure 4(i,j) for animal c. Contour plots of pixel participation for
stimulus driven components (rt2tk > 0.5) and highly stimulus driven components (rt2tk > 0.7) compared
to anatomical outlined glomeruli (yellow) for (a) NMF and (b) sICA. Green marks indicate glomeruli
solely recovered in NMF whereas red marks show glomeruli better recovered in sICA.

Supplemental Figure S2

(a) k=150, αsp=0.5, αsm=2 (b) k=150,αsp=0.1, αsm=0.5 (c) k=200, αsp=0.5, αsm=2

Figure S2: Example for NMF parameter dependence. In spite of some small differences the factorization
generally delivers robust results over the parameter range. (a) NMF for animal a using the same pa-
rameters as in the main document, (b) NMF with lower smoothness regularisation αsm = 0.5 and hence
lower αopt

sp = 0.1. (c) NMF with increased number of components k.
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Profiling the role of receptor MOR18-2 in the olfactory code
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Abstract

In contrast to most sensory systems, receptive ranges in the olfactory system are still awaiting

to be thoroughly determined. In this study we took a step in this direction and profiled the

receptive range of the olfactory receptor MOR18-2 and evaluated its relation to the receptive

fields of other receptors. To this end we imaged odour responses of the dorsal olfactory bulb

(dOB) with an emphasis on ligands of MOR18-2. We obtained an extensive response spectrum

of MOR18-2 with its ligands being mainly small esters. It showed that some of those ligands

are shared with spatially proximal glomeruli such that MOR18-2 glomeruli are embedded in a

local tunotopic response domain.

Furthermore we derived a description of the MOR18-2 receptive range in terms of physico-

chemical properties. With regard to those properties we observed a weak chemotopic embedding

of MOR18-2 in a lateral-posterior domain of the dOB.

1. Introduction

For most sensory systems the receptive fields of individual sensory neurons are fairly well

identified and the principles by which neurons are topographically arranged across the neural

sheets could be revealed (e.g. retinotopy in vision, tonotopy in audition, somatopy in somato-

sensation) (Imig and Morel, 1983; Grill-Spector and Malach, 2004; Kaas, 1991). In contrast,

for the olfactory sense our knowledge on the sensory mapping is less complete concerning both

molecular receptive ranges (MRRs) of individual olfactory sensory neurons (OSNs) as well as

their functional arrangement (Peterlin et al., 2014).

Among the best explored olfactory systems is the main olfactory system of mice. It comprises

of a large variety of OSNs, each of them expressing only a single receptor gene out of a repertoire

of ∼ 1000 genes from three classes (∼ 150 class 1 ORs, ∼ 900 class 2 ORs and 14 TAARs) (Zhang

and Firestein, 2002; Liberles and Buck, 2006). Notably the different receptors are mostly not

labelled lines for specific molecules, but in general each receptor is activated by a range of

molecules and each molecule activates an ensemble of receptors (Malnic et al., 1999).

∗Corresponding author.
Email: m.schmuker@fu-berlin.de
Phone: +49 (0) 30 838 57294
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Each receptor is expressed in restricted zones along the dorsomedial-ventrolateral axis of the

main olfactory epithelium (OE), but the zones of different receptors are strongly overlapping.

Thus OSNs of different receptor types and even receptor classes are strongly intermingled in

the OE (Miyamichi et al., 2005; Pacifico et al., 2012). It is only in the olfactory bulb (OB),

the first relay station of the olfactory pathway, the sensory array becomes demixed. OSNs

of the same receptor type converge to distinct neuropil, called glomeruli, that are exclusively

innervated by those OSNs (Mombaerts et al., 1996). The glomeruli are arranged side by side

on a spherical surface with a stereotypic position relating to their receptor type (Soucy et al.,

2009). Furthermore glomeruli corresponding to each of the three receptor classes are mainly

segregated into separate domains (Pacifico et al., 2012). Thereby glomeruli positions reflect

the dorsomedial-ventrolateral axis of OE receptor expression in a corresponding dorso-ventral

arrangement (rhinotopy) (Miyamichi et al., 2005).

All in all the OB embodies a two dimensional topographical representation of the stimulus

induced receptor repertoire activation. But to which extent this layout implies a functional

logic is still under debate (Matsumoto et al., 2010; Soucy et al., 2009; Ma et al., 2012). Two

notions of functional similarity for proximal glomeruli are frequently discussed: First the degree

of overlap of their ligand spectra per se and second chemical similarity thereof. Adhering to

Ma et al., in the following we denote the former as tunotopy and the latter as chemotopy. Note

that there is no generic definition of chemical similarity and thus has to be first defined (Saito

et al., 2009; Haddad et al., 2008).

A more general problem in evaluating the functional layout of the OB lies in the experimental

limitation in the size of the employed odour set. Typically they do not exceed the order of one

hundred odours, and hence only provide a tiny snapshot of the olfactory world. Therefore studies

often have to rely on only fragmentary obtained MRRs. Detailed MRRs are only available for

an exiguous amount of receptors (Li et al., 2012; Baud et al., 2010; Katada et al., 2005; Araneda

et al., 2000) and partial MRRs merely for a few more (Repicky and Luetje, 2009; Grosmaitre

et al., 2009; Oka et al., 2006; Bozza et al., 2002; Abaffy et al., 2006; Saito et al., 2009; Bautze

et al., 2012).

In this study we determined in detail the MRR of the glomeruli corresponding to the class 1

receptor MOR18-2 (aka MOL2.3). Based on this knowledge we then investigated the glomerular

layout in a novel way: Instead of investigating the topographic relationship of many glomeruli

with fragmentary MRR, we evaluated the topographic embedding of this single receptor with

respect to its ‘full’ MRR.

Furthermore, in a first step to evaluate chemotopic embedding, we obtained a physico-

chemical activation model of MOR18-2. That is, instead of describing its receptive field by the

listing of activating odours, we specified its activating range within a space of physico-chemical

properties. Finally we compared placement within this space to spatial position on the dOB.
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2. Methods

2.1. Imaging

Mice were anaesthetized using urethane (1.5g/kg i.p.). Anaesthetic was supplemented through-

out the experiments and the body temperature was kept between 36.5C and 37.5C using a

heating pad and a rectal probe. For imaging a craniotomy over one or both olfactory bulb were

cut. The dura mater was removed and the imaging chamber was filled with agar (1.5%) and

covered with a glass cover slip. The prepared skull was fixated with cement to a metal plate

under the microscope. All animal care and procedures were in accordance with the animal

ethics guidelines of the Max Planck Society.

Odours were presented with a two armed robot (Combipal, CTC-Analytics, Zwingen, Switzer-

land) using the Software Chronos (Axel Semrau, Sprockhoevel, Germany). 2.5ml of the odour

headspace was injected into a constant carrier flow of filtered and humidified air (2l/min) to-

wards the mouse’s nose. Odour molecules reached the nose 2.5 ± 0.3s after recording onset

as measured by a photoionization detector (Aurora Scientific, Canada). After each odour pre-

sentation the syringe used for odour transfer was flushed with nitrogen for 72s to minimize

contamination. We measured different stimuli set of 4 to 53 odours in 78 MOL2.3-IGITL mice

(Conzelmann et al., 2000), 3 heterozygote OMP-SpH mice (Bozza et al., 2004) and 15 heterozy-

gote MOL2.3-IGITL OMP-Sph cross-breeds. Thereby each stimulus set was at least measured

twice in each mice with odours presented in a pseudo-randomized sequence.

Intrinsic Optical Signal (IOS) Imaging

Odour responses were recorded in the dorsal olfactory bulb for 12s at 5Hz using a macroscope

(Pentax zoom lens 12-48 mm, f = 1:1.0 and Nikkor lens 135 mm, f = 1:2.0) and an Orca-R2

camera (Hamamatsu, Japan; 1024 × 1344px) under illumination with red light (690nm). Uni-

lateral OB recordings were performed at a focal distance of 24 mm (field of view 1.63mm ×
1.24mm), whereas bilateral recordings were performed at a distance of 48 mm (field of view

3.26mm×2.48mm). Before and after each presentation of the entire stimulus set, the pattern of

blood vessels was recorded using green illumination (546nm, ‘green image’) and controlled for

shifts to exclude movement artefacts. Furthermore the locations of MOR18-2 glomeruli were

made visible by blue illumination (475nm, ‘GPF image’) and an emission filter at 535nm.

To increase signal-to-noise ratio and reduce computational load we binned the raw data

with an 8 × 8px spatial and a 12 frame temporal window. Then the odour induced activation

was calculated as the relative decrease of reflectance −∆R/R = −(R − R0)/R. R0 was the

mean reflectance on the first 2s after recording onset, well before the odours reached the nose

(see above). Furthermore the data was spatially bandpass filtered with two Gaussian filters

(σlow = 10px, σhigh = 1px) and down-sampled by a factor of 2. The final resolution of the

measurement time series was thus 64× 84px at 0.42Hz. The concatenation of the preprocessed

frames for all odours lead to the measurement matrix Y ∈ RF×P with element Yf,p being the

observed value of the pth pixel in the f th frame.

57



Synapto-pHluorin (SpH) Imaging

Synapto-pHluorin imaging was performed with a 2-photon laser scanning microscope (Prairie

Technologies, Middleton, TN, USA), a 16x water immersion objective (N.A. 0.8, Nikon, back

aperture overfilled) and a MaiTai DeepSee laser (50-170mW, tuned to 880nm, 80 MHz repetition

rate of pulses 120fs in length; Spectra-Physics/Newport, Santa Clara, CA, USA). Emitted light

was separated and recorded into a green 525nm and red 607nm channel.

Functional imaging (128 x 128 pixel, 5.02µm/pixel) was performed for each odour 12.77s

with 94 Hz at a fixed z-position. To increase signal-to-noise ratio and reduce computational

load we binned the raw data with a 120 frame temporal window. Then the odour induced

activation was calculated as the increase in fluorescence F − F0. F0 was the mean fluorescence

on the first 2s after recording onset. Furthermore the data was low pass filtered (Gaussian filter

σ = 1.5px) and down-sampled by a factor of 2 to suppress pixel noise. The final resolution of

the measurement matrix Y was thus 64× 64px at 0.94Hz. To account for bleaching effects the

same procedure was applied to control measurements without any odour stimulation. Out of

these we calculated for each pixel the mean bleaching time course and subtracted those from

the pixels’ odour responses time courses.

Before and after functional imaging we acquired anatomical images (512 x 512 pixel, 1.25µm/pixel)

at 3µm steps in z-direction. After functional imaging the mice were first killed by an overdose

of urethane. Subsequently the OB was stained by Fast Red Violet (FRV) before anatomical

images were obtained. This made MOR18-2 glomeruli visible in the red channel (607nm, ‘FRV

image’)

2.2. Glomerular response spectra

We segmented the functional image series into individual glomeruli and their activation

course by means of regularized non-negative matrix factorization (rNMF) (Soelter et al., 2014).

Such a factorization disaggregates the measurement matrix Y into k components with a spatial

signal distribution xk and a common activation course ak of the participating pixel. The factor-

ization contained spatial smoothness (governed by parameter αsm) and sparseness regularization

(αsp) to promote a disaggregation into spatial distinct but possibly overlapping components,

i.e. glomeruli arranged side by side with an overlapping signal distribution.

We decomposed IOS image series into 150 components with fixed smoothness regulariza-

tion parameter αsm = 2. The sparseness regularization parameter αsp was adjusted such that

spatial component correlation was just below 0.5 (Soelter et al., 2014). In image analysis per-

formed to extract MOR18-2 responses, we dismissed the usual non-negativity constraint on the

components’ activation courses to capture possible odour induced inhibitions. In contrast, in

analysis to extract response spectra across the full dOB we kept the non-negativity constraint

as it increased the trial-to-trial correlation of response spectra.

SpH image series were disaggregated by the same approach. With respect to the reduced field

of view, the factorization was performed only into 20 components with an extended smoothness

regularization of αsm = 5.
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Odour responses aok of each component k (e.g. glomeruli) were obtained by averaging the ac-

tivation of frames 3 and 4 in IOS (4.8−9.6s after recording onset) and frames 8-11 (6.6−10.3s) in

SpH measurements. All odour responses of a measurement composed the components response

spectrum sk = (ao1k , . . . , a
oN
k ). To sort out non glomerular components of the factorization, we

only took components into account that exhibited a trial-to-trial correlation above 0.6 between

response spectra of odour set repetitions within an animal (Soelter et al., 2014).

Components were manually assigned as MOR18-2 glomeruli if their pixel participation

matched the GFP marked location of MOR18-2. Since the overall response strength varied

strongly across animals we normed MOR18-2 responses to its Methyl propionate (MP) response

in the same measurement (arelMP = a/aMP). The final odour response was than computed as

the median response of all measured animals, in which sufficient strong responses were observed

(aMP > 0.2‰)

To evaluate similarity of glomerular response spectra we computed the pairwise correlation

distance dr = 1 − r(sj , sk) =
∑

o(a
o
j − 〈aj〉o)(aok − 〈ak〉)/

√∑
o(a

o
j − 〈aj〉o)2

∑
o(a

o
k − 〈ak〉o)2.

Based on this distance we obtained a hierarchical clustering by the UPGMA method and evalu-

ated cluster at different thresholds. We manually set thresholds to obtain clusters with distinct

gaps between them. Thereby we restricted cluster to contain at least glomeruli of three differ-

ent animals. To account for varying overall response strength across animals we normalized all

responses to unit length response spectra aonorm = ao/‖s‖.

2.3. Physico-chemical characterization

For all measured molecules we obtained 3d structures via Pubchem. We managed the

structures using ChemAxon Instant JChem (version 5.9.4, 2012, http://www.chemaxon.com)

and standardized them by its Clean3d function. For all molecules we computed the 1600

descriptors of 19 descriptor blocks in eDragon (all blocks except Information Indices) (Tetko

et al., 2005). Furthermore we computed the EVA descriptors (Turner and Willett, 2000; Gabler

et al., 2013) . To this end we optimized structures and computed vibrational frequencies in

the GAUSSIAN software package using the B3LYP method and the 6-311G(d,p) basis set.

Afterwards the vibration spectra were mapped to a continuous range [0,4000 cm−1] by placing

a Gaussian kernel of unit height and varying width σ ∈ {1, 5, 10, 20, 50, 100} on each frequency.

The final descriptors sets EVAq
σ were then generated by sampling from this spectrum from q = 0

to q = 4000 in intervals of σ. For individual descriptors x as well as descriptor sets x we fitted

activation models â = f(x) to match the observed odour activations ao. We evaluated goodness

of fit by calculating the coefficient of determination R2 = 1−
∑

o (ao − âo)2/
∑

o (ao − 〈a〉o)2 over

all odors o. Whereas this measure assessed how well the data could be described by a model,

it does not reflect that sufficient complex models could perfectly fit any functional relationship

of the data without the ability to generalize to unseen data. Therefore we also evaluated the

coefficient of determination for unseen data in a bootstrap approach (Consonni et al., 2009). To

this end, we fitted each model on 50 bootstrap samples bi of the data and obtained predictions of

odour activations âo not contained in the bootstrap sample. We then calculated the predictive

power as q2 = 1−
∑

bi

∑
o/∈bi (ao − âo)2/

∑
bi

∑
o/∈bi (ao − 〈a〉o)2. We evaluated the performance
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of univariate linear regressions, isotonic regression and unimodal isotonic regression (Härdle,

1989) and multivariate Support Vector Regression (SVR) with Gaussian Kernel (Bishop et al.,

2006). All models were obtained via the scikit-learn module using default parameters (Pedregosa

et al., 2011). Scikit-learn was also employed to obtain the Multidimensional Scaling (MDS) of

odour space distances. Prior of fitting SVR and MDS models we normalized all descriptors to

zero mean and unit variance with respect to our in-house library of about 1000 odours.

We also employed normalized descriptors to obtain glomerular position in chemical space.

To this end we assigned each glomerulus its barycenter of activation xk =
∑

o(a
o
normxo)/

∑
o a

o−
〈x〉o relative to the mean descriptor value 〈x〉o =

∑
o xo/N for all odours in the measurement

set. We then calculated the pairwise cosine distance dcos = 1−cos(xj ,xk) = 1−xjxk/‖xj‖/‖xk‖
of the barycenters and obtained a hierarchical clustering thereof by the UPGMA method.

3. Results

The aim of this study was to investigate the MRR of the MOL2.3 receptor and its embedding

in the glomerular ensemble code. To address these aspects we performed Intrinsic Optical Signal

(IOS) imaging of the dorsal olfactory bulb (dOB, Fig. 1a) under stimulation with monomolecular

odors in MOR18-2-IGITL mice (Conzelmann et al., 2000). The IOS allowed for measuring odor

response of all glomeruli in the dOB (Fig. 1b) while the GFP-labelling of the MOR18-2 OSNs

enabled localization of the corresponding glomeruli (Fig. 1c). To extract glomerular responses

from the IOS we first band-passed the data to suppress pixel noise and separate the glomerular

signal from the global unspecific signal (Meister and Bonhoeffer, 2001). We then performed

regularized Matrix Factorization (rNMF) to obtain a decomposition of the image series into

overlapping signals from neighbouring glomeruli (Fig. 1d, see methods and (Soelter et al., 2014))

and thus avoided a corruption of glomerular response by signal spillover.

3.1. Molecular receptive range

To obtain the MRR of MOR18-2 as complete as possible, we tried to determine a large

number of ligands. After discovering the first ligand (Methyl propionate) by screening odors

known to activate glomeruli in the dorsal bulb, we iteratively built hypotheses for further ligands

based on the present set of revealed ligands. We acquired those hypotheses both empirically by

our intuitive notion of chemical similarity (e.g. chain length, bond saturation) and automated

by virtue of virtual screening (Boyle et al., 2013; Schmuker et al., 2007). Overall in this process

we acquired the response to 214 odors from measurements of 41 animals.

The ligand spectrum of MOR18-2 showed a narrow range of strongly activating odors

(Fig. 1d). Figure 1e depicts the ligand spectrum, containing the most active ligands as well

as some related non-activating molecules. It shows that MOR18-2 was most sensitive to small

aliphatic esters, with some medium response to small aldehydes/dialdehydes. We also observed

some small, but significant negative responses (Fig. 1d) which may indicate some inhibitory

responses. However, we can not exclude that inhibitory responses artificially were induced by

positive activations of neighbouring glomeruli in the preprocessing step of bandpass filtering.
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Figure 1: MOR18-2 IOS ligand spectrum (a) Image of a dorsal bulb preparation. (b) IOS odor maps after
preprocessing. (c) GFP image of MOR18-2 glomeruli. (d) Pixel participation xk of two exemplary extracted
rNMF component (left) and corresponding activation strength ak of each frame f (left). Each tick marks the
beginning of a new odour. Upper example depicts a component located at the MOR18-2 glomeruli locations,
lower example shows a neighbouring component. (e) All measured MOR18-2 odour responses (grey dots) and
their median (blue line). Top line gives the p-value of a t-test that the measured response is different to control
(Argon; Ar) measurements. (f) Molecular structure variation for some of the assessed odors. Area of the circles
is proportional to response strength.
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Argon (Control) Allyl acetate Propyl acetate Methyl propionate Ethyl propionate 2-Methyl-2-pentenal
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Figure 2: MOR18-2 SpH ligand spectrum (a) Resting SpH-fluorescence in a patch of the dOB. We manually
outlined glomeruli in the full 3D-stack (yellow contours). Anatomical landmarks (red arrow) were used to compare
location to post mortem FRV images (Panel (c)) (b) Exemplary SpH odour maps (c) Post mortem FRV image of
MOR18-2 glomeruli. Via anatomical landmarks (red arrow) MOR18-2 location could be ascribed to the functional
images. (d) Extracted activation of the MOR18-2 glomerulus component (top) and a neighbouring component
(bottom) (e) IOS vs. SpH activation strength for all odours

To validate that in general the extracted IOS signals resemble the glomerular input activa-

tion, we performed high resolution 2-photon synapto-pHluorin (spH) imaging in mice expressing

both spH in all OSNs as well as GFP in MOR18-2 OSNs. To this end we first performed an

3D-anatomical scan of the resting spH fluorescence in which we manually outlined glomeru-

lar contours (Fig. 2a). We then performed functional spH imaging (Fig. 2b) and extracted

glomerular activation via rNMF (Fig. 2d). Since the GFP-fluorescence was masked by the spH-

fluorescence, we stained the olfactory bulb post mortem by Fast Red Violet (FRV). This way

we made MOR18-2 glomeruli visible (Fig. 2c) and could assign them via anatomical landmarks

(red arrows Fig. 2a/c) to the previously outlined glomerular contours.

The extracted spH activation of MOR18-2 glomeruli strongly affirmed the IOS derived ligand

rank (Spearman’s rank correlation 0.92, p < e-7; Fig. 2e). But in contrast to a rather continuous

increasing response strength in the IOS, the spH derived spectrum had a pronounced separation

of strong and weak activations. This might be both attributed to a steep non-linear gain of spH

fluorescence as well to a saturated IOS responses for strong activations. Nonetheless, justified

by the very high rank correlation of both spectra, we performed subsequent analysis on obtained

IOS measurements due to their larger spatial extent and increased number of measured stimuli.

3.2. Physico-chemical receptive range

Having obtained the MRR of MOR18-2 we asked if this listing could be described by a

quantitative ligand-based model. That is we asked if response strength could be explained by

physico-chemical properties of a molecule. To this end we first obtained 1600 physico-chemical

descriptors via eDragon (Tetko et al., 2005). These descriptors are subdivided into 19 blocks,
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Figure 3: MOR18-2 MRR models (a) MOR18-2 activation arel in dependence of descriptor values and corre-
sponding regression models (blue lines): I. linear regression, II. isotonic regression and III. unimodal regression.
Each descriptor was chosen to represent the best possible regression model. (b) Observed activations arel vs.
model values ârel of the regression models depicted in (a). Resulting fractions of explained variance r2 is given
in the lower right corners. (c) Observed activations arel vs. bootstrap model predictions âbst

rel of the same models.
Resulting predictive power q2 is given in the lower right corners. (d) 2D representation of odour placement in
eDR-EVA5 descriptor space via Multi Dimensional Scaling (MDS). Circle edge color depicts MOR18-2 activation
of odour. (e) Observed activations arel vs. model values ârel of a SVR regression models obtained in this descriptor
space. (f) Observed activations arel vs. bootstrap model predictions âbst

rel of the same model. (g) Predictive power
q2 of SVR models in different descriptor spaces. (h) Same as (g) with combined eDragon and EVA descriptor
spaces of different resolutions.

ranging from simple scalar representations of molecules, like molecular weight or functional

group counts, up to representations of the three dimensional arrangement of properties (e.g.

mass, charge) within the molecule. Additional, based on the eigenvalues of molecular vibra-

tions, we calculated the EVA descriptors for different resolutions (see methods and (Turner and

Willett, 2000; Gabler et al., 2013)).

First we tested if a single descriptor is sufficient to explain the receptor activation. That is

for each descriptor we evaluated different functional relationships between its value and receptor

activation:

I. Linear increase of activation with descriptor value (linear regression)
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II. Arbitrary (non-parametric) monotonic increase of activation (isotonic regression), e.g.

saturated and/or thresholded increase of activation with descriptor value

III. Peak activation at intermediate descriptor value with monotonic decreasing activation

both to lower and higher descriptor values (unimodal regression). This could for example

be a scenario for chain length dependency.

For each of the three model classes Figure 3a depicts the best model over all descriptors with

respect to the coefficient of determination R2, i.e. the fraction of explained variance. With in-

creasing model complexity more and more of the response variance became explained (Fig. 3b).

However, none of the models could correctly capture the response to all odours. This short-

coming was especially apparent when evaluating the predictive power of the models (Fig. 3c).

To this end we fitted the models to bootstrap sub-samples of the data. We then compared

predictions to observed values for odours excluded in the sub-sample and calculated the coeffi-

cient of determination q2 for those odours (see methods). The predictions both included odours

with erroneous assigned activation and missed activation. This was reflected by a coefficient of

determination q2 below 0.2.

Since we could not identify a single descriptor which was sufficient to explain and predict

receptor activation we next evaluated multivariate Support Vector Regression (SVR) models.

Loosely speaking these models estimate the odour activation as a weighted sum of the activation

of nearby odours (as measured in the underlying descriptor set). That is SVR models become

predictive if similar activated odours are proximal along some axis of the multidimensional

space. For such a multidimensional space, namely the combined set of all eDragon and the

EVA5 descriptors, Figure 3d illustrates the odour distances in a 2D approximation obtained by

Multidimensional Scaling (MDS). The projection clearly showed a clustering of the activating

odours. Hence the SVR model obtained in this space did not only describe the odour response

(Fig. 3e) but also generalizes to odours, not employed in model construction (Fig. 3f).

We evaluated SVR models for several different descriptor sets regarding their predictive

power. These sets included the full set of eDragon descriptors (eDRAGON), the logical subsets

within them (for abbreviations see supplemental table T1), two subsets previously proposed to

describe odour distances (HADDAD (Haddad et al., 2008), SAITO (Saito et al., 2009)) and

the EVA descriptor at resolutions of 1, 5, 10 and 50cm−1 (EVAx). Comparing the different

sets with regard to their predictive power we found that the full set of eDragon descriptors

yielded the best performance (q2 = 0.277) followed by the 2DAUTO (2D-autocorrelations) and

the odour optimized HADDAD subsets (Fig. 3g). The EVA descriptors performed worse than

the aforementioned subsets, but still better than most of the other eDragon subsets. This made

us wonder whether extending the full eDragon descriptor set by EVA descriptors (eDR-EVAx)

would enhance performance. And indeed, for mesoscale resolutions, the combination of both

sets improved performance about 30% (Fig. 3h) yielding models of MOR18-2 activation with

a predictive power q2 ≈ 0.4 (Fig. 3f). Thus, despite being very high dimensional (2400 de-

scriptors), proximity in the combined eDragon-EVA descriptor space reflected to a good extent

similarity in MOR18-2 activation.
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3.3. Tunotopic embedding

Apart form the determination of the individual MRR of MOR18-2, the simultaneous record-

ing of all glomeruli in the dOB also allowed us to to investigate its incorporation in the glomeru-

lar ensemble. In general the main class of MOR18-2 ligands, namely small esters, did not only

activate glomeruli in a confined sub-region but did activate several glomeruli across the en-

tire dOB (Fig. 1b and supplemental figure S1). That is the spatial location of the MOR18-2

glomeruli was not designated by any odours which were solely activating this area. Therefore

we investigated their tunotopic embedding in more detail.

To this end we compiled a set of 48 odours representing the previously determined MRR

of MOR18-2, that is all its ligands and some of their structural variations. We measured the

dOB IOS response thereof in four GFP and three SpH mice and extracted glomerular response

spectra (see methods). In the SpH mice we validated the glomerular segmentation of the IOS

via anatomical glomeruli outlines obtained in a 3D-scan of the resting SpH fluorescence (see

Soelter et al. (2014)). The GFP-mice served for identifying MOR18-2 glomeruli.

To investigate tunotopic relations between the extracted glomeruli, we calculated pairwise

response similarity as the correlation distance dr of the odour response spectra for all extracted

glomeruli in all seven animals. Based on this distance we then obtained a hierarchical clustering

of glomeruli (Fig. 4a). According to the chosen similarity threshold one can obtain clusters of

different extent.

Glomeruli of low threshold cluster appeared at stereotypic positions across animals (Fig. 4b

and supplemental figure S2). Furthermore in all animals with a GFP-marking of MOR18-2

glomeruli, exactly those fell into such a low-threshold cluster (red cluster in Fig. 4). Therefore

it seems likely that low threshold cluster represent to a great extend glomeruli of identical ORs

across animals. However, in most cases the correspondence of low threshold cluster to a distinct

type of glomeruli was less pronounced then for MOR18-2 glomeruli. In some cases (e.g. green

cluster in Fig. 4) low threshold cluster spanned only a subset of the animals, that is not in all

animals corresponding glomeruli could be extracted. In other cases low threshold cluster were

not clearly separable from the remaining glomeruli (e.g. blue cluster in Fig. 4) as the observed

response spectra (Fig. 4c) were too similar (Fig. 4d&e) to be unambiguously assigned to a single

type of glomeruli. Nonetheless all in all low threshold cluster always reflected stereotypic local

response areas of the dOB.

We next investigated the tuning similarity of those local response areas to MOR18-2. To this

end we determined spectra correlations rMOR18-2 = r(sMOR18-2, si) between prototype spectra of

all these cluster and the cluster associated with MOR18-2. Figure 5a depicts all cluster which

exhibited a response correlation rMOR18-2 > 0.2 to MOR18-2. Four of those, together with the

MOR18-2 cluster formed a meta-cluster of mutual similar response spectra (blue-violet clusters

in Fig. 5a and green cluster in Fig. 5d) mainly due to their shared activation by propionates

(Fig. 5c). Spatially they were located in a patchy domain around the MOR18-2 glomeruli

(Fig. 5b&e).

Besides this meta-cluster of mutually similar response spectra, MOR18-2 was also correlated
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Figure 4: Functional identification (a) Hierarchical clustering of correlation distance dr between glomeruli of
7 mice. Length of branches depicts the average correlation distance d̂r between clades. Properties of coloured
clusters are shown in the following panels. (b) Spatial location of cluster members in the OBs of all seven mice.
Colours according to cluster colouring in (a). Locations extracted from IOS imaging are overlayed on green
images (first 3 animals) respectively GFP images (last 4 animals) indicating position of GFP labelled MOR18-2
glomerulus. (c) Odour spectra of all glomeruli in each clusters. (d) Histogram of pairwise correlation r of all
cluster members (coloured) and their correlation to remaining glomeruli (gray). (e) Histogram of correlation
rcentre of all cluster members (coloured) and non cluster members (gray) to cluster prototype.
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Figure 5: Tunotopic clustering of response spectra (a) Hierarchical clustering of correlation distance dr
between glomeruli of 7 mice. For each glomerulus leaf node its correlation rMOR18-2 with the MOR18-2 cluster
is depicted at the bottom. Clusters with a correlation > 0.2 to the MOR18-2 cluster (pink) are coloured. (b)
Spatial location of cluster members in the OBs of all seven mice. Colours according (a). (c) Median odour spectra
of all clusters. (d) Same hierarchical clustering as in (a) with colouring of high level clusters. (e) Spatial location
of cluster members in the OBs of all seven mice. Colours according (d).

to other glomerular cluster located lateral-posterior to MOR18-2 glomeruli. However each

of those cluster was most similar to glomeruli uncorrelated to MOR18-2. That is, although

glomeruli tuned similar to MOR18-2 were located at distant locations, only those in proximity

to MOR18-2 formed a meta-cluster of mutual similarity.

Next, when looking at the composition of the top-level (high threshold) clusters we observed

a pronounced bipartition. Glomeruli in the top-level cluster including the MOR18-2 meta

cluster (blue clusters in Fig. 5d) were primarily located in the lateral-posterior part of the dOB

(Fig. 5e). In contrast, glomeruli of the second top-level cluster (red cluster in Fig. 5d) were

primarily located in the medial-anterior part.

In summary we found that glomeruli were arranged at stereotypical positions regarding

their response similarity to MOR18-2. A group of mutually similar glomeruli were arranged
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Figure 6: Chemotopic clustering of response spectra (a) Hierarchical clustering of cosine distance dcos
between glomeruli of 7 mice. For each glomerulus leaf node k its angle cosxMOR18-2, xk with the MOR18-2
cluster is depicted at the bottom. Clusters with at least two cluster member at an angle < 36.9◦ to the MOR18-2
cluster (blue) are coloured. (b) Spatial location of cluster members in the OBs of all seven mice. Colours
according (a). (c) Same hierarchical clustering as in (a) with colouring of meta level clusters at close distance to
the MOR18-2 cluster. (d) Spatial location of cluster members in the OBs of all seven mice. Colours according
(c). (e) Same hierarchical clustering as in (a) with colouring of meta level clusters. (f) Spatial location of cluster
members in the OBs of all seven mice. Colours according (e).

in a confined but patchy domain around MOR18-2. And at the top level most glomeruli were

separated in a lateral-posterior and a medial-anterior domain of response similarity.

3.4. Chemotopic embedding

Our observation of a tunotopic embedding of MOR18-2 raised our curiosity if this is related

to any chemotopy. Investigating on this topic required both the definition of a chemical space

(i.e. chemical similarity) as well as positioning of glomeruli within this space. As chemical space

we choose the combined eDragon-EVA5 space since it proved best to characterize the MRR of

MOR18-2 (see section MOR18-2 Physico-chemical receptive range). Furthermore we positioned

the origin of the coordinate system at the mean descriptor value 〈x〉o of our odour set, the

location where a glomerulus with a homogeneous response spectrum would be located. Within

this space we placed glomeruli by their barycentre of activation xk =
∑

o(a
oxo)/

∑
o a

o − 〈x〉o.
We then obtained the relative positioning of the glomeruli to each other by calculating their

cosine distance dcos, which is a measure of the angle between the glomerular positions. That

is glomeruli were considered similar if their barycentres of activation were located in a similar

direction from origin.

Based on this pairwise distances we again obtained a hierarchical clustering (Fig. 6a). As

in the case of tunotopic clustering all MOR18-2 glomeruli were grouped together in a low

threshold cluster (violet cluster in Fig. 6a&b). And also we again observed that glomeruli most

similar to MOR18-2 were predominantly located in its vicinity or lateral-posterior to its location.
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However, in contrast to the tunotopic case, the MOR18-2 glomeruli were not embedded in a

small scale local chemotopic domain, but only in a meta-cluster of lateral-posterior located

glomeruli (violet-blueish cluster in Fig 6c&d). This meta-cluster was contrasted by an adjacent

meta-cluster of medial-anterior glomeruli (orange and yellow cluster in Fig 6c&d). But on the

topmost level of clustering more distant glomeruli were widely dispersed in both domains (grey

glomeruli in Fig 6c&d). In summary, the observed chemotopic structure was far less pronounced

than the tunotopic structure.

4. Discussion

In our study we profiled in detail the MRR of MOR18-2 glomeruli and their embedding

in the glomerular code. MOR18-2 glomeruli were mainly tuned to small esters and locally

embedded in a patchy domain of glomeruli sensitive to short chain propionates. Furthermore

we could determine a physico-chemical receptive range of MOR18-2 glomeruli within the mul-

tidimensional eDragon-EVA5 space via SVR models, but did only observe a weak chemotopic

representation of this space within the dorsal OB.

4.1. Molecular receptive range

We aimed to obtain the MRR of MOR18-2 as completely as possible but it is intractable

to screen all existent odours. On this account we did not only randomly tested odours but

generated search candidates based on our current information of ligands. Even so this lead to a

directed search, it is very likely that we did not discover all ligands. Eventually our introduced

predictive SVR model, as ascertained on bootstrap samples, suggests further possible ligands

(data not shown). Nonetheless to our knowledge this study makes MOR18-2 to one of the best

explored olfactory receptors (Peterlin et al., 2014).

Recently acetic and propionic acid have been reported as ligands of MOR18-2 receptors

expressed in the kidney (Pluznick et al., 2013) whereas our study rather identified the corre-

sponding esters as ligands. Although their study did not contain any of the ligands revealed

in our study, there could be systemic reasons for such a deviation. For once in our study

odour stimuli were presented in the gaseous instead of the liquid phase. Therefore the effective

concentration that reached the nose was much lower for acids compared to esters due to their

significantly lower vapour pressure. And second, we did not directly observe the receptor re-

sponse but the full system response including chemical conversion in the mucus. Indeed it has

been shown that metabolic enzymes of the mucus convert ester into the corresponding alcohols

and acids (Nagashima and Touhara, 2010).

4.2. Physico-chemical receptive range

In this study we did not only determine the MRR of MOR18-2 but also translated it via SVR

models to a physico-chemical receptive range in the eDragon-EVA5 space. Despite bootstrap

validation of the model and the success of a very similar approach for Drosophila ORs (Gabler
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et al., 2013), an ultimate confirmation by successful biological screening of further model pre-

dictions is still missing. Nonetheless our careful model validation ascertains that our obtained

physico-chemical range is at least a rough estimate.

We obtained the best results in describing the physico-chemical receptive range by combin-

ing features based on molecular vibrations (EVA) with features containing descriptions of the

molecular shape (eDragon). Note that this provides neither evidence for nor against the heavily

disputed theory of vibrational olfaction (Hettinger, 2011). In our model molecular vibrations

are rather considered as a fingerprint of the molecular graph than a mechanistic interpretation

of molecule-receptor interaction.

4.3. Tunotopic domains

Our results provided evidence for tunotopic domains at different scales: two global domains,

a lateral-posterior and a medial-anterior one, and a local domain around the MOR18-2 glomeruli.

Ma et al. (2012) obtained very similar results with a likewise global partitioning and some local

domains, yet different to the one obtained by us. It seems that the global partitioning is a

rather salient finding across different studies whereas the applied odour set determines which

local clusters crystallize. The position of the tunotopic medial-anterior and lateral-posterior top-

level domains resembles the domain separation of class 1 (medial-anterior) and class 2 receptors

(lateral-posterior) (Matsumoto et al., 2010). It is also in line with the MOR18-2 glomeruli being

located close to the border of class 1 and class 2 domains (Bozza et al., 2009). Interestingly,

despite being a class 1 receptor, MOR18-2 is tunotopically embedded in the lateral-posterior

domain which is presumably composed to a large extent of class 2 receptors. This could indicate

that, albeit its physiological separation (Bozza et al., 2009) the functional transition between

receptor class domains is rather continuous.

Mori and colleagues (Mori et al., 2006; Matsumoto et al., 2010) also observed a compartmen-

talization of the dOB into local response clusters. They attributed long chain ester responses

to cluster A (within class 1 receptor domain) and cluster B (within class 2 receptor domain)

but did not attribute any cluster to small esters. However their cluster assignments leave un-

designated space especially at the border of domain 1 and 2 where we observed the propionate

responding cluster of MOR18-2.

Our findings are well in line with the hypothesis of a tunotopic layout of the olfactory bulb.

This was disputed by Soucy et al. (2009) who observed ‘that nearby glomeruli were almost as

diverse in their odor sensitivity as distant ones’. In their study they evaluated the dependence

of glomerular spectrum similarity with regard to their spatial distance and did not find strong

effects. One reason might be that a diverse odour set is not likely to contain adequate odours

to accent local response cluster. For example in an odour set containing only acetates but not

the propionates (which differ only by one additional Carbon atom) the local response cluster of

MOR18-2 would not emerge.
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4.4. Chemotopic domains

Besides tunotopic domains we did also observe some locally confined cluster of glomeruli

with chemical similar response spectra. But this chemotopic organization was less pronounced

than the tunotopic organization. This might have several reasons. First there is no canonical

definition of chemical similarity. Our definition by the eDragon-EVA5 descriptor space might

be a suitable but still imprecise definition. Second, our odour set was constructed to contain

MOR18-2 ligands but not the full ligand spectrum of other receptors. In case of the MOR18-2

response spectrum correlations, the tunotopic distance is only influenced by the number but

not the identity of the un-measured non-mutual ligands. In contrast, the chemical distance is

more strongly influenced by the identity of the of the un-captured non-mutual ligands and each

un-measured ligand would cause a directional shift of the barycenter.

To conclude, we investigated the olfactory bulb’s topographic layout with regard to an

extensively characterized MRR of a single glomerulus. This provided further evidence for a

functional topographic layout according to tuning similarity of glomeruli. Nonetheless also this

approach still suffered from the incomplete representation of all but one MRR. Therefore it once

more emphasis the demand of a full characterization of olfactory MRRs.
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Supplemental Material

Supplemental Figure S1

Methyl acetate Ethyl acetate Propyl acetate Allyl acetate

Isobutyl propionate Methyl propionate Ethyl propionate Propyl propionate Allyl propionate

Ethyl 2-methylbutyrate Methyl tiglate Methyl butyrate Ethyl valerate Ethyl hexanoate

Methyl acetate Ethyl acetate Propyl acetate Allyl acetate

Isobutyl propionate Methyl propionate Ethyl propionate Propyl propionate Allyl propionate

Ethyl 2-methylbutyrate Methyl tiglate Methyl butyrate Ethyl valerate Ethyl hexanoate

Exemplary Odormaps Odor response in the dOB for a selection of small ester in two different animals.
Position of MOR18-2 is marked by white contours.
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Supplemental Figure S2
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Response Cluster (a) Hierarchical clustering of correlation distance dr between glomeruli of 7 mice. Length

of branches depicts the average correlation distance d̂r between clades. Properties of coloured clusters are
shown in the following panels. (b) Spatial location of cluster members in the OBs of all seven mice. Colours
according to cluster colouring in (a) Locations extracted from IOS imaging are overlayed on green images
(first 3 animals) respectively GFP images (last 4 animals) (c) Median odour spectra of all glomeruli in each
clusters.
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Supplemental Table T1

List of all measured odors (CAS and name) and median response strength of MOR18-2 glomeruli

CAS Name response

591-87-7 Allyl acetate 1.14
141-78-6 Ethyl acetate 1.10
554-12-1 Methyl propionate 1.00
109-60-4 Propyl acetate 0.98
79-20-9 Methyl acetate 0.97
105-37-3 Ethyl propionate 0.90
75-07-0 Acetaldehyde 0.75
2408-20-0 Allyl propionate 0.66
110-19-0 Isobutyl acetate 0.58
106-36-5 Propyl propionate 0.55
123-86-4 Butyl acetate 0.50
64-19-7 Acetic acid 0.48
5878-19-3 Methoxyacetone 0.46
123-99-9 Azelaic acid 0.44
16491-36-4 cis-3-Hexenyl butyrate 0.40
109-94-4 Ethyl formate 0.37
108-62-3 Metaldehyde 0.37
123-63-7 Paraldehyde 0.31
78-98-8 Pyruvaldehyde 0.30
140-88-5 Ethyl acrylate 0.29
19089-92-0 Hexyl trans-2-butenoate 0.28
7493-71-2 Allyl tiglate 0.27
94133-92-3 1-Ethylhexyl tiglate 0.27
2349-13-5 Heptyl isobutyrate 0.24
540-42-1 Isobutyl propionate 0.23
108-21-4 Isopropyl acetate 0.23
4437-51-8 3,4-Hexanedione 0.23
41519-18-0 Isoamyl tiglate 0.22
7778-87-2 Propyl heptanoate 0.22
123-92-2 Isoamyl acetate 0.22
109-21-7 Butyl butyrate 0.21
2051-78-7 Allyl butyrate 0.20
105-66-8 Propyl butyrate 0.19
3848-24-6 2,3-Hexanedione 0.17
2639-63-6 Hexyl butyrate 0.17
61692-84-0 Isobutyltiglate 0.17
592-84-7 Butyl formate 0.16
79-09-4 Propionic acid 0.16
540-18-1 Amyl butyrate 0.16
96-04-8 2,3-Heptanedione 0.16
109-79-5 1-Butanethiol 0.15
52089-55-1 Ethyl 2-hydroxycaproate 0.15
71-23-8 Propanol 0.15
503-74-2 Isovaleric acid 0.14
637-78-5 Isopropyl propionate 0.14
19788-49-9 Ethyl thiolactate 0.14
6342-56-9 Pyruvic aldehyde diMe acetal 0.13
107-31-3 Methyl formate 0.13
1733-25-1 Isopropyl tiglate 0.13
623-37-0 3-Hexanol 0.13
431-03-8 2,3-Butanedione 0.12
64-17-5 Ethanol 0.12
5910-87-2 2,4-Nonadienal 0.12
624-24-8 Methyl valerate 0.11
591-12-8 alpha-Angelicalactone 0.11
140-39-6 p-Tolyl acetate 0.10
638-11-9 Isopropyl butyrate 0.10
107-92-6 Butyric acid 0.09
104-21-2 Anisyl acetate 0.09
600-14-6 2,3-Pentanedione 0.09

106-27-4 Isoamyl butyrate 0.09
79-77-6 beta-Ionone 0.09
35154-45-1 cis-3-Hexenyl 3-Mebutanoate 0.09
591-80-0 4-Pentenoic acid 0.08
623-17-6 Furfuryl acetate 0.08
21835-01-8 Ethyl cyclopentenolone 0.08
591-68-4 Butyl valerate 0.08
105-58-8 Diethyl carbonate 0.08
112-31-2 Decanal 0.08
577-16-2 2-Methylacetophenone 0.08
539-82-2 Ethyl valerate 0.08
3268-49-3 3-(Methio)propionaldehyde 0.08
1334-82-3 Amyl 2-furoate 0.08
2497-18-9 2-Hexenyl acetate 0.08
97-53-0 Eugenol 0.08
97-97-2 Chloroacetaldehyde diMe acetal 0.07
623-19-8 Furfuryl propionate 0.07
123-75-1 Pyrrolidine 0.07
4455-13-4 Ethyl (methylthio)acetate 0.07
116-53-0 2-Methylbutyric acid 0.07
646-07-1 4-Methylvaleric acid 0.07
96-48-0 gamma-Butyrolactone 0.07
1759-28-0 4-Methyl-5-vinylthiazole 0.07
1122-62-9 2-Acetylpyridine 0.06
56-86-0 L-Glutamic acid 0.06
2173-56-0 Pentyl valerate 0.05
556-82-1 3-Methyl-2-buten-1-ol 0.05
142-62-1 Hexanoic acid 0.05
112-14-1 Octyl acetate 0.05
589-82-2 3-Heptanol 0.05
7764-50-3 d-Dihydrocarvone 0.05
547-63-7 Methyl isobutyrate 0.05
25680-58-4 2-Ethyl-3-MeOpyrazine 0.05
97-64-3 Ethyl lactate 0.04
10094-34-5 Dimethylphenethyl butyrate 0.04
3391-87-5 (+)-Menthone 0.04
106-70-7 Methyl hexanoate 0.04
7452-79-1 Ethyl 2-Mebutyrate 0.04
108-29-2 gamma-Valerolactone 0.04
106-23-0 Citronellal 0.03
111-11-5 Methyl octanoate 0.03
7785-26-4 (-)-alpha-Pinene 0.03
103-58-2 3-Phenylpropyl isobutyrate 0.03
106-24-1 Geraniol 0.03
5405-41-4 Ethyl 3-hydroxybutyrate 0.03
623-42-7 Methyl butyrate 0.03
111-88-6 1-Octanethiol 0.03
687-47-8 (-)-Ethyl L-Lactate 0.03
628-63-7 Pentyl acetate 0.03
2705-87-5 Allyl cyclohexanepropionate 0.03
1188-02-9 2-Methylheptanoic acid 0.03
5454-19-3 Decyl propionate 0.03
7440-37-1 Argon (Control) 0.03
91-22-5 Quinoline 0.03
495-40-9 n-Butyrophenone 0.03
64-04-0 2-Phenethylamine 0.03
1797-74-6 Allyl phenylacetate 0.02
95-92-1 Diethyl oxalate 0.02
695-06-7 gamma-Hexalactone 0.02
5146-66-7 3,7-DiMe-2,6-octadienenitrile 0.02
542-55-2 Isobutyl formate 0.02
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123-11-5 p-Anisaldehyde 0.02
98-01-1 2-Furaldehyde 0.02
541-85-5 5-Methyl-3-heptanone 0.02
141-05-9 Diethyl maleate 0.02
104-67-6 gamma-Undecanolactone 0.02
103-82-2 Phenylacetic acid 0.01
10031-92-2 Ethyl 2-nonynoate 0.01
79-31-2 Isobutyric acid 0.01
89-79-2 (-)-Isopulegol 0.01
119-36-8 Methyl salicylate 0.01
105-90-8 Geranyl propionate 0.01
106-65-0 Dimethyl succinate 0.01
106-73-0 Methyl heptanoate 0.01
123-68-2 Allyl hexanoate 0.01
34047-39-7 4-Methylthio-2-butanone 0.01
6728-26-3 trans-2-Hexenal 0.00
288-47-1 Thiazole 0.00
540-07-8 Amyl hexanoate -0.00
60-12-8 2-PhenylEt alcohol -0.00
142-92-7 Hexyl acetate -0.00
35466-83-2 Allyl Me carbonate -0.00
106-32-1 Ethyl caprylate -0.00
589-38-8 3-Hexanone -0.00
764-48-7 Ethylene glycol vinyl ether -0.01
93-58-3 Methyl benzoate -0.01
5454-28-4 Butyl heptanoate -0.01
67883-79-8 cis-3-Hexenyl tiglate -0.01
40015-15-4 1,1-Dimethoxy-2-(Methio)ethane -0.01
13679-61-3 Methyl 2-thiofuroate -0.01
89-82-7 (R)-(+)-Pulegone -0.01
106-22-9 Citronellol -0.01
590-86-3 3-Methylbutyraldehyde -0.01
107-75-5 3,7-DiMe-7-hydroxyoctanal -0.02
105-68-0 Isoamyl propionate -0.02
7492-70-8 Butyl butyryllactate -0.02
98-86-2 Acetophenone -0.02
123-51-3 3-Methylbutanol -0.02
106-30-9 Ethyl heptanoate -0.02
629-14-1 Ethylene glycol diEt ether -0.02
138-86-3 Dipentene -0.02
78-70-6 Linalool -0.02
93-89-0 Ethyl benzoate -0.03
122-70-3 2-Phenylethyl propionate -0.03
15707-24-1 2,3-Diethylpyrazine -0.03
105-87-3 Geranyl acetate -0.03
105-54-4 Ethyl butyrate -0.03
6622-76-0 Methyl tiglate -0.03
15707-23-0 2-Ethyl-3-methylpyrazine -0.03
7540-53-6 Citronellyl valerate -0.04
300-57-2 Allyl benzene -0.04
137-00-8 4-Methyl-5-thiazoleethanol -0.04
623-70-1 Ethyl crotonate -0.04
53448-07-0 trans-2-Undecenal -0.04
67-56-1 Methanol -0.05
624-48-6 Dimethyl maleate -0.05
108-98-5 Thiophenol -0.05
123-66-0 Ethyl hexanoate -0.05
1009-14-9 Valerophenone -0.05
123-32-0 2,5-Dimethylpyrazine -0.05
589-98-0 3-Octanol -0.05
97-99-4 Tetrahydrofurfuryl alcohol -0.05
470-67-7 Cineole -0.05
100-52-7 Benzaldehyde -0.06
107-87-9 2-Pentanone -0.06
1128-08-1 Dihydrojasmone -0.06
78-93-3 2-Butanone -0.07
925-78-0 3-Nonanone -0.08

543-49-7 2-Heptanol -0.09
2396-83-0 Ethyl 3-hexenoate -0.09
51729-83-0 Methyl isopropyl carbonate -0.09
562-74-3 Terpinen-4-ol -0.09
6976-93-8 2-Methoxyethyl methacrylate -0.10
591-78-6 2-Hexanone -0.10
590-01-2 Butyl propionate -0.11
629-19-6 Propyl disulfide -0.11
108-48-5 2,6-Lutidine -0.11
20487-40-5 tert-Butyl propionate -0.11
112-30-1 1-Decanol -0.11
110-93-0 6-Methyl-5-hepten-2-one -0.13
5837-78-5 Ethyl tiglate -0.13
110-62-3 Valeraldehyde -0.13
623-36-9 2-Methyl-2-pentenal -0.13
100-66-3 Anisole -0.13
111-13-7 2-Octanone -0.14
110-43-0 2-Heptanone -0.15
124-13-0 Octanal -0.15
25152-84-5 trans, trans-2,4-Decadienal -0.15
68480-28-4 3-Methylbut-2-enyl formate -0.17
19700-21-1 Geosmin -0.20
111-71-7 Heptanal -0.28
121-45-9 Trimethyl phosphite -0.32
66-25-1 Hexanal -0.33
629-41-4 1,8-Octanediol -0.45

Supplemental Table T2

Abbreviations of Descriptor Blocks as used in the
manuscript

Abbreviation Descriptors

FGROUP FUNCTIONAL GROUP COUNTS
2DAUTO TWOD AUTOCORRELATIONS
3DMORSE THREEDMORSE
AFRAG ATOMCENTRED FRAGMENTS
BCUT BURDEN EIGENVALUES DESCRIPTORS
CONST CONSTITUTIONAL
CIND CONNECTIVITY INDICES
EAIND EDGE ADJACENCY INDICES
EVIND EIGENVALUE INDICES
GEO GEOMETRICAL
GETAWAY GETAWAY
MOLPROP MOLECULAR PROPERTIES
RAND RANDIC MOLECULAR PROFILES
RDF RDF
TOPO TOPOLOGICAL
WHIM WHIM
WPATH WALK PATH COUNTS

78







Decoding Odor Attraction and Intensity in the Drosophila brain
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Abstract

To internally reflect the sensory environment, animals create neural maps encoding the external

stimulus space. From that primary neural code relevant information has to be extracted for

accurate navigation. Feature extraction and integration of stimulus modalities have mainly been

studied in the visual system, while they remain unknown in the olfactory system. In this study,

we analyzed if and how different odor features as hedonic valence and intensity are functionally

integrated in the lateral horn (LH), a brain center that is assumed to be involved in innate

olfactory behavior. We characterized an olfactory processing pathway, comprised of inhibitory

projection neurons (iPNs), that target the LH exclusively at morphological, functional and

behavioral levels. We demonstrate that iPNs are subdivided into two morphological groups

that extract information from distinct glomerular subsets in the antennal lobe and integrate

this into non-overlapping regions in the LH. Selective silencing of iPNs via RNAi severely

diminished flies’ attraction behavior and odor intensity perception. Functional imaging of the

LH and single neuron tracing via photoactivated GFP revealed spatially segregated integration

of both features into two non-overlapping LH response domains. Moreover, using two-photon

laser-mediated transection we identified a third LH domain comprising third-order neurons

that are selectively tuned to repellent odors. We provide evidence for a feature-based, spatially

segregated activity map in the LH and elucidate its role as a center for integrating behaviorally

relevant olfactory information.

1. Introduction

To navigate the environment in a way that optimizes their survival and reproduction, animals

have evolved sensory systems. These have three essential tasks: First, the external world has

to be translated into an internal representation in the form of an accurate neural map. Second,

the neural map has to be readable and interpretable, i.e., the generated neural code must

allow common attributes to be extracted across stimuli to enable the animal to make the best

decisions. Third, the animal has to be able to adapt to environmental changes and to form a

sensory memory of new stimuli. Many studies have been dedicated to unraveling the primary

∗To whom correspondence should be addressed:
Email: ssachse@ice.mpg.de
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transformation from a stimulus into an initial neural representation within various sensory

systems [1-3] and to elucidating neuronal plasticity and sensory memory formation in higher-

level processing centers [4,5]. In contrast, the ability to extract features and integrate stimulus

modalities have so far mainly been studied in the visual system [6-8]; how these crucial functions

are accomplished within the olfactory system remains unknown.

The olfactory system of the vinegar fly Drosophila melanogaster provides an excellent model

system for deciphering olfactory processing mechanisms, since it displays remarkable similarities

to the mammalian system but is less complex and highly genetically tractable. Like other

sensory systems, the olfactory system employs a spatio-temporal map to translate the variables

in chemosensory space into neuronal activity patterns in the brain. This map emerges when

the olfactory sensory neurons (OSNs) with the same chemosensory receptors converge into

one exclusive glomerulus in the antennal lobe (AL) which represents the equivalent to the

mammalian olfactory bulb [2,9-11]. Glomeruli, the functional and morphological units of the AL,

are microcircuits comprising OSNs, multiglomerular local interneurons (LNs) and uniglomerular

output neurons, so-called excitatory projection neurons (ePNs) [2,12] that convey the olfactory

information to higher brain centers, as the mushroom body calyx (MBc) and the lateral horn

(LH) [13]. The stringent spatial arrangement of OSNs and ePNs in the AL generates a spatial

map containing characteristic combinatorial glomerular activity patterns for all odorants [14-

17]. The MBc is involved in olfactory memory formation [4] and enables a contextualization of

the odor space [18]. By exclusion, the LH is believed to be involved in innate olfactory behavior

[19,20]. Excitatory PNs retain the sensory information encoded in the AL and form glomerulus-

dependent, stereotypic axonal terminal fields in the LH [21-23]. Compartmentalization in the

LH has been observed in form of a spatial segregation of ePNs innervating specific glomerular

subgroups [23], fruit and pheromone odor information processing ePNs [20] as well as ammonia

and amine versus carbon dioxide coding ePNs [24].

Like many other sensory networks, the olfactory circuit of the fly contains spatially distinct

pathways to the higher brain, namely the inner, middle and outer antennocerebral tract (iACT,

mACT and oACT) [25]. Notably, the mACT projects from the AL to the LH exclusively and

consists of inhibitory PNs (iPNs), which exhibit also uniglomerular but mainly multiglomeru-

lar AL innervations [20,26-29]. Together, the PN populations processes information on dual

olfactory pathways [29,30], as do processing mechanisms in other sensory modalities [8], and

most likely accomplish different olfactory behaviors. The mainly multiglomerular AL pattern

of iPNs suggests that these neurons extract characteristic stimulus features from the AL code

and re-integrate this information into the LH to mediate innate odorant-guided behavior. This

assumption is further supported by a recent study showing that LH neurons receive a biased

input from AL glomeruli [31], while the connectivity in the MBc is rather probabilistic [18,32].

However, it still remains open if and how different odor features as hedonic valence or intensity

are functionally integrated in the LH. In this study, we characterized and dissected the iPN

olfactory processing pathway at morphological, functional and behavioral levels. Our results

provide evidence for a feature-based, spatially segregated activity map in the LH and thus
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expand its role as a center for integrating behaviorally relevant olfactory information.

2. Results

2.1. iPNs receive cholinergic input and provide feed-forward inhibition to the lateral horn

In order to unravel the role of iPNs within the olfactory circuitry, we first analyzed their

morphological properties in comparison to ePNs. Notably, cell bodies of iPNs are exclusively

located in the ventral cell cluster which consists of 50 iPNs [27] that project via the mACT

to the LH, thereby bypassing the MBc [26] (Fig. 1A-B). In contrast, ePN somata are located

anterodorsally and laterally of the AL, and their axons project through the iACT or oACT to the

MBc and the LH [13,21,22,27]. We labeled iPNs and ePNs simultaneously in vivo using GH146-

GAL4 and MZ699-GAL4 that label the majority of ePNs (60%) and iPNs (86%), respectively

[27]. Double-labeling shows that both PN populations innervate overlapping regions in the AL

and the LH, while a small posterior-lateral LH area is targeted only by ePNs (Fig. 1A and

S1A). In GH146-positive (GH146+) PNs, immunolabeling reveals GABA production in all 6

PNs of the ventral cell cluster [33], whereas ePNs of this line are exclusively cholinergic [34].

For the 45 MZ699-positive (MZ699+) iPNs [27], GAD1 (glutamic acid decarboxylase) in situ

hybridizations imply GABA synthesis [28], which we verified via immunostaining (Fig. S1B-B).

To determine the polarity of both PN populations, we expressed UAS-Dα7:mcherry to tag

postsynaptic input sites by labeling acetylcholine receptors (AChR) (Fig. 1C-C), and UAS-

Syt:HA to label presynaptic terminals (Fig. 1D-D). Both neuronal populations reveal dense

Dα7:mcherry fluorescence in the AL, indicating the AL as their cholinergic input site. In the

LH, the AChR-reporter was detected only in putative third-order LH neurons while it was absent

in both PN types. An analysis of the output site revealed a dense distribution of presynaptic

terminals for both PN populations in the LH. Interestingly, while ePNs possess output sites

in the AL, we did not observe any presynaptic terminals of iPNs indicating a lack of feedback

inhibition [28]. All observations were verified using the presynaptic reporter UAS-brp:mcherry

and the postsynaptic marker DenMark (data not shown).

2.2. Dendrites of iPNs innervate two-thirds of olfactory glomeruli

Since both PN subtypes receive OSN input, we analyzed the precise glomerular innervation

to unravel how selectively iPNs acquire information in the AL (Fig. 2A). To allow glomeru-

lus identification in vivo, we generated a transgenic fly carrying elav-n-synaptobrevin:DsRed

(END1-2) to express the presynaptically targeted fusion protein under the control of the neuron-

specific elav promotor (Fig. S2A). The reconstruction and identification of all AL glomeruli pro-

vided 53 glomeruli, of which 75% were innervated by MZ699+ iPNs (40) while 70% (37) were

covered by GH146+ ePNs (Fig. 2B, and S2B). 55% of all glomeruli were innervated by both

lines. Notably, dendritic MZ699 innervation density was not homogeneous. Certain glomeruli

were densely innervated (e.g. DM2, DM4 and DM5), while others did not reveal any postsy-

naptic sites (e.g. DL1, DL4 and DL5). Hence MZ699+ iPNs target specific glomerular subsets

selectively, which suggests that these neurons have a particular function within the olfactory

network.
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Figure 1: Anatomical characterization of excitatory and inhibitory projection neurons. (A) The
simultaneous labeling of inhibitory projections neurons (iPNs, labeled by MZ699-GAL4;G-CaMP) and excitatory
projection neurons (ePNs, labeled by GH146-QF;dtTomato) in vivo reveals distinct projections to the lateral horn
(LH). All iPNs bypass the mushroom body calyx (MBc) and innervate the LH exclusively. The MZ699 line labels
a few ventrolateral protocerebral neurons (vlPr neurons) projecting via the posterior lateral fascicle (plF) from the
ventrolateral protocerebrum (vlPr) to the LH. (B) Schematic of the PN connectivity relay from the antennal lobe
(AL) to higher brain centers (ePNs in magenta, iPNs in green, and vlPr neurons in orange). (C-C) Whole-mount
and vibratome immunostainings in flies carrying UAS-Dα7:mcherry as a marker for acetyl choline receptors,
G-CaMP as a neuronal marker and nc82 as a general neuropil marker in MZ699-GAL4 (top) or GH146-GAL4
(bottom), in the AL (C) and the LH (C). Asterisk denotes the DA1 glomerulus and arrowheads point to somata of
ventral PNs at the AL and the LC1 cluster of third order neurons in the LH, respectively. (D-D) Immunostainings
in flies carrying UAS-Syt:HA as a presynaptic marker in MZ699-GAL4 (top) or GH146-GAL4 (bottom), in the
AL (D) and the LH (D). Scale bar, 20µm.

2.3. Calcium signals in the lateral horn spatially segregate into distinct response domains

Probabilistic synaptic density maps of GH146+ PNs predicted a regionalized neuronal ac-

tivity in the LH [20]. Do iPNs functionally segregate in a comparable way? To address this
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Figure 2: Detailed glomerular innervations of excitatory and inhibitory projection neurons in the
AL. (A) Schematic of the olfactory circuit with the investigated area highlighted. (B) Above, complete glomerular
assignment of the AL neuropil (right AL), labeled with elav-n-synaptobrevin:DsRed (END1-2). Below, glomerular
innervations of both PN populations related to in vivo images in Fig. S2A. Depicted are the ventral level
(≈ −40µm), the medial level (≈ −20µm) and the dorsal view onto the AL. Color annotation: blue glomeruli are
not innervated by any of the used GAL4-lines; green glomeruli are innervated by MZ699+ iPNs and magenta by
GH146+ ePNs; white glomeruli are innervated by both enhancer trap lines. Scale bar, 20µm.
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question, we expressed the Ca2+-sensitive reporter G-CaMP3.0 [35,36] in iPNs using MZ699-

GAL4 and performed functional imaging in the LH (Fig. 3A-C). We initially tested three of the

most relevant odors for Drosophila at different concentrations: acetoin acetate, an attractive

byproduct of the yeast fermentation process, balsamic vinegar, an attractive natural odor mix-

ture, and benzaldehyde, a well-known fly repellant [37-39]. We observed that odor evoked Ca2+

responses separate in certain regions of the LH in an odor-specific and concentration-dependent

manner (Fig. 3C). Acetoin acetate and balsamic vinegar evoked Ca2+ activity in spatially

similar regions. At higher concentrations, an additional region was recruited. Benzaldehyde

elicited no response at very low concentrations, but induced clear activity at median and high

concentrations in a third region, which was completely separate from the regions activated by

the other two odors. Observed patterns were reproducible and stereotypic, as shown for the

stimulation with the odor 1-octen-3-ol (Fig. 3D).

Due to the lack of morphological landmarks in the LH, functional data were analyzed using

the pattern recognition algorithm Non-Negative Matrix Factorization (NNMF) [40], which au-

tomatically extracts spatial areas possessing a common distinct time-course, further termed LH

odor response domains (ORDs). The NNMF analysis extracted three clearly reproducible and

spatially robust ORDs (Fig. 3E). Notably, ORDs occupying common temporal kinetics exhib-

ited highly stereotypic spatial patterns. We termed the ORDs LH-PM (LH-posterior-medial),

LH-AM (LH-anterior-medial) and LH-AL (LH-anterior-lateral) according to their anatomical

positions. To validate our observations, we extended our stimulus array to 11 additional odor-

ants and applied each at three concentrations. Odorants were chosen according to chemical

classes, hedonic valence and biological value. Hence, the odor set included acids, lactones,

terpenes, aromatics, alcohols, esters, ketones and the natural blend, balsamic vinegar. Remark-

ably, analysis of the additional odorants revealed neuronal activity exclusively within the three

described ORDs (Fig. 3F). Furthermore, median NNMF-extracted Ca2+ response traces with

indicated statistical quartiles illustrate very low variability and highly reproducible LH signals.

The LH-PM area chiefly revealed constant odor-evoked responses across concentrations, while

the LH-AM and LH-AL were mainly activated at very high odor concentrations by distinct odor-

ants. The global responsiveness within separate ORDs in the LH substantiates our anatomical

finding of a broad cholinergic AL input to MZ699+ iPNs which converges into three spatially

Figure 3 (following page): Odors evoke specific and stereotypic calcium responses in the LH subdivided
into three distinct odor response domains. (A) Schematic of the olfactory circuit with the investigated
area highlighted. (B) RAW image of the LH (top picture) depicting the recorded area of figures (C-E) and
the false color image (bottom picture) during the solvent application. The ∆F/F scale bar applies for all false
color-coded pictures; the alpha-bar for the pixel participation xk of the indicated colors applies for (E-F). (C)
Representative LH Ca2+ responses (∆F/F %) of acetoin acetate, balsamic vinegar and benzaldehyde at three
concentrations. Numbers in the lower right corner indicate individual maxima. (D) Odor-evoked Ca2+ responses
(F/F %) are exemplary depicted for 1-octen-3ol at three concentrations in four animals. (E) NNMF-extracted
LH odor response domains (ORD) of four representative animals: three LH ORDs were fully reproducible after
being extracted from all measured animals. Domains classified as identical are similarly color-coded: the green
ORD is located in the posterior-medial region of the LH (LH-PM); blue, in the anterior-medial (LH-AM), and
red in the anterior-lateral LH area (LH-AL). The alpha-bar for green, blue and red shades is placed in (B). (F)
Left, schematic outlines of the LH with indicated ORDs. Right, median activity traces of all odors at three
concentrations are depicted for each colored ORD. Shadows represent lower and upper quartiles (n = 6 − 7).
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regionalized and stereotypic LH activity domains.

2.4. iPNs can be divided into two morphological classes

We next investigated if the spatially regionalized odor-evoked response patterns are reflected

in the axonal terminal fields of MZ699+ iPNs in the LH. To analyze these neurons at the single

neuron level, we performed neural tracing by employing a genetically encoded photoactivatable

GFP (PA-GFP) [41-43]. The photoconversion of all MZ699+ neurons leaving the AL confirmed

the homogeneous distribution of iPN neurites in the LH and the sparse innervation of the

posterior-lateral region as mentioned above (Fig. 4A). Next we illuminated PA-GFP in single

somata to selectively label individual MZ699+ iPNs from the soma up to the farthest axonal

terminals in the LH. Individual iPNs were reconstructed and transformed into a reference brain

using the END1-2 background to align neurons of different individuals. Interestingly, MZ699+

iPNs could be assigned to two morphological classes based on their innervation pattern in the

LH (Fig. 4B-C). As expected from the extracted ORDs, one iPN group diverged to the LH-PM

(n=7 in 21 neuronal recontructions), while a second group extended their axonal terminations

within the LH-AM (n=7 in 21 neuronal recontructions). Since the MZ699-GAL4 line labels also

neurons connecting the LH and the ventrolateral protocerebrum (vlPr) [26,29], we illuminated a

small fraction of the posterior lateral fascicle (plF) to target these putative third-order neurons

(Fig. 4A). The plF comprised axons of ventrolateral protocerebral neurons (vlPr neurons),

which bifurcated within the LH-AL (Fig. 4D). Combinations of all registered neuron types

within the assigned zones revealed that iPNs of the LH-AM and vlPr neurons of the LH-AL

region intermingle (Fig. 4E-F).

We did not observe any clear panglomerular innervations of individual MZ699+ iPNs that

spanned the entire AL. Instead, MZ699+ iPNs develop mainly oligoglomerular patterns inner-

vating on average 5 ± 4 glomeruli (mean±SD), which are not necessarily in close proximity.

After classifying all registered neurons according to their LH zones along with their glomerular

innervations, we noted a spatial subdivision of MZ699+ iPN dendritic fields in the AL (Ta-

ble S1). Whereas LH-PM iPNs extended dendrites mainly into glomeruli from the ventro- or

dorsomedial area of the AL (e.g. DM4, DM2, VM7, VM5d), iPNs targeting the LH-AM zone

innervated glomeruli ranging from the ventro- and dorsoanterior to the dorsocentral region (e.g.

DC3, VC1, VA6, VL1). We observed that a glomerulus is typically innervated by only LH-PM

iPNs or LH-AM iPNs. However, we also found a few cases where a glomerulus can be innervated

Figure 4 (following page): iPNs can be classified according to their projection pattern in three distinct
LH zones. (A) Complete population of MZ699+ iPNs labeled using PA-GFP (left image), the posterior-lateral
LH region is encircled, arrowhead indicates the final common projection point of iPN axons. Middle image:
photoactivation of all vlPr neurons of the MZ699-GAL4 line that project from the LH to the vlPr via the plF.
Right image: exemplary single iPN, labeled by photoconverting PA-GFP in a single soma (arrow). Scale bar,
20µm. (B) Framed images: neuronal reconstruction of all iPNs projecting to the LH-PM zone with outlined
olfactory neuropils. View from dorsal (left) and lateral (right). Right part represents two exemplary registered
individual iPNs. (C) Neuronal reconstruction of all iPNs projecting into the LH-AM zone, images are arranged
as in (B). (D) Neuronal reconstruction of vlPr neurons projecting through the plF to the LH-AL zone. (E)
Combination of all registered neurons. (F) Dual combinations of all registered neurons with their projections in
the LH.
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by both iPN types (e.g. glomeruli D and DC2). In addition we observed a few uniglomeru-

lar MZ699+ iPNs innervating glomeruli DA1 and VL1 (n=4 in 21 neuronal reconstructions),

confirming previous studies [27], which target the LH-AM region (Table S1). Moreover, we

identified three MZ699+ iPNs that did not innervate the AL and sent their axons to the LH

and/or the MBc.

2.5. Odor response domains contain the activity of distinct neuronal populations

To illustrate higher-order connectivity, we labeled the three major neuron types, i.e. MZ699+

iPNs, GH146+ ePNs and vlPr neurons, targeting the LH within the olfactory circuitry using

PA-GFP (Fig. 5A). Since our observed Ca2+ responses in the LH-AL region might reflect

activity from vlPr neurons rather than iPNs, we dissected the neuronal contributions within

each extracted ORD by conducting transection experiments using two-photon laser-mediated

microdissection (Fig. 5B). By transecting the mACT, we aimed at abolishing LH-responses

deriving from MZ699+ iPNs, while cutting the plF connection should eliminate potential odor-

evoked vlPr neuron activity. To achieve unambiguous and comparable results, functional imag-

ing was performed in both brain hemispheres simultaneously. Immediately after the intact brain

areas were imaged, the tracts were selectively transected on one brain side each (Fig. 5C) and

the imaging procedure was repeated. We applied a reduced odor set that elicited activity in

all ORDs and performed NNMF for pre- and post-lesion recordings. Transecting the mACT

significantly reduced responses in the LH-PM and LH-AM region, whereas LH-AL responses

were significantly abolished by plF-ablation (Fig. 5D). Notably, we observed that LH-AL re-

sponses to some odors were significantly increased after mACT transection as a consequence of

the suppression of iPN inhibition of vlPr neurons according to Liang et al. [29]. Hence, activity

in the LH-PM and LH-AM domain can be assigned to MZ699+ iPNs, while LH-AL activity is

mainly evoked by vlPr neurons (Fig. 5E).

Figure 5 (following page): Distinct odor response domains in the LH constitute neuronal activity
of iPNs and vlPr neurons. (A) Representation of all ePNs (magenta) and iPNs (green) labeled by GH146-
GAL4 and MZ699-GAL4 using PA-GFP, respectively. Photoactivation of vlPr neurons (orange, MZ699-GAL4)
connecting the LH and the vlPr via the plF. The overlay image depicts a pseudo-merge image of the different
GAL4 driver lines. (B) Schematic of the olfactory circuit with integrated layout of the transection experiment.
After simultaneous Ca2+ imaging of bilateral LHs, the ipsilateral plF and contralateral mACT was transected
(red zigzag line) with an infrared laser (dashed red arrow). (C) Projection images of a 7µm stack of the LH
area prior and post transection. Left images, mACT transected; right image, plF transected. The ablated region
is indicated by the dashed red arrow. Scale bar, 20µm. (D) Median time traces displaying percental change
of ∆F/F values for indicated ORDs prior to post transection of the mACT (green, left) and the plF (orange,
right) for different odorants. Significant changes of odor-evoked Ca2+ signals due to transection are shown in the
column SIG difference. Differences were tested with a two-tailed paired Students t-test (p < 0.05). Color codes
are indicated by the corresponding scale bar below, n = 4− 5. Transecting the mACT eliminates Ca2+ signals in
the LH-PM and LH-AM domain, while lesioning the plF significantly abolishes LH-AL responses. Notably, the
LH-AL domain is significantly stronger activated after mACT transection following application of 1-octen-3-ol
and γ-butyrolactone. (E) Summarized cartoon of the neuron populations contributing to ORD activity prior and
post transection of axons of iPNs or vlPr neurons.
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Figure 6: iPN GABA release in the LH mediates odor attraction behavior. (A) Experimental layout:
iPN GABA production was selectively silenced via GADi expression in MZ699+ iPNs; ePN and vlPr neuron
activity remained unaffected. (B) Immunostaining against GABA and GFP within AL somata (left) and LH
neurites (right) of iPNs with intact (top) and silenced GABA production (bottom). GADi flies show GABA
signals in somata of iPNs labeled by GH146 only (arrowhead). The arrow points to an exemplary GABA-
positive bouton in the LH. Scale bar, 20µm. (C) Averaged response indices (RIs) for wild-type flies (dark blue),
parental controls (light blue) and experimental animals (magenta) for 9 odorants at two concentrations. Empty
boxes display no response (Wilcoxon signed-rank test). Deviation of the RI against controls was tested with
Dunn’s Multiple Comparison (solid line) or Dunn’s selected Pairs (dashed line). Error bars represent SEM. (D)
RI differences between GADi flies and averaged parental controls. RI differences are negative for all but one odor
indicating that GADi expression shifts odor-guided behavior towards aversion. Error bars indicate SEM.

92



2.6. iPN activity in the lateral horn mediates flies attraction to odors

We next addressed the behavioral relevance of MZ699+ iPN activity in the LH for in-

nate odor-guided behavior. To precisely target iPN function, we expressed an RNAi construct

against glutamic acid decarboxylase 1 (GADi) to selectively knock-down the GABA synthesis in

MZ699+ iPNs (Fig. 6A). We confirmed the reduction in GABA production via immunostaining

(Fig. 6B). Since vlPr neurons are not GABAergic, they were not affected by the RNAi expres-

sion (data not shown) [29,44]. Using wild-type flies and parental controls, we conducted T-maze

assays [45,46] with 9 of the odorants applied in functional imaging experiments at medium and

high concentrations. Notably, flies with silenced MZ699+ iPN GABA production revealed a

neutral or aversive behavioral response to attractive odors, while repellent odors evoked an even

stronger aversion (Fig. 6C). To compare the T-maze data more accurately, we calculated the

average change of behavioral response indices (RIs) between GADi flies and parental controls

(Fig. 6D). Indeed, all responses changed in a negative direction, indicating MZ699+ iPNs play

a crucial role in mediating attraction behavior. The sole exception involved high concentrations

of the most repulsive odor, acetophenone, since this odor had already induced maximum aver-

sion. For some odors, the control flies revealed a different preference for the two concentrations

tested, manifested in distinct behavioral responses (e.g. 1-octen-3ol, Fig. 6C). The interrup-

tion of MZ699+ iPN GABA-synthesis led to similar responses to both tested concentrations,

suggesting that perception of odor intensity was impeded. Overall, these experiments reveal a

crucial function of MZ699+ iPNs in mediating attraction behavior and intensity perception by

releasing GABA in the LH.

2.7. iPNs integrate positive hedonic valence and odor intensity into separate domains

The behavioral effect of the iPN knock-down suggests that MZ699+ iPNs encode positive

hedonic valences as well as odor intensity. To correlate the complete ORD pattern array with

innate behavioral preferences, we assigned behavioral RIs for all odors at median and high

odor concentrations (Fig. 7A). Since extremely low concentrations rarely evoked any behav-

ioral response, we excluded the 10−6 concentration in this analysis. When we plotted median

odor-evoked activity in a three-dimensional space defined by the three ORDs, we saw a clear

Figure 7 (following page): Integration of hedonic valence and odor concentration into ORDs. (A)
Response indices of wild type flies for all odors at median and high concentrations. Odors are sorted from
highly aversive (-1, red) to highly attractive (+1, green). (B) 3D-scatter plot of median Ca2+ responses of all
odors based on the three ORDs. Odor-dots are labeled due to their RI shown in (A). Same odors at different
concentrations are connected with a line: the dot at the end depicts 10−2, the centered dot 10−4, and the end
of the line 10−6. Attractive and aversive odor representations form separate clusters. (C-D) Left, schematic LH
outlines with colored ORDs corresponding to data on the right. Correlation score r (upper right corner) between
median activity and measured RI in T-maze experiments or odor concentration, respectively, with significance
denoted below. Students t-test, ∗p < 0.05, ∗ ∗ ∗p < 0.001. (E) Complete correlation matrices for Ca2+ response
patterns of OSNs in the AL (left) and iPNs in the LH (right). The odors are arranged according to single linkage
clustering of the LH activity patterns. Heatmap color-code refers to the correlation distance scale bar on the
right. Correlation distance is defined as 1-r, where r is the Pearson correlation coefficient between the response
patterns of two odorants. Odor letters are color-coded according to hedonic valence; 10−6 RI values are labeled
in grey (complete list right hand).
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clustering of responses evoked by aversive and attractive odorants (Fig. 7B). The LH-AL do-

main, constituted mainly by vlPr neurons, is coding aversive odors, while attractive odors

activated only the LH-PM and LH-AM domains that derive from MZ699+ iPNs. This result is

in accordance with our finding that iPNs mediate odor attraction.

We next correlated ORD activity to odor valence separately for all ORDs. This evaluation

enabled us to analyze iPN and vlPr neuron coding properties apart from each other (Fig. 7C).

As expected, the analysis revealed a significant correlation between positive valence and the

LH-PM domain, whereas Ca2+ responses in the LH-AL were strongly negatively correlated to

hedonic valence. The LH-AM domain exhibited a positive but not significant correlation for

odor valence. Remarkably, activity within the LH-PM was totally independent of concentra-

tion, whereas activity in both anterior domains was significantly correlated to odor intensity

(Fig. 7D). Hence, MZ699+ iPNs integrate odor attraction information into the LH-PM do-

main independent of odor intensity, confirming behavioral experiments. Intensity coding is in

turn conducted separately by distinct iPNs within the LH-AM domain. In contrast, putative

third-order vlPr neurons projecting into the LH-AL area code both negative valence and odor

intensity.

Finally, we wondered if this valence-specific LH representation is already reflected at the

primary level of olfactory processing. The odor-evoked responses in iPNs are generally similar

to those in OSNs [30], indicating a straight forward transduction of cholinergic OSN responses

as reflected in the dense AChR immunoreactivity in iPN dendrites (Fig. 1C). We therefore

performed functional imaging of odor-evoked Ca2+ dynamics at the AL input level by expressing

G-CaMP in OSNs using Orco-GAL4 [47] (Fig. S3). In order to compare the activity patterns at

both processing levels, we calculated correlation distances for all pair-wise combinations of odor-

evoked response patterns and plotted these with respect to maximal ORD pattern similarity in

the LH (Fig. 7E). As expected, odor representations in the LH clearly clustered within three

separated parts of the matrix, reflecting our observed ORDs. However, this coding similarity

could not predict AL activity patterns, even if the correlation matrix was sorted with respect

to pattern similarity in the AL (data not shown).

3. Discussion

We augment our present understanding of the Drosophila olfactory circuitry by elucidating

a parallel and behaviorally relevant higher-order processing pathway to the LH. Morphological,

functional and behavioral approaches provide strong evidence for a functional subdivision of

iPNs into neurons coding either odor attraction or odor intensity. Inhibitory properties of iPNs

are necessary for innate odor-guided attraction and configure odor-intensity perception. In

addition, we characterize a third neural pathway coding odor repellence.

We initially investigated if MZ699+ iPNs fulfill anatomical requirements to constitute a

distinct processing channel in addition to ePNs. Both neuronal PN populations receive cholin-

ergic input in the AL. However, in contrast to GH146+ ePNs, which possess presynapses in

the AL, MZ699+ iPNs reveal a strict unidirectional polarity and therefore accomplish a feed-
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forward inhibition in the LH confirming recent studies [29,44]. A remarkable anatomical feature

of MZ699+ iPNs is their glomerular innervation pattern in the AL. Whereas GH146+ ePNs

are uniglomerular and retain the topographic code in their axonal arrangement [20-22], most

MZ699+ iPNs possess oligoglomerular innervations suggesting that these neurons might not

convey precise odor-identity information. In addition, MZ699+ iPNs in the AL diverge only

into specific glomerular subsets, and so might be pre-determined to selectively extract common

features of distinct odors. We have previously shown that the AL map at the PN level exhibits

a spatial segregation of valence representation [48]. Certain glomeruli, which have been classi-

fied as aversion coding at the GH146+ ePN level, are omitted by MZ699+ iPNs, whereas most

glomeruli classified as attraction coding are particularly densely innervated. These results sug-

gest that within the MZ699+ iPN population, mainly positive odor traits are extracted, whereas

the odor information of negative valence is neglected. This conclusion is consistent with the

recent finding that one type of LH neurons is receiving input from PNs that mainly innervate

glomeruli coding fruity-smelling acetates [31] which represent attractive odor cues [48]. We fur-

thermore demonstrate that the MZ699+ iPN population is split into two morphological classes

that possess some degree of spatial segregation in the AL which is strictly maintained within

the LH. It has to be kept in mind that we do not cover all iPNs by using MZ699-GAL4. Further

experiments characterizing the ∼ 6 missing MZ699- iPNs, which are labeled by GH146-GAL4

[27,33], will elucidate if our assumptions apply for the whole iPN population.

So far only a handful neuroanatomical studies targeting GH146+ ePNs have dealt with the

question of how olfactory information is integrated and read out by higher brain structures,

in particular the LH [20-23]. A recent study that traced the projection pattern of PNs coding

ammonia and amines as attractive stimuli and carbon dioxide and acids as repulsive signals

suggests that sensory stimuli of opposing valence are represented in spatially distinct areas

within the LH [24]. In addition the study by Liang et al. [29] showed that MZ699+ iPNs

selectively suppress the activity of vlPr neurons to food odors, while pheromone responses

were not affected verifying the assumption that different odor features are processed separately.

However, functional evidence for a feature-based, spatially segregated activity map in the LH

was so far missing.

To unravel the coding properties of MZ699+ iPNs within the LH, we conducted Ca2+ imag-

ing experiments of MZ699+ iPNs in the LH to odorants having different hedonic valences and

intensities, and could classify the LH into three functional ORDs. Our neuronal tracing and

transection experiments validated the LH segmentation into two medial domains that derive

from MZ699+ iPNs, and the LH-AL domain formed by vlPr neurons. In line with our obser-

vations are morphological studies on ePNs and third-order LH neurons revealing a similarly

tight constriction into three zones within the LH [23], while single-cell labeling combined with

image registration resulted in five ePN target zones [20]. However, the ePN terminal zones do

not necessarily correspond to the target domains of iPNs, since it has recently been shown that

MZ699+ iPNs do not inhibit odor responses of GH146+ ePNs [29] and that the presynaptic site

of iPNs are spatially separated from those of ePNs [30]. Hence both PN populations represent
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Figure 8: Model of neural circuit encoding attractive and aversive odors. Attractive odors activate
both, iPNs and ePNs in the AL. iPNs suppress via feedforward inhibition the excitatory input from ePNs onto
vlPr neurons. Hence, attractive odors activate mainly the LH-AM and LH-PN domains in the LH which derive
from iPN activity. Aversive odors hardly activate iPNs, but ePNs. Since vlPr neurons are therefore not inhibited
by iPNs, they will be activated by ePNs. The result is an activity of the LH-AL domain in the LH which reflects
vlPr neuronal activity.

parallel processing pathways that most likely accomplish distinct processing tasks.

Silencing MB function revealed that the LH alone is sufficient for basic olfactory behavior

[19,49,50]. Our behavioral results demonstrate that selectively silencing MZ699+ iPNs severely

reduced the flies’ odor attraction behavior. In addition, manipulated flies revealed an altered

preference to different odor intensities. Hence our results suggest that MZ699+ iPNs are capable

of extracting both features from the combinatorial code emerging in the AL. Interestingly,

Parnas et al. [44] did not observe any general effect on odor preference when the synaptic

transmission was blocked via shibire expression in MZ699-GAL4. However, since not only iPNs

but also vlPr neurons are likewise impaired by this manipulation, the coding of both attractive

as well as aversive odors was affected. A behavioral study revealed that silencing MBc neurons

impairs odor attraction but not repulsion [51]. The authors drew the conclusion that the LH is

involved in mediating innate repulsion rather than attraction. These results are not necessarily

contradictory to ours since some ePNs might activate the LH-AL domain exclusively (i.e. vlPr

neurons). On the other hand, Wang et al. [51] did not include highly concentrated attractive

odors. Therefore it is possible that in their experiments, the odor detection threshold was

simply reduced, so that only highly concentrated odors, which induced odor aversion, could

be distinguished. Our behavioral results, in contrast, revealed the constant influence of the

MZ699+ iPNs in mediating attraction for odorants over a range of concentrations.

Our data suggests that odors with opposing hedonic valences are encoded by an interplay

of distinct processing pathways as summarized as a network model in Figure 8. The study by

Liang et al. [29] showed that GABA release from MZ699+ iPNs directly inhibits responses of

vlPr neurons to food odors as mentioned above. This finding fits well to our observations that

iPNs are activated mainly by attractive odors while vlPr neurons are not, likely due to the

inhibitory input from iPNs. VlPr neurons are, on the other hand, almost solely activated by

repellent odors, which do hardly activate iPNs and therefore do not induce a strong inhibition

to vlPr neurons. Repellent odors most likely activate vlPr neurons via ACh release of ePNs

which is supported by our immunostainings with pre- and postsynaptic markers indicating that
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vlPr neurons receive cholinergic input in the LH, while the vlPr represents their major output

region (data not shown) [44]. The vlPr is supposedly also a target of visual neurons from the

optic lobe [23] implying that a certain integration of different sensory modalities takes place at

this central processing relay. Given that iPNs are inhibitory neurons, the underlying mechanism

of odor attraction behavior might therefore be an inhibition of aversive neuronal circuits from

the LH to the vlPr that are mainly composed of vlPr neurons. However, this assumption needs

to be verified with further experiments elucidating if vlPr neurons are sufficient and necessary

to mediate odor repellency.

Our study provides an important step in unraveling higher olfactory processing mechanisms

that are crucial for mediating innate behaviors in Drosophila. We provide functional evidence

for a feature-based spatial arrangement of the LH decoding opposing hedonic valences and odor

intensity. The role of the LH as a center for integrating biological values towards innate decisions

by computing conveyed information of two processing pathways is thus expanded.

4. Material and Methods

4.1. Drosophila stocks

All fly stocks were maintained on conventional cornmeal-agar-molasses medium under L:D

12:12, RH = 70% and 25◦C. For wild-type controls D. melanogaster of the Canton-S strain was

used. Transgenic lines were obtained from Bloomington Stock Center and Vienna RNAi stock

center (http://www.vdrc.at). Other fly stocks were kindly provided by: Kei Ito (MZ699-GAL4),

Stefan Sigrist (UAS-Dα7:mcherry), Hiromu Tanimoto (UAS-Syt:HA, UAS-mCD8:GFP) and

Maria Luisa Vasconcelos (UAS-C3PA). The fly construct P[END1-2] (elav n-synaptobrevin-

DsRed 1-2) was generated using a modified pCaST-elav-GAL4AD vector (plasmid 15307, ad-

dgene). The GAD domain present in the original vector was excised using NotI and FspAI

enzymes; the FspAI recognition site was located within the DsRed coding sequence. A DNA

oligonucleotide containing a modified n-synaptobrevin-coding ORF (n-syb) [52], upstream to a

sequence identical to the excised DsRed-fragment, and a Drosophila Kozak site (caaaATG) and

recognition sites for NotI and FspAI, were synthesized and inserted into the vector. The n-syb

construct contains one silent mutation at position (C168T) to eliminate a FspAI-recognition

site within the fragment. Excision, synthesis and ligation were performed by MWG Eurofins

(Germany). The resulting plasmid was amplified in E. coli (One Shot®Top10 E. coli, Invitro-

gen) and purified using a Qiagen midi-prep kit (Qiagen). Embryo transformation to generate

transgenic lines was performed by Aktogen (Cambridge, UK).

4.2. Immunohistochemistry

Whole-mount (wm) and vibratome (vt) immunofluorescence staining was carried out as

described [11,53]. Initially brains were dissected in Ringer’s solution (130 mM NaCl, 5 mM

KCl, 2 mM MgCl2, 2 mM CaCl2, 36 mM saccharose, 5 mM HEPES, [pH 7.3]) [54] and fixed in

4% PFA in PBS-T (PBS, 0,2-1% Triton-X). After washing with PBS-T (wm) or PBS (vt) brains

were blocked with PBS-T, 2% bovine serum albumin (BSA) or PBS-T, 5% normal goat serum
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(NGS). Vt-sections were blocked using 5% NGS and 5% normal donkey serum (NDS). Primary

antibodies were diluted in blocking solution or PBS-T and incubated at 4◦C for 2-3 days (vt).

Secondary antibody incubation lasted 1-2 days. Brains were mounted in VectaShieldTM (Vector

Laboratories). The following primary antibodies were used: rabbit α-GABA (1:500) (Sigma),

mouse α-GFP (1:500) or chicken α-GFP (1:1000) or rabbit α-GFP (1:500) (all Invitrogen),

mouse monoclonal α-ChAT (1:500) (DSHB), mouse α-Nc82 (1:30) (DSHB) or rabbit α-Nc82

and guinea pig α-Nc82 (1:500), kindly provided by Stefan Sigrist, rabbit α-RFP (1:500) and

mouse α-HA (1:1000) (both Abcam). The following secondary antibodies were used: Alexa

Fluor® 488, goat anti-mouse IgG (1:500); Alexa Fluor® 488, goat anti-rabbit (1:500); Alexa

Fluor® 546, goat anti-rabbit (1:500); Alexa Fluor® 633, goat anti-mouse (1:200), Fluor® 594

chicken anti mouse (1:200), Alexa Fluor® 488 donkey anti-chicken 1:200 (all IgG Invitrogen).

4.3. Functional imaging

Fly preparation and functional imaging of the AL was conducted as previously described

[55,56]. LH imaging was conducted similarly, except for the higher resolution achieved with

a 60x water immersion objective (LUMPlanFl 60x / 0.90 W, Zeiss). The optical plane was

∼30µm below the most dorsal entrance point of the iPN tract into the LH. Binning on the CCD-

camera chip resulted in a resolution of 1 pixel = 0.4 x 0.4µm. For bilateral LH imaging during

transection a 20x water immersion objective (NA 0.95, XLUM Plan FI, Olympus) was employed.

All recordings lasted 10 s with a frame rate of 4 Hz. Odors included acids (propionic acid, acetic

acid), lactones (-butyrolactone), terpenes (linalool), aromatics (acetophenone, methyl salicylate,

benzaldehyde, phenylacetic acid), alcohols (1-octen-3-ol), esters (acetoin acetate, cis-vaccenyl

acetate, 2-phenethyl acetate), ketones (2,3 butanedione) and balsamic vinegar diluted in mineral

oil (all from Sigma Aldrich). Odors were applied during frame 814 (i.e. after 2 s, lasting for 2

s). Flies were imaged for up to one hour, with a minimum inter-stimulus interval of one minute.

We selected conventional widefield Ca2+ imaging as the method of choice, since we were able

to obtain single bouton resolution with this technique.

4.4. Imaging data analysis

Calcium imaging data of AL were analyzed with custom-written IDL software (ITT Visual

Information Solutions) provided by Mathias Ditzen as previously described [55,56]. Regarding

the Ca2+ imaging data in the LH, we repeated recordings of each odor at each concentration two

to three times to ensure the reliability of the extracted domain information. To execute NNMF

analysis (see below), at least 6-7 valid measurements, i.e. animals with repeated identical record-

ings, were collected for each odor and employed for the analysis. Individual odor measurements

were aligned using ImageJ (Fiji) to correct movement artifacts. Fluorescence changes (∆F/F)

for each odor were calculated in relation to background fluorescence using frames 0-6 (i.e. 2- 0.5

s before odor application). A Gaussian low-pass filter (σ=1px) was applied to compensate for

remaining movement artifacts and pixel noise. To reduce the computational load, the frame rate

was averaged by two consecutive frames, and recordings were spatially down-sampled by a fac-
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tor of two. The resulting concatenated time-series of the recordings is denoted as measurement

matrix Y with element Yt,p being the tth observed value of pixel p.

4.5. NNMF Non-Negative Matrix Factorization

In contrast to the AL, which consists of highly ordered glomerular subunits, the LH com-

prises a mainly homogenous neuropil which does not provide spatial or functional landmarks.

Therefore, we used the automatic method NNMF to extract Ca2+ signals that exhibit common

spatial or temporal features. NNMF, like other matrix factorization techniques (e.g. Princi-

pal Component Analysis (PCA) and Independent Component Analysis (ICA)), decompose the

measurement matrix Y into k components, Y =
∑

k xk · aTk + R. The time-course ak of each

component contains a common underlying time-courses of all pixels and each pixel participation

xk declares how strongly each pixel is involved in this time-course. The residual matrix R con-

tains the unexplained data. In order to perform NNMF, we implemented the HALS algorithm

in Python including a spatial smoothness constraint (αsm = 0.1) [57] and an additional spatial

decorrelation constraint (αde = 0.1) [58].

In PCA decomposition is performed such that either timecourses ak or pixel participation

xk are uncorrelated, whereas ICA aims for timecourses (temporal ICA) or pixel participation

(spatial ICA) to be independent. Although spatial ICA is able to segregate signals into func-

tional similar neuropils [59], we chose the NNMF approach, because it is known to achieve

even a better parts-based representation compared to the more holistic results of PCA or ICA

[40]. In contrast to PCA and ICA, NNMF constrains both the extracted time-courses and pixel

participations to be positive. Positive pixel participation enabled us to make a straightforward

physiological interpretation, reading the participation values as the contribution strength of

an underlying physiological domain. The restriction to positive time-courses reflects the fact

that we did not observe any significant decrease of fluorescence in response to an odor in the

original measurement data. For each animal we performed decomposition into k=5 compo-

nents. This was sufficient to explain most of the data’s variance (88% ± 8%, error is standard

deviation across individuals). The remaining variance in the residual matrix R contained no ad-

ditional domains but rather reflected remaining movement artifacts of the measurements (data

not shown). Of the five components extracted by NNMF, three stood out prominently: First,

they were extracted in all animals at very clearly defined anatomical positions. Second, their

responses to stimuli repetitions were highly reproducible in contrast to the other two compo-

nents, i.e. they exhibited a significant (p < 2 · 10−8, t-test) higher trial-to-trial correlation of

0.72 ± 0.20 in contrast to 0.52 ± 0.26 for the remaining components; and third, the odorant

spectra of their responses were characteristic across animals.

Though we cannot completely rule out that the remaining components of the factorization

are ORDs of their own, there are several indications that they are not. On the one hand,

they exhibit a lower trial-to-trial correlation than the three selected components. Second, those

components did not consistently appear at similar anatomical position. Instead of indepen-

dent ORDs, these regions might convey fluorescence change independent of odor stimulation or

an overlapping region of two of the reliable ORDs. A validation of our NNMF-based results
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with spatial ICA yielded very similar, but slightly worse results. Whereas the three reliable

ORDs from NNMF were also extracted in spatial ICA, the two remaining components exhib-

ited much higher variability than when obtained with NNMF. Hence, we conclude that the LH

area comprising MZ699+ neurons is made up of three ORDs. We labeled those three compo-

nents according to the anatomical position of their pixel participation within the LH.

4.6. Statistical analysis of imaging data

To determine the coding properties of extracted odor response domains (ORDs), we cal-

culated the mean response of each animal within a time window of 1-4 s after stimulus onset.

Hence, median responses over all animals defined the standard stimulated response roORD of

an ORD to an odor o. Initially, regions were evaluated individually, and correlations were

calculated between standard response spectra and the behavioral response index (RI), or odor

concentration, respectively, using the linregress function of the Python scipy.stat module. To

analyze the combined ORD representations of odor patterns po = (roPM, r
o
AM, r

o
AL) we calcu-

lated for all odor pairs the pattern similarity as correlation distance do1,o2 = 1 − corr(po1, po2).

In order to visualize the correlation matrix in a comprehensible way, we then arranged odors

according to the single linkage clustering of the Python scipy.cluster.hierarchy module. To com-

pare the representation in the LH to those of the AL, we applied the same procedure to the

dorsal glomerular odor activation pattern.

4.7. 2-Photon photoactivation

For in vivo photoactivation experiments, 1-6 day old flies (Genotype: END1-2,UAS-C3PA;MZ699-

GAL4) were dissected as in the imaging experiments except that tracts of the salivary glands

were cut to prevent movement. Photoactivation was accomplished via continuous illumination

with 760 nm for 15-25 min. After a 5-minute break to permit full diffusion of the photoconverted

molecules, 925nm z-stacks of the whole brain were acquired and subsequently used for neuronal

3D-reconstruction. For all 3D reconstructions, the segmentation software AMIRA 5.3.3 (Mer-

cury Computer Systems) was used. Neurons of different individuals were embedded into the

reference brain using a labelfield registration as previously described [60]. Briefly, segmented

labels of brain neuropils (AL, MBc, LH) were registered onto a reference brain image using

affine registration followed by elastic warping. In a second step, the calculated transformation

matrix was applied to the respective neuron morphology that was then aligned to the reference

brain image.

4.8. 2-Photon-mediated transection

Transections of either the plF tract or the mACT were conducted in one brain hemisphere,

each of the same fly. The target area was monitored with 925 nm and chosen to be close to

the LH but distant enough not to affect neurites ramifying in the LH neuropil. For both tracts,

lesioned areas had an average size of 34 µm and were illuminated with short pulses of 710 nm

every 40 ms for 250 ms in 60 (plF) 80 (mACT) cycles in a single focal plane. After a fast

z-stack with 925 nm to confirm complete lesion, a 5-minute neuronal recovery interval followed

before continuing the imaging procedure. Data were analyzed using NNMF.
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4.9. Image acquisition

Photoactivation and transection procedures as well as image acquisition following immuno-

histochemistry were accomplished with a 2-photon confocal laser scanning microscope (2PCLSM,

Zeiss LSM 710 meta NLO) equipped with a 40x (W Plan-Apochromat 40x/1.0 DIC M27) or 20x

(W N-Achroplan 20x/0.5 M27). The 2PCLSM was placed on a smart table UT2 (Newport Cor-

poration, Irvine, CA, USA) and equipped with an infrared Chameleon UltraTM diode-pumped

laser (Coherent, Santa Clara, CA, USA). Z-stacks were performed with argon 488 nm and

helium-neon 543 nm laser or the Chameleon Laser 925 nm (BP500-550 for G-CaMP and LP555

for DsRed/Tomato) and had a resolution of 1024 or 512 square pixels. The maximum step size

for immuno-preparations or single neuron projections was 1 µm and for AL reconstructions 2

µm.

4.10. Behavioral Assay

Flies carrying P[GAD1-RNAi];P[MZ699-GAL4] were crossed just before the experiment to

prevent dosage compensation effects. T-maze experiments were performed as described [61].

WT, parental controls (P[GAD1-RNAi] or P[MZ699-GAL4]) and test flies carrying both inser-

tions were tested separately under identical conditions. The response index (RI) was calculated

as (O-C)/T, where O is the number of flies in the odor arm, C is the number of flies in the

control arm, and T is the total number of flies used in the trial. Hence, the RI ranges from -1

(complete avoidance) to 1 (complete attraction). Each experiment was carried out on 30 flies

and was repeated 12 times. RIs were compared with Dunn’s Multiple Comparison or Dunn’s

Selected Pairs and tested against 0 (no response) by the Wilcoxon-rank-sum test.
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Supplemental material

Supplemental figure S1

Characterization of excitatory and inhibitory projection neurons. (A) Overlap of ePNs (QUAS-
Tomato) and iPNs (UAS-GCaMP3.0) in the LH area. The circle indicates the posterior lateral region, which
is sparsely innervated by iPNs and dominated by ePN axonal terminal fields. (B) GABA vs. ChAT Immuno
in the AL and LH (B). Somata and LH neurites of MZ699 iPNs are GABA-positive and ACh-negative. Scale
bar, 20µm.
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Supplemental figure S2

Glomerular innervations of ePNs an iPNs. (A) Representative in vivo images of glomerular inner-
vations. MZ699 and GH146 lines have been reconstructed with END1-2 background (two upper planes)
and dual labeling via the Q-system and the GAL4-UAS expression system (lowest plane). Scale bar, 20 m.
(B) Detailed glomerular AL innervation. Green filled cells indicate innervation by MZ699-GAL4, magenta
GH146-GAL4 innervation, respectively and grey, no innervation by the indicated line. Bottom rows, total
number of innervated glomeruli with percentage share indicated below. Merge column: white filled with x
indicates glomeruli innervated by both lines, grey only one line. Blue filled rows are glomeruli labeled by
none of the enhancer trap lines.
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Supplemental figure S3

Calcium responses of OSNs. (A) Representative glomerular Ca2+-responses of OSNs for a subset
of odorants at three concentrations. Scale bar to the right. Control (mineral oil) recordings are shown
additionally as full false-color coded images. (B) Glomerular AL atlas used for glomerular identification.
(C) Median Ca2+-activity traces of all glomeruli for all odorants at the three indicated concentrations. Scale
bar and control measurement in the center. Odor application is indicated by the grey bar below the heatmaps
(n=6-7).
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Supplemental table S1

Calcium responses of OSNs. (A) Representative glomerular Ca2+-responses of OSNs for a subset
of odorants at three concentrations. Scale bar to the right. Control (mineral oil) recordings are shown
additionally as full false-color coded images. (B) Glomerular AL atlas used for glomerular identification.
(C) Median Ca2+-activity traces of all glomeruli for all odorants at the three indicated concentrations. Scale
bar and control measurement in the center. Odor application is indicated by the grey bar below the heatmaps
(n=6-7).
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General discussion

6.1 Summary

From an anatomical point of view, the olfactory systems of both mice and Drosophila show

a clear topographic structure. In both species the olfactory relay center (Olfactory Bulb and

Antennal Lobe, respectively) allocates the receptor activation on a stereotypical sensory map.

This map is the substrate of local circuits in higher olfactory centres and, especially in mice, for

lateral and centrifugal modulation within the relay center itself. Despite this clear anatomical

structure, any underlying functional organization of this topography remains vague.

Therefore this thesis elaborates on this topic. First two techniques have been introduced

which facilitate this investigation: For one the extraction of functional units in neuronal imaging

data by regularized non-negative matrix factorization (rNMF) in chapter 2. And second the

characterization of olfactory receptive fields by physico-chemical models in chapter 3. In chapter

4 these methods are utilized to gain additional evidence for the hypothesis that glomeruli in the

mouse olfactory relay center (OB) are mainly arranged according to their tuning similarity, i.e.

their receptive field overlap. And chapter five demonstrates, again utilizing the power of rNMF

to extract functional domains, that a topographic read-out of the Drosophila olfactory relay

center (AL) results in a map of innate valence in a higher olfacory center, the Lateral Horn.

6.2 Computational methods

6.2.1 Segmentation of imaging data

Functional Imaging is a commonly used technique to study neural ensembles [Grienberger and

Konnerth, 2012; Pain et al., 2011]. It allows for simultaneous recording of neural activity within

the full ensemble. In general one can analyse the recorded images as a whole, e.g. by calculating

pixel-wise correlations between response patterns [Roussel et al., 2014]. But disaggregating

them into functional components yields insights into individual contributions to the ensemble

representation.

In this thesis I introduced rNMF as a general tool to obtain such a disaggregation. It purely

relies on the functional data and thus does not require any additional anatomical knowledge.

Therefore rNMF proved to be useful in extracting glomeruli from IOS recordings. Even though

111



in general anatomical outlines of glomeruli can be obtained, this information is not present in

IOS recordings and it would therefore require substantially more experimental effort to acquire

them (see also chapter 2). In contrast, in Calcium Imaging of the LH anatomical information is

already present via the resting fluorescence. But in this case the neuropil does not show a clear

anatomical compartmentalization per se, which could only be revealed via rNMF disaggregation

or tracing studies.

6.2.2 Physico-chemical receptive fields

Given the enormous number of possible odorous molecules [Ruddigkeit et al., 2014] it is in-

tractable to obtain the full listing of all odour responses for olfactory receptors. Here physico-

chemical receptive field models offer a loophole as they provide a quantitative relation between

molecular properties and receptor activation. First of all, assuming high accuracy, they allow to

reliably interpolate unobserved odour responses. But even with low accuracy they prove to be

useful as their predictions generate measurement suggestions which are in general much more

informative than arbitrary chosen stimuli [Boyle et al., 2013]. Such a procedure of hypothe-

sis driven stimulus choice is generally known as adaptive stimulus sampling and an upcoming

technique in investigating receptive fields [Benda et al., 2007; DiMattina and Zhang, 2013].

In this thesis physico-chemical activation models have been derived both for Drosophila

receptors as well as for the mouse MOR18-2 glomerulus. In both cases it was shown that

the models exhibit predictive power for unmeasured odours, but still are too imprecise to be

considered as high accuracy models. In case of Drosophila receptors a final measurement of the

model predictions showed that in best cases about 40-50% of the response spectrum variance had

been already anticipated by the models. Unfortunately in case of the MOR18-2 glomerulus a

final biological validation of model prediction is still missing, but bootstrap validation indicated

that also in this case about 40% of the response spectrum variance has been anticipated by the

model.

Interestingly, augmentation of the commonly used physico-chemical eDragon descriptors

[Haddad et al., 2008] by additional vibrational mode descriptors (EVA) [Ferguson et al., 1997]

did not increase predictive power of the models for the Drosophila receptors, although this

was the case for the MOR18-2 glomerulus. A simple explanation could be that the assessed

molecules in the Drosophila study show a large variety in terms of chemical composition, whereas

the enriched measurement set of MOR18-2 is heavily biased towards its most prominent ligands,

namely short esters. Thus, in case of MOR18-2 a much more accurate outline of the physico-

chemical receptive field was necessary. This was possibly enhanced by the EVA descriptors. On

the other hand the different performance of descriptor sets could also indicate that Drosophila

and mice receptors differ in how molecular properties are converted into neural activity. To

this end it would be interesting to obtain physico-chemical activation models for both species

with a very similar measurement set. But it also has to be mentioned that ligand based models

in general do not offer mechanistic explanations for biological activations. They only describe

which odours are similar to a receptor, but not why. This is also the reason that this study
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neither supports nor denies any hypothesis on the heavily disputed mechanism of olfactory

receptor activation [Hettinger, 2011].

6.3 Olfactory neural maps

6.3.1 Olfactory relay centres

This research provides further evidence that in the olfactory relay center of mice (OB) nearby

glomeruli form tunotopic clusters, i.e. they exhibit overlapping molecular response spectra [Ma

et al., 2012; Matsumoto et al., 2010]. A similar tendency is observed in the olfactory relay

center of Drosophila (AL) [Galizia et al., 2010]. But currently this interpretation is based on

fragmentary knowledge of individual receptive ranges or, as in the case of this research, with

extended knowledge of the receptive range of only a single glomerulus. In the end a definite

affirmation of the tunotopic hypothesis will only be obtained if the receptive fields of many

glomeruli are sufficient well known.

Nonetheless the tunotopic hypothesis seems to be quite plausible. Many theoretical models

for the emergence of sensory feature maps are derived from the general principle that neurons

which ‘fire together wire together’ [Buonomano and Merzenich, 1998]. Thus in olfaction this

principle seems to be modified to ‘glomeruli which fire together cluster together’. And indeed,

at least in mice, neural activity of the sensory neurons is inevitable in order to obtain the

topographic map [Imai et al., 2010].

Regarding this hypothesis one could even speculate that the glomerular arrangement does

not only reflect the overlap of mono-molecular response spectra but rather the overall co-

activation probability of the response spectra in natural odour blends. Eventually shared ligands

would be a major fraction to glomerular co-activation, but also different odours with a common

emitter would add to the glomerular co-activation and therefore shape the topographic lay-

out. For example, such an observation has been recently made in the accessory olfactory bulb,

where glomeuli are clustered predominantly with respect to of their source (i.e. juvenile/adult

male/female urine) [Hammen et al., 2014].

6.3.2 Secondary olfactory centres

The topography of the olfactory relay centres (OB/AL) is in particular conserved in areas

associated with internal valence evaluation (amygdala respectively LH) (see Introduction).

This study (chapter 5) demonstrated that in Drosophila the topographic projection results in

a compartmentalization of the LH with respect to the received olfactory information from PNs

of the mlALT. Such a compartmentalization of olfactory information transfer is also observed

in the PNs of other tracts, with the response profiles of different areas being associated to

attractive or aversive innate behaviour [Min et al., 2013] or a more general behavioural context

(e.g. feeding vs. mating behaviour) [Jefferis et al., 2007; Grosjean et al., 2011]. Furthermore

for Drosophila larvae it was shown that a circuit of the LH mediates feeding behaviour in

response to appetitive odours [Wang et al., 2013]. Taken together this indicates that the LH
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might evaluate the external context and provides a switchboard for different innate behaviours

[Galizia, 2014].

This hypothesis neatly connects to the hypothesis that olfactory relay centres are arranged

according to co-occurrence probability of response spectra in the natural environment. Such an

arrangement eventually means that glomeruli which are responsive in the same environmental

context are grouped together. Thus a topographic aggregation of stimulus responses, as seen

in the projections to the LH, would represent the combined evidence for distinct environmental

contexts.

This thesis does not investigate the role of topography in the secondary olfactory centres

associated with learning (PC respectively MBc). In fact other research shows that in there

the topography of the olfactory relay centres does not directly governs the response patterns

of third order neurons [Caron et al., 2013; Bekkers and Suzuki, 2013]. Nonetheless also these

centres might be influenced by a tunotopic layout of olfacory relay centres as a result of lateral

inhibition. In general it is supposed that a major role of lateral inhibition in sensory coding

is the transformation of previously statistically dependent receptive fields to an efficient inde-

pendent representation optimized for pattern recognition [Schwartz and Simoncelli, 2001]. This

mechanism is also discussed for olfactory systems [Luo et al., 2010; Giridhar et al., 2011] but

with the limitation that there is so far negligible knowledge on natural odour statistics.

6.4 Conclusion and outlook

As typical for science this thesis rather raises new questions than giving final answers. But it also

contributes to the refinement of two computational methods which may empower future research

on those topics: rNMF for a reliable and automatic extraction of functional modules in neuro-

imaging and physico-chemical activation models for a better assessment olfactory receptive

fields.

Based on accumulated evidence on olfactory topography, this thesis results in a final hypoth-

esis to be further investigated: Glomerular arrangement reflects the environmental statistics of

odour occurrence and thus builds a substrate for both an effective environmental context eval-

uation and an efficient representation of environmental regularities for pattern recognition.
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