Chapter 7

Conclusion and Future
Work

In this thesis, we have made progress toward analyzing evolutionary and func-
tional important aspects of proteins. No problem is more central to the workings
of the cell than understanding protein structure, as proteins are the building
blocks of the most important cellular processes. More generally, determining
the role each protein plays in the cell is one of the basic steps in making sense of
cellular networks. Due to the more and more increasing data coming from high-
throughput experiments the assignment of function to proteins and the under-
standing of their evolution can only be achieved, if similarities between protein
structures can automatically be determined using suitable structure alignment
methods. A problem that is also relevant for the classification of protein struc-
tures. We could show that our methods are able to detect biological meaningful
similarities that are not detectable for sequence-based or other state-of-the-art
structure alignment methods, and thus provide new insights into evolutionary
and functional relationships of protein structures.

Biologically useful structure alignment methods need adequate representa-
tions. The representation of protein structures as residue contact maps and at
the secondary structure level has two major advantages, efficiency and accuracy:
efficiency, because the average number of SSEs in a globular protein is smaller
by 10-fold compared to the average number of residues, and the average num-
ber of residues is smaller by 10-fold compared to the average number of atoms.
Protein structures can be treated more easily and significant improvement in
computation can be achieved, especially when many structures are analyzed.
Accuracy due to the high atom density in protein structure, because it is possi-
ble to superimpose any random pair of proteins so that many of their atoms are
aligned. However, such an alignment is most probably biologically irrelevant,
because it would not reflect any evolutionary or functional relatedness. Addi-
tionally, the definition of protein graphs, either for the representation of protein
topologies (see Chapter 3) or for structural alignment (see Chapter 5), has the
advantage to describe protein structures without reference to atom coordinates.
Rather, only contact relationships are considered. This allows for a compari-
son of protein structures that do not superimpose well but show similar spatial
arrangements of their SSEs. This is in contrast to most other methods (see
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Chapter 4) that base their protein representation on atomic level. It enables us
to detect similarities of protein structures in a wider range than methods based
on geometric descriptions only. Since we are using the contact information be-
tween SSEs, essential information on sequential relationships within the protein
structure is encoded without necessarily fixing the sequential order of the SSEs.

In order to define a unique description of protein topology, we described
the secondary structure topology of a protein by methods of applied graph the-
ory. We defined the secondary structure topology of a protein as an undirected
labeled graph on three description levels of its SSEs: the Alpha graph, the
Beta graph, and the Alpha-Beta graph. For each graph type exist four lin-
ear notations and corresponding graphical representations. We developed the
PTGL database that enables the user to search for the specific proteins or for
certain topologies or sub-topologies, and for sequence similarity in SSEs. The
database can be used for any kind of theoretical protein structure analysis, pro-
tein structure prediction, and protein function prediction. Additionally, we have
developed a system, which supports fast pattern searching over PTGL linear no-
tations. The search engine is based on simple regular-expressions to search for
the most common structural motifs. Users can search on motifs from a library
or define their own search patterns. We are now in the process of enhancing
the database system to permit users to compare the topology of a given struc-
ture with all the other structures in a database using graph-theoretical methods.
Additionally, we want to provide more accurate descriptions of structural motifs.

We developed a hierarchical method for protein structure alignment, called
GANGSTA. The first stage of this method is a maximal common subgraph
(MCS) search of protein graphs based on secondary structure representation.
Therefore, a genetic algorithm (GA) was developed to search for maximal com-
mon substructures. Additionally, we determined the exact graph-theoretical
algorithm (Exact GANGSTA) for this problem. The experiments in Section 6.4
showed that the GA method is an adequate search strategy to solve the MCS
problem. Although the exact solution produces better results in terms of the
used objective function, the quality of SSE alignments produced from the GA
method are comparable to the exact solution in most cases. The second stage
of the GANGSTA method maximizes the contact map overlap using a residue
level description. After the alignment procedure the superposition of the two
protein structures is performed to compute the transformation that minimizes
the RMSD. GANGSTA is able to find protein structure alignments independent
of the SSE connectivity. Such a capability is essential for detecting structural
similarities that exist due to convergent evolution, but with no fold homology.
In certain cases, where order dependency is preferred, there is also an option
in GANGSTA to consider the order of the SSEs. This option can be used to
cluster topologically similar proteins or to obtain a structure-based sequence
alignment. We could show that functionally related protein domains can have
large structural variations in terms of RMSD. The contact map overlap and the
newly introduced GANGSTA score can identify structures with different SSE
connectivity not detectable by sequence-based alignment methods or methods
maintaining the SSE connectivity. Structure alignment methods considering
the geometry of loops that connect the regularly structured SSEs in a protein
have a strong bias for sequential SSE connectivity. Hence, these methods have
difficulty finding structural alignments that are non-sequential in SSE connec-
tivity. Even if a protein fold cannot be aligned to another protein structure
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while maintaining the SSE connectivity, structural similarity may still exist for
different SSE connectivity despite large RMSD values. GANGSTA tends to
align large fold motifs regardless of the SSE connectivity. This is due to the
following features:

e GANGSTA does not optimize distances between residue pairs, but maxi-
mizes the number of residue pair contacts.

e The number of gaps, i.e., the number of not aligned SSEs in the smaller
structure, is restricted to make sure that a maximum number of SSEs and
consequently also of residues are aligned.

e GANGSTA ignores loop structures, which helps to find structure align-
ments that are non-sequential in SSE connectivity.

e GANGSTA is able to construct decoy structures (alternative alignments).

e GANGSTA is robust against different contact type definitions, i.e., inde-
pendently of the contact type used it detects the correct arrangement of
SSEs.

Our method is able to detect functional important sequential and non-sequential
structural similarities. The quality of sequential alignments is comparable to
other state-of-the-art structure alignment methods.
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Figure 7.1: MultipleGANGSTA. a) Pairwise SSE alignments between three pro-
tein graphs (A4,B,C). For each protein pair two alternative alignments are shown. SSE
numbering from N- to C-terminus. Every alignment is highlighted with a different
color. b) SSE-alignment graph: cliques represent possible columns in a multiple align-
ment. Edges are colored according to the SSE-alignment. Cliques are shown with
bold edges. ¢) Column-consistency graph. The maximum clique is shown in gray. d)
Multiple structure alignment built from the maximum clique.

As discussed in the previous chapters, the alignment of proteins is crucial
for many purposes in biology. Pairwise sequence alignment is unreliable if the
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proteins diverge on the sequence level. Although multiple sequence alignments
are more accurate, even they are inadequate when dealing with distantly related
proteins sharing little sequence similarity. Many methods have been developed
to address the pairwise structural alignment task (see Chapter 4). In contrast,
only a few methods are available for aligning multiple structures. However, it
seems to be clear that multiple structure alignment gives more insight in evo-
lutionary relatedness and is thus a much more powerful method. Most of the
currently available methods for multiple structural alignment are based on pair-
wise structure alignments. They find common substructures through a series
of comparisons between pairs of molecules. These methods combine a pairwise
structural alignment and a heuristic to merge pairwise alignments into a multi-
ple alignment. Well-known methods of this type are SSAPm [226], PrISM [244],
STAMP [202], or MUSTANG [132]. The pairwise-based methods have the lim-
itation that in each pairwise alignment the only available information is about
the two molecules involved. Thus, alignments optimal for the whole input set
might be missed, if they are not also optimal for every pair [64]. There are other
methods, like MASS [63], Escalier et al. [66], MUSTA [139] and MultiProt [207],
that are considering all the given structures simultaneously, rather than initiat-
ing from pairwise alignments. They all try to detect structurally similar common
pieces, which are then extended to compute global alignments. The majority of
the methods for multiple structure alignment, with the exception of MASS, use
dynamic programming [170]. As a result, they have the disadvantage of being
dependent on the sequence order of the polypeptide chain.

As described in this thesis, GANGSTA is a sequence-order independent
method. Additionally, GANGSTA is able to produce different non-sequential
alignments for one pair of protein structures, either using the GA or Exact-
GANGSTA for the first stage, the SSE alignment level. Therefore, GANG-STA
has not the limitation that local similarities have to be necessarily optimal for
all pairs of proteins. We propose the following schema for multiple structure
alignment using GANGSTA, called the MultipleGANGSTA method:

1. Given n protein structures represented as protein graphs PG,, = (V,,, E,,),

perform all m = f pairwise GANGSTA alignments.

2. For every pairwise alignment A; (i = (1,...,f)), use the m best SSE
alignments according to the GANGSTA score (Figure 7.1a).

3. Generate a SSE-alignment graph G. consisting of the vertex set V. =
ViUVeU...V,. The edge set is defined by all pairwise SSE mappings of
all n x m valid GANGSTA-SSE-alignments (Definition 23). An example
is given in Figure 7.1b.

4. Search all cliques of minimal size k in the SSE-alignment graph. A clique in
G represents then a column of a valid multiple alignment, where minimum
k structures are not gapped. In Figure 7.1b only cliques of size 3 are
marked.

5. To find the maximal global multiple structure alignment, the maximal
number of columns has to be combined. Therefore, one has to define when
two columns are consistent: no two columns are allowed two contain the
same SSE from the same structure. Then, a column-consistency graph can
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be build. The vertex set represents all valid multiple alignment columns,
and an edge is defined, if two columns are consistent (Figure 7.1c).

6. A clique in the column-consistency graph represents a maximal global mul-
tiple structure alignment. In Figure 7.1a only cliques of size 3 are marked.
The resulting multiple structure alignment is shown in Figure 7.1d.

The advantage of such an implementation would be that for a single pairwise
alignment not only the optimal alignment is used, but in addition the m —1 best
suboptimal alignments, and that all optimal and suboptimal alignments from
all pairs of proteins could be merged into one multiple alignment. This would
be a great advantage over the progressive multiple structure alignment methods
that are using one alignment as a pivot element and align all other structures to
this particular structure. Therefore, the resulting alignments are often strongly
biased toward the pivot protein structure. Additionally, the MultipleGANGSTA
method would combine the global view coming from the pairwise alignments
with local search strategies: The global pairwise GANGSTA alignments provide
a pool of pairwise SSE mappings. The SSE-alignment graph contains pairs of
SSEs that can be combined into a greater alignment, a strategy, for example,
MASS is also employing. This capability prevents the loss of good alignments
due to local structural outliers, and will be highly useful in protein classification
of heterogeneous ensembles of superfamilies or folds. Due the extensive use of
clique searching the method is presumably only applicable to small numbers
of structures, but again heuristic search strategies could be developed to make
the search faster. Since we are searching in the SSE-alignment graph for all
cliques with a minimum size and in the column-consistency graph only for the
maximum clique representing the multiple alignment with the maximal number
of aligned SSEs, the BK-algorithm (see Section 6.2.3) should be able to traverse
the search tree quickly.

The MultipleGANGSTA method would be a new sequence-independent mul-
tiple structure alignment method combining the advantages of global and local
search strategies by applying alternative pairwise alignments and local SSE sim-
ilarities that could be used to search for non-trivial spatial arrangements in sets
of proteins showing no sequential similarity at all.
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