Chapter 6

Exact Protein Graph
Alignment

6.1 Introduction

In this chapter we show how we can determine an exact graph-theoretical solu-
tion for the maximal common subgraph problem that has to be solved for the
second stage of the GANGSTA method described in the previous chapter.

In many applications it is useful to compare objects represented as graphs
in order to determine the degree and composition of the similarity. Commonly
used techniques include graph matching or isomorphism techniques. Structure
comparison or structure matching plays an important role in understanding the
functional role of biological structures (see Chapters 3 and 5). This process
is often reformulated into the problem of finding mazimal common subgraphs
(MCS) between graph representations of these structures. In chemical litera-
ture this referred as the maximal common substructure problem and denotes
the largest substructure common to the collection of graphs. The graph-based
similarity between graphs representing biological or chemical molecules plays an
important role in many aspects of bio- or chemoinformatics: examples include
protein-ligand docking [135], database searching [193], prediction of biological
activity [80], reaction site modeling [11,159] or interpretation of molecular spec-
tra [43,50]. The solution of the MCS problem is also of significant importance in
many research areas outside of bioinformatics such as computer vision and image
recognition [208]. The MCS problem is N P-complete [76] and we can therefore
not hope to find an exact algorithm running in polynomial time. For a simple
comparison of a pair of graphs having m and n vertices, the maximum number
of vertex-by-vertex comparisons necessary to determine all common subgraphs
of k vertices is according to Levi [144]

mln!
(m —k)!(n—k)k!

an astronomical number for non-trivial values of k, m, and n. Due to the
N P-completeness exact algorithms designed to solve the MCS problem have
a worst case, exponential-time complexity or are restricted to a finite class of
graphs. Despite these restrictions, there exist algorithms that have proven to
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be very efficient like maximum clique-based algorithms [144] or backtracking
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algorithms [159].
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Figure 6.1: The GANGSTA method: an overview. The overall GANGSTA
method with the two sub-workflows for the SSE alignment level, GA and Exact-
GANGSTA.

We introduce the ExactGANGSTA method for exact GANGSTA protein
graph alignment on the secondary structure level. The ExactGANGSTA method
extends the GANGSTA structure alignment method as described in the previ-
ous chapter by applying an exact MCS algorithm instead of the genetic algo-
rithm for the SSE alignment level of the GANGSTA method. Figure 6.1 shows
a schematic overview of the overall GANGSTA method for protein structure
alignment involving a workflow with two sub-workflows, the GA as described in
the previous chapter employing a heuristic search and Exact GANGSTA using an
exact graph-theoretical algorithm for the same MCS problem. The GANGSTA
method starts with two proteins represented as PDB [22] files including the
atom coordinates of the protein structures as input. SSEs are defined using
either DSSP [119] or Stride [74]. Then, for every protein structure GANGSTA
protein graphs are defined according to Definition 18. If GANGSTA uses the
GA for the SSE alignment level (Section 5.2.3) the SSE alignment problem is
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encoded into individuals. An initial generation is generated and the resulting
alignments are evaluated using the objective function (Equation 5.11). Genetic
operators are applied on the individuals to produce new generations. The GA
stops if the termination criterion is fulfilled (see Section 5.2.3) or the maximal
allowed number of generations is reached. The best n alignments are passed on
to the next level, the contact map alignment level.

Within the GANGSTA structure alignment method the ExactGANGSTA
sub-workflow substitutes the genetic algorithm for the SSE alignment level by
applying an exact MCS algorithm to search for maximal common substructures.
Here, we will describe the graph-theoretical background, how we can search for
maximal common substructures using graph-theory. The main idea is to search
all maximal common subgraphs for all connected components (Definition 10)
of the GANGSTA protein graphs. Each connected component represents a
connected subgraph within a GANGSTA protein graph, called a folding graph
("connected components’ in Figures 6.1 and 6.6). Then, the task is to search
maximal common subgraphs between the folding graphs of the given protein
graphs. This can be done transforming two folding graphs into an edge product
graph and using a clique detection technique to determine all cliques ('product
graph’ and 'BKC algorithm’ in Figure 6.1). Afterwards, the maximal common
subgraphs have to be transformed into valid SSE alignments ('SSE mapping’
in Figure 6.1). At the end of this chapter, we analyze some general proper-
ties of protein graphs and product graphs, and show that the GA algorithm
is an excellent heuristic method to approximately solve the NP-complete MCS
problem.

6.2 Graph-theoretical Methods

In this section we use the graph-theoretical terminology from [125,193]. All
referenced definitions throughout this section are given in the text or in the
Appendix C. First, we define the graph-theoretical problem when searching for
maximal common subgraphs (MCSs) in two arbitrary graphs, the MCS problem.
Second, we show how we can transform the MCS problem into the clique problem
using product graphs and how this can be done for GANGSTA protein graphs.
Finally, we introduce the original Bron-Kerbosch algorithm [31] and a modified
version of it to solve the clique problem efficiently [125].

6.2.1 The Maximal Common Subgraph Problem

In the following all graphs are simple undirected labeled graphs G = (V, E) as
defined in Definition 2. If two vertices u,v € V of G are connected by an edge
e € E this is denoted by e = (u,v) and the two vertices are said to be adjacent.
The edge e is said to be incident to both vertices u and v.

A subgraph (Definition 43) of a graph G is a graph whose set of vertices
and set of edges are all subsets of G. All the edges and vertices of G might
not be present in the subgraph; but if a vertex is present in the subgraph it
has a corresponding vertex in G and any edge that connects two vertices in
the subgraph will also connect the corresponding vertices in G. An induced
subgraph of a graph G is a subset of vertices of G and a set of edges of G with
both endpoints in the subset:
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Definition 24 (Induced Subgraphs). An induced subgraph G, = (Vs, E5) C
G = (V,E)) is given, if Vu,v € Vs : (u,v) € E = (u,v) € Ej.

Two graphs are said to be isomorphic (Definition 45) if there is a mapping
between the vertices of both graphs such that neighbored pairs of vertices in the
first graph are mapped onto neighbored pairs in the second graph. A common
subgraph (Definition 46) of two graphs consists of a subgraph in the one graph
and a subgraph in the other graph such that both subgraphs are isomorphic.
The mazimal common subgraph refers to the largest common subgraphs that
cannot be extended:

Definition 25 (Maximal Common Subgraph (MCS)). The maximal common
subgraph of two graphs G1 and G is defined as the largest common subgraph: it
must hold that if the pair (G, G%) exists with G} C Gy, G5 C G2 and G} = GY,
there exists no pair (GY,GY) with G} C G{ C G1, G5 C G4 C Gy and G = GY.

a)MCIS G,

8 7 6 g T 6

Figure 6.2: Maximal common subgraphs. a) Maximal common induced sub-
graph (MCIS). b) maximal common edge subgraph (MCES). Edges that are part of
either the MCIS or the MCES are drawn in bold. The MCIS contains five vertices
and four edges, the MCES seven vertices and seven edges. Example taken from [193].

A graph G139 is a common induced subgraph of two graphs G; and G» if G2 is
isomorphic to one induced subgraph G of G as well as to one induced subgraph
GY of Go. A mazimal common induced subgraph (MCIS) of two given graphs
G171 and G is defined as the common induced subgraph G5 with the maximum
number of vertices. The mazimal common induced edge subgraph (MCES) is
defined as the common induced subgraph with the maximum number of edges
common to the two given graphs. Figure 6.2 gives an illustration of two graphs
(1 and G5 together with the MCIS and the MCES of both graphs. Here, the
MCIS of G; and G5 contains five vertices ((2,3,6,7,8) in G; and (1/,2",6',7',8")
in G2), whereas the MCES consists of seven vertices ((2,3,4,6,7,8) in G and
(1',2/,3°,4',6',7",8) in G3). The MCES is simply the common subgraph with
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the largest number of edges. The MCIS in Figure 6.2(a) is less intuitive. It
consists of the common subgraph with the largest number of vertices under the
constraint that every edge present in G; that is incident to a vertex contained
in the MCIS must also have a corresponding edge in the G5 and vice versa. For
instance, in the MCES vertex 4 in G; maps to vertex 3’ in Ga, because edges
(3,4), (4,5), and (4,7) in Gy correspond to edges (2/,3'), (3/,4"), and (3/,7")
in G4, respectively. In the MCIS, however, vertex 4 in G; does not match to
vertex 3’ in Ga, because the edge (2,4) incident to 4 in G; but does not have a
corresponding edge incident on vertex 3’ in Gs.

Most of all MCS algorithms are solving only the subgraph isomorphism
problem, i.e., they determine if one graph is contained within another graph,
but this relation is often not unique, because often there exist more than one
solution for this problem. In addition, a MCS between a pair of graphs is not
necessarily unique as there may be more than one MCS. Therefore, the MCS
problem for two given graphs is reformulated to the problem of finding all MCSs
for the two graphs:

Definition 26 (MCS problem). Given two graphs G1 = (Vi,Ey) and Gy =
(Va, E3) then the MCS problem searches for all MCSs H = (Vi, Ex) such
that H is isomorphic to Gy C Gy and G4y C Gs, and appropriate isomorphic
mappings f1: Vg — V1 and fo : Vg — V4 exist.
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Figure 6.3: The MCS problem. Interdependencies of the different graph repre-
sentations that are used to solve the MCS problem.

The MCS problem can be solved by transforming it into the clique prob-
lem (Definition 31), another N P-complete problem. In Figure 6.3 we give an
overview on the graph-theoretical interdependencies of the proposed solution
of the MCS problem. The transformation can be done constructing a product
graph (Definitions 30 and 29) using the adjacency properties of the graphs be-
ing compared [144]. Product graphs are also known as association graphs in the
image matching literature [184] and the compatibility graphs in the mathemat-
ical literature [23]. In the case of labeled graphs, e.g., protein graphs, the size
of the product graph is further restricted by the prerequisite that vertex and
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edge labels have to be considered. The product graph has the property that an
MCS between the graphs being compared is equivalent to a clique in the prod-
uct graph [144]. Therefore, MCESs in the original graphs correspond to cliques
in the edge product graph. A clique (Definition 44) is a maximal complete
subgraph of a graph in which every vertex is connected to every other vertex
and which is not contained in any other larger clique, also known in literature
as mazximal clique. A clique is often also referred to as a simple complete sub-
graph, but not necessarily a maximal complete subgraph. Here, a clique denotes
a maximal complete subgraph. A maximum clique is the largest clique present
in the graph. Since there can exist various maximal complete subgraphs, we are
not only interested in only the maximum clique, but in all maximal common
subgraphs. Biologically, the maximum clique does not necessarily represent the
best structure alignment. Therefore, we have to search all maximal cliques in
the product graph. So, we can transform the MCS problem for two GANGSTA
protein graphs into the clique problem for the edge product graph. All non-
compatible edge pairs were excluded at the outset of this transformation. In
the following, we describe how to find all MCESs between two protein graphs
by finding all maximal complete subgraphs with more than three vertices in the
edge product graph.

6.2.2 Transformation of the MCS Problem

The transformation of one algorithmic problem into another problem for which
better or faster algorithms exist is a widely used technique in computer science.
The MCS problem for two graphs can be reduced to the clique problem for a
single graph. Levi [144] proposed this for the calculation of MCISs. Here, we
use for the GANGSTA protein graphs the same description as Koch [126], who
has calculated the transformation also for MCESs.

Let us consider two undirected, labeled GANGSTA protein graphs PG, =
(A, Eq, fr, fr, fo, fo) and PGy = (Va, Ea, fr, fL, fo, fo) as defined in Defini-
tion 18 with n and m vertices, respectively. Certain parts of both graphs can be
mapped onto another, i.e., certain vertices and edges of graph PG4 are compat-
ible with certain vertices and edges of PG5. All possible compatibilities can be
stored in a graph, the so-called product graph or compatibility graph. Since in
the GA these compatibilities are directly encoded in the used objective function
(Equation 5.11) we have to define vertex and edge compatibility, respectively,
to encode the SSE alignment as used in the GA (see Section 5.2.2) into an exact
MCS search:

Definition 27 (Vertex Compatibility). A pair of vertices (uy,us) with u; € V4
and ug € Va is said to be compatible, if and only if uy and us satisfy both the SSE
type criterion (Definition 19) and the SSE length criterion (Definition 20).

For the edge compatibility we cannot use the contact number criterion (Def-
inition 21) and the minimal orientation mismatch criterion (Definition 22)
directly, because they are part of the optimized objective function:

Definition 28 (Edge Compatibility). Two edges, e1 = (u1,v1) € E1 and eq =
(ug,v9) € Es, are compatible, if and only if both edges e1 and ey satisfy the
following properties:

feler) — foles) < €D (6.1)
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where C'D is the mazximal allowed difference between numbers of residue contacts
between two SSEs. For x = fo(e1) and y = fo(e2) one of the following Boolean
expressions have to be true:

T=1 or
E#yYN(z=XVy=X) ,

i.e., two orientations are compatible if both orientations are equal or one of the
orientations is a mixzed orientation.

We can distinguish two types of product graphs: the vertex product graph and
the edge product graph. The vertex product graph can be used to search for
MCISs, whereas the edge product graph can be used to find MCESs.

Definition 29 (Vertex Product Graph). The vertex product graph Gy = PG1o,
PGy includes the vertex set Vi, C Vi x Vi, that is defined by all vertex pairs
(us,uj) with u; € Vi and 1 < i < n and uj € Vo and 1 < j < m that are
compatible.

An edge between two vertices uy,vy € Vy with uy = (uy,us) and vy =
(v1,v2) with uy,v1 € Vi and ug,ve € Vo exists, if uy # v1 and us # va, and if
the two edges ey = (u1,v1) € By in PGy and ey = (ug,v2) € Ey in PGy exist
with ey and eg being compatible, or if uy, v1 and us, vy are not adjacent in PG
and PGs, respectively.

If some vertices (u1,v1), ..., (ug, vx) are pairwise adjacent in the vertex product
graph, the subgraph in PG, induced by the vertices wq,. . .,uy is isomorphic to
the subgraph in PG5 induced by the vertices vy,. . .,vx. Consequently, the MCIS
corresponds to a maximal complete subgraph in the vertex product graph Gy,
as proven by Levi [144].

Hl h H2 k H3 " E4
Hl Ly Uy,
L ®
Gl H2 GE=G10 G2
L
E3 U2 V3

Figure 6.4: Edge product graph. We show two graphs G; and G2 as well as
the resulting edge product graph Gg. Edges that are part of the MCESs are drawn
in bold. For sake of clarify, all edges in G1 and G2 have identical labels and vertices
have only one label (H or E).

The definition of an edge product graph is analogous to the definition of the
vertex product graph:
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Definition 30 (Edge Product Graph). The edge product graph Gg = PG1 o,
PG4 includes the vertex set Vi = Eq X Ey consisting of all compatible edge pairs
(es,€) with 1 < i < |Eq1| and 1 < j < |Es| that have additionally compatible
vertices, i.e., for ey = (u1,v1) and ey = (ug,v) one of the following Boolean
expressions has to be true:

ui, Uy are compatible N wvy,ve are compatible or

uy,v2 are compatible A wvy,us are compatible .

There exists an edge between two vertices eg, fr € Vg with eg = (e1,e2), fr =
(f1,f2), e1, f1 € E1, and ea, fo € Es, if ex # f1 and ea # fa, and if either
(e1,f1) are connected via a vertex vy € Vi, (ea,f2) are connected via a vertex
vy € Vi, and vy and vy are compatible, or (e1, f1) and (es, f2) are not connected
over a common vertex in PGy and PGy, respectively.

Each vertex of the edge product graph corresponds to an edge pair (e, f) with
e € PGy, [ € PGo. If some vertices (e1, f1),-.-,(ex, fr) with 1 < k < |E4||Ey|
in the edge product graph are pairwise adjacent, then the subgraph in PGh,
represented by the edges ey,....ex, is isomorphic to the subgraph in PGs, rep-
resented by the edges f,...,fr. This isomorphism is only valid if the subgraphs
in PG, and PG5 contain at least four edges [126,239].

Figure 6.4 illustrates the edge product graph Gg of two graphs G; = (V1, E1)
and Gy = (Va, F3). The edge product graph consists of the three vertices
(u1,v1), (u1,v2), and (usz,v3) of compatible edge pairs from G; and G5. The
edges are compatible, because all edges and the corresponding vertices have
identical labels, for example, for the vertex (us,v3) in the edge product graph
the vertex Hy in G is compatible with Hj3 in Go and the vertex F3 in G is
compatible with £y in Ga. In the edge product graph, the vertex (u1,vs) is
adjacent to vertex (us,vs3), since the edges u; and ug are connected via vertex
H, in graph G, the edges vo and w3 are connected via Hs in graph Gs, and
H, in G and Hj in G5 are compatible. Consequently, the vertex (uq,v1) is not
adjacent to vertex (ug,vs), since the edges u; and ug are connected via vertex
H, in GG but the edges v and vs are not connected in graph Gs. It is also clear,
that vertex (ug,v1) does not exist in the edge product graph Gg, because the
vertices of edge us in G are not compatible with the vertices of edge v1 in Gs.
The largest clique in Gg is the subgraph consisting of the two vertices (u1, v2)
and (ug,vs3). This clique corresponds to the MCES of G; and G consisting of
the edges w1, us in G and the edges vs, v3 in Gs.

It can be argued that the MCES more adequately describes the structural
similarity between two protein graphs than the MCIS does, since the interactions
between residues and SSEs are mostly responsible for the overall 3D structure.
Surprisingly, most of the methods in bioinformatics or chemoinformatics are
searching for MCISs [13,92] instead of MCESs. Since we are basically interested
in MCESs, we consider for the rest of this section only the edge product graph.

6.2.3 The Clique Problem

The clique problem is important for a variety of other applications. There-
fore, a lot of algorithms have been developed to solve it for arbitrary graphs
having exponential runtime [17,20,221] or for special graphs with polynomial
runtime [77,89,107]. For many applications, like the protein graph matching
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defined for GANGSTA (see Section 5.2), all MCSs in two graphs are required,
i.e., all cliques in a graph have to be enumerated. Based on the fastest and most
widely used algorithm for the clique problem, the Bron-Kerbosch algorithm [31],
Koch et al. [125,126,129] developed a modified version that we use to search for
all MCESs of two GANGSTA protein graphs as defined in Definition 18. The
modified Bron-Kerbosch algorithm considers only those graphs that represent
connected components (Definition 10). Thus, runtimes are drastically reduced
making it possible to consider large protein graphs using reasonable amount of
time and space resources.

The clique problem is known to be N P-complete [76]. It can be defined like
in [126]:

Definition 31 (The Clique Problem). Given a graph G = (V,E) and 0 < k <
|V| then the cliqgue problem returns true, if there exists a complete subgraph
H = (V,E') of G with V! CV and E' C E of size k or larger, and false
otherwise.

The definition holds true for complete and maximal complete subgraphs, be-
cause if a complete subgraph exists there must exist at least one maximal
complete subgraph. Since we are interested in the more complex problem of
enumerating all cliques in a graph, we have to define the all-clique problem:

Definition 32 (All-Clique Problem). Given a graph G = (V, E) search for all
mazximal complete subgraphs H = (V' E') of G with V' CV and E' C E.

In contrast to the clique problem which is N P-complete the all-clique problem is
N P-hard, because the number of maximal complete subgraph is exponentially
high. The enumeration of the all-clique problem of a graph can be done by enu-
meration algorithms like the Bron-Kerbosch algorithm (BK-algorithm), which
recursively enumerates all cliques in a graph exactly once. The BK-algorithm
is reported as the fastest enumeration algorithm to solve the all-clique prob-
lem [126]. First, we shortly describe the original BK-algorithm [31] that serves
as basis for the subsequent work by Koch [126], which searches for maximal
connected common subgraphs.

The Original BK-Algorithm

The original BK-algorithm finds all cliques in a given graph G = (V, E) only
once. It is a recursive tree search using a branch-and-bound search strategy.
The search starts at the root vertex with the complete graph. The formation
of new vertices in the search tree involves selectively choosing graph vertices
that can form potential cliques. Generally, at each vertex of the search tree, the
algorithm defines three sets C, P, and S of graph vertices, such that:

e (' contains the set of vertices belonging to the currently potential clique.

e P contains all vertices, which are possible candidates for selection and
addition to C, because they are adjacent to the currently selected vertex
in C.

e S contains all vertices, which are adjacent to the currently selected vertex
in C, but which have already appeared in previous cliques and thus must
no longer be used for the completion of C'. This avoids finding cliques or
subgraphs of cliques that have been found previously.
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Table 6.1: BK-algorithm The variant of the Bron-Kerbosch algorithm [31] that
searches all cliques in a given graph, from [126].

BK (C, P, S)

> enumerates all cliques in an arbitrary graph G

C" set of vertices belonging to the current clique

P: set of vertices which can be added to C

S: set of vertices which are not allowed to be added to C
Nlul: set of vertices adjacent to vertex u in G

01 Let P be the set {uq,...,ux};
02 ifP=0and S=10

03 then CLIQUE_FOUND;

04 else fori< 1tok

05 do P« P\{u;};

06 P — P;

07 S’ — S,

08 N — {v e Vl{u;,v} € E};

09 BK (CU{u;},P"NN,S"NN);
10 S — SuU{u};

11 od;

12 fi;

The BK-algorithm (see Table 6.1) is defined by a subroutine BK that has three
sets as input parameters. The algorithm starts with the empty set C' and S.
Initially, P = V includes all vertices of the graph GG. The depth-first search is
done by forming the sets C, P, and S at each level of the search tree. If P
and S are empty, a clique is found and will be reported (line 03). Besides, each
vertex of P is considered in a loop (lines 04-11), where the arbitrarily chosen
vertex u; is eliminated from P. P and S are copied into P’ and S’ (lines 06-07)
for the recursion. The neighbors of vertex w; are generated and stored in the
set N (line 08). Then, vertex u; is added to C' and the subroutine call is done
with PN N and S’ N N as new parameters (line 09). BK enumerates without
duplication all vertex sets of all cliques of the edge product graph. Figure 6.5
shows the recursion tree for a graph G consisting of two maximal cliques given
by the vertices (1,2,3) and (1,2,4,5). The example is taken form [125]. The
vertices u € P are used in increasing order for the completion of C' . Here, the
cliques were found during the first steps, because the vertex 1 added first to C'
is a member of all cliques in G. The BK algorithm reports the two maximal
complete subgraphs just once.

The Modified BK-Algorithm

A clique in the edge product graph G g represents not only a pair of identical
MCSs but an automorphism between this pair.
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Graph G Recursion tree

Figure 6.5: The BK and the BKC algorithm. The recursion tree for the BK
and the BKC algorithm (right) for a Graph G (left). For the BK algorithm there
is no distinction of different edge types in G. For the BKC algorithm c-edges are
drawn as dotted lines. The edges of the recursion tree are labeled by vertex u added
to the current set C. The gray vertex is the root of the recursion tree. Paths from
the root to a white leaf vertex describe cliques in GG. For the BK algorithm all paths
from the root to a black leaf vertex describe complete subgraphs in GG, which are not
maximal, because they can be extended by at least on vertex in the non-empty set S.
For the BKC algorithm, only the paths consisting of solid edges have to be considered.
Here, paths from the root to a black leaf vertex describe complete subgraphs, which
are spanned by c-edges, but which are not maximal and therefore do not represent
cliques. Example is reproduced from [125].

Definition 33 (Automorphism). An automorphism of a graph is defined as
a graph isomorphism with itself, i.e., a mapping from the vertices of the given
graph G back to vertices of G such that the resulting graph is isomorphic with
G. The sets of automorphisms define a permutation group. The automorphism
groups of a graph characterize its symmetries.

Thus, even though each clique is reported just once, the BK-algorithm output
sets of cliques representing the same pair of identical substructures but the ver-
tices in the subgraphs just permutated. Analyzing the symmetries of subgraphs
and thereby reporting cliques from the same automorphism groups reduces the
size of the output and thereby reduces runtimes. Unfortunately, up to now there
is no efficient way to do this. Large automorphism groups exist for MCSs that
consist of different disconnected MCSs. When we search for connected MCSs
in a connected graph, the problem will be simplified such that the MCSs, which
consist of different disconnected subgraphs, must not be considered in the re-
cursion tree during search. For the realization of a BK-algorithm variant that
only considers maximal connected common subgraphs Koch [126] divided the
edges in the edge product graph G into c-edges (connected edges) and d-edges
(disconnected edges). They are labeled according to their division.

Definition 34 (c-Edges and d-Edges). Let (e1,ea) and (f1, f2) with (e, f1) €
Ey and (es, f2) € Ey be two edge pairs of the two graphs PGy and PGs repre-
senting two vertices in the edge product graph Gg. An edge of the edge product
graph G g between the vertices (e1,e2) and (f1, f2) is called c-edge if the edges
(e1, f1) in PGy and (e, f2) in PGy exhibit a common vertez, otherwise the edge
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is called d-edge.

Table 6.2: BKC-algorithm. An algorithm for the detection of all c-cliques based
on the BK-algorithm (Table 6.1).

BKC (C,P,D,\S)

> enumerates all c-cliques in an arbitrary graph G

C" set of vertices belonging to the current c-clique

P: set of vertices which can be added to C', because they are adjacent to the
current vertex u via a c-edge

D: set of vertices which cannot directly be added to C, because they

are adjacent to the current vertex via a d-edge

S: set of vertex which are not allowed to be added to C'

Nlul: set of adjacent vertices of vertex u in G

01 Let P be the set {uq,...,ur};

02 ifP=0and S=10

03 then CLIQUE_FOUND;

04 else fori«— 1tok

05 do P «— P\{u;};

06 P — P;

07 D' — D;

08 S — S

09 N — {v e Vl{u;,v} € E};

10 for all v € D’

11 do if v and u; are adjacent via c-edge
12 then P’ — P'U{v};

13 D’ — D'\{v};

14 fi;

15 od;

16 BKC (CU{u;},P"NN,D'NN,S"NN);
17 S — Su{u;};

18 od;

19 fi;

Consequently, we search in the edge product graph for so-called c-cliques. A
clique in the edge product graph specifies a connected common complete sub-
graph, if for each pair of vertices of the clique, there exists a path that consists
only of c-edges. Equivalently, if all d-edges are removed from the clique then
the resulting graph is still complete and connected. Therefore, we can define
c-cliques as follows:

Definition 35 (c-Clique). A clique in an edge product graph Gg that consists
of ¢- and d-edges is called a c-clique, if it is formed by c-edges such that it is
connected and acyclic.

Koch [126] showed that a c-clique in the edge product graph is a clique that
represents connected MCSs in the graphs PG; and PG, that form the edge
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product graph. Thus the all-clique problem can be reformulated into the all
c-clique problem:

Definition 36 (All-c-Clique Problem). Given an edge product graph Gg =
(Vi, Eg) with Eg = CUD. Let C be the set of all c-edges in Gg, and D the set
of all d-edges in G. Then the all c-clique problem can be defined as to search
all mazimal complete subgraphs G’z whose c-edges span the graph G'p.

To solve the all-c-clique problem the BK-algorithm (Table 6.1) has to be mod-
ified (see Table 6.2) now having four sets as parameters. The original set P is
now divided into two sets P and D such that P contains only vertices, which are
adjacent to at least one vertex of C via a c-edge, and D contains only vertices,
which are not adjacent to any vertex in C' via a c-edge. As mentioned before,
C representing the current clique is extended only by those vertices u € P that
are adjacent to at least one vertex of C' via a c-edge in G. If a vertex u € P is
selected, the vertices from D are checked whether they are adjacent to vertex
u via a c-edge (lines 10-15). In this case, this vertex is eliminated from D and
added to P (lines 13-14). In the recursion step the new set D is intersected with
all the adjacent vertices of u added to the current clique C' in the previous step.
A c-clique is reported if P and S are empty, because if P is empty C cannot
be extended, and if S is empty no vertex set that contains C' is reported so far.
The BKC algorithm cannot initially be started with the empty set C. Since
each vertex of P has to be adjacent to some vertex in C' by some c-edge, the P
set would be also empty and leading the algorithm to its termination without
starting. Instead, the BKC-algorithm can be started for each vertex u € Gg
with the parameter list (C' = {u}, P, D,S = ). Figure 6.5 shows the decrease
of the number of steps in the recursion tree by solving the all-c-clique problem,
because only the paths were traversed consisting of solid edges.

6.3 The ExactGANGSTA Method

The ExactGANGSTA method has two proteins as inputs that are represented
as GANGSTA protein graphs (see Definition 18 and Figure 6.1), PG; and PG,.
Since the BKC algorithm introduced in the last section works only on connected
graphs, we first have to determine all connected components (see Definition 10)
of the two protein graphs PG and PG5 . The resulting connected components
are called folding graphs and are denoted by FG’} with 1 < i < ny for PG4
and FG? with 1 < j < ny for PGs, where nqi,no representing the number of
connected components in PG and PG4, respectively. We have to build nq X nqy
edge product graphs Gf; according to Definition 30 with i € (1,...,n1) and
j € (1,...,n2), because we want to determine all maximal common subgraphs
between all connected components of each graph. Each edge product graph
G7; is built of the constituting folding graphs F' Gl and F G? from PG and

PG5. Then, for each Gf; the BKC algorithm searches all cliques C,ij with
1 <k <l;j and [;; the number of cliques for edge product graph G7;. It may
be desirable to consider only larger cliques, as there are often many cliques of
small sizes that do not convey any great structural significance. The method
finds all cliques located from size two upwards, i.e., any common subgraphs
containing at least two vertices. If a minimum clique size of, for instance,
six has been specified, then no cliques of size less than six will be output.
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To build a maximal GANGSTA-SSE-alignment defined in Definition 23, i.e., a
GANGSTA-SSE-alignment with the maximal possible number of aligned SSEs,
the cliques have to be transformed into the maximal common subgraphs within
their constituting folding graphs. Each clique can also be interpreted as a sub-
alignment or a sub-mapping:

Definition 37 (Sub-Alignment). A sub-alignment is defined as a clique C,ij C
G5 in the edge product graph Gf; that represents the two mazimal common
subgraphs FG}t = (V/', Ej') € FG} C PGy and FG}? = (V[*,E?) C FG? C
PGy. Then there ezist a bijective mapping ms : V/* — Vj’2 with the property
that, for every vf € Vj’z, there is exactly one vi* € V' such that mg(vi) = vf.

a)
A1 A2 A3 A4 A5
B1B2B3)Y {( B4B5 B6 B7
c)

A1 A2 A3 A4 A5 A6 A7
B1 B2 B3 B4 B5B7 B6

b) A1 A2 A5 A3 Ad A6 A7
A1 A2 A3 B1 B2 B3 B5B4B7B6
B1B2B3 Al A2 A3 A4 A5
] B1 B2 B3 B6 B7
A1 A2 A5 A6 A7
B1B2B3 B7 B6
A3 A4 oA4AS
B5 B4 B6 B7
®
Ad A5
B4 B5

Figure 6.6: The ExactGANGSTA method: an overview. a) Connected
components of two protein graphs A and B are illustrated in ellipses (only the vertices
representing the SSEs are shown). SSEs are numbered from the N-to C-terminus. b)
Consistency graph: Each vertex represents one sub-alignment. An edge is drawn if
two sub-alignments are consistent. Cliques are indicated by different colors. ¢) Each
clique represents one possible maximal GANGSTA-SSE alignment.

Then, the task is to generate all maximal GANGSTA-SSE-alignments by com-
bining all sub-alignments. This can be done by searching cliques in a consistency
graph defined for all sub-alignments. Therefore, we have to define first the con-
sistency of two sub-alignments:

Definition 38 (Sub-Alignment Consistency). Given two sub-alignments con-
sisting of the two mazimal common subgraphs FG} = (V/', El') C FG! C PG,
and FG;2 = (V'J-’?,Ef) - FG? C PGy for the first sub-alignment and FG}* =
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(/L E{) € FGL € PG and FG2 = (V/,E{?) C FG} C PGy for the
second sub-alignment. Two sub-alignments are said to be consistent if and only
if there exists bijective mapping m, : V{1 UVt — Vj’2 u vy

Note that, for example, the two maximal common subgraphs FG}!' and FG/!
can come for (i = k) from the same connected component FG} = FG}. in PG.
Afterwards, we can calculate the pairwise consistencies for all sub-alignments
and store these consistencies in the so-called consistency graph:

Definition 39 (Consistency Graph). A consistency graph G, includes the ver-
tex set V. consisting of all sub-alignments for the two protein graphs PGy and
PGy, An edge between two vertices vy, vy € Ve with 1 # j exists if the two
sub-alignments v;, v; are consistent according to Definition 38.

Then, a maximal GANGSTA-SSE-alignment is represented as a clique in the
consistency graph G, for the two protein graphs PGy, for the source protein
and PGyqrg for the target protein and additional gaps for not aligned vertices
from PGy

Definition 40 (Maximal GANGSTA-SSE-Alignment). A maximal GANGSTA-
SSE'alignment fO’/‘ PGSTC = (VSTC;ESTC) and PGtarg = (V;targ;Etarg) consists
of a maximal complete subgraph CL = (Vor,Ecr) C G. = (V, E.) in the con-
sistency graph for the PG and PGiurg and, additionally, the gap mapping

mg : Vire \ Ver — '

All maximal GANGSTA-SSE-alignments can be found solving the all-clique
problem for the consistency graph using the BK-algorithm (see Table 6.1). Every
maximal GANGSTA-SSE-alignment is evaluated using the objective function
(Equation 5.11). Then, the best n alignments according to the objective function
are passed on to the next level, the contact map alignment level, like shown in
Figure 6.1. From here on, the ExactGANGSTA method is identical to the
GANGSTA method as described in the previous chapter.

Figure 6.6 gives an illustration of the ExactGANGSTA method. Here,
the first protein graph A contains seven vertices and two connected compo-
nents, (Al, A2, A3, A4, A5) and (A6, A7), and the second protein graph con-
sists of seven SSEs in three connected components, (B1, B2, B3), (B4, A5), and
(B6, BT) (Figure 6.6a). Using the BKC-algorithm we get six different sub-
alignments representing the vertices of the consistency graph. For example,
the sub-alignment (A1, A2, A5) — (B1, B2, B3) is consistent with (A3, A4) —
(B5, B4), because there exists a bijective mapping of m. : {Al, A2, A5} U
{A3, A4} — {B1,B2,B3} U{B4, B5}. Then, a clique in the consistency graph
represents a maximal GANGSTA-SSE-alignment. The consistency graph in Fig-
ure 6.6b contains three cliques of minimum size 2. The corresponding maximal
GANGSTA-SSE-alignments are shown in Figure 6.6c¢.

6.4 Results

The ExactGANGSTA method is together with the BK and the BKC algorithm
part of the GANGSTA C++ implementation. Here, we report on results ob-
tained by running ExactGANGSTA in comparison to the GA for the second
stage of the GANGSTA method (see Figure 6.1). Additionally, we analyze some
general properties of protein graphs and product graphs on different datasets.
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6.4.1 Protein Graph Properties
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Figure 6.7: Protein graph vertex distribution. Columns give the number of
vertices of different sizes in protein graphs for ASTRAL Scop40 dataset. SSEs defined
by Stride [74]

To analyse general properties of protein graphs we use two different graph-
theoretical parameters. First of all, there is the size the graph G = (V, E), given
by the number of its vertices |V| and edges |E|. Second, there is the density of
a graph given by the ratio of the number of edges and the number of vertices:

Definition 41 (Graph Density). The graph density for an undirected graph

G = (V,E) is defined as D = % , where |E| denotes the number of edges
and |V| the number of vertices (this definition only works if |V| > 1; we define

D tobe 0O if |[V|<1).

An undirected graph can have at most |V|(|V| — 1)/2 edges, and hence the
maximal density is 1. Graph G is a sparse graph, when |E| ~ |V|, and G is
called dense if |E| ~ [V2| [187]. Graphs are commoly called dense, if D > 0.5.

Table 6.3: Protein graph properties. We show the maximal vertex degree,
the maximal number of edges, and the mean graph density (Definiton 41) for the five
contact types for all domains of the ASTRAL Scop40 dataset.

contact type max vertex degree max |E| D
ca 8 235 0.57
chb 9 273 0.62
all 10 437 0.73
vor 6 208 0.50
vdW 6 182 0.43

We have investigated the ASTRAL Scop40 dataset (see Appendix D.1) using
Stride [74] for SSE identification and the five different contact types defined
in Section 2.7.3. The results are shown in Table 6.3 and Figures 6.7 and 6.8.
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Figure 6.8: Protein graph edge distributions. Stacked columns for the five
contact types as defined in Section 2.7.3. The number of edges in protein graphs is
shown for edge sizes ranging from 0 to 110 edges per protein graph for domains of the
ASTRAL Scop40 dataset (see Appendix D.1).

Protein graphs are limited in their size by nature. Single protein chains in the
PDB [22] contain at most about 1000 SSEs. Here, we used protein domain def-
initions from SCOP [169]. Protein domains can be defined as compact portions
of proteins, i.e., they can span whole protein chains or only parts of it. The ver-
tices of the protein graphs for the ASTRAL Scop40 dataset represent the SSEs
in the domains. The number of SSEs varies between 1 and 78 vertices, with a
single peak at 6, and a long tail (Figure 6.7). We have excluded all domains
from the ASTRAL SCOP40 datasets that showed no SSEs. The majority of the
graphs have between 7 and 12 vertices; only few very large domains have over 30
SSEs. The maximal vertex degree, i.e. the number of incident edges, is 10. The
edge distributions for the different contact types are given in Figure 6.8. Despite
the ca contact type defines much more contacts than the all contact type, all
contacts define more graphs with more edges. This contact type exhibits also
the graph with the highest number of vertices, 437, for the domain lmukA_ a
RNA-dependent RNA polymerase, containing 1256 residues. The graph density
is for all contact types relatively high, but most of the graphs have about 15 to
25 edges.

6.4.2 ExactGANGSTA versus GA

We compared the quality of pairwise GANGSTA alignments using the two SSE
alignment methods, GA and ExactGANGSTA, for 70 pairwise alignments from
the Fischer dataset [70] as described in the Appendix D.9. We considered for
each reference structure the first target structure in Table D.4. The alignments
were produced using the ca contact type and Stride [74] for SSE assignment.
Only for 35 of the 70 pairwise structure alignment the ExactGANGSTA method
could find a solution within 15 hours (44,000s). The results for these 35 suc-
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Table 6.4: Comparison GA versus ExactGANGSTA for the 35 suc-
cessful pairwise alignments of the Fischer dataset [70] using ca con-
tact type. We show the mean values for the objective function (Equation 5.11),
the GANGSTA score (Equation 5.16), and the runtime. Additionally, for the Ex-
actGANGSTA method the mean number of cliques and the mean number of SSE
alignments is shown.

alignment obj GANGSTA  runtime cliques alignments
type score [s]
GA 0.8116 0.0973 1.57 - -
ExactGA  0.8207 0.1077 2,207.89 118,866 105,423

cessful pairwise alignments are shown in Table 6.4 and Figures 6.9 and 6.10.
As expected, ExactGANGSTA found for these alignments objective function
values (Equation 5.11) that are better or equal to the values reported from the
GA method demonstrating that the implementation of the ExactGANGSTA
method is correct. In the GANGSTA method (see Section 5.2.3 and Figure 6.1)
the objective function is the criterion to rank the best SSE alignments from the
first level of the GANGSTA method. The best m SSE alignments according to
the objective function are then evaluated in the second step of the hierarchy,
the contact map overlap optimization step. Since the objective function is only
a crude but fast heuristic for the quality of a GANGSTA structure alignment
it shows imperfect correlation with the GANGSTA score (Equation 5.16) and
the contact map overlap (Equation 17), i.e., the best SSE alignment according
the objective function does not have to correspond to the best SSE alignment
according to the GANGSTA score. For five of the 35 successful alignments,
the ExactGANGSTA method reports SSE alignments corresponding to lower
GANGSTA scores than the original GA method. Totally, the mean value of the
GANGSTA scores is slightly worse for the Exact GANGSTA method than for the
GA method. Within the GANGSTA hierarchy only the best m SSE alignments
according to the objective function are further processed, i.e., the GA method
can find SSE alignments corresponding to better GANGSTA score values but
lower or equal objective function values than the SSE alignments found from the
ExactGANGSTA method. A reason for this could be that we have designed the
genetic operators of the original GA method to produce individuals that cover
a wide range of the whole search space, i.e., they produce very distant, but still
reasonable SSE alignments, whereas the Exact GANGSTA method only reports
SSE alignments that correspond to the exact graph-theoretical solution. The
exact graph-theoretic solution itself must not correspond to the best solution
in terms of RMSD or contact map overlap that are the mean ingredients of the
GANGSTA score calculation after the second stage of the GANGSTA method.

The runtime of both methods relative to the edge size of the product graph is
illustrated in Figure 6.11. All runtime experiments were done on a Linux AMD
Opteron 242 system, using one thread for the entire program including all initial-
izations. For several pairwise alignments the ExactGANGSTA method found
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Table 6.5: Product graph properties. Comparison GA versus ExactGANGSTA
for all 70 pairwise alignment tasks of the Fischer dataset [70]. The maz, mean, and
min numbers for the vertex size (|V|) and edge size(|E|), respectively; mean D gives
the mean value of the product graph density.

property | value
min |V| 4
mean |V| | 3,567
maz |V| | 9,015
min |E| 2
mean |E| | 1,757
maz |E| | 9,015
mean D 0.44

the best alignment according to the objective function in reasonable time: for
product graphs of size 1,000 or smaller it clearly outperforms the GA method,
and for product graphs of sizes of at most 10,000 vertices the Exact GANGSTA
method is able to find the best alignment within 100 seconds. While the GA
method runtime is nearly constant or slowly increasing for increasing problem
sizes, the runtime for the Exact GANGSTA method increases nearly exponen-
tially with respect to the logarithmic increase of the edge number. For large
problem cases the GA method outperforms the exact solution drastically in run-
time. The more the number of vertices and edges in the two input protein graphs
increases, the more the number of vertices and edges in the resulting product
graphs grows, resulting in runtime that exceed the range of 15 hours. The prop-
erties of the product graphs for all 70 alignment tasks are given in Table 6.5.
Their size given as the number of vertices varies from 4 to 9,015 with a mean
of 3,567 vertices. Edge product graphs for protein domains can get very large,
because protein graphs are highly dense (see Table 6.3 and Figure 6.8), i.e.,
that they have often a large number of edges. As the size of the product graphs
increases, the number of cliques and valid maximal GANGSTA-SSE-alignments
(Definition 40) is also increasing (see Figure 6.12).

All protein graphs of the 35 successful pairwise alignments consisted of at
most three connected components (Definition 10). In all these cases, the input
protein graphs consisted only of one large connected component and one or
two connected components of only a single vertex. Therefore, the consistency
graph (see Figure 6.6) had only to combine subalignments from a single pair
of connected components from each protein graph. The reason for this is that
connected components of size one will not be used in the edge product graph,
because there exist no edges.

Figure 6.12 shows the number of cliques and alignments the Exact GANGSTA
method found for the 35 successful pairwise structure alignments. Since the
different cliques can contain vertex sets from the same automorphism group
(Definition 33), here, the number of unique optimal alignments is slightly lower
than the number of cliques in the product graph (see Table 6.4 and Figure 6.12).
Every exact alignment, also called a maximal GANGSTA-SSE-alignment (Defi-
nition 40), of the Exact GANGSTA method represents an exact solution for the
MCS problem (see also Figure 6.6). The high number of exact solutions is due to
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the relative abstract representation of proteins using protein graphs with SSEs
as vertices and contacts between SSEs as edges and some additional constraints,
so that the search space of valid SSE alignments combinatorial explodes. This
is also another reason for the high runtime of the ExactGANGSTA method,
because for all the maximal GANGSTA-SSE-alignments the objective function
value has to be calculated to rank the alignments and to determine the m best
alignments for the second stage of the GANGSTA method.

6.5 Discussion

We presented an exact graph-theoretical method called Exact GANGSTA, which
searches maximal common substructures of two protein structures by solving the
MCS problem for two GANGSTA protein graphs. The method solves the MCS
problem by transforming it into the maximal clique search problem in edge
product graphs. The resulting maximal common subgraphs are transformed
into valid SSE alignments afterwards. Similar methods have been proposed
before for protein structure alignment [125,162] but either they have used the
vertex product graph only [162] or they searched only for the presence of lo-
cal structural motifs [125] without constructing a valid structural alignment in
3D. The ExactGANGSTA method is the first implementation of an algorithm
to find the exact solution for the MCS problem in protein graphs providing
global SSE mappings and using the edge product graph. For the application in
protein structure alignment this approach is able to detect the exact optimal
solution for arbitrary pairs of protein structures given sufficient runtime. The
heuristic solution for the same graph-theoretical problem, the GA method, as
described in the previous chapter, runs in nearly constant runtime for all prob-
lem sizes and produces SSE alignments with objective function values that are
for most of the problem instances equal or slightly worse than the exact solutions
from the ExactGANGSTA method. As the size of the protein graphs and the
considered product graphs increases, the GA method clearly outperforms the
Exact GANGSTA method in terms of runtime. Therefore, the ExactGANGSTA
method will only be applicable to small or medium range problem instances.
For those problem instances, the ExactGANGSTA method outperforms the GA
method in runtime and is therefore the better choice as search algorithm. It may
be possible to significantly improve the performance of the ExactGANGSTA
method by incorporating more constraints on the product graph generation or
on pruning the search tree of the BKC algorithm. Additionally, the combinato-
rial large number of valid exact solutions could be reduced. These possibilities
remain for future work on the algorithm, as does its application to more diffi-
cult problem instances. The demonstration of the efficiency of the heuristic GA
algorithm with its ability to ignore the sequence order of SSEs gives it immense
advantages in routine scanning of protein structure databases. Therefore, the
GA method within the overall GANGSTA structure alignment method pro-
vides a unique tool for the investigation of non-trivial structural resemblances
in proteins, as demonstrated in the previous chapter.
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