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Abstract

With the goal of full ab initio treatment of the coupled electron-nuclear system, ex-

posed to a time-dependent external potential, we present an exact factorization of the

complete wavefunction, into a nuclear wavefunction and an electronic wavefunction. Ex-

act equations for these wavefunctions are deduced that lead to rigorous definitions of a

time-dependent potential energy surface (TDPES) and a time-dependent vector poten-

tial. This representation of the correlated electron-nuclear many-body problem is very

appealing as the wavefunction satisfying the exact nuclear equation of motion leads to an

N-body density and an N-body current density which reproduce the true nuclear N-body

density and current density obtained from the full wavefunction of the coupled electron-

nuclear system. The time evolution of the nuclear wavefunction, on the other hand, is

completely determined by the TDPES and the time-dependent vector potential. More-

over, these potentials are unique up to within a gauge transformation. In other words, if

one wants a time-dependent Schrödinger equation whose solution yields the true nuclear

N-body density and current density, then the potentials appearing in this equation are

(up to within a gauge transformation) uniquely given by the TDPES and time-dependent

vector potential; there is no other choice. We investigate the relationship of this exact

factorization to the traditional Born-Oppenheimer expansion. We furthermore study

the exact TDPES in two topically demanding situations: molecules in strong fields and

splitting of a nuclear wave-packet at avoided crossings of Born-Oppenheimer potential

energy surfaces. We show how the TDPES for the H+
2 molecular ion exposed to a laser

field helps to identify different mechanisms of dissociation. In addition, we show that

the TDPES exhibits a dynamical step that bridges piecewise adiabatic shapes when

the nuclear wave-packet splits at the avoided crossing of two Born-Oppenheimer poten-

tial energy surfaces. These studies provide us with the essential elements (fundamental

equations of motion and insights of the coupling potentials) for making approximations,

especially for the systematic development of (semi-)classical approximations. Starting

from the exact equations, we develop a mixed quantum-classical scheme to treat the cou-

pled electron-nuclear dynamics, by taking the classical limit of the nuclear motion. We

evaluate the performance of the approach in comparison with numerically exact results

and provide a detailed analysis of the classical limit of the nuclear motion.

Revisiting the exact decomposition in the static case [1], we investigate the exact static

potential energy surfaces in situations in which the corresponding adiabatic potential

energy surfaces are strongly coupled due to conical intersections or avoided crossings.

We show that in those situations the exact static surfaces have the shape of diabatic

surfaces.
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Chapter 1

Introduction

The concept of non-adiabatic transition [2–7] has been widely used to describe dynamical

processes. This concept has its root in the adiabatic treatment of dynamical processes

in which the complete system is approximately decomposed to two parts based on the

assumption that part of the system usually changes on a much shorter time-scale than

the rest and hence can be assumed to adjust instantaneously to the adiabatic changes of

the rest. “The fast part” of the system, within the adiabatic approximation, depends on

“the rest” only via an environmental parameter that represents the adiabatically slow

changes of “the rest” compare to the time-scale in which “the fast part” changes. This

implies that “the fast part” is treated independently for each environmental parameter

that represents a specific configuration of “the rest”. However, this ideal picture may

break down in different situations in which the coupling between “the fast part” and “the

rest” is more than an adiabatic coupling via a parameter. This is when the concepts

such as “non-adiabatic coupling” (NAC) and “non-adiabatic transition” between the

adiabatic states come to remedy the adiabatic approximation and describe the dynamical

processes. For example, in the Born-Oppenheimer (BO) approximation [8], the fast

motion of light electrons is separated from the much slower motion of heavy nuclei and

the Hamiltonian that describes the electronic motion has a parametric dependence on

the nuclear configuration. This is justified by assuming that the electrons remain in

their instantaneous eigenstate as the nuclear rearrangement occurs adiabatically slowly.

This allows one to visualize a molecule or solid as a set of nuclei moving on a single

potential energy surface (PES) generated by the electrons in a given eigenstate. However,

the adiabatic theorem also requires the electronic eigenvalue to be well separated from

the rest of its Hamiltonian’s spectrum by a gap. This condition, as a matter of fact,

1



Chapter 1. Introduction 2

happens to be violated often in physics, chemistry and biology leading to a plethora

of fascinating phenomena that lie beyond the Born-Oppenheimer approximation. The

interplay of electronic and nuclear degrees of freedom in solids, i.e., electron-phonon

coupling, may mediate electron pairing leading to superconductivity. Strong laser fields

can induce strong coupling between the electronic and nuclear motions in molecules,

leading to nonlinear processes such as photo-induced molecular dissociation, charge-

resonance enhanced ionization, electron-hole migration after photo-excitation [9–13].

Some of the most fascinating and challenging molecular processes in femto-chemistry

occur in the regime where the BO approximation is not valid, e.g., ultrafast nuclear

motion through conical intersections [4], radiationless relaxation of excited electronic

states [14, 15], intra- and inter-molecular electron and proton transfer [6, 7, 16], to name

a few. Many of the very exciting biological processes also fall beyond the adiabatic

approximation. The process of vision, for example, begins with the photoisomerization

of retinal, i.e, via absorption of a photon the 11-cis retinal chromophore is excited to a

higher electronic state and isomerizes to the all-trans state.

The theoretical description of electron-nuclear correlations in molecules and solids is a

major challenge. A numerically accurate solution of the time-dependent Schrödinger

equation provides the complete information on the system, but it is only tractable for

very small molecules, such as H+
2 and lacks the intuitive picture that PESs can provide.

The standard way of studying and interpreting ”non-adiabatic” processes is to expand

the full wavefunction in terms of the BO states. Within this expansion, non-adiabatic

processes can be viewed as a nuclear wave packet with contributions on several electronic

states, coupled through the non-adiabatic coupling terms which in turn induce transi-

tions between the electronic states. This, in principle, provides an exact description of

the non-adiabatic processes. In practice, however, one is mostly restricted to the use of

only a few electronic states, and even then it is applicable only to systems with a few

nuclear degrees of freedom.

In order to describe non-adiabatic dynamical processes in systems with several nuclear

degrees of freedom, approximations are inevitable to make the calculations feasible. Clas-

sical or semi-classical treatments of the nuclear motion that is coupled, non-adiabatically,

to the electronic motion are among the most promising practical approaches, especially
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to treat large systems with many nuclear degrees of freedom. In developing such approx-

imations, several complications arise. The main concern is the separation of the elec-

tronic and nuclear motions and how to account for the effect of electronic non-adiabatic

transitions on the classical nuclei.

As the central idea of this work, we propose a rigorous separation of electronic and

nuclear motion by introducing an exact factorization of the full electron-nuclear wave-

function and derive formally exact equations for the nuclear and electronic wavefunctions

that lead to rigorous definitions of a time-dependent potential energy surface (TDPES)

and a time-dependent vector potential [17, 18]. In Chapter (2) of this work, we present

a detailed description of the formalism (Section 2.2), including a full derivation of the

equations that the electronic and nuclear wavefunctions satisfy and demonstrate the

relationship of this exact factorization to the traditional BO expansion.

Our work here is a natural extension of the work of Hunter [19], in which an exact

decomposition was developed for the static problem. Chapter (3) of this thesis serves to

review the exact factorization for the static case and present some important features

of the exact static PESs that have not been shown before.

The novel concepts of an exact TDPES and exact time-dependent vector potential are

the key elements of the equation that governs the nuclear dynamics. In Chapter (4), we

present a detailed study of the TDPES in various situations [18, 20, 21].

The exact splitting of electronic and nuclear degrees of freedom lends itself as a rigorous

starting point for making approximations, especially for the systematic development of

(semi)classical approximations. As a first step on this path, in Chapter (4), we present

a mixed quantum-classical (MQC) scheme to treat the correlated electron-nuclear dy-

namics [22]. The performance of the scheme as well as the validity of the classical

approximation are examined numerically.





Chapter 2

Exact Factorization of the

Electron-Nuclear Wave-Function

A multicomponent system of Ne electrons and Nn nuclei out of equilibrium is in, non-

relativistic quantum mechanics, described by the time-dependent Schrödinger equation

(TDSE),

Ĥ|Ψ >= i~∂t|Ψ > . (2.1)

It this chapter, we show that the complete electron-nuclear wavefunction for the com-

bined system of electrons and nuclei evolving in a time-dependent external potential

can be exactly factorized into an electronic wavefunction and a nuclear wavefunction.

The concepts of an exact TDPES and exact time-dependent vector potential emerge

naturally from the formalism. Here we present a detailed description of the formalism

(Section 2.2), including a full derivation of the equations that the electronic and nuclear

wavefunctions satisfy. Then we analyse features of the exact electron-nuclear coupling

terms in general (Section 2.3), and demonstrate the relationship of this exact factor-

ization to the traditional BO expansion. We close the chapter by discussing the exact

factorization for the static case. The following section serves to set up the problem at

hand, and review the BO approximation.

2.1 The Hamiltonian

In this section we introduce the notation and define the Hamiltonian for the combined

system of electrons and nuclei. The coordinates of the Ne electrons are collectively de-

noted by r s where r ≡ {rj} and s ≡ {sj}, j = 1...Ne, represent electronic spatial and spin

5
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coordinates, respectively. The Nn nuclei have masses M1...MNn and charges Z1...ZNn

and coordinates collectively denoted by R σ where R ≡ {Rα} and σ ≡ {σα}, α = 1...Nn,

represent nuclear spatial and spin coordinates, respectively. Furthermore, we consider

the system is under the influence of some time-dependent external scalar field. The

system is described, non-relativistically, by the Hamiltonian

Ĥ = ĤBO(r,R) + V̂ ext
e (r, t) + T̂n(R) + V̂ ext

n (R, t) , (2.2)

where ĤBO(r,R) is the familiar BO electronic Hamiltonian,

ĤBO(r,R) = T̂e(r) + Ŵee(r) + Ŵen(r,R) + Ŵnn(R). (2.3)

The subscripts “e” and “n” refer to electrons and nuclei, respectively, and atomic units

are used throughout (e2 = ~ = me = 1). Here

T̂e = −
Ne∑
j=1

1

2
∇2
j (2.4)

and

T̂n = −
Nn∑
α=1

1

2Mα
∇2
α (2.5)

denote the kinetic-energy operators of the electrons and nuclei, respectively. All external

scalar potentials on the system (e.g. electric fields) are represented by

V̂ ext
n =

Nn∑
α

vextn (Rα, t) , (2.6)

and

V̂ ext
e =

Ne∑
j

vexte (rj , t). (2.7)

The particle-particle Coulomb interactions have the form:

Ŵnn =
1

2

Nn∑
α,β=1
α 6=β

ZαZβ
|Rα −Rβ|

, (2.8)

Ŵee =
1

2

Ne∑
i,j=1
i 6=j

1

|ri − rj |
, (2.9)
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Ŵen = −
Ne∑
j

Nn∑
α

Zα
|rj −Rα|

. (2.10)

The quantum mechanical equation of motion of such a system is given by the TDSE:

ĤΨ(r s,R σ, t) = i∂tΨ(r s,R σ, t) (2.11)

The full electron-nuclear wavefunction, Ψ(r s,R σ, t), that satisfies the TDSE (2.11),

have been given for very small systems like H+
2 [23, 24]. The analysis of the full time-

dependent wavefunction provides important clues to understand the dynamical behavior

of the system, and includes quantum features of the nuclear dynamics (e.g. zero-point

energies, tunneling, and interference). However, knowing the full wavefunction lacks the

intuitive picture that the PES can provide.

2.1.1 The Born-Oppenheimer Approximation

The BO approximation is among the most basic approximations in the quantum theory

of molecules and solids. Consider the case when there is no external time-dependence in

the Hamiltonian. The BO approximation relies on the fact that electrons typically move

much faster than the nuclei; on the timescale of nuclear motion, the electrons “instantly”

adjust to remain on the instantaneous eigenstate. This “adiabatic approximation” al-

lows us to visualize a molecule or solid as a set of nuclei moving on the PES generated by

the electrons in a specific electronic eigenstate. The electronic Hamiltonian HBO(r,R)

depends parametrically on the nuclear positions, via the electron-nuclear Coulomb in-

teraction. That is, the stationary electronic Schrödinger equation is solved for each fixed

nuclear configuration R σ,

ĤBO(R σ)φjR σ(r s) = εjBO(R σ)φjR σ(r s) (2.12)

yielding (R σ)-dependent eigenvalues εjBO(R σ) and eigenfunctions φjR σ. The total

molecular wavefunction, ΨBO(R σ, r s), is then approximated as a product of the rel-

evant electronic state, φjR σ(r s), and a nuclear wavefunction χBOjν (R σ) satisfying the

corresponding BO nuclear Schrödinger equation(
Nn∑
α=1

1

2Mα
(−i∇α + FBOjj,α(R σ))2 + εjGBO(R σ)

)
χBOjν (R σ) = EχBOjν (R σ) (2.13)
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where

εjGBO(R σ) = εjBO(R σ) +
∑
s

〈
φjR σ

∣∣∣∑
α

(−i∇α −FBOjj,α)2

2Mα

∣∣∣φjR σ

〉
r

(2.14)

and

FBOjj,α(R σ) = −i
∑
s

〈φjR σ|∇αφ
j
R σ〉r , (2.15)

where 〈..|..|..〉r denotes an inner product over all spatial electronic variables only. The in-

dex ν of the nuclear wave function labels the vibrational/rotational eigenstate on the jth

PES. The PES, εjGBO, defined by (2.14) is called the generalized BOPES (GBOPES).

The second term on the right of Eq. (2.14) is often referred to as the “BO diagonal

correction” or “adiabatic correction”. However, what is commonly referred to as the

BOPES is εjBO(R σ). The potential energy surface εjBO(R σ) is enormously impor-

tant in molecular physics and quantum chemistry. It is a central tool in the analysis

and interpretation of molecular absorption and emission spectra, experiments involving

nuclear motion, mechanisms of dissociation, energy-transfer, for example. The nuclear

dynamics on a single PES (sometimes called “BO dynamics”) is obtained by using the

Hamiltonian on the left of Eq. (2.13) in a time-dependent Schrödinger equation for a

time-dependent nuclear wavefunction χ(R σ, t). This corresponds to approximating the

total molecular wavefunction by a time-dependent nuclear wavepacket multiplied with

a static electronic BO state:

Ψ(r s,R σ, t) ≈ χBO(R σ, t)φjR σ(r s). (2.16)

The vector potential FBOjj,α(R σ), especially the Berry phase associated with it,
∮
dR ·

FBOjj,α(R σ), captures the essential features of the behavior of a system with conical

intersections. Inclusion of FBOjj,α(R σ) can significantly shift and re-order the energy

eigenvalues of molecular roto-vibrational spectra, as well as scattering cross-sections

(although sometimes undetected in experiments that measure integrated quantities, due

to cancellations between paths, see e.g. Refs. [25–29] and references within).

It appears from the above discussion that in the traditional treatment of molecules and

solids the concepts of the PES and the Berry phase arise as a consequence of the BO

approximation. Some of the most fascinating phenomena of condensed-matter physics,

like superconductivity, however, appear in the regime where the BO approximation is

not valid; likewise typical photodynamical processes in molecules require going beyond
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the single-electronic-surface picture. This raises the question: If one were to solve the

Schrödinger equation of the full electron-nuclear Hamiltonian exactly (i.e. beyond the

BO approximation) do the Berry phase and the potential energy surface survive, with a

possibly modified form, and if so, how and where do they show up? What is their relation

to the traditional potential energy surface and Berry phase in the BO approximation?

Moreover, many interesting phenomena occur when molecules or solids are exposed to

time-dependent external field e.g. lasers. Can one give a precise meaning to a time-

dependent potential energy surface and a time-dependent vector potential?

Before answering the points raised above, focussing on the time-dependent case, we

briefly discuss the BO expansion which solves the full TDSE Eq. (2.11) exactly for the

coupled electron-nuclear system.

2.1.2 The Born-Oppenheimer Expansion

The set of electronic eigenfunctions {φjR σ(r s)} calculated from Eq. (2.12) form a com-

plete orthonormal set in the electronic space for each fixed R σ

∑
s

∫
drφl∗R σ(r s)φjR σ(r s) = δlj , (2.17)

therefore the total time-dependent wavefunction of the system Ψ(r s,R σ, t) can be

expanded in that basis:

Ψ(r s,R σ, t) =

∞∑
j=1

Fj(R σ, t)φjR σ(r s) . (2.18)

Here

Fj(R σ, t) =
∑
s

∫
drφj∗R σ(r s)Ψ(r s,R σ, t) (2.19)

are the expansion coefficients which are functions of the nuclear degrees of freedom and

time. Eq. (2.18) is the so-called BO expansion which is an exact representation of the

complete molecular wavefunction due to the completeness of {φjR σ(r s)}. It applies

also to fully-time-dependent problems where Ψ evolves under external time-dependent

potentials V̂ e
ext. In practice, for numerically feasible calculations, approximations are

introduced to limit the expansion to a small subset of {φjR σ(r s)}. By inserting the

expansion (2.18) into Eq. (2.11), multiplying by φj∗R σ(r s) from the left, and integrating

over the electronic degrees of freedom, equations for the expansion coefficients Fj(R σ, t)
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are determined. One obtains:[∑
α

1

2Mα
(−i∇α + FBOkk,α)2 + V̂ ext

n (t) + εkGBO(R σ, t)
]
χBOk +

∑
j 6=k

[
< φk|V̂ ext

e (t)|φj > −
∑
α

ΛBOkj,α

]
Fj = i

∂χBOk
∂t

. (2.20)

Here

εkGBO(R σ, t) =
∑
σ

〈
φkR σ

∣∣∣ ĤBO + V̂ ext
e (t) +

∑
α

(−i∇α −FBOkk,α)2

2Mα

∣∣∣φkR σ

〉
r

(2.21)

is the time-dependent scalar potential and is the kth generalized BO potential energy,

generalized to account for the time-dependent external field (c.f. Eq. (2.14)). The terms

ΛBOkj,α(R) =
1

2Mα

[
GBOkj,α(R) + 2FBOkj,α(R) · (i∇α)

]
(2.22)

are called the “nonadiabatic couplings”, defined by [30–32]:

FBOkj,α(R) = −i < φkR σ|∇αφ
j
R σ >

GBOkj,α(R) =< φkR σ|∇2
αφ

j
R σ > . (2.23)

2.2 Exact factorization of the time-dependent electron-nuclear

wavefunction

The BO expansion Eq. (2.18) yields the complete molecular wavefunction exactly. In-

stead of having an infinite sum of terms involving an infinite set of generalized PES’s

and non-adiabatic couplings, the question arises whether it is possible to represent the

complete, time-dependent, electron-nuclear wavefunction exactly as a single product of

an electronic wavefunction and a nuclear wavefunction. In this section, we show that

the answer is yes. We derive formally exact equations of motion for each subsystem, out

of which emerge rigorous definitions of a time-dependent potential energy surface and a

time-dependent vector potential.

The decomposition is similar in form to the single-surface BO approximation, yet it

is exact. There is no assumption on the time scale of the motions of each subsystem,

i.e. unlike in the BO approximation, we do not solve for the “fast” variables first and

then feed it into the equation for the “slower” variables. Instead, the equations of
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motion for each subsystem are derived together, in a variational approach. The exact

decomposition, contrary to the BO separation, accounts for the full correlation between

the two subsystems, regardless of the mass and energy of the nuclear subsystem. In the

following we formalize the idea as a theorem which we then prove. We discuss in detail

the implications of this exact decomposition.

2.2.1 The exact factorization

Theorem I. (a) The exact solution of Eq. (2.11) can be written as a single product

Ψ(r s,R σ, t) = ΦR σ(r s, t)χ(R σ, t) (2.24)

where ΦR σ(r s, t) satisfies the Partial Normalization Condition (PNC),

∑
s

∫
dr|ΦR σ(r s, t)|2 = 1 , (2.25)

for any fixed nuclear configuration, R σ, at any time t.

The PNC is crucial in making this theorem meaningful: Eq. (2.24) on its own would be

rather meaningless, because, for example, one could then simply just take χ(R σ, t) ≡ 1.

In fact, one can come up with many different decompositions that satisfy Eq. (2.24) but

that violate the PNC Eq. (2.25); it is the latter that makes the decomposition unique

up to within a gauge-like transformation, as we shall see shortly in Section 2.2.2. We

will also see there that it is the PNC that allows the interpretation of ΦR σ(r s, t) as a

conditional probability amplitude, and χ(R σ, t) as a marginal probability amplitude,

leading to their identification as electronic and nuclear wavefunctions respectively. First,

we prove Part(a) of Theorem I.

Proof: Given Ψ(r s,R σ, t), the exact solution of the full TDSE (2.11). We choose

χ(R σ, t) and ΦR σ(r s, t), at any instant in time, as

χ(R σ, t) = eiS(R σ,t)

√√√√∑
s

∫
dr|Ψ(r s,R σ, t)|2 , (2.26)

and,

ΦR σ(r s, t) = Ψ(r s,R σ, t)/χ(R σ, t) (2.27)
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where S(R σ, t) is real. The PNC Eq. (2.25) then follows immediately:

∑
s

∫
dr|ΦR σ(r s, t)|2 =

∑
s

∫
dr|Ψ(r s,R σ, t)|2

|χ(R σ, t)|2

=
|χ(R σ, t)|2

|χ(R σ, t)|2
= 1. (2.28)

This concludes the proof of Theorem I (a). It will become clear throughout this paper

that, in many respects, the nuclear factor χ(R σ, t) can be viewed as a proper nuclear

wavefunction. Like in the static case [33, 34], introducing the phase factor in Eq. (2.27)

allows χ(R σ, t) to have the correct symmetry or antisymmetry if the nuclear subsystem

contains identical nuclei.

Next comes the question; what equations do ΦR σ(r s, t) and χ(R σ, t) satisfy? The

answer entails the second part of Theorem I:

Theorem I (b) The wavefunctions ΦR σ(r s, t) and χ(R σ, t) satisfy:(
Ĥel(r s,R σ, t)− ε(R σ, t)

)
ΦR σ(r s, t) = i∂tΦR σ(r s, t), (2.29)

( Nn∑
α=1

1

2Mα
(−i∇α + Aα(R σ, t))2 + V̂ ext

n (R, t) + ε(R σ, t)
)
χ(R σ, t) = i∂tχ(R σ, t),

(2.30)

where the electronic Hamiltonian is

Ĥel(r s,R σ, t) = ĤBO(r,R, t) + V̂ ext
e (r, t) + Û coupen

[
ΦR σ, χ

]
. (2.31)

Here the electron-nuclear coupling potential Û coupen

[
ΦR σ, χ

]
, scalar potential ε(R σ, t),

and vector potential Aα(R σ, t) terms are

Û coupen

[
ΦR σ, χ

]
=

Nn∑
α=1

1

Mα

[(−i∇α −Aα(R σ, t))2

2
+

(−i∇αχ
χ

+ Aα(R σ, t)
)
·
(
−i∇α −Aα(R σ, t)

) ]
(2.32)

ε(R σ, t) =
∑
s

〈
ΦR σ(t)

∣∣∣ Ĥel((r s,R σ, t)− i∂t
∣∣∣ΦR σ(t)

〉
r

(2.33)

Aα(R σ, t) =
∑
s

〈
ΦR σ(t)

∣∣∣ −i∇αΦR σ(t)
〉
r

(2.34)

(2.35)

where 〈..|..|..〉r denotes an inner product over all spatial electronic variables only.
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Proof: In order to derive the equations of motion for ΦR σ(r s, t) and χ(R σ, t) we follow

the strategy employed in the static case (see ref. [33, 34]), i.e. we plug the product

ansatz in the variational principle and search for the stationary point. Afterwards we

prove: if ΦR σ(r s, t) and χ(R σ, t) are the solutions of Eqs. (2.29) and (2.30), then

ΦR σ(r s, t)χ(R σ, t) is the solution of TDSE (2.11). We begin the derivation by briefly

reviewing Frenkel’s stationary action principle as this is the key instrument to derive

the equations of motion for each subsystem.

The quantum mechanical action is defined as

S[Ψ,Ψ∗] =

∫ tf

ti

dt〈Ψ|Ĥ − i∂t|Ψ〉, (2.36)

a functional of the time-dependent wavefunction Ψ(t) and its complex conjugate. The

equation of motion of the quantum system, the TDSE of Eq. (2.11), is obtained by

requiring the variation of the action S with respect to all wavefunctions Ψ(t) that satisfy

the boundary condition

δΨ(ti) = δΨ(tf ) = 0 , (2.37)

to be stationary, i.e.,

δΨ∗S = 0. (2.38)

Now we apply this general variational principle to our problem in the following way. We

insert the product wavefunction in the action functional (2.36), with Hamiltonian given

by Eq. (2.2), rewriting it as

S[ΦR σ,Φ
∗
R σ, χ, χ

∗] =
∑
s,σ

∫ tf

ti

dt

∫
dR

∫
dr

[
|χ|2Φ∗R σ

(
HBO + V ext

e +
∑
α

−∇2
α

2Mα
− i∂t

)
ΦR σ +

|ΦR σ|2χ∗
(∑

α

−∇2
α

2Mα
+ V ext

n − i∂t

)
χ+

|χ|2Φ∗R σ

∑
α

1

Mα
(−i∇αχ/χ) · (−i∇αΦR σ)

]
.

(2.39)

The equations of motion for ΦR σ(r s, t) and χ(R σ, t) are obtained by requiring the

action functional (2.39) to be stationary with respect to variations of each wavefunction
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subject to the PNC (2.25), i.e.,

δS[ΦR σ,Φ
∗
R σ, χ, χ

∗]

δΦ∗R σ(r s, t)
= 0 and

δS[ΦR σ,Φ
∗
R σ, χ, χ

∗]

δχ∗(R σ, t)
= 0 (2.40)

Variation of Eq. (2.39) with respect to Φ∗R σ(r s) leads to

|χ|2
(
ĤBO + V̂ e

ext +
∑
α

−∇2
α

2Mα
− i∂t

)
ΦR σ +

[
χ∗

(∑
α

−∇2
α

2Mα
+ V̂ n

ext − i∂t

)
χ

]
ΦR σ

+|χ|2
(∑

α

1

Mα
(−i∇αχ/χ) · (−i∇αΦR σ)

)
= 0

Dividing the expression above by |χ|2 and rearranging yields:(
ĤBO + V̂ e

ext +
∑
α

−∇2
α

2Mα
− i∂t

)
ΦR σ +

∑
α

1

Mα
(−i∇αχ/χ) · (−i∇αΦR σ) = −

(
∑

α
−∇2

α
2Mα

+ V̂ n
ext − i∂t)χ

χ
· ΦR σ .

(2.41)

Variation of Eq. (2.39) with respect to χ∗ yields[∑
s

∫
drΦ∗R σ

(
HBO + V̂ e

ext +
∑
α

−∇2
α

2Mα
− i∂t

)
ΦR σ

]
χ+

[∑
α

−∇2
α

2Mα
+ V̂ n

ext

]
χ+[∑

α

1

Mα
(−i∇αχ/χ) ·Aα

]
χ = i∂tχ

(2.42)

where we enforced the PNC, and defined

Aα[ΦR σ] :=
∑
s

∫
drΦ∗R σ(r s)(−i∇αΦR σ(r s)) . (2.43)

This is a real-valued vector potential (see shortly). Inserting Eq. (2.42) on the RHS of

Eq. (2.41) leads, after some straightforward algebra, to Eqs. (2.29-2.34). The product

wavefunction Eq. (2.24), satisfying these equations, therefore represents a stationary

point of the action functional (2.39) under the PNC Eq. (2.25). To complete the proof, it

remains to verify that if ΦR σ(r σ, t) satisfies Eq. (2.29) and χ(R σ, t) satisfies Eq. (2.30),

then the product ΦR σ(r s, t)χ(R σ, t) is an exact solution of the TDSE. Approximate
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solutions of the TDSE may satisfy the stationary action principle, if variations are

taken over a limited set of wavefunctions, e.g. the multi-configuration time-dependent

Hartree equations [35] may be derived via the Frenkel variational principle. To dispel

any possible doubts that the product form of Eq. (2.24) subject to Eq. (2.25) is general,

we now verify that our solution is exact and not an approximation. Applying the product

rule, i∂tΨ(r s,R σ, t) = χ(R σ, t)i∂tΦR σ(r s, t)+ΦR σ(r s, t)i∂tχ(R σ, t) , and inserting

Eqs. (2.29) and (2.30), we obtain

χ
(
i∂tΦR σ

)
= χ

(
ĤBO + V e

ext

)
ΦR σ + χ

Nn∑
α

(−i∇α −Aα)2

2Mα
ΦR σ

+χ

Nn∑
α

(−i∇αχ/χ+ Aα) · (−i∇α −Aα)

Mα
ΦR σ − χεΦR σ (2.44)

ΦR σ (i∂tχ) = ΦR σ

Nn∑
α

(−i∇α + Aα(R σ, t))2

2Mα
χ+ ΦR σV̂

ext
n χ+ ΦR σεχ (2.45)

Summing Eqs. (2.44) and (2.45) leads to the TDSE for the complete system (2.11) and

completes the proof that the wavefunctions satisfying Eqs. (2.29-2.34) do solve the TDSE

exactly.

Alternatively, Eqs. (2.29-2.34) can be obtained by replacing Ψ(r s,R σ, t), in the TDSE

(2.11), by the product ΦR σ(r s, t)χ(R σ, t) and using the PNC (2.25). The form of

electron-nuclear coupling term, Eq. (2.32), is the same as the static case (see ref. [33, 34]).

The exact TDPES, Eq. (2.33), on the other hand is not simply the expectation value of

Ĥel but contains, in addition, the term < ΦR σ| − i∂tΦR σ >. The appearance of this

term is essential to ensure the form invariance of the Eqs. (2.29-2.34) under the gauge

transformation (2.46).

2.2.2 Uniqueness of the electronic and nuclear wavefunctions

We now delve a little deeper into features of our exact factorization. As briefly men-

tioned earlier, the factorization can be viewed in a standard probabilistic setting [1]:

The square of the molecular wavefunction can be viewed as a multivariate probability

distribution, that can be factorized into a marginal probability of a set of variables (the
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nuclear coordinates) and a conditional probability of the rest of the variables (the elec-

tronic coordinates, conditionally dependent on the nuclear coordinates). In this sense

we identify χ(R σ, t) as the nuclear wavefunction (marginal probability amplitude),

and ΦR σ(r s, t) as the electronic wavefunction (conditional probability amplitude). An

alternative, equally valid formalism is to view, instead, the nuclear wavefunction as a

conditional probability amplitude depending parametrically on the electronic coordinate,

i.e. χr s(R σ, t), with the electronic wavefunction as the marginal probability amplitude

of the electronic coordinates, i.e. Φ(r s, t). We choose to use the former decomposition

however to later make natural connections with the BO approach. In this section we

argue why we can view the probability amplitudes χ(R σ, t) and ΦR σ(r s, t) as nuclear

and electronic wavefunctions, and we will assign some meaning to the terms that arise

in their equations of motion.

A first question that arises is: is this decomposition unique? We answer this in Theorem

2.

Theorem 2 (a) Eqs. (2.29-2.34) are form-invariant up to within the gauge-like trans-

formation:

Φ̃R σ(r s, t) := eiθ(R σ,t)ΦR σ(r s, t)

χ̃(R σ, t) := e−iθ(R σ,t)χ(R σ, t) (2.46)

Aα(R σ, t)→ Ãα(R σ, t) = Aα(R σ, t) +∇αθ(R σ, t)

ε(R σ, t)→ ε̃(R σ, t) = ε(R σ, t) + ∂tθ(R σ, t) (2.47)

(b) The wavefunctions ΦR σ(r s, t) and χ(R σ, t) are unique up to within the (R σ, t)-

dependent phase transformation, Eq. (2.46).

Proof: To prove part (a), simply substitute Eqs. (2.46) and (2.47) into Eqs (2.29)–(2.34).

Part (b) is readily shown by first assuming that ΦR σχ and Φ̃R σχ̃ are two different

representations of the exact wave function Ψ(r s,R σ, t) i.e.

Ψ(r s,R σ, t) = ΦR σ(r s, t)χ(R σ, t) = Φ̃R σ(r s, t)χ̃(R σ, t) (2.48)

Then
χ

χ̃
=

Φ̃R σ

ΦR σ
=: g(R σ, t) (2.49)
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and

|Φ̃R σ(r s, t)|2 = |g(R σ, t)|2|ΦR σ(r s, t)|2. (2.50)

From the theorem we know that both Φ̃R σ(r s, t) and ΦR σ(r s, t) satisfy the PNC.

Hence, ∑
s

∫
dr|Φ̃R σ(r s, t)|2 = |g(R σ, t)|2

∑
s

∫
dr|ΦR σ(R σ, t)|2 (2.51)

and |g(R σ, t)|2 = 1. Therefore, g(R σ, t) must be equal to a purely (R σ, t)-dependence

phase:

g(R σ, t) = eiθ(R σ,t). (2.52)

This completes the proof of theorem 2.

The interpretation of ΦR and χ as electronic and nuclear wavefunctions follows from

the following observations. The probability density of finding the nuclear configura-

tion R at time t,
∑

s

∫
|Ψ(r s,R σ, t)|2dr = |χ(R σ, t)|2, as can readily be shown by

substituting the product wavefunction Eq. (2.24) into the left-hand-side and using the

PNC Eq. (2.25). Not only does χ(R σ, t) therefore yield the nuclear (Nn-body) prob-

ability density, we shall see later in Section 2.3.1, that it also reproduces the exact

nuclear (Nn-body) current-density. The modulus-square of the electronic wavefunction,

|ΦR σ(r s, t)|2 = |Ψ(r s,R σ, t)|2/|χ(R σ, t)|2, on the other hand, gives the conditional

probability of finding the electrons at r with spin configuration s, given that the nuclear

configuration is R σ.

Note that, strictly speaking, the definition of the conditional probability amplitude

|ΦR σ(r s, t)|2 via Eq. (2.26), only holds for non-zero marginal probabilities |χ(R σ, t)|2.

In the case the nuclear density, and the full molecular wavefunction, have a node at

some R
0
, the electronic wavefunction would be defined by taking a limit. However,

it is actually very unlikely that the nuclear density has a node [36, 37]. This can be

seen by expanding the full electron-nuclear wavefunction, Ψ(r s,R σ, t), in terms of the

BO-electronic states, as in Eq. (2.18). Then, the nuclear density can be expressed as an

infinite sum of non-negative terms:

|χ(R σ, t)|2 =
∞∑
j=1

|Fj(R σ, t)|2 . (2.53)

In general, it is extremely unlikely that every term in the summation becomes zero at

the same nuclear configuration R
0
σ

0
, unless dictated by symmetry [33, 34] (see end of
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this section for a discussion on symmetry). Symmetry dictated nodes lead to a finite,

well-defined, value of |ΦR σ(r s, t)|2 due to the linear behavior of the wavefunctions in

the vicinity of these nodes.

Eqs. (2.29)-(2.34) determine the exact time-dependent molecular wavefunction, given an

initial state. As written, the nuclear equation is particularly appealing as a Schrödinger

equation with both scalar and vector-potential coupling terms contributing effective

forces on the nuclei including any geometric phase effects. We call ε(R σ, t) and A(R σ, t)

the exact TDPES and exact time-dependent Berry connection, respectively. These two

quantities, along with the electron-nuclear coupling potential Û coupen [ΦR σ, χ], mediate

the coupling between the nuclear and the electronic degrees of freedom in a formally

exact way. The three subsections of Section 2.3 are each devoted to a closer study of

these terms.

We conclude this section by discussing the symmetry properties of χ(R σ, t) and

ΦR σ(r s, t): The nuclear wavefunction χ(R σ, t) must preserve the symmetry of the

full electron-nuclear wavefunction Ψ(r s,R σ, t) with respect to exchange of identical

nuclei. This constrains the allowed gauge transformation (2.46)-(2.47). The electronic

wavefunction ΦR σ(r s, t) = Ψ(r s,R σ, t)/χ(R σ, t) is invariant under any nuclear per-

mutation because any fermionic sign cancels out between the full molecular wavefunction

and the nuclear wavefunction.

In the rest of this work, we drop the spin indices σ and s for notational simplicity.

2.2.3 Simple Illustration: the H atom in an electric field

The example of the Hydrogen atom in an electric field provides a simple demonstration

of our formalism. The Hamiltonian is

H = − 1

2M
∇2
R −

1

2
∇2
r −

1

|R− r|
+ (r −R) ·E(t) (2.54)

where r and R are the electron and proton coordinate respectively, E(t) is the applied

electric field in dipole approximation, and M is the proton mass. The exact solution is

known: in terms of the center of mass and relative coordinates, RCM = (r+MR)/(M+

1),u = r −R, the problem is separable, and we have

Ψ(RCM,u, t) = e
i
(
K·RCM− K2

2(M+1)
t
)
φ(u, t) (2.55)
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where φ(u, t) satisfies the following equation:(
−∇

2
u

2µ
− 1

u
+ u ·E(t)

)
φ(u, t) = i∂tφ(u, t) (2.56)

and µ = M/(M + 1) is the reduced mass. The full wavefunction, Eq. (2.55), represents

free-particle plane-wave motion in the center of mass coordinate, with K representing the

total momentum of the system. The form of Eq. (2.55) suggests one possible factorization

for Eqs. (2.24) –(2.25) as:

χ(R, t) = e
i
(
−K2t

2(M+1)
+ M

(M+1)
K·R

)

ΦR(r, t) = eiµK·rφ(r−R, t) (2.57)

with the exact Berry potential and TDPES given by

A(R, t) = −i
∫
φ∗(r−R, t)∇Rφ(r−R, t)dr = 0 (2.58)

ε(R, t) =
K2

2(M + 1)
+ R ·E(t). (2.59)

The vector potential, Eq. (2.58), is zero in the gauge implicit in our choice for Eqs. (2.57).

This is easily confirmed by inserting Eqs. (2.57) in the nuclear equation (2.30), which

reads for our problem,(
1

2M
(−i∇+ A)2 −R ·E(t) + ε(R, t)

)
χ(R, t) = i∂tχ(R, t) (2.60)

Eqs. (2.59) and (2.60) show that, in this case the role of the TDPES is to cancel out

the external laser field in the nuclear equation, which is exactly as it should be. Only

by this cancellation the nuclear motion can be a plane wave.

2.3 The exact electron-nuclear coupling terms

We now take a closer look at each of the three terms A(R σ, t), ε(R σ, t), and Û coupen [ΦR σ, χ],

that mediate the coupling between electron and nuclear dynamics exactly. In these three

terms, all of the non-adiabatic coupling effects of the BOexpansion are effectively con-

tained.
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2.3.1 The time-dependent vector potential

Eqs. (2.29)-(2.34) demonstrate that a vector-potential indeed appears in the exact treat-

ment of coupled electron-ion dynamics. In this section, we point out some properties of

this object to help us understand what it represents.

First, we show that the vector potential Aα is real. Taking the gradient with respect to

nuclear coordinates of the PNC (Eq. (2.25)), yields

0 = ∇α
∫
drΦ∗R(r)ΦR(r)

= 2<
∫
drΦ∗R(r)∇αΦR(r) (2.61)

(using the product rule). Comparing with the definition Eq. (2.34), we readily conclude

Aα is real.

Second, we insert Eqs. (2.27) and (2.26) into Eqs. (2.34) to reveal the following expression

for the vector potential:

Aα(R, t) =
= 〈Ψ(t)| ∇αΨ(t)〉r
|χ(R, t)|2

−∇αS(R, t) (2.62)

This shows that the vector potential is the difference of the paramagnetic nuclear velocity

fields derived from the full and nuclear wavefunctions. In fact, since = 〈Ψ(t)| ∇αΨ(t)〉r
is the true nuclear (many-body) current density, Eq. (2.62) implies that the gauge-

invariant current density, =(χ∗∇αχ)+|χ|2Aα, that follows from the nuclear Hamiltonian

in Eq. (2.30) does indeed reproduce the exact nuclear current density [38]. As discussed

in the previous section, the solution χ(R, t) of Eq. (2.29) yields a proper nuclear many-

body wavefunction: Its absolute value squared gives the exact nuclear (Nn-body) density

while its phase yields the correct nuclear (Nn-body) current density. (The nuclear kinetic

energy evaluated from χ(R, t) does not equal the nuclear kinetic energy evaluated from

the full molecular wavefunction, and their difference is determined by U coupen , as will be

discussed in Section 2.3.3).

Another interesting aspect of expression (2.62) is that it can help to shed light on the

question of whether the exact vector potential gives rise to a Berry phase or whether

it can actually be gauged away by a suitable choice of θ(R, t) in Eqs. (2.46)-(2.47).

Provided the phase S(R, t) is spatially smooth, the last term on the right-hand-side of

Eq. (2.62) can be gauged away, so any true Berry connection (that cannot be gauged
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away) must come from the first term. When the exact Ψ(t) is real-valued (e.g. for a non-

current-carrying ground state) then the first term on the right-hand-side of Eq. (2.62)

vanishes and hence gives a vanishing contribution to the exact Berry connection. Whether,

and under which conditions, the full vector potential (2.62) can be gauged away remains

an open question at this point. We will discuss this issue further with numerical examples

in chapter (3).

Finally, it is also instructive to express the vector potential in terms of the BO electronic

basis states of Section 2.1.2. We first expand the electronic wavefunction:

ΦR(r, t) =

∞∑
j=1

Cj(R, t)φ
j
R(r) (2.63)

where orthonormality of the φj (Eq. (2.17)) means

Cj(R, t) =

∫
drφj∗R (r)ΦR(r, t) . (2.64)

The PNC condition becomes
∞∑
j=1

|Cj(R, t)|2 = 1. (2.65)

Inserting Eq. (2.63) into Eq. (2.34), and noting the definition of the non-adiabatic deriva-

tive coupling FBOkj,α(R) of Eq. 2.23, we obtain

Aα(R, t) =

∞∑
j=1

(
− iC∗j (R, t)∇αCj(R, t) + |Cj(R, t)|2FBOjj,α(R)

+

∞∑
l 6=j

C∗l (R, t)Cj(R, t)FBOlj,α(R)
)
.

(2.66)

The exact Berry potential is thereby expressed as a linear combination of the diagonal

and off-diagonal BO derivative couplings. Any gauge-invariant part of the Berry con-

nection, that would give rise to a non-zero Berry phase, arises from the part of Eq. 2.66

that has a non-zero curl. In the case of a real-valued electronic wavefunction, each of

the three terms of Eq. 2.66 vanishes independently giving rise to a zero vector potential.
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2.3.2 The Time-Dependent Potential Energy Surface

The TDPES ε(R, t) of Eq. (2.33) provides an exact time-dependent generalization of the

adiabatic BO potential energy surface. As such, it should prove to be a powerful inter-

pretive tool for general time-dependent problems. This will be explored in chapter (4).

We now begin by analyzing the expression Eq. (2.33) in a little more detail.

First, consider the expectation value of the electron-nuclear coupling term, 〈ΦR|Û coupen |ΦR〉

of Eq. (2.32) that appears in the TDPES. Only the first term of Eq. (2.32) contributes

to the expectation value: the second term goes to zero, due to the very last paren-

thesis, 〈ΦR| − i∇α −Aα(R, t)|ΦR〉, which vanishes due to the definition of the vector

potential (2.34). So we have

ε(R, t) = 〈ΦR|ĤBO + V̂ ext
e (r, t)|ΦR〉r − i〈ΦR|∂tΦR〉r +∑

α

〈ΦR|
(
−i∇α −Aα(R, t)

)2 |ΦR〉r
2Mα

= 〈ΦR|ĤBO + V̂ ext
e (r, t)|ΦR〉r − i〈ΦR|∂tΦR〉r +∑

α

〈∇αΦR|∇αΦR〉r
2Mα

−
∑
α

A2
α(R, t)

2Mα

(2.67)

where the second line results from expanding the square in the first, and making use of

the definition of the vector potential (2.34).

As we did for the vector potential, we now provide an expression for the TDPES as an

expansion over BO states. Inserting Eq. (2.63) into Eq. (2.67) and performing a little

straightforward algebra, we obtain
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ε(R, t) =
∑
j

|Cj(R, t)|2V j
BO(R)

+
∑
jl

C∗j (R, t)Cl(R, t)〈φjR|V̂
ext
e (r, t)|φlR〉r −

∑
j

iC∗j (R, t)∂tCj(R, t)

+
∑
α

1

2Mα

[∑
j

|∇αCj |2 +
∑
jl

C∗jCl
(
i∇α · FBOjl,α − GBOjl,α

)
− 2

∑
jl

=
(
Cl∇αC∗jFBOjl,α

)
−A2

α(R, t)
]

(2.68)

(the expansion of the last term A2
α may be obtained from Eq. 2.66). Notice that all the

BO surfaces, as well as non-adiabatic couplings, are contained in the the exact TDPES.

2.3.3 Electron-Nuclear Correlation

The TDPES and Berry connection discussed in the previous two sections directly de-

termine the evolution of the nuclear wavefunction (Eq. (2.30)), containing the effect of

coupling to the electrons in an exact way. The electron-nuclear coupling term Û coupen

enters the nuclear equation indirectly via its role in determining ΦR through Eq. (2.29)

and (5.5). Eq. (2.32) expresses Û coupen as a functional of the electronic and nuclear wave-

functions, and now we shall derive another expression for it that shows that it measures

the difference between the nuclear kinetic energy evaluated from the full wavefunction

and that evaluated on the nuclear wavefunction. We isolate the term involving Û coupen in

Eq. (2.29), and insert ΦR = Ψ/χ. This leads to:

Û coupen ΦR

ΦR
=
i∂tΨ

Ψ
− i∂tχ

χ
−
ĤBOΦR

ΦR
− V̂ e

ext + ε(R, t) . (2.69)

Next we insert in Eq. (2.69) the TDSE (2.11) and (2.30), satisfied by Ψ and χ to obtain

Û coupen

[
ΦR, χ

]
ΦR(r, t)

ΦR(r, t)
=
T̂nΨ

Ψ
−

ˆ̃Tnχ

χ
(2.70)

where

ˆ̃Tn =

Nn∑
α=1

1

2Mα
(−i∇α + Aα(R, t))2 (2.71)
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Multiplying Eq. (2.70) by |ΦR|2|χ|2 and integrating over all coordinates leads to:

〈Ψ|T̂n|Ψ〉r,R − 〈χ| ˆ̃Tn|χ〉R =

∫
dR|χ(R, t)|2〈ΦR|Û coupen |ΦR〉r. (2.72)

This means the nuclear kinetic energy evaluated from the full molecular wavefunction,

and that evaluated via the expectation value of the nuclear kinetic energy operator in

Eq. (2.30) on the nuclear wavefunction are not equal: their difference is given by the

nuclear-density-weighted integral of the electron-nuclear coupling potential.

2.4 Conclusions

In this chapter, we have shown that there exists a rigorous factorization of the exact

molecular wavefunction into a nuclear wavefunction and an electronic wavefunction, each

of which retains the usual probabilistic meaning. The exact nuclear Nn-body density is

|χ(R, t)|2 while |ΦR(r, t)|2 represents the conditional probability of finding the electrons

at r, given the nuclear configuration R. Equations (2.29)—(2.34) are the equations

of motion that the electronic wavefunction and nuclear wavefunction satisfy, and show

explicitly how the electronic and nuclear systems are exactly coupled. These equations

enable the TDPES (Eq. (2.33)) and the time-dependent vector potential (Eq. (2.34))

to be defined as rigorous concepts, and we have discussed some general properties of

them, and of the electron-nuclear coupling operator Eq. (2.32). The crucial point of

our work is that it provides a unique definition of TDPES and time-dependent vector

potential (unique up to within a gauge transformation): If one wants the TD many-body

Schrödinger equation (2.30) to give the correct N-body density and current density of

the nuclei, then the scalar potential and the vector potential must be given by eq. (2.33)

and (2.34). There is no choice apart from the gauge. That means that with any advanced

technique that yields the TD molecular wavefunction Ψ(r,R, t) one can evaluate the

TDPES and vector potential by first calculating the factors from Eqs. (2.27)-(2.26) and

then evaluating the TDPES and vector potential from Eqs. (2.33)-(2.34).

From a practical point of view, Eqs. (2.29)-(2.34) are not easier to solve than the time-

dependent Schrödinger equation for the full electron-nuclear system. Rather they form

the rigorous starting point for making approximations, especially for the systematic

development of (semi)classical approximations (see Chapter 4).



Chapter 3

Exact Static Potential Energy

Surfaces: A fresh look at an old

concept

In the previous Chapter (2), we presented an exact factorization of the full time-

dependent electron-nuclear wavefunction. The idea of an exact factorization was first

introduced by Hunter [1] for the static case. He also deduced the exact equation of mo-

tion for the nuclear factor and introduced a concept of non-adiabatic potential energy

surfaces for the static case [39]. Following Hunter’s work on the non-adiabatic potentials,

Czub and Wolniewicz [37] discovered the nodeless character of the nuclear wavefunction

for diatomic molecules and showed that the corresponding non-adiabatic potentials ex-

hibit spikes where the vibrational states have nodes. This was later investigated by

Hunter [36, 40] as well. The equation for the electronic factor for the time-independent

case was given, some two decades later, by Gidopoulos and Gross [33, 34]. They also pro-

vide a neat variational derivation of the equations and present the nuclear equation that

contains an exact vector potential as well as an exact potential energy surface (EPES).

In this Chapter, we first briefly review the exact factorization of the electron-nuclear

wavefunction for the static case, presented in [33, 34](Section 3.1). Then, we discuss the

EPES of two cases in which the relevant BO surfaces exhibit points of avoided crossing

and conical intersection (Section 3.2.4). Before entering the discussion of the EPESs, we

present the model systems that are used to study the exact surfaces and the procedure

of calculating them (Section 3.2).

25
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3.1 Exact factorization for the static case in a nutshell

The exact factorization of the full molecular state suggests that a molecular state,

ΨK(r,R), that is a solution of the time-independent Schrödinger equation,

ĤΨK(r,R) = EKΨK(r,R), (3.1)

can be represented, formally exactly, as a product of the nuclear factor χK(R) and the

electronic factor ΦK
R(r), i.e.,

ΨK(r,R) = χK(R)ΦK
R(r) (3.2)

where the electronic factor satisfies the PNC:∫
dr|ΦK

R(r)|2 = 1, (3.3)

for each fixed nuclear configuration R. As proved by Gidopoulos and Gross [33, 34],

varying the expectation value of the molecular Hamiltonian (2.2), Ĥ, with respect to

ΦK
R(r) and χK(R), under the PNC, leads to derivation of the electronic equation,

ĤK
el (r,R)ΦK

R(r) = εK(R)ΦK
R(r), (3.4)

and, nuclear equation,

( Nn∑
α=1

1

2Mα
(−i∇α + AK

α (R))2 + V̂ ext
n (R) + εK(R)

)
χK(R) = EKχK(R). (3.5)

Here, the electronic Hamiltonian is

ĤK
el (r,R) = ĤBO(r,R) + V̂ ext

e (r) + Û coup,Ken , (3.6)



Chapter 3. Exact Concept of Potential Energy Surfaces 27

and the electron-nuclear coupling operator Û coup,Ken , scalar potential εK(R), and vector

potential AK
α (R) terms are

Û coup,Ken =

Nn∑
α=1

1

Mα

[(−i∇α −AK
α (R))2

2
+

(−i∇αχK
χK

+ AK
α (R)

)
·
(
−i∇α −AK

α (R)
) ]

(3.7)

εK(R) =
∑
s

〈
ΦK
R

∣∣∣ ĤK
el ((r,R)

∣∣∣ΦK
R

〉
r

(3.8)

AK
α (R) =

〈
ΦK
R

∣∣∣ −i∇αΦK
R

〉
r
, (3.9)

where εK(R) is invariant under the gauge-transformation

Φ̃K
R(r) := eiθK(R)ΦK

R(r), (3.10)

and the vector potential is transformed as

AK
α (R)→ ÃK

α (R) = AK
α (R) +∇αθK(R). (3.11)

Eqs. (3.4-3.5), like the time-dependent version (2.29-2.30), are form invariant under the

gauge transformation

Φ̃K
R(r) := eiθK(R)ΦK

R(r)

χ̃K(R) := e−iθK(R)χK(R), (3.12)

i.e. , the products Φ̃K
R(r)χ̃K(R) and ΦK

R(r)χK(R) are equivalent representations of the

full wavefunction, ΨK(r,R), that is an eigenstate of the full electron-nuclear Hamilto-

nian (2.2).

Here we should emphasize the difference between the BO approximation and the exact

factorization as the two may look very similar at first sight: in the exact factorization,

unlike the BO approximation, we do not solve the electronic equation (2.12) first and

then feed the nuclear equation with the calculated potential, εjBO, to obtain the vibra-

tional states, χBOjν . Instead, the equations of motion for each subsystem are derived

together, in a variational approach. The resulting electronic equation (3.4) then de-

pends on the nuclear wavefunction and the Eqs. (3.4) and ( 3.5) must be solved self

consistently. That is why there is one and the same index, K, for both the electronic

and nuclear wavefunctions and their product yields the eigenstate of the full molecular
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system with the same quantum number. Therefore, contrary to the BO separation, The

exact decomposition accounts for the full coupling between the electrons and nuclei,

regardless of the nuclear mass and energy.

As shown above, an exact concept of potential energy surface (3.8) emerges from the

exact factorization of the molecular wavefunction for the static case. So far, only the

exact potential energy surfaces close to the molecular ground state of a few systems

have been investigated [36, 37, 40]. The main difference between the investigated exact

surfaces and the BO surface of the ground-state are the presence of spikes at the position

of the nodes of the vibrational states. This feature is due to the nodeless character of the

exact nuclear densities and can be seen by expanding the full molecular state, ΨK(r,R),

in terms of the BO-electronic states (similar to Eq. (2.18)). Then, the corresponding

nuclear density can be expressed as an infinite sum of non-negative terms:

|χK(R)|2 =

∞∑
j=1

|χBO,Kj (R)|2 , (3.13)

where χBO,Kj (R) =< φjR|ΨK >r. In general, it is extremely unlikely that every term

in the summation becomes zero at the same nuclear configuration R
0
, unless dictated

by symmetry [33, 34]. Hence, the exact nuclear density may become nodeless where

the corresponding BO-vibrational state is zero. In that case the corresponding exact

potential energy surface (3.8) exhibits a spike for the same nuclear configuration. Since

contributions from another electronic states make the exact nuclear density depart from

being zero, the spikes of the exact potential energy surfaces may be considered as non-

adiabatic corrections and remained the only feature of the exact surfaces that has been

addressed so far. However, the spikes of the EPESs and the nodeless character of the

exact nuclear wave-function are not considered among the very important non-adiabatic

effects that cause the breakdown of the BO approximation.

The main focus of this chapter is to study the EPES for two different cases (Section 3.3

and 3.4) in which the BO approximation dramatically breaks down. This breakdown

happens often in photochemistry of polyatomic molecules due to a large number of en-

ergetically close electronic states involved in the molecular processes. In such situations,

we usually deal with the avoided crossings of the BOPESs or with the points of exact

degeneracy of BO surfaces, i.e., conical intersections. Points of avoided crossings and
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conical intersections of BO surfaces provide pathways for radiationless relaxation pro-

cesses and ultrafast interstate crossings once the photochemical processes are studied

within the BO framework. However, experimental data or exact solution of the TDSE

(if accessible) can only infer to these points and an investigation of the relevant BO

surfaces is required to confirm that such points actually exist. Another phenomenon

related to the conical intersection, is the Berry phase effect [25, 41, 42], i.e., electronic

wave-function changes sign after completing a closed path around the conical intersec-

tion. Therefore, in the adiabatic description of molecular processes the corresponding

vibrational wave-function should also be double-valued such that the full wave-function

is single-valued. In the Herzberg and Longuet-Higgens model [25, 43], for example, the

two (single-valued) nuclear wavefunctions associated with a two-state conical intersec-

tion between traditional BO surfaces, each have a phase S = ±φ/2, undefined at the

origin. This has a singular gradient, yielding a delta-function at the origin in the curl of

the vector potential, thus contributing a non-zero Berry phase. Whether a similar effect

may occur for the exact vector potential remains to be explored.

3.2 Description of the Models

3.2.1 H+
2 in One Dimension

A one dimensional model for the H+
2 molecular ion, subject to a linearly polarized laser

field, can be made by restricting the motion of the nuclei and the electron to the direction

of the polarization axis of the laser field. Hence, the problem can be modeled with a 1D

Hamiltonian featuring “soft-Coulomb” interactions [44–48]:

Ĥ(t) = − 1

2µe

∂2

∂x2
− 1

M

∂2

∂R2
− 1√

1 + (x−R/2)2
− 1√

1 + (x+R/2)2
+

1√
0.03 +R2

+V̂l(x, t)

(3.14)

where R and x are the internuclear distance and the electronic coordinate as measured

from the nuclear center-of-mass, respectively, and the electronic reduced mass is given by

µe = (2M)/(2M+1), M being the proton mass. The laser field, within dipole approxima-

tion, is represented by V̂l(x, t) = qexE(t) where E(t) denotes the electric field amplitude

and the reduced charge qe = (2M + 2)/(2M + 1). One-dimensional soft-Coulomb atoms

and molecules have proven extremely useful in the study of strong-field dynamics since
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0

Figure 3.1: A sketch of the Shin-Metiu model. The two black solid circles represent
the two identical ions that are held fixed at distance L. The movable ion (red solid
circle) is restricted to move on the line connecting the two fixed ions but the electron

(blue solid circle) can go beyond the fixed ions.

they allow numerically accurate solutions to problems involving correlated electron dy-

namics as well as correlated electron-nuclear dynamics that would be computationally far

more demanding for the full three-dimensional atoms and molecules, while capturing the

essential physics of the latter, e.g. multi-photon ionization, above-threshold ionization

and dissociation, enhanced ionization, non-sequential double-ionization, high-harmonic

generation, and non-BO effects (e.g. Refs. [46–53]). In simplifying the real molecule to

a 1D-model it is assumed that: (i) The molecule is always aligned with the polarization

axis of the laser field. (ii) Due to the linear polarization of the laser field, the mag-

netic quantum number of the electron is conserved. (iii) The electron mostly follows the

applied field.

3.2.2 Shin-Metiu Model

This model was introduced by Shin and Metiu [54] to study the non-adiabatic coupling

between the electronic and nuclear motion in charge transfer dynamics. It consists of

three ions and a single electron (figure 3.1). Two ions are fixed at a distance of L, the

third ion and the electron are free to move in one dimension along the line joining the

two fixed ions. The Hamiltonian of this system reads

Ĥ(r,R) = −1

2

∂2

∂r2
− 1

2M

∂2

∂R2
+

1

|L2 −R|
+

1

|L2 +R|

−
erf
(
|R−r|
Rf

)
|R− r|

−
erf

(
|r−L

2
|

Rr

)
|r − L

2 |
−

erf

(
|r+L

2
|

Rl

)
|r + L

2 |
.

(3.15)

Here, the symbols r and R are replaced by r and R, the coordinates of the electron

and the movable ion measured from the center of the two fixed ions and M is the
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nuclear mass. The parameters, Rf , Rl and Rr, can be chosen to produce different

coupling strength between the electronic and nuclear motions. In Hamiltonian (3.15),

the electron interacts with each of the ions via a soft coulomb potential,

V̂en = −Z
erf
(
|r−Rn|
Rc

)
|r −Rn|

, (3.16)

where Z is the ion charge, here, equal to one for all the three, r and Rn are the position

of the electron and ions, respectively, and,

erf(x) =
2√
π

∫ x

0
e−t

2
dt, (3.17)

is the error function. The softening parameter, Rc, can be chosen differently (Rf , Rl

and Rr) for the interaction with each of the ions.

3.2.3 H2+
3 in two dimensions

In a system with Nn nuclear degrees of freedom, degenerate points of the BOPESs lie

in what is called the intersection space, or seam. The dimensionality of the seam is

Nn − 2. Therefore, to have a point as the intersection between the BO surfaces there

should be two nuclear degrees of freedom. In order to produce such a situation we set

up a 2-dimensional model Hamiltonian that consists of two fixed nuclei apart from each

other with a distance L, represented by the vectors R− = (−L/2, 0) and R+ = (L/2, 0),

one moving ion and one moving electron interacting with each other with soft Coulomb

interaction, mimicking H2+
3 molecular ion (see Fig. 3.2). The Hamiltonian of this system

reads

Ĥtot (r,R) = −
∇2

R

2M
− ∇

2
r

2
+

−1√
a+ |r −R+|2

+
−1√

a+ |r −R−|2
+

−1√
a+ |r −R|2

+

1√
b+ |R−R+|2

+
1√

b+ |R−R−|2
+

1√
b+ L2

+

Vconf (R) (3.18)

where r = (x, y) and R = (X,Y ) are the positions of the electron and moving ion with

a mass M , respectively. The additional confinement potential Vconf (R),

Vconf (R) =

(
R

R0

)4

, (3.19)
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Figure 3.2: A sketch of the H2+
3 model. The two blue solid circles along the X axis

represent two identical ions that are held fixed at the denoted points. Movable ion
(blue solid circle) and the electron (red solid circle) are free to move on the XY plane.
To make the model system bound, a confinement potential (see the tex) is introduced.
The positions of the conical intersections between the first excited BO surface and the

second excited BO surface are marked by two gray solid circles along the Y axis.

is introduced to make the system bound. The values of the parameters a, b and R0 can

be chosen arbitrarily to produce different coupling strength between the electronic and

nuclear motions.

3.2.4 Details of the calculations

In order to obtain the EPESs (3.8), we first solve the full molecular eigenvalue prob-

lem (3.1) and calculate the full molecular eigenstates, ΨK . In all the cases we study

here, the molecular states are not current-carrying, hence ΨK is real. Therefore, as

the first choice we set χ =
√∫

dr|Ψ|2 and calculate ΦR(r) (ΦR(r) = Ψ/χ). Then we

check if ΦR(r) is single valued. If so, ΦR(r) can be chosen real as it was and the vector

potential (3.9), Aν(R), is always zero. This is indeed the case in all the three cases we

have studied. From the calculated ΦR(r) and χ we can calculate the EPESs either from

Eq. (3.8) or by inverting the Eq. (3.5).
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Figure 3.3: The first three BOPESs of the Shin-Metiu-Model (3.2.2) for Rf = 5.0 a0,
Rl = 3.45 a0 and Rr = 3.0 a0: V 1

BO (blue); V 2
BO (red); and V 3

BO (green).

3.3 Strong Coupling I

We consider a situation when the electronic and nuclear motions are strongly coupled.

This strong coupling in the BO framework is called the non-adiabatic couplings between

different electronic states. Here we employ the Shin-Metiu model described in (3.2.2)

with Rf = 5.0 a0, Rl = 3.45 a0 and Rr = 3.0 a0 to study the exact potential surfaces

in a strong electron-nuclear coupling regime. The first three BOPESs of the system are

plotted in figure (3.3). There are two avoided crossings between the plotted BOPESs:

one between V 1
BO and V 2

BO around Rac12 = 1.25 a0 and the other one between V 2
BO and

V 3
BO around Rac23 = −3.0 a0.

The electron-nuclear coupling potential (3.7), Û coup,Ken , in the exact electronic equa-

tion (3.4) is inversely proportional to the nuclear mass. In the limit of infinite nuclear

masses, Û coup,Ken becomes zero and the exact electronic equation becomes identical with

the BO electronic equation (2.12). Hence, the BOPESs (2.14) can be viewed as the

infinite nuclear mass limit of the exact potential energy surfaces (3.8). The other ex-

treme limit for the electron-nuclear coupling potential (3.7) happens when the nuclear

mass is equal to the electronic mass. The first three exact potential energy surfaces for

this case are shown in Figure (3.4). Surprisingly, the exact surfaces are similar to the
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NR ∆R (a0) Rmax (a0) Nr ∆r (a0) |rmax| (a0)
96 0.1 9.5 251 0.1 25

Table 3.1: Numerical parameters employed for the numerical calculation of Shin-
Metiu model (sec. 3.3)

diabatic surfaces as they follow the shape of one of the BO surfaces, go smoothly through

the region of avoided crossings and switch to follow another BO surface. In a diabatic

representation the full molecular wave-function is described in terms of diabatic states,

djR(r),

Ψ(r,R) =
∑
j

βj(R)djR(r). (3.20)

However, the diabatic representation is not unique and depending on the problem one

must find the most convenient diabatic states to describe the full wave-function. The di-

abatic electronic wave-functions, djR(r), are the eigenstates of different electronic Hamil-

tonians, Hj ,

Ĥjd
j
R(r) = Dj(R)djR(r). (3.21)

The electronic Hamiltonian may be represented by

Ĥj = T̂e + V̂j(r,R), (3.22)

where V̂j(r,R) is the electron-nuclear interaction that is different for every diabatic state.

The way V̂j(r,R) is chosen is usually intuitive and based on our understanding of the

system and the problem we are dealing with. On the other hand, the electron-nuclear

coupling potential (3.7) of the exact electronic equation (3.4) together with Ŵen (2.10),

provide a formally exact electron-nuclear interaction potential in the electronic equation.

In this respect, Ŵen + Û coup,jen can be viewed as an exact concept of the electron-nuclear

interaction, V̂j(r,R), of diabatic electronic Hamiltonian (3.22).

So far, we have discussed the concept of exact potential energy surfaces in two limits:

(i) infinite nuclear mass (ii) nuclear mass equal to the electronic mass. We have shown

that the exact potential energy surfaces in these two limits recover the concepts of: (i)

adiabatic potential energy surfaces and (ii) diabatic potential energy surfaces. Therefore,

the exact electronic equation (3.4) can be interpreted as a universal electronic equation

that leads to the adiabatic and diabatic electronic equations in these limits. In figure (3.5)

we plot the first exact potential energy surface of various nuclear masses between the
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Figure 3.4: The first three exact potential energy surfaces of the system (see the
text). The first three BOPESs are plotted for the reference.

limiting cases. As the nuclear density is very localized for the heavy nuclei, its value

drops under the accuracy of the numerical calculations for the larger nuclear masses

faster. Therefore, we cannot always give the exact potential energy surfaces for the

whole R-space. That is why some of the potentials in figure (3.5) are trimmed. This

figure (3.5) provides us with an instructive picture how the exact potential energy surface

changes with the nuclear mass and swings between the two limits.

Another interesting concept to discuss in connection with the adiabatic and diabatic

representation is the exact electronic conditional wave-function. In figure (3.6) the first

three exact electronic densities are plotted together with the first three BO electronic

densities. These two sets represent the two limits discussed before. The BO electronic

densities undergo abrupt changes at the points of avoided crossings of the adiabatic

potential. For example, the first BO state, φBO,1R , peaks at the position of the fixed ion

on the left for R < 1 and for R > 1 the peak moves to the position of the fixed ion on

the right while each of the first two exact electronic densities, |Φ1
R|2 and |Φ2

R|2, show

only one major peak on the left and right fixed ions, respectively. In other words, the

adiabatic states have mixed characters, i.e., the two minima of the adiabatic potential

energy surface of the ground state, represent two different states of the system, each of

which is described by its corresponding diabatic representation. The exact electronic
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Figure 3.5: The exact potential energy surfaces of the molecular ground state for
different nuclear masses (denoted on the plot). The first three BOPESs are plotted for

the reference.

densities plotted in (3.6), like the exact potentials, are similar to the diabatic electronic

densities. The diabatic states, similar to the exact electronic states discussed here, are

obtained by assuming that in the Shin-Metiu Hamiltonian (3.15) the interaction of the

electron with one of the fixed ions (on the right or left) is neglected (see the discussion

by Shin and Metiu in [54]).

3.4 Strong Coupling II

The BOPESs provide an intuitive picture to analyse and interpret molecular processes.

The conical intersections of the BOPESs are particularly important due to the crucial

role they play in studying the molecular processes. There are two major issues in connec-

tion with these points: (i) Geometric phase: Geometric/Berry-Pancharatnam phases [55]

are usually interpreted as arising from an approximate decoupling of a system from “the

rest of the world”, thereby making the system Hamiltonian dependent on some “envi-

ronmental” parameters. For example, in the static BO approximation, the electronic

Hamiltonian (2.3) depends parametrically on the nuclear positions; i.e., the stationary

electronic Schrödinger equation is solved for each fixed nuclear configuration R, (2.12)

yielding R-dependent eigenvalues (the BOPES) and eigenfunctions (the BO electronic
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Figure 3.6: The first three exact conditional electronic densities (bottom) together
with the first three BO conditional electronic densities (top) as denoted on the plots

wavefunctions). If the total molecular wavefunction is approximated by a single product

of a BO electronic wavefunction and a nuclear wavefunction (see Sec. (2.1.1) for more

details), the equation of motion of the latter contains a Berry-type vector potential. In

this pure adiabatic description of the system, this vector potential cannot be gauged

away in the presence of conical intersections. Because, in order to have a single valued

electronic wavefunction, they cannot be chosen real. Hence, a vector potential enters

the nuclear equation and leads to a Berry phase when traveling around the points of

intersection. However, it is not yet clear if the appearance of Berry phases is a conse-

quence of the BO approximation or it survives in the exact treatment. (ii) The conical

intersections, also called funnels, due to their important role in providing the pathways

for ultrafast interstate crossings and non-radiative relaxation from a molecular excited

state to the ground state. However, it is a theoretical challenge to study the nuclear

dynamics through these points due to the infinite non-adiabatic coupling between the

electronic states at the point. A diabatic representation of the molecular wavefunction

provides an alternative approach that has the interpretative features of the BOPESs and

does not contain singular points of the conical intersections. The drawback, however, is

that there are many choices and choosing a proper representation is very complicated .
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Figure 3.7: (top-left) The first (blueish) and second (reddish) excited BOPESs, (top-
right) the arrow representation for p-orbital-like wavefunctions at a certain R, and the
BO electronic wavefunctions in the arrow representation for the first excited BO state
(bottom-left) and the second excited BO state (bottom-right). A set of red arrows

represents the discontinuity line for phase changes.
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NR(x, y) ∆R (x, y) |Rmax| (x, y) Nr (x, y) ∆r (x, y) |rmax| (x, y)
(101,101) (0.12,0.12) (6,6) (81,81) (0.3,0.3) (12.0,12.0)

Table 3.2: Numerical parameters employed for the numerical calculation of the H2+
3

model .

In this section, we seek to shed light on the issues discussed above by studying the

EPESs of a system that shows conical intersections in its BOPESs. To this end, we

have developed a model system (see 3.2.3) that contains conical intersections between

the second and third BOPESs when a, b, and R0 are chosen as 0.5, 10.0, and 3.5,

respectively.

For the numerical calculation we solve the time-independent Schrödinger equation (3.1)

for the model of H2+
3 on real space grids using the parameters of the table (3.2). Note

that we treat a system with four degrees of freedom that makes the calculations numer-

ically challenging.

First, we investigate the BO states of this model Hamiltonian. The ground BO state

φBO,1R shows a s-like wavefunction without any nodes while the first excited BO state

φBO,2R and the second excited BO state φBO,3R show p-like wavefunction with a single

nodal line. Since all the three ions have the same interaction potentials (3.18), there is

symmetry-induced degeneracies between φBO,2R and φBO,3R at the equilateral positions,

RCI
± = (0,±YCI), where YCI = 1.2. The BOPESs for the first and second excited

electronic states ε2BO and ε3BO, and the corresponding “real-valued” electronic BO wave-

functions, φBO,2R and φBO,3R , are depicted in Fig. (3.7). The p-orbital-like shape of the

electronic wavefunctions for each nuclear position R motivates us to represent the elec-

tronic wavefunction as flow of vectors. The direction of each vector at R is given by∫
rφBO,jR (r)dr which is the direction of the phase of p-orbital-like wavefunction. Here,

the phases of both φBO,2R and φBO,3R are discontinuous (Fig. 3.7). These discontinuities

persist as long as we insist to have real electronic wavefunctions and one can only move

the position of the discontinuities by multiplying the BO electronic wavefunctions by

a phase factor. We choose the phase of the BO electronic wavefunctions such that the

discontinuities appear at the lines L1 and L2 for φBO,2R and φBO,3R , respectively, where

L1 = {(X,Y )|X = 0, |Y | > YCI} and L2 = {(X,Y )|X = 0, |Y | < YCI}. Hence, the

conical intersections exist at RCI
± between the two states.
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Figure 3.8: Exact potential energy surfaces εexactA (Blue) and εexactB (Red) for
Mn = me and according to the total molecular energies: EA = −0.0122Eh and
EB = 0.0498Eh (top) and the corresponding electronic wavefunctions, ΦA

R (bottom,
left) and ΦB

R (bottom, right) .
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Now, we look at the exact calculations. In order to study the EPESs in the diabatic

limit, we choose the nuclear mass equal to the electronic mass, M = me. Then, we

calculate the exact states (3.1) which are eigenfunctions of the full Hamiltonian (3.18).

We look at the exact states in the energy range above the minima of the lower state.

Here we study two of them, ΨA,B, that yield the exact nuclear wavefunctions, χA,B(R),

that similar to the lowest vibrational states of the two BOPESs exhibit no node. The

corresponding exact energies are EA = −0.0122Eh and EB = 0.0498Eh. The exact nu-

clear wavefunctions, χA,B(R), are plotted in Fig. (3.9), and the corresponding electronic

wavefunctions, ΦA,B
R , are shown at the bottom of Fig. (3.8). The real-valued exact elec-

tronic wavefunctions, ΦA,B
R , contrary to their BO counterparts, are smooth and their

phases change continuously. In particular, along the Y -axis they go smoothly through

the degenerate points of the BO potentials. Here, we should mention that the χA,B(R)

are non zero at the position of the BO conical intersections. In Fig. (3.8) (top), the

EPESs, εexactA,B (R), corresponding to the exact molecular states, ΨA,B, and the point of

conical intersection is indicated by a dot. The exact surfaces, similar to the 1D system

discussed in Sec. (3.3), behave similar to the diabatic potential energy surfaces, have

the shape of one of the BO surfaces in one side of conical intersections, pass smoothly

through the conical intersections and follow the shape of the other BO surface. On the

other hand, the vector potential is zero here, because the exact electronic wavefunctions

are smooth and real-valued. Hence, while in the adiabatic description of the system, a

Berry phase appears, in the exact treatment, within the exact factorization framework,

no Berry phase appears.

We conclude the discussion over the EPESs by recalling the discussion of the previous

section (2.3.1) about the exact time-dependent vector potential. the exact vector po-

tential, in the static case as well, can be expressed in terms of the full molecular state,

ΨK , and the phase of the corresponding nuclear wavefunction:

AK
α (R) =

=
〈
ΨK
∣∣ ∇αΨK

〉
r

|χK(R)|2
−∇αSK(R), (3.23)

where, χK(R) = eiS
K

(R)|χK(R)|. From the equation (3.23) on can actually extract

the conditions under which the vector potential cannot be gauged away. One condition

would be when a molecular state is current-carrying. Then, due to the degeneracy, the

full molecular state is complex. The other condition is when the phase, S(R), is not

smooth, that happens in situations such as the existence of the conical intersections in
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Figure 3.9: Exact nuclear densities, |χA|2 (left) and |χB |2 (right), corresponding to
total energies: EA = −0.0122Eh and EB = 0.0498Eh

the BO framework. However, we have seen at least one example that shows that the

exact electronic wavefunctions are real-valued and smooth when the adiabatic states

are not. Our observations, might be insufficient to conclude that the conical intersec-

tions and the Berry phases associated to them, are artifacts of the BO approximation

but they certainly are in support of the statement. Our results, furthermore, support

the implementation of the diabatic surfaces to study molecular processes. The exact

electron-nuclear coupling operator (3.7) in the exact electronic equation (3.4), together

with the electron-nuclear Coulomb interaction potential, provide a rigorous form of the

diabatic electron-nuclear interaction potential that can be a good starting point to de-

velop approximations.



Chapter 4

Exact time-dependent potential

energy surface

In Chapter (2) we have presented a detailed description of the exact factorization of

the full time-dependent electron-nuclear wavefunction. A full derivation of the equa-

tions that govern the electronic and nuclear motion was provided. We have shown

that the concepts of an exact time-dependent potential energy surface and an exact

time-dependent vector potential emerge naturally from the formalism. This represen-

tation of the correlated electron-nuclear many-body problem is exciting as the wave-

function χ(R, t) that satisfies the exact nuclear equation of motion (2.30) leads to a

nuclear N -body density, Γ(R, t) = |χ(R, t)|2, and a nuclear N -body current density,

Jν(R, t) = =(χ∗∇νχ) + Γ(R, t)Aν , which reproduce the true nuclear N -body density

and current density obtained from the full wave-function, Ψ(r,R, t) [56]. In this sense,

χ(R, t), can be viewed as the proper nuclear wave-function. The time evolution of

χ(R, t), on the other hand, is completely determined by the TDPES, ε(R, t), and the

vector potential, Aν(R, t). Moreover, these potentials are unique up to within a gauge

transformation. This uniqueness is straightforwardly proven by following the steps of

the current-density version [57] of the Runge-Gross theorem [58]. In other words, if

one wants a TDSE (2.30) whose solution, χ(R, t), yields the true nuclear N -body den-

sity and current density of the complete system, then the potentials appearing in this

TDSE are (up to within a gauge transformation) uniquely given by Eqs. (2.33-2.34);

there is no other choice. In particular, when the time-dependent vector potential can

be gauged away by a proper gauge-transformation, the TDPES uniquely describes the

nuclear dynamics and provides us with an alternative way of visualizing and interpreting

43
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the non-adiabatic processes. Studying the molecular process using a single TDPES is

particularly relevant if one thinks of a classical or semi-classical treatment of the nuclei

where a well-defined single classical force would be highly desirable.

In this chapter, we study and analyze the TDPES of the exactly solvable systems in

various situations, in particular, in comparison with the BOPESs. We first discuss the

details of the calculations. Then, we investigate the generic features of the exact TDPES

without external laser but in the presence of strong non-adiabatic couplings, using the

of the Shin-Metiu model (3.2.2). A major result will be that the exact TDPES exhibits

nearly discontinuous steps connecting different static BOPES, reminiscent of Tully’s

surface hopping [6] in the classical limit. At the end, we present the features of the

exact TDPES in the presence of strong laser fields for the H+
2 molecular ion (3.2.1) that

proves to be a useful interpretive tool to identify different mechanisms of dissociation.

4.1 Details of the calculations

In this section, we present the numerical procedure that leads to the calculation of

the TDPES. In order to calculate the TDPES one needs to have access to the elec-

tronic wave-function, ΦR(r, t), and the nuclear wavefunction, χ(R, t), at every instant

of time. As in the systems that are studied in this chapter, there is only one electronic

degree of freedom and one nuclear degree of freedom, from now on the symbols r and

R are replaced by r (or x) and R. To obtain ΦR(r, t) and χ(R, t), we do not solve

the Eqs. (2.29-2.30), Instead, we calculate them through, Ψ(r,R, t), the solution of the

TDSE (2.11) of the complete system. Starting from an initial state, we propagate the

TDSE numerically, using the second-order split-operator method [59], to obtain the full

molecular wavefunction Ψ(r,R, t). As there is only one nuclear degree of freedom, in

the systems that are studied in this chapter, we can fix the gauge in Eqs. (2.46)-(2.47)

such that the vector potential (2.34) vanishes identically. For one-dimentional problems

this is always possible with the choice:

d

dR
S(R, t) =

=
∫
drΨ∗(r,R, t)dΨ(r,R,t)

dR

|χ(R, t)|2
. (4.1)

So we can calculate S(R, t), the phase of the nuclear wavefunction, as well as

|χ(R, t)|2 =

∫
dx|Ψ(r,R, t)|2,
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the nuclear density, from the computed exact time-dependent molecular wavefunction.

Being equipped with the nuclear wave-function, χ(R, t) (= |χ(R, t)|eiS(R,t)), we then

compute the TDPES by inverting the nuclear equation of motion (2.30). Alternatively,

we may calculate the electronic wave-function,

ΦR(r, t) =
Ψ(r,R, t)

χ(R, t)
,

and obtain the TDPES from1 (2.33).

4.2 Steps in the exact time-dependent potential energy surface

In this section, we present a detailed study of the TDPES in the situations where elec-

tronic and nuclear motions are strongly coupled. As discussed in the previous sec-

tion (4.1), in order to obtain the TDPES, the full electron-nuclear wave-function has to

be calculated. Therefore, we need to choose a system that is simple enough to allow for a

numerically exact treatment and that nevertheless exhibits characteristic features asso-

ciated with the non-adiabatic dynamics. Here, we employ the Shin-Metiu model (3.2.2).

In the gauge (4.1) that we have implemented to perform the calculations, the TDPES

alone determines the time evolution of χ(R, t). In order to investigate the TDPES in

detail, we may study its gauge-invariant (GI) and gauge-dependent (GD) constituents

separately 2,

ε(R, t) = εGI(R, t) + εGD(R, t), (4.2)

where

εGI(R, t) = 〈ΦR(t)| ĤBO |ΦR(t)〉r +
~2

2M
〈∇RΦR(t)|∇RΦR(t)〉r −

A2(R, t)

2M
, (4.3)

and

εGD(R, t) = 〈ΦR(t)| − i~∂t |ΦR(t)〉r . (4.4)

In arriving at Eqs. (4.3-4.4), we have used the representation (2.67) of ε(R, t). The GI

part of the TDPES, εGI , is not affected by the gauge transformation (2.47). The GD

part, on the other hand, varies from gauge to gauge. They both have important features

1In this thesis we have mainly followed the former procedure. The later procedure has been used in
some cases to check.

2It can be easily proved that ε̃GI(R, t) = εGI(R, t) and ε̃GD(R, t) = εGD(R, t) + ∂tθ(R, t) under the
transformations in Eqs. (2.47).
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NR ∆R (a0) Rmax (a0) Nr ∆r (a0) |rmax| (a0) ∆t (a.u.)
381 0.025 9.5 512 0.4 102.2 0.05

Table 4.1: Numerical parameters employed for the numerical simulations of the time-
evolution of the Metiu-Shin model.

that will be discussed and analyzed in the following section. In order to analyze the

TDPES, we use the BO electronic states, {φ(l)
R (r)}l=1,..., and BOPESs, ε

(l)
BO(R), which

are the eigenstates and eigenvalues of the BO electronic Hamiltonian (2.3), respectively

(for more details see the discussion of the section (2.1.1)). If the full wave-function,

Ψ(r,R, t), is expanded in this basis (2.1.2),

Ψ(r,R, t) =
∑
l

Fl(R, t)φ
(l)
R (r), (4.5)

then the nuclear density maybe written as

∣∣χ(R, t)
∣∣ =

√∑
l

∣∣Fl(R, t)∣∣2. (4.6)

This is obtained by integrating the squared modulus of Eq. (4.5) over the electronic

coordinates with normalized adiabatic states. The exact electronic wave-function may

also be expanded in terms of the BO states (2.63),

ΦR(r, t) =
∑
l

Cl(R, t)φ
(l)
R (r). (4.7)

The expansion coefficients of Eqs. (4.5) and (4.7) are related,

Fl(R, t) = Cl(R, t)χ(R, t), (4.8)

by virtue of the factorization (2.24). The PNC then reads

∑
l

∣∣Cl(R, t)∣∣2 = 1, ∀ R, t. (4.9)

In all the cases, studied in the following sections, the initial wave-function is the product

of a real normalized Gaussian wave-packet, centered at Rc = −4.0 a0 with the variance

σ = 1/
√

2.85 (black line in Fig. 4.1), and the second BO electronic state, φ2
R(r), i.e.,

Ψinitial =
1

σ
√

2π
e
−(R+4)

2σ2 φ
(2)
R (r). (4.10)
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To achieve the desirable numerical accuracy, we have repeated the same calculations

with differens box sizes and grid-spacing. Table (4.1) gives a set of parameters that

provid an efficient convergence. For calculating the NACs for the classical calculations

of section (4.2.4), we have used more grid points along the nuclear axis (NR = 1000).

4.2.1 Strong non-adiabatic coupling

We first study a case in which the electronic and nuclear motions are strongly coupled.

In order to produce that situation, we choose the parameters of the Hamiltonian (3.15)

as Rf = 5.0 a0, Rl = 3.1 a0 and Rr = 4.0 a0 such that the first BOPES, ε
(1)
BO, is strongly

coupled to the second BOPES, ε
(2)
BO, around the avoided crossing at Rac = −1.90 a0 and

there is a weak coupling to the rest of the surfaces. The four lowest BOPESs for this set

of parameters are shown in Fig. 4.1 (left panel), along with the initial nuclear density.

The same figure (right panel) presents the time-evolution of the populations of the BO

states,

ρl(t) =

∫
dR
∣∣Fl(R, t)∣∣2 , (4.11)

and underlines the strong non-adiabatic character of the system with the intense pop-

ulation exchange taking place at the passage through the avoided crossing (t ' 12 fs).
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Figure 4.1: Left: lowest four BO surfaces, as functions of the nuclear coordinate.
The first (red line) and second (green line) surfaces will be considered in the actual
calculations that follow, the third and forth (dashed black lines) are shown as reference.
The squared modulus (reduced by ten times and rigidly shifted in order to superimpose
it on the energy curves) of the initial nuclear wave-packet is also shown (black line).
Right: populations of the BO states along the time evolution. The strong non-adiabatic
nature of the model is underlined by the population exchange at the crossing of the

coupling region.



Chapter 4. Exact time-dependent potential energy surface 48

The GI part of the TDPES (4.3) shows, in general, two distinct features: (i) in the

vicinity of the avoided crossing, as the nuclear wave-packet passes through a region

of non-adiabatic coupling between different BOPESs, εGI(R, t) resembles the diabatic

surface that smoothly connects the two adiabatic surfaces; (ii) far from the avoided

crossing, it presents dynamical steps between regions in R-space where it is on top of

one or the other BOPES. The GD part of the TDPES (4.4), on the other hand, is a

piecewise constant function of the nuclear coordinate. This is illustrated in detail in

Fig. 4.2 that contains the GI part of the TDPES (upper panel), the GD part of the

TDPES (middle panel) and the nuclear density together with |F1|2 and |F2|2 (lower

pannel) for three different snapshots of times. In all the plots, the regions highlighted

within the boxes are the regions which we refer to in the following discussion. Outside

such regions, the value of the nuclear density drops under the numerical accuracy of the

calculations and the resulting potentials are not meaningful. That is why the TDPES are

trimmed. The left panels show, at the initial time, (top) the GI part of the TDPES (black

dots), with the two lowest BOPESs (ε
(1)
BO(R), dashed red line, and ε

(2)
BO(R), dashed green

line) as reference, (center) the GD part of the exact potential (dark-green dots) which is

a costant function of R and is set to be the zero of the GD potentials3 and (bottom) the

nuclear density (dashed black line) and its components on the BO states (4.6), |F1(R, t)|2

(red line) and |F2(R, t)|2 (green line). At time t = 0 fs, the electronic wave-function,

ΦR(r, t), coincides with the second adiabatic state φ
(2)
R (r), therefore the GI component

of the TDPES is identical with ε
(2)
BO(R), apart from a slight deviation due to the second

term in Eq. (4.3). This is easily confirmed by the expression of εGI(R, t) in terms of the

BO states and energies

εGI(R, t) =
∑
l

|Cl(R, t)|ε
(l)
BO(R)

+
1

2M

[∑
l

|∇RCl|2 +
∑
lj

C∗l Cj
(
i∇R · FBOlj − GBOlj

)
− 2

∑
lj

=
(
Cj∇αC∗l FBOlj,α

)]
(4.13)

The leading term in Eq. (4.13) is the average of the BOPESs weighted by |Cl(R, t)|2,

3The GD of the TDPES depends on the phase of the electronic wave-function, as can be proved by
using the PNC in the second term on r.h.s of the expression

εGD(R, t) =

∫
dr |ΦR(r, t)|2 γ̇R(r, t)− i

2
∂t

∫
dr |ΦR(r, t)|2 . (4.12)

Here, the symbol γ̇R(r, t) has been used to indicate the time-derivative of the phase of the electronic
wave-function.
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Figure 4.2: TDPES and nuclear densities at different time-steps, namely t = 0 fs,
t = 10.88 fs and t = 26.61 fs. The different panels show: (top) GI part of the TDPES
(black dots) and the two lowest BOPESs (first, dashed red line, and second, dashed
green line) as reference; (center) the GD part of the TDPES (green dots); (bottom)
nuclear density (dashed black line) and |Fl(R, t)|2 (l = 1 red line and l = 2 green line).
The gray boxes define the regions in R-space where the energies have been calculated,

since the nuclear density is (numerically) not zero.

since the second term is O(M−1). The GD component of the TDPES in Eq. (4.4), in

terms of the BO states, becomes

εGD(R, t) =
∑
l

|Cl(R, t)|2 γ̇l(R, t) (4.14)

where γ̇l(R, t) is the time-derivative of the phase of the coefficients Cl(R, t) (Cl(R, t) =

eiγl(R,t)|Cl(R, t)|). The nuclear density, along with its components on the BO states from

Eq. (4.6), is presented in Fig. 4.2. At the initial time, |χ(R, t)|2 = |F2(R, t)|2.

At t = 10.88 fs in Fig. 4.2 (central panels), (top) the GI part of the TDPES resembles the

diabatic surface [54] that smoothly passes through the avoided crossing. This behavior

allows the nuclear density moving on the upper BOPES to be partially “transferred” to

the lower state, as the consistent increase of the population of state φ
(1)
R (r) (red curve in

the bottom plot in Fig. 4.2) confirms. In region highlighted by the dashed box, the GD

part of the exact potential is constant, therefore, it does not affect the nuclear dynamics.
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At later times (t = 26.61 fs shown in the right panels of Fig. 4.2), when the nuclear

wave-packet has split at the avoided crossing, both components of the TDPES present

a pronounced stepwise behavior: the GI part follows one or the other BOPES in differ-

ent regions of R-space that are connected by a step, whereas the GD part is stepwise

constant, with steps appearing in the same region.

The generic features of the TDPES are formed by bringing together the features of the

GI and GD part of it. The shape of the TDPES, at the initial times, is formed by the

GI part and the effect of the GD part is not more than a constant shift of the overall

potential. Hence, The TDPES that drives the nuclear dynamics, behaves like a diabatic

surface and “opens” in the direction of the wave-packet’s motion in order to facilitate

the population exchange between the adiabatic states. After the wave-packet splits at

the avoided crossing, in different regions in R-space, the TDPES is parallel to one or

the other BOPES and a step forms in the interface.

The exact TDPES represented in Fig. 4.2 can be viewed from a different perspective.

The nuclear wave-packet from a semi-classical point of view can be represented as an

ensemble of classical trajectories, along which point-particles evolve under the action

of a classical force which is the gradient of εGI . According to our observations, on

different sides of a step such a force is calculated from different BOPESs. This is

reminiscent of the jumping between the adiabatic surfaces in algorithms such as Tully’s

surface hopping [60, 61] (TSH). However, while Tully surface hopping is a stochastic

algorithm, the jumps in the exact TDPES correspond to an exact solution of the TDSE.

When the time-dependent vector potential cannot be set to zero, a gauge can be chosen

in which εGD is zero and a time-dependent vector potential together with εGI specifies

the classical force that the nuclei experience in different slices of R-space. The success

of these algorithms in reproducing non-adiabatic processes becomes clear in the light of

the fact that the exact TDPES itself is parallel to different BOPESs in different regions

along the nuclear coordinate. The usually abrupt transitions between the adiabatic

surfaces, i.e., the steps in the exact treatment, is analogous with the stochastic jumps

between BO surfaces in the TSH.
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4.2.2 Analysis of the steps

The behavior of the GI part of the TDPES is mainly determined by the first term in

Eq. (4.13). The steps appear in the region around R0, the cross-over of |F1(R, t))|2

and |F2(R, t))|2. In particular, at this point |F1(R0, t)|2 = |F2(R0, t)|2 = |X(t)| and,

irrespective of this value, the expansion coefficients in the electronic wave-function (4.7)

have the value |C1(R0, t)|2 = |C2(R0, t)|2 = 1/2. This relation holds as a consequence of

Eq. (4.8), which can be written as

|Cl(R0, t)|2 =
|Fl(R0, t)|2

|F1(R0, t)|2 + |F2(R0, t)|2
=

1

2
with l = 1, 2, (4.15)

and is clearly shown in Fig. 4.3. Here we present, in the upper panel, the GI part (black

line) and the GD part (blue line, rigidly shifted along the energy axis) of the exact

potential at time t = 26.62 fs. The BO surfaces (dashed red and green lines) are also

plotted as reference. In the lower panel, we plot the coefficients of the expansions in

Eq. (4.5) (dashed red and green lines) and in Eq. (4.7) (continuous red and green lines).

The continuous black line represents the nuclear density.

The expression of the GI component of the TDPES for a two-state system, from Eq. (4.13)

neglecting terms O(M−1), is

εGI(R, t) = |C1(R, t)|2 ε(1)
BO(R) + |C2(R, t)|2 ε(2)

BO(R). (4.16)

If |Cl(R, t)|2 is Taylor-expanded around R0, up to within the linear deviations,

∣∣∣C1
2
(R, t)

∣∣∣2 =

∣∣∣F1
2
(R, t)

∣∣∣2
|χ(R, t)|2

∣∣∣∣∣∣∣
R0

+ ∇R

∣∣∣F1
2
(R, t)

∣∣∣2
|χ(R, t)|2

∣∣∣∣∣∣∣
R0

(R−R0)

=
1

2
± α(t)

2
(R−R0) , (4.17)

one can identify the parameter α(t), defined as

α(t) =
(∇R |F1(R, t)|)R0

− (∇R |F2(R, t)|)R0

|X(t)|
. (4.18)

Where α(t) is the slope of the coefficients in the step region from that the width of the

region can be determined. Using the relation, 0 ≤
∣∣∣C1

2
(R, t)

∣∣∣2 ≤ 1, we get

0 ≤ 1

2
+
α(t)

2
(R−R0) ≤ 1 with

∆R

2
= |R−R0| ≤

1

α(t)
. (4.19)
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Figure 4.3: Top: GI part (black line) and the GD part (blue line, rigidly shifted
along the energy axis) of the exact potential at time t = 26.61 fs. The first (dashed
red) and second (dashed green) BOPESs are shown as reference. Bottom: coefficients
|Fl(R, t)|2 of the expansion of the full wave-function (Eq. (4.5)) on the BO states (l = 1
dashed red line, l = 2 dashed green line) and coefficients |Cl(R, t)|2 of the expansion
of the electronic wave-function (l = 1 continuous red line, l = 2 continuous green line);
the black line represents the nuclear density. R0 is the position where the coefficients
|F1(R, t)|2 and |F2(R, t)|2 have the same value and the dashed box highlights the region

of the step.

Therefore, ∆R is small because the step is steep, as consequence of a large α(t). α(t)

can be large either because |X(t)| is small, i.e., the cross-over is located in a region of

small nuclear density, or because the terms in the numerator of Eq. (4.18) have opposite

slopes at R0 (this is the case depicted in Fig. 4.3). Outside the region ∆R, one or the
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other coefficients |Cl(R, t)|2 dominates, leading to

εGI(R, t) =


ε
(2)
BO(R), R < R0

ε
(1)
BO(R), R > R0.

(4.20)

The GD part of the TDPES (4.14), εGD(R, t), can be analyzed similarly. It may be

written, in terms of the two BO states, as

εGD(R, t) = |C1(R, t)|2 γ̇1(R, t) + |C2(R, t)|2 γ̇2(R, t) (4.21)

and we recall that γl(R, t) is the phase of the coefficient Cl(R, t). As in Eq. (4.20),

outside the step region, this part of the potential becomes

εGD(R, t) =


γ̇2(R, t), R < R0

γ̇1(R, t), R > R0.

(4.22)

Moreover, Fig. 4.3 shows that in these regions γ̇1(R, t) and γ̇2(R, t) are constant functions

of R. This is a consequence of the gauge we chose. The gauge condition, A(R, t) =

〈ΦR(t)| − i∇RΦR(t)〉r = 0, in terms of the two BO states involved in the dynamics,

reads

0 =
∑
l=1,2

|Cl(R, t)|2∇Rγl(R, t)−
i

2
∇R

∑
l=1,2

|Cl(R, t)|2

+
∑

l,k=1,2

C∗l (R, t)Ck(R, t)FBOlk (R). (4.23)

However, the second term of the r.h.s. is identically zero, due to the PNC in Eq. (4.9),

and the third term can be neglected, due to the presence of the non-adiabatic couplings,

FBOlk (R), that are small far from the avoided crossing. The gauge condition then states

|C1(R, t)|2∇Rγ1(R, t) = − |C2(R, t)|2∇Rγ2(R, t), (4.24)

or equivalently

∇Rγ2(R, t) = 0 for R < R0 where |C1(R, t)|2 = 0 (4.25)

∇Rγ1(R, t) = 0 for R > R0 where |C2(R, t)|2 = 0. (4.26)

We obtain γl(R, t) = Γl(t), namely the phase of the coefficient Cl(R, t) is only a function
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of time (constant in space) in the region where the squared modulus of the corresponding

coefficient is equal to unity. Similarly, γ̇l(R, t) = Γ̇l(t), as shown in Fig. 4.3.

In the step region, around R0, the expression of the TDPES can be approximated as

ε(R, t) =
ε
(1)
BO(R) + ε

(2)
BO(R)

2
+
γ̇1(R, t) + γ̇2(R, t)

2

+ α(t)

[
ε
(1)
BO(R)− ε(2)

BO(R)

2
+
γ̇1(R, t)− γ̇2(R, t)

2

]
(R−R0). (4.27)

The first two terms on the r.h.s. are the average of the BO energies plus the average

value of the time-derivative of the phases γ1(R, t) and γ2(R, t); the terms in square

brackets are the energy gaps between the BO surfaces and between the time-derivative

of the phases, which give the contribution proportional to the parameter α(t). From

Fig. 4.3, we notice that, around R0, the slope of εGD is opposite to the slope of εGI

and this is a general feature in the studied system (in the absence of a time-dependent

external field).

A rough estimate of the second term in square brackets in Eq. (4.27) is obtained from

semi-classical considerations [62]. We introduce the symbol λl(R, t) to indicate the

phase of the coefficients Fl(R, t) in the expansion (4.5) and, using Eq. (4.8), we write

the relation between γl(R, t) and φl(R, t)

γ1(R, t)− γ2(R, t) = λ1(R, t)− λ2(R, t). (4.28)

Regarding each Fl(R, t) as a “partial” nuclear wave-packet propagating on the corre-

sponding BO surface and neglecting the couplings to the other surfaces, the phases can

be approximated as

λl(R, t) = Pl(t)(R−Rl(t)) +

∫ t

dτ
[
Pl(τ)Ṙl(τ)−Hl (Pl(τ), Rl(τ), τ)

]
, (4.29)

where Rl(t), Pl(t) are the mean position and momentum, respectively, and the second

term is the classical action. The mean positions, R1(t) and R2(t), at time t = 26.61 fs

are shown in Fig. 4.3. The time-derivative of this expression leads to

λ̇l(R, t) = Ṗl(t) (R−Rl(t))−Hl (Pl(t), Rl(t), t) (4.30)

' −
[
∇Rε(l)BO(R)

∣∣∣
Rl(t)

(R−Rl(t)) + ε
(l)
BO(R)

∣∣∣
Rl(t)

]
−
P 2
l

2M
, (4.31)
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where we used Hl ' P 2
l /(2M) + ε

(l)
BO(Rl) and the classical equation of motion Ṗl =

−∇Rε(l)BO(R)|Rl . In square brackets, we identify the zero-th and first order terms of

the Taylor-expansion of ε
(l)
BO(R) around Rl, from which we conclude that the spatial

dependence of the term γ̇1(R, t)− γ̇2(R, t) in the region of the step (∆R around R0) is

dominated by

γ̇1(R, t)− γ̇2(R, t) '−
(
ε
(1)
BO(R ∼ R1(t))− ε(2)

BO(R ∼ R2(t))
)

+O
(
(R−R1)2, (R−R2)2

)
. (4.32)

The leading term in this expression has the opposite slope if compared to the first term

in square brackets in Eq. (4.27) and almost cancels it. We will confirm this observation

in Fig. 4.8 below, where the full TDPES will be shown.

4.2.3 Weaker non-adiabatic coupling

Now we study a case of weaker non-adiabatic coupling between the two lowest BO

states. In order to make the coupling weaker, we choose the parameters in the Hamilto-

nian (3.15) as L = 19.0 a0, Rf = 3.8 a0, Rl = 2.0 a0 and Rr = 5.5 a0. The BO surfaces,

along with the evolution of the populations of the BO states, are shown in Fig. 4.4. The
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Figure 4.4: Same as Fig. 4.1 but for a weaker non-adiabatic coupling between the
two lowest BO states.

initial conditions for the dynamical evolution of this system are the same as in the pre-

vious example, however the coupling between the two lowest electronic states is weaker,

thus leading to a reduced population exchange, clearly shown in Fig. 4.4 (right panel).

Nonetheless, the process described here shows similarities to the previous case, as can
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be seen from Fig. 4.5. The GI part of the TDPES presents again two main features,
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Figure 4.5: Same as Fig. 4.2 but for a weaker non-adiabatic coupling between the
two lowest BO states, at time-steps 9.68 fs, 27.33 fs and 32.65 fs.

(i) the diabatization at the avoided crossing, when the nuclear wave-packet crosses the

region of relatively strong non-adiabatic coupling and (ii) the steps at the cross-over of

|F1(R, t)|2 and |F2(R, t)|2, signature of the splitting of the nuclear density. The GD part

is either constant, before the splitting at the avoided crossing, or stepwise constant, with

steps appearing in the same region as the steps in the GI term, but with opposite slope.

At different snapshots in time, i.e., 9.68 fs, 27.33 fs and 32.65 fs, these properties are

shown in Fig. 4.5, along with the nuclear density and its components on the BO states.

The notation used in this figures is the same as in Fig. 4.2.

A slightly different behavior from the situation of strong non-adiabatic coupling can be

identified in εGI(R, t) before the passage through the avoided crossing. As the nuclear

wave-packet approaches the avoided crossing, the GI part of the TDPES “opens” towards

the direction of motion, resembling the diabatic surface that connects the BO surfaces

through the avoided crossing. This is clearly shown in Fig. 4.6 (left) at time t = 9.68 fs

for the strongly coupled system. In the case of weaker non-adiabatic coupling, εGI(R, t),

at the avoided crossing, lies between the BO surfaces, as shown in Fig. 4.6 (right).
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Therefore, the diabatization feature strictly depends on the strength of the non-adiabatic

-5 -4 -3 -2 -1 0

R (a
0
)

-0.25

-0.2

-0.15

en
er

g
y
 (

ε h
)

BOPES 1

BOPES 2
ε

GI

| χ | 
2

t = 9.68 fs

-6 -5 -4 -3 -2 -1

R (a
0
)

-0.25

-0.2

-0.15

-0.1

-0.05

t = 6.29 fs

Figure 4.6: Diabatization feature of εGI(R, t) (blue dots) for the two model systems
(left panel, strong coupling at t = 9.68 fs, and right panel, weak coupling at t = 6.29 fs)

presented here. The dashed lines represent the BO surfaces (ε
(1)
BO(R) red line and

ε
(2)
BO(R) green line) and the continuous black line represents the nuclear density (reduced

by a factor 10 and rigidly shifted along the y-axis).

coupling and, in general, can be viewed as a transient configuration of the GI part of

the TDPES before the formation of the steps.

4.2.4 Classical dynamics on the TDPES

In the previous sections (4.2.1-4.2.3), we have addressed and analyzed some of the

generic features of the TDPES that governs the nuclear dynamics in the presence of

non-adiabatic electronic transitions. As discussed before, some of these features, in par-

ticular, the steps that bridge between the two parts of the TDPES that are parallel to

the BOPESs, are reminiscent of the jumping between the BOPESs in the algorithms

such as Tully’s surface hopping [60]. These algorithms are usually based on the mixed

quantum-classical treatment of the electronic and nuclear dynamics using stochastic

jumps between BO surfaces. Therefore, an ensemble of classical trajectories with dif-

ferent initial conditions is needed to achieve reasonable outcomes. On the other hand,

the TDPES is the exact time-dependent potential that governs the nuclear dynamics (in

general together with the vector potential) and contains the quantum backreaction re-

sulting from the exact coupling to the electronic subsystem. This brings us to investigate

how the TDPES drives the classical point-like nuclei.
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In order to understand how the generic features of the TDPES affect the classical nuclear

dynamics, we have employed the surfaces presented in the previous sections (4.2.1 and

4.2.3) to calculate the forces acting on the nuclear degree of freedom. We compare

the resulting dynamics using the forces that are calculated from the gradient of the

TDPES and from the gradient of its GI part. The classical propagation starts at the

initial position Rc = −4.0 a0 with zero initial velocity. Here, we use the velocity-Verlet

algorithm to integrate the Hamilton’s equations,
Ṙ =

P

M

Ṗ = −∇Rε(R) or −∇RεGI(R),

(4.33)

using the same time-steps as in the quantum propagation (δt = 2.4×10−3 fs). In Fig. 4.7

(upper panels) we present the evolution of the classical position compared to the average

nuclear position from the quantum calculation, for strong and weak coupling. In both

cases, a single trajectory, evolving on the exact surface (blue lines in Fig. 4.7), is able to

reproduce the mean nuclear path (dashed black lines) fairly well. A slight deviation from

the quantum results happens only towards the end of the simulated trajectories. When

the classical forces are calculated from the GI part of the TDPES, the corresponding

classical trajectory in the strong coupling case, does not show a large deviation from

the exact calculation. However, in the weak coupling case, after 20 fs, the classical

trajectory deviates considerably from the quantum mean path. This behavior is also

confirmed by the pronounced increase of the velocity of the classical particle moving

on εGI , shown in Fig. 4.7 (lower panels). Interestingly, in the strong coupling regime

(Fig. 4.7, lower panel-left), the velocity calculated from the classical dynamics on the full

TDPES presents a similar, less enhanced, behavior compared to the velocity calculated

from the classical dynamics on the GI part of the TDPES.

We now have a closer look at the classical dynamics and try to find out the source

of the deviations, specially in the weaker coupling case. Fig. (4.8) shows the classical

positions calculated from the full TDPES (blue dots) and the GI part of it (orange dots)

together with the corresponding potentials and the exact nuclear densities at the times

indicated in the plots. It can be seen in the figure that the classical particle evolving

on the GI part of the potential, in the case of weaker coupling, at the moment of the

step formation feels an intense force, as its position is exactly in the region of the step.
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Figure 4.7: Classical position (upper panels) and velocity (lower panels) and average
nuclear position and velocity as functions of time for the systems in the presence of
strong non-adiabatic coupling (left) and of weak non-adiabatic coupling (right). The
dashed black line represents the average nuclear values from quantum calculation, the
blue and orange lines are the positions (upper panels) and velocities (lower panel) of
the classical particle when it evolves on the exact potential and on the GI part of the

potential, respectively.

This happens also in the case of the strong coupling (see the blue line referring to the

velocity in Fig. 4.7, left plot), to a lesser extent and the velocity of the classical particle

does not present a strong peak. The evolution of the classical particle on the GI part,

in the case of the strong coupling, shows that the step forms in the direction of larger

nuclear density (see plot at t = 22.25 fs), hence, the classical particle correctly follows

the step and its position is approximately the mean nuclear position. However, in the

case of weaker coupling, the step forms in the direction of smaller nuclear density and

the classical particle cannot move “up the hill” to follow the nuclear mean path and

remains in the step region until an intense force drives it down the step. In the later
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Figure 4.8: Upper panels: strong coupling results. Lower panels: weak coupling
results. The figure shows classical positions (dots) at different times, as indicated in
the plots, with the corresponding potentials, εGI(R, t) (orange lines) and ε(R, t) (blue
lines). The nuclear density (dashed black line) is plotted as reference, along with the

mean position (black arrows).

case, an exaggerated increase of the velocity is responsible for the large deviation of the

classical position from the quantum mean position.

From comparing the classical and quantum dynamics shown in Fig. 4.8, we observe

that in the strong coupling case (upper panel), at t = 4.84 fs and at t = 11.37 fs,

the nuclear wave-packet has not yet crossed the avoided crossing, thus the GD part of

the TDPES is a constant. Therefore, the classical force calculated from the TDPES is

identical with the one calculated from its GI part. At these times, the classical positions

of the nuclei evolving on the GI part of the potential (orange dots in the figure) and on

the full TDPES (blue dots) coincide with the mean position of the nuclear wave-packet

(black arrows). On the other hand, in the weaker coupling case (lower panels), a similar

behavior is seen before the wave-packet splitting, at t = 7.26 fs and t = 12.09 fs. At

later times, namely t = 22.25 fs for the strong coupling case and t = 23.71 fs for the

weaker coupling case, the steps develop in εGI and the classical particle evolving on

this potential follows the direction in which the step is forming: in the case of strong
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coupling, this region coincides with the region associated with larger nuclear density,

whereas this is not the case for the weaker coupling case. As discussed above, this

feature explains why the positions of the particles on ε(R, t) and on εGI(R, t), for the

system in the presence of strong non-adiabatic coupling, are close to each other also

at later times (t = 29.03 fs in Fig. 4.8), whereas they deviate in the weaker coupling

regime as clearly shown in the figure at time t = 31.45 fs.

4.2.5 Ehrenfest theorem for the nuclear wave-function

In the previous section (4.2.4) we studied the classical nuclear dynamics on the TDPES.

However, we did not provide any argument how that study can be associated with

a classical limit of the nuclear motion that is able to, approximately, reproduces the

expectation values of the nuclear position and momentum of the complete electron-

nuclear system.

Here, using the Ehrenfest theorem, we show how the nuclear position and momentum

calculated from Eq. (4.33) can be linked to the expectation values of the nuclear position

and momentum of the complete electron-nuclear system. The Ehrenfest theorem relates

the time-derivative of the expectation value of a quantum-mechanical operator Ô to the

expectation value of the commutator of that operator with the Hamiltonian, i.e.

d

dt
〈Ô(t)〉 =

1

i~

〈[
Ô(t), Ĥ

]〉
+ 〈∂tÔ(t)〉. (4.34)

The second term on the r.h.s. refers to the explicit time-dependence of Ô. In partic-

ular, the theorem leads to the classical-like equations of motion for the mean value of

position and momentum operators. For a system of electrons and nuclei, described by

the Hamiltonian in Eq. (2.2) and the wave-function Ψ(r,R, t), the mean values of the

ν-th nuclear position R̂ν and momentum P̂ν operators evolve according to the classical

Hamilton’s equations

d

dt
〈R̂ν〉Ψ =

1

i~

〈[
R̂ν , Ĥ(r,R)

]〉
Ψ

=
〈P̂ν〉Ψ
Mν

(4.35)

d

dt
〈P̂ν〉Ψ =

1

i~

〈[
P̂ν , Ĥ(r,R)

]〉
Ψ

= 〈−∇ν
(
V̂en(r,R) + Ŵnn(R)

)
〉Ψ. (4.36)

Here, the operators do not depend explicitly on time and we indicate the integration over

the full wave-function (electronic and nuclear coordinates) by 〈 · 〉Ψ. On the other hand,

the nuclear equation (2.30) is a Schrödinger equation that contains a time-dependent
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vector potential and a time-dependent scalar potential. Therefore, the Ehrenfest theo-

rem for the nuclear subsystem reads

d

dt
〈R̂ν〉χ =

1

i~

〈[
R̂ν , Ĥn(R)

]〉
χ

=
〈 ˆ̃Pν〉χ
Mν

(4.37)

d

dt
〈 ˆ̃Pν〉χ =

1

i~

〈[
ˆ̃
Pν , Ĥn(R)

]〉
χ

+
〈
∂tAν(R, t)

〉
χ
, (4.38)

where

ˆ̃
Pν = −i~∇ν + Aν(R, t) (4.39)

is the expression of the nuclear momentum operator in position representation, and

Ĥn(R) =

Nn∑
ν=1

[
−i~∇ν + Aν(R, t)

]2
2Mν

+ ε(R, t) (4.40)

is the nuclear Hamiltonian of the Eq. (2.30). Note that the average operation is per-

formed only on the nuclear wave-function as indicated by 〈 · 〉χ. An explicit time-

dependence appears in the expression of the momentum operator, due to the presence

of the vector potential. This dependence is accounted for in the second term on the r.h.s

of Eq. (4.38).

Eq. (4.37) can be easily obtained from Eq. (4.35) by using the relation

P̂νΨ(r,R, t) = P̂νχ(R, t)ΦR(r, t) =
(
P̂νχ(R, t)

)
ΦR(r, t) + χ(R, t)

(
P̂νΦR(r, t)

)
(4.41)

and integrating out the electronic coordinates in both sides of the equation. To obtain

Eq. (4.38) from Eq. (4.36), we rewrite Eq. (4.36) as

d

dt
〈P̂ν〉Ψ =

∫
drdR

[
Φ∗R(r, t)∂tχ

∗(R, t) + χ∗(R, t)∂tΦ
∗
R(r, t)

]
P̂νχ(R, t)ΦR(r, t)

+

∫
drdRχ∗(R, t)Φ∗R(r, t)P̂ν

[
ΦR(r, t)∂tχ(R, t) + χ(R, t)∂tΦR(r, t)

]
.

(4.42)

Then we use the nuclear equation (2.30) for

∂tχ(R, t) =
1

i~
Ĥn(R)χ(R, t) (4.43)

and its complex-conjugated (Ĥn(R) is hermitian), the definition of the (real) vector

potential

Aν(R, t) =

∫
drΦ∗R(r, t)P̂νΦR(r, t) (4.44)
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and the PNC, to derive

d

dt
〈P̂ν〉Ψ =

1

i~

∫
dRχ∗(R, t)

(
ˆ̃
PνĤn(R)− Ĥn(R)

ˆ̃
Pν

)
χ(R, t)

+

∫
dR
∣∣χ(R, t)

∣∣2 ∫ dr
[(
∂tΦ

∗
R(r, t)

)
P̂νΦR(r, t) + Φ∗R(r, t)P̂ν∂tΦR(r, t)

]
(4.45)

with
ˆ̃
Pν = P̂ν + Aν(R, t). Using(
∂tΦ

∗
R(r, t)

)
P̂νΦR(r, t) = ∂t

(
Φ∗R(r, t)P̂νΦR(r, t)

)
− Φ∗R(r, t)P̂ν∂tΦR(r, t), (4.46)

for the term in the square brackets leads to

d

dt
〈P̂ν〉Ψ =

∫
dRχ∗(R, t)

(
1

i~

[
ˆ̃
Pν , Ĥn(R)

]
+ ∂tAν(R, t)

)
χ(R, t), (4.47)

recovering the term on the r.h.s. of Eq. (4.38). A similar procedure [56] yields the

relation

〈P̂ν〉Ψ =

∫
drdRΦ∗R(r, t)χ∗(R, t)

[(
P̂νχ(R, t)

)
ΦR(r, t) + χ(R, t)P̂νΦR(r, t)

]
=

∫
dRχ∗(R, t)

[
P̂ν + Aν(R, t)

]
χ(R, t) = 〈 ˆ̃Pν〉χ, (4.48)

which proves the identity of the LHSs of Eqs. (4.36) and (4.38).

We have shown that from the Ehrenfest theorem that follows the nuclear equation (2.30)

we can reproduce the expectation values of the nuclear position and momentum oper-

ators of the complete electron-nuclear system. This outcome is consistent with the in-

terpretation of χ(R, t) as the proper nuclear wave-function that reproduces the nuclear

density and current density of the complete system (see the discussion in Chapter 2).

In the one-dimensional system we studied here, the gauge is chosen such that A(R, t) ≡ 0,

therefore, the Ehrenfest equations become

d

dt
〈R̂〉χ =

1

i~
〈
[
R̂, Ĥn

]
〉χ =

〈P̂ 〉χ
M

(4.49)

d

dt
〈P̂ 〉χ =

1

i~
〈
[
P̂ , Ĥn

]
〉χ = 〈−∇Rε(R, t)〉χ, (4.50)

where the mean force generating the classical-like evolution is determined as the expecta-

tion value, on the nuclear wave-function, of the gradient of the TDPES. If we replace the

nuclear wave-function in (4.50) by a delta function, we get Eq. (4.33) that was used in

the previous section (4.2.4). That is why the classical nuclear dynamics on the TDPES

could actually approximate the mean nuclear position and momentum.
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4.2.6 Evolution of the electronic conditional wave-function

We conclude this section (4.2) by discussing the evolution of the electronic wave-function,

ΦR(r, t), for the set of parameters, used in sec. (4.2.1). In order to have a complete

picture of the non-adiabatic process, happening in the system, in terms of χ(R, t),

ΦR(r, t) and ε(R, t), we repeat part of the discussions on the features of the TDPES.

The first three BOPES are shown in Fig. 4.9 (left panel), together with the BO condi-

tional electronic densities |φ(1)
R (r)|2 and |φ(2)

R (r)|2 (right panels). As expected, |φ(1)
R (r)|2

and |φ(2)
R (r)|2 exhibit abrupt changes, along the R-axis, at the position of the avoided

crossing, Rac: |φ(1)
R (r)|2 switches from being localized around the fixed ion on the left

(r = −9.5 a0), to be localized around the one on the right (r = 9.5 a0); |φ(2)
R (r)|2 on the

other hand, presents a single-peak structure for R < Rac and a double-peak structure

for R > Rac.

Figure 4.9: Left: The first two BOPESs (indicated in the figure) together with the
3rd BOPES (black dashed-line) and the initial nuclear wave-function (black solid-line)

. Right: Adiabatic electronic conditional densities as indicated in the figures

Again, we suppose that the system is initially excited to ε
(2)
BO and the initial nuclear

wave-function is a wave-packet with the width σ = 1/
√

2.85, centered at R = −4.0 a0

(see Fig. 4.9, black solid-line). In Fig. 4.10 (upper panel) the gauge-invariant part of the

TDPES (4.3), εGI , is plotted (black solid-line) at four different times, along with the two

lowest BOPESs, ε
(1)
BO (red dashed-line) and ε

(2)
BO (green dashed-line). In the second panel

(from the top), the gauge-dependent part of the TDPES (4.4), εGD, is plotted at the
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same times. In the third panel (from the top), the exact nuclear density (black dashed-

line), |χ(R, t)|2, is shown together with the absolute value squared of the projection of

the full wave-function on the first and second BO electronic states, i.e., |F1(R, t)|2 =

|
∫
dr φ

(1)∗
R (r) Ψ(r,R, t)|2 (red solid-line) and |F2(R, t)|2 = |

∫
dr φ

(2)∗
R (r) Ψ(r,R, t)|2 (green

solid-line). In the lowest panel, |ΦR(r, t)|2 is presented.

As discussed in sec. (4.2.1), at the initial time (t = 0), due to the choice of the initial

state, the TDPES coincides with ε
(2)
BO. Since Ψ0(r,R) is not an eigenstate of the Hamil-

tonian (3.15), it evolves in time. At t = 9.0fs, εGI coincides with ε
(2)
BO for R < Rac, goes

smoothly through the avoided crossing region and follows ε
(1)
BO for R > Rac, resembling

the diabatic PES of state 2 in Ref. [54], in which the electron interacts with the fixed

ion on the right (r = 9.5 a0) and with the moving ion, but not with the fixed ion on the

left (r = −9.5 a0). As εGD is constant in this region (Fig. 4.10), the TDPES is identical

with εGI
4. The nuclear wave-packet is driven by the TDPES to spread towards the

avoided crossing of two BOPESs, where a significant non-adiabatic transition happens

and the exact nuclear density splits. Already at this moment, a slight transition of the

nuclear wave-packet to the lower surface is visible around the avoided crossing. At later

times, e.g., t = 16.22 fs, t = 26.24 fs and t = 57.35 fs., far from the avoided crossing,

εGI contains steps that connect its different pieces that are on top of different BOPESs

in different slices of R-space. In the region around Rac, it follows the diabatic surface

that passes smoothly through the avoided crossing. On the other hand, εGD is piecewise

constant and presents similar steps as εGI . Therefore, the TDPES, εGI + εGD, preserves

the features mentioned before, i.e., (i) far from the avoided crossing, it presents steps

that connect the regions in R-space in which the TDPES has the shape of one BOPES

to the regions in which it has the shape of the other BOPES; (ii) around the avoided

crossing, it follows the diabatic surface that smoothly connects one BOPES to the other.

The exact time-dependent electronic conditional density, shown in the lower panels of

Fig. 4.10 at different times, behaves similarly to the TDPES: (i) it smoothly connects

a |φ(2)
R (r)|2-like structure, by crossing Rac, with a |φ(1)

R (r)|2-like structure, or vice versa,

presenting a diabatic behavior, e.g. at t = 9.0 fs; (ii) it displays abrupt changes, between

regions that piecewise match different adiabatic conditional densities.

4In Fig. 4.10, curves representing εGD have been rigidly shifted along the energy axis
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Figure 4.10: First panel (top): The gauge independent part of the TDPES (black

solid-line) plotted at four different times (indicated), ε
(1)
BO (red dashed-line) and ε

(2)
BO

(green dashed-line). Second panel (from the top): the gauge dependent part of the
TDPES is plotted at the same times. Third panel (from the top): the exact nu-
clear density (black dashed-line) is shown together with |F1(R, t)|2 (red solid-line) and
|F2(R, t)|2 (green solid-line). Lowest panel: the exact time-dependent electronic condi-

tional density, |ΦR(r, t)|2, is plotted. The color range is the same as Fig. 4.9.

As an example, we discuss the TDPES at t = 31.87 fs in Fig. 4.11. As it is seen,

εGI switches from ε
(1)
BO(R) to ε

(2)
BO(R) over the region where |F1| and |F2| cross (see the

bottom plot). As |F1| and |F2| have opposite slopes and cross where they are small, α

is large yielding a small ∆R. Outside the switching region, one of the |Ck|2s becomes

dominant. Interestingly, the exact electron-nuclear density contains signatures of the

behavior εGI , i.e., where εGI coincides with ε
(1)
BO(R), presents one peak in analogy with

|φ(1)
R (r)|2 (see Fig. 4.9), while, it displays two peaks, like |φ(2)

R (r)|2 (Fig. 4.9), where

εGI(R, t) follows ε
(2)
BO(R). The step of εGI in the intermediate region is indicated by

scars in the full electron-nuclear density.
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4.3 Model of H+
2 in a laser field

The interplay of nuclear and electronic dynamics in the presence of time-dependent ex-

ternal fields leads to fascinating phenomena, especially beyond the perturbative regime,

e.g. photo-induced molecular dissociation, charge-resonance enhanced ionization, con-

trol of electron localization, electron-hole migration after photo-excitation, to name a

few [9–13]. In this section, we illustrate the usefulness of the TDPES using a simple,

numerically exactly solvable model: the H+
2 molecular ion subject to a linearly polarized

laser field (3.2.1).

We study the dynamics of the model H+
2 system under a λ = 228 nm (5.4eV) UV-laser

pulse which is represented by

E(t) = E0f(t) sin(ωt), (4.51)

with two peak intensities, I1 = |E0|2 = 1014W/cm2 and I2 = |E0|2 = 2.5× 1013W/cm2.

With this frequency an energy that is about twice as much as the dissociation energy

Figure 4.11: Top: the full electron-nuclear density at the t = 31.87 fs. Middle: a
snapshot of the gauge invariant part of the TDPES (solid black line) at the t = 31.87 fs.

For reference, ε
(1)
BO (red dashed-line) and ε

(2)
BO (green dashed-line) are shown. Bottom:

Expansion coefficients (indicated in the figure) of the (two states) adiabatic expansion
of the full wave-function and the exact electronic conditional wave-function (see the

text) at the t = 31.87fs.
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of the model molecule (2.8782eV) is achieved, so dissociation is expected. The envelope

function f(t) is chosen such that the field is linearly ramped from zero to its maximum

strength at t = Tramp and thereafter held constant (Fig. 4.12):

f(t) =

 t/Tramp 0 < t < Tramp

1 Tramp < t < Ttot
, (4.52)

The rise-time was chosen as Tramp = 10τ while the total simulation time was Ttot = 25τ ,

where τ = 2π
ω denotes the optical cycle.

Figure 4.12: λ = 228 nm laser field, represented by E(t) = E0f(t) sin(ωt), for two
peak intensities, I1 = |E0|2 = 1014W/cm2 and I2 = |E0|2 = 2.5 × 1013W/cm2. The
envelope function f(t) is chosen such that the field is linearly ramped from zero to its
maximum strength at t = 7.6 fs and thereafter held constant. The highlighted area

represents the optical cycle that will be focussed on in later graphs.

The same system and parameters were studied in Ref. [48] where the importance of

electron-nuclear correlation was highlighted: a two-configuration correlated ansatz for

the time-dependent electron-nuclear wavefunction was able to describe photodissociation

processes in many cases, while a simple uncorrelated Hartree product of an electronic

and a nuclear wavefunction almost always failed. In the present work we analyse the

dynamics via the numerically exact TDPES, finding it very useful in understanding and

interpreting the motion. We note that the laser-field does not couple directly to the

nuclear relative coordinate R, but only indirectly via the TDPES.

We will compare the exact dynamics with the following three approximations: (i) the

usual Ehrenfest approximation, where the nuclei are treated via classical dynamics,

evolving under the force−∇VEhr = −∇RWnn(R)−
∫
drn(r, t)∇RWen(r,R), with n(r, t)

being the one-body electron density , (ii) the “exact-Ehrenfest” approximation, which
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NR ∆R (a0) Rmax (a0) Nz ∆z (a0) |zmax| (a0) ∆t (a.u)
384 0.1 38.8 768 0.4 153.4 0.1

Table 4.2: Numerical parameters employed for the numerical simulations of the H+
2

in I1 = 1014W/cm2 and I2 = 2.5× 1013W/cm2 laser fields.

substitutes the exact TDPES for the Ehrenfest potential VEhr in the usual Ehrenfest ap-

proach and, (iii) an uncorrelated approach, the time-dependent Hartree (self-consistent

field) approximation, ΨH(r,R, t) = φ(r, t)χ(R, t), where the electronic part does not

depend on R at all. This includes a quantum treatment of the nuclei, but no electron-

nuclear correlation.

For the numerical integration of the TDPES, we have used the parameters of table (4.2)

that provide a very good convergence of the results.

4.3.1 High intensity: I1 = 1014W/cm2

The exact TDPES, along with the corresponding nuclear density, |χ(R, t)|2, are plotted

in Fig. 4.13 at six snapshots of time. The initial TDPES lies practically on top of the

ground-state BO surface, plotted in all the snapshots for comparison.

The dissociation of the molecule is dramatically reflected in the exact TDPES, whose

well flattens out, causing the nuclear density to spill to larger separations. Importantly,

the tail of the TDPES alternately falls sharply and returns in correspondence with the

field, letting the density out; the TDPES is the only potential acting on the nuclear

system and transfers energy from the accelerated electron to the nuclei.

In Figure 4.14 we focus on six equally-spaced time snap-shots during the optical cycle

shaded in Figure 4.12. The lower panel shows the TDPES, with its characteristic os-

cillations, along with the nuclear density as a function of the internuclear coordinate,

|χ(R, t)|2. The upper panel shows a color map of the conditional electronic probability

density, |ΦR(x, t)|2, i.e. the probability of finding an electron at x at a fixed nuclear

separation R. While at small internuclear distances (around and below the equilibrium

separation) the electron remains localized in the middle between the two nuclei, at larger

separations one clearly sees the preferential localization of the electron density near the

two nuclei, i.e. on one side or the other. At even larger separations we see streaks of

ionizing electron density in both directions. For the full story, we must multiply the
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Figure 4.13: Snapshots of the TDPES (blue solid lines) and nuclear density (black
solid lines) at times indicated, for the H+

2 molecule subject to the laser-field with the
peak intensity I1 = 1014W/cm2. The solid circles indicate the position and energy of
the classical particle in the exact-Ehrenfest calculation. For reference, the ground-state

BO surface (red dashed lines) is shown.

conditional probability density of the upper panels with the nuclear density shown in

the lower panel, to obtain the total electron-nuclear density; this is shown in Figure 4.15,

indicating the probability of finding, at the time indicated, an electron at position x and

the nuclear separation R.

The top left-hand panel of Fig. 4.16 shows the expectation value of the internuclear

distance

< R̂ >= 〈Ψ(t)| R̂ |Ψ(t)〉 , (4.53)

along with the results from the three approximate methods described earlier. The lower

left-hand panel shows the ionization probabilities. In principle, the latter requires pro-

jections of the full wavefunction on all continuum states which, in practice, are difficult

to calculate. Alternatively, we use a geometrical concept [63], according to which the
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Figure 4.14: Snapshots of the TDPES (blue lines), nuclear density (black) and the
electronic conditional-density (color map) at times indicated during an optical cycle,
for the H+

2 molecule subject to the laser-field with the peak intensity I1 = 1014W/cm2.
For reference, the ground-state BO surface is shown as the red line.

total ionization probabilities can be obtained from

Pion(t) = 1−
∫
boxe

dx

(∫
dR|Ψ(t)|2

)
. (4.54)

The electrons leaving the “electronic analyzing box” (boxe) are thereby identified with

ionized electrons. The ionization box here was chosen to be |x| ≤ 10. The internuclear

distance together with the ionization probability support a Coulomb-explosion interpre-

tation of the dissociation: first, the system begins to ionize, then the nuclei begin to

rapidly move apart under their mutual Coulomb repulsion increasingly sensed due to

weaker screening by the reduced electron density. Turning now to the approximations,

we observe that all the methods yield dissociation and some ionization. The expectation
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Figure 4.15: Snapshots of the total electron-nuclear density at times indicated during
an optical cycle, for the H+

2 molecule subject to the laser-field with the peak intensity
I1 = 1014W/cm2 .

value of the internuclear distance in Fig. 4.16, demonstrates that among all the approx-

imate calculations employed here, the exact-Ehrenfest is most accurate. Referring back

to Figure 4.13: the solid circles indicate the classical nuclear position and energy of a

particle driven by the exact-Ehrenfest force. One can see that it rapidly picks up kinetic

energy above the TDPES, supporting the fact that the nuclear dissociation mechanism

is an essentially classical one in this case. The exact-Ehrenfest calculation even does

better than TD-Hartree which treats the protons quantum mechanically, thus showing

the overarching importance of electron-nuclear correlation in this case.

In fact, the Hartree description is worse than it may seem from just looking at the

internuclear separation in Fig. 4.16. In Figure 4.17 we plot the time-dependent Hartree

potential energy surface and Hartree nuclear-density. Both are dramatically different

from the exact TDPES and exact nuclear density of Figure 4.13. At the initial time, the

Hartree potential is reasonably good near equilibrium but poor at large separations [48]:

this is a consequence of the conditional electron probability being independent of the

nuclear coordinate, and therefore only yielding a realistic result where the energy is

optimized, which is at equilibrium separation. As time evolves the minimum of the

Hartree surface moves out and begins to widen, cradling the nuclear density, which

more or less retains its Gaussian shape, unlike the exact density; only at larger times

does the surface open out.
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Figure 4.16: Dissociation and ionization for intensity I1 (left) and I2 (right). Top
panels: the internuclear separation 〈R〉(t). Lower panels: The ionization probability.

4.3.2 Lower intensity: I2 = 2.5× 1013W/cm2

We now consider the dynamics under a field of weaker intensity. Figure 4.18 plots

the TDPES, whose tail displays similar oscillations as in the higher intensity case. The

nuclear density appears to leak out to larger separations, although more slowly than

in the previous case; indeed from the right panels in Fig. 4.16, we see that the exact

calculation leads to dissociation. However, Fig. 4.16 (upper right panel)also shows that

none of the approximations dissociate, in contrast to the previous case. The Hartree and

Ehrenfest methods also show negligible ionization, compared to the exact case; but even

in the exact case the ionization probability is very small, indicating a different mechanism

of dissociation than in the stronger field case. It may be at first surprising that the exact-

Ehrenfest calculation does not dissociate the molecule, given that it is based on the exact

TDPES, however an examination of classical dynamics in the TDPES of Fig. 4.13 can

explain what is happening. The solid dot in Fig. 4.13 indicates the classical position and

energy, and we see that it is always trapped inside a well in the TDPES, that remains at

all times. This suggests that tunneling is the leading mechanism for the dissociation: a

classical particle can only oscillate inside the well, while a quantum particle may tunnel
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Figure 4.17: Snapshots of the time-dependent Hartree nuclear-potential (blue lines)
and nuclear density (black) at times indicated, for the H+

2 molecule subject to the
laser-field with the peak intensity I1 = 1014W/cm2. For reference, the ground-state

BO surface is shown as the red line.

out, as indeed reflected in Fig. 4.16. Although the tail has similar oscillations as for I1,

this does not lead to dissociation of classical nuclei due to the barrier; the TDPES in this

case transfers the field energy to the nuclei via tunneling. Although the exact-Ehrenfest

calculation shows a larger amplitude of oscillation than the others, it ultimately cannot

tunnel through the barrier.

As in the previous case, we plot in the top panels of Fig. 4.19 the electronic conditional

density |ΦR(x, t)|2 over one optical cycle, while the lower panels illustrate again the

opening and closing of the TDPES as the field oscillates. Like in the previous case, for

small R near equilibrium, the electron density is localized in between the nuclei, while

for larger R, there is some polarization towards one side or the other. To get the full

picture, one must multiply the top panels by the nuclear density |χ(R, t)|2, to obtain

the total electron-nuclear probability density, shown in Figure 4.20. It is evident in this

graph that there is much less ionization than in the previous case, and the dissociation

is slower.
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Figure 4.18: Snapshots of the TDPES (blue) and nuclear density (black) at times
indicated, for the H+

2 molecule subject to the laser-field with the peak intensity I2 =
2.5 × 1013W/cm2. The solid circles indicate the position and energy of the classical
particle in the exact-Ehrenfest calculation. For reference, the ground-state BO surface

(dashed red) is shown.

Although the Hartree approximation treats the nuclei quantum mechanically, and there-

fore allowing tunneling in principle, tunneling and dissociation do not actually occur.

The reason for this is clear from the shape of the Hartree potential, plotted in Fig. 4.21:

the Hartree potential essentially retains its initial shape at all times, making very small

oscillations near the equilibrium separation. As in the more intense field case, this is due

to its uncorrelated treatment of the electron-nuclear system: the electronic wavefunction

at any nuclear configuration is always the same, and is best at equilibrium since initially

it is determined by energy-optimization, from where it does not deviate far, due to the

weak field strength. Unlike in the stronger field case, the Hartree surface never opens

out. Dissociation via tunneling requires both a quantum mechanical description of the

nuclei and an adequate accounting of electron-nuclear correlation.

We do not expect the TDPES to be so different from the BO surfaces in all cases. For

example, in the case of field-free vibrational dynamics of the H2+ molecule, where we
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Figure 4.19: Snapshots of the TDPES (blue lines), nuclear density (black) and the
electronic conditional-density (color map) at times indicated during an optical cycle, for
the H+

2 molecule subject to the laser-field with the peak intensity I2 = 2.5×1013W/cm2

. For reference, the ground-state BO surface is shown as the dashed red line.

start with a nuclear wavepacket displaced from equilibrium on the ground BO surface, we

find the TDPES follows closely the BO surface throughout. The non-adiabatic couplings

are weak in this case. The TDPES for field-free dynamics was discussed in (4.2).

The purpose of comparing the exact results with these methods (TD-Hartree, Ehrenfest

and exact-Ehrenfest) was primarily to support the conclusions drawn from the exact

TDPES regarding the dissociation mechanisms. An interesting question is how well do

the more accurate approximate PES’s proposed recently (e.g. Ref [64]) compare with

the exact TDPES; this will be investigated in the future.

The example of the one-dimensional H+
2 molecule in an oscillating electric field, presented

here, demonstrates that the TDPES is a powerful tool to analyze and interpret different
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Figure 4.20: Snapshots of the total electron-nuclear density at times indicated during
an optical cycle, for the H+

2 molecule subject to the laser-field with the peak I2 =
2.5× 1013W/cm2.

types of dissociation processes. By studying the shape and evolution of the TDPES,

comparing classical dynamics in this exact potential to the exact quantum dynamics,

we were able to distinguish whether the dissociation proceeded via nuclear tunneling or

more directly in Coulomb-explosion. For this example, the TDPES is the only potential

determining the nuclear dynamics, exactly containing the coupling with electronic dy-

namics. The example demonstrates the importance of capturing both quantum effects

in nuclear motion and electron-nuclear coupling; the Hartree approach, for example,

despite treating the nuclei quantum mechanically, was unable to capture dissociation

via tunneling as the shape of its potential surface was completely wrong.
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Figure 4.21: Snapshots of the time-dependent Hartree nuclear-potential (blue lines)
and nuclear density (black) at times indicated, for the H+

2 molecule subject to the laser-
field with the peak intensity I1 = 1014W/cm2 I2 = 2.5 × 1013W/cm2. For reference,

the ground-state BO surface is shown as the dashed red line.



Chapter 5

Mixed quantum-classical scheme

The theoretical description of molecular processes that involve electronic non-adiabatic

transitions is a major challenge. Solving the time-dependent Schrödinger equation (2.11)

is a computational task that stretches the capacity of today’s computers to their limits

already for very simple molecules, containing only a few degrees of freedom such as H+
2 .

Therefore, there is a need to develop efficient and at the same time accurate methods

to approximately describe the dynamical processes. The idea of combining classical

description of the nuclear degrees of freedom with the quantum dynamics of electrons

has led to a huge variety of methods to study non-adiabatic processes [62, 65–82]. The

main issues in developing a mixed quantum-classical (MQC) procedure to study the

coupled electron-nuclear dynamics can be identified as

(i) the decomposition of electronic and nuclear motions,

(ii) the representation of the back reaction of quantum transitions on the classical

motion.

In most of the existing methods, the approximations are introduced in a very early stage

with decomposing the full system into a subsystem that is treated classically and a part

that requires quantum treatment. The approximate decomposition of the full system

to classical and quantum subsystems makes it very difficult to account for the quantum

back reaction on the classical motion.

With the theoretical framework, presented in Chapter (2), and the numerical study of

Chapter (3) and (4), we set the stage for developing systematic and controlled approx-

imations. Here, as the last curtain of this thesis we present a mixed quantum-classical

79
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scheme, based on the exact decomposition of the electronic and nuclear motions (2).

This is indeed the beginning of a new path towards a full ab initio treatment of the

coupled electron-nuclear dynamics.

In this chapter, we first represent the exact equations (2.29-2.34) in terms of the BO

states. Then we discuss the classical limit of the nuclear motion and introduce the con-

secutive approximations in the exact equations that leads to a mixed quantum-classical

scheme. We further show the performance of the scheme by presenting some numeri-

cal results in comparison with the exact quantum dynamics. At the end, we provide a

detailed investigation of the classical approximation and its consequences.

5.1 Exact equations in adiabatic representation

In this section we express the exact equations (2.29-2.34) in terms of the BO basis but

first we summarize the exact factorization of electronic and nuclear dynamics, presented

in chapter (2). Ultimately, we are interested in the classical treatment of the nuclear

motion that is achieved by taking ~→ 0 limit in a semi-classical expansion of the nuclear

wave-function. Therefore, in order to get the ~ back in our equations we leave the realm

of atomic units.

In chapter (2) we have proved that, Ψ(r,R, t), the exact solution of the TDSE (2.11)

can be exactly factorized and written as a single product of the nuclear wave-function,

χ(R, t), and the electronic wave-function, ΦR(r, t),

Ψ(r,R, t) = χ(R, t)ΦR(r, t), (5.1)

where ΦR(r, t) satisfies the PNC,∫
dr
∣∣∣ΦR(r, t)

∣∣∣2 = 1 ∀ R, t. (5.2)

The time evolution of ΦR(r, t) and χ(R, t) are governed by(
Ĥel(r,R, t)− ε(R, t)

)
ΦR(r, t) = i ~ ∂tΦR(r, t), (5.3)

and

( Nn∑
α=1

1

2Mα
(−i~∇α + Aα(R, t))2 + V̂ ext

n (R, t) + ε(R, t)
)
χ(R, t) = i ~ ∂tχ(R, t), (5.4)
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where the electronic Hamiltonian is

Ĥel(r,R, t) = ĤBO(r,R, t) + V̂ ext
e (r, t) + Û coupen

[
ΦR, χ

]
. (5.5)

The electron-nuclear coupling operator, Û coupen

[
ΦR, χ

]
,

Û coupen

[
ΦR, χ

]
=

Nn∑
α=1

1

Mα

[(−i~∇α −Aα(R, t))2

2
+

(−i~∇αχ
χ

+ Aα(R, t)
)
·
(
−i~∇α −Aα(R, t)

) ]
(5.6)

in the electronic equation (5.3), the scalar potential,

ε(R, t) =
〈

ΦR(t)
∣∣∣ Ĥel((r,R, t)− i~∂t

∣∣∣ΦR(t)
〉
r
, (5.7)

and the vector potential,

Aα(R, t) =
〈

ΦR(t)
∣∣∣ −i~∇αΦR(t)

〉
r
, (5.8)

in both equations (5.3 and 5.3), mediate the coupling between electronic and nuclear

motions in a formally exact way.

As the first step, towards developing a practical and accurate method to deal with

real systems, we represent the electronic equation (5.3) in terms of the BO electronic

basis {φjR(r)} by using the expression of the electronic wave-function, ΦR(r, t), in terms

of the BO electronic basis (2.63):

Ĥel(r,R, t)
∑
j

Cj(R, t)φ
j
R(r) = i~

∑
j

(
∂tCj(R, t)

)
φjR(r), (5.9)

multiply both sides of the equation by φk∗R (r) and integrating over the electronic co-

ordinates. These, after some straightforward algebra, lead to an infinite set of partial

differential equations for the coefficients, Cj(R, t),

Ċj(R, t) = f
(
{Ck(R, t)}, {∇RCk(R, t)}, {∇2

RCk(R, t)}
)
, (5.10)

where k = 1, . . . , j, . . . and f is a function of the coefficients and their spatial derivatives

at the space-time point (R, t). In deriving the explicit form of the equations that deter-

mine the evolution of the expansion coefficients, Cj(R, t), we act with the Hamiltonian

operator, Ĥel, on the expansion (2.63). The most complicated part of the action, comes
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from acting with the electron-nuclear coupling operator (5.6) on the expansion (2.63).

Before performing the action, we rewrite Û corren as

Û corren =

Nn∑
α=1

1

2Mα

[
− ~2∇2

α + i~∇α ·Aα + 2i~Aα · ∇α + A2
α

+ 2(
−i~∇αχ

χ
+ Aα(R, t)) ·

(
−i~∇α −Aα(R, t)

) ]
. (5.11)

Then, we use the relations,

∇αΦR(r, t) =
∞∑
j=1

(
∇αCj

)
φjR + Cj

(
∇αφjR

)
∇2
αΦR(r, t) =

∑
j

(
∇2
αCj

)
φjR + Cj∇2

αφ
j
R + 2∇αCj · ∇αφjR (5.12)

and perform the action

Û corren ΦR =

Nn∑
α=1

1

2Mα

(∑
j

φjR

[
− ~2∇2

α + i~∇α ·Aα + 2i~Aα · ∇α + A2
α

+ 2(
−i~∇αχ

χ
+ Aα) · (−i~∇α −Aα)

]
Cj(R, t)

+ Cj(R, t)
[
− ~2∇2

α + 2i~Aα · ∇α + 2(
−i~∇αχ

χ
+ Aα) · (−i~∇α)

]
φjR

− 2~2∇αCj(R, t) · ∇αφjR
)

(5.13)

that can be written in a more compact form:

Û corren ΦR =
∑
j

φjRÛ
corr
en Cj +

Nn∑
α=1

1

2Mα

(
Cj

[
− ~2∇2

α + 2
(−i~∇αχ

χ

)
· (−i~∇α)

]
φjR

− 2~2∇αCj · ∇αφjR
)
. (5.14)

Therefore, Eq. (5.10), is explicitly written as

[
εjBO + Û corren − ε(R, t)

]
Cj +

∑
k

[
Hc
jk −

Nn∑
α

(
ΛBOkj,α(R) +

1

Mα

i~∇αχ
χ

· Fαjk
)]
Ck = i~∂tCj

(5.15)

where

Hc
jk = 〈φjR|V̂

e
ext|φkR〉r (5.16)

and the terms

ΛBOkj,α(R) =
1

2Mα

[
GBOkj,α(R) + 2FBOkj,α(R) · (i~∇α)

]
(5.17)
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are called the “nonadiabatic couplings”, defined also in (2.1.2),

FBOkj,α(R) = −i~ < φkR σ|∇αφ
j
R σ >

GBOkj,α(R) = ~2 < φkR σ|∇2
αφ

j
R σ > . (5.18)

The TDPES, ε(R, t), and the time-dependent vector potential, Aα(R, t), in (5.15) are

expressed in terms of the BO states as shown in (2.68) and (2.66).

As mentioned previously, the dynamics of χ(R, t) and ΦR(r, t) are determined by Eqs. (5.3)

and (5.4) uniquely, up to within a gauge. Therefore, in order to make approximations,

the gauge freedom must be fixed. Here, a suitable way of fixing the gauge is to set the

GI part of the TDPES to zero, i.e.,〈
ΦR(t)|i ~ ∂tΦR(t)

〉
r

= 0, (5.19)

that in terms of the BO basis is expressed as

i~
∑
j

C∗j (R, t)∂tCj(R, t) = 0. (5.20)

So far, we have expressed the exact equations and the gauge condition (5.20) in terms

of the BO basis, without introducing any approximation. In the following section, we

turn to view the nuclei as classical point-like particles and based on that develop a MQC

scheme.

5.2 Classical limit of the nuclear motion

It was shown in (2.3.1) and emphasized throughout this work that χ(R, t) that satis-

fies (5.4) leads to a nuclear N -body density and a nuclear N -body current density, hence,

can be viewed as the proper nuclear wave-function. Using the Ehrenfest theorem (4.2.5),

we have also proved that this wave-function reproduces the mean nuclear position and

momentum of the complete electron-nuclear system. The time evolution of χ(R, t), on

the other hand, is completely determined by a single PES, ε(R, t), and a single vector

potential, Aν(R, t), that are unique up to within a gauge transformation (2.47) and the

exact coupling to the electronic motion is taken care of by the electron-nuclear coupling

operator (5.6) in the electronic equation (5.3). Therefore, Eqs. (5.3) and (5.4), offer a

promising starting point to develop systematic approximations.
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Here, we develop a MQC scheme by taking the classical limit of the nuclear motion

in (5.3) and (5.4). Since we have started from the full quantum description of nuclear

dynamics that is coupled to the electronic dynamics, we may view this approximation

from the nuclear wave-function perspective. The nuclear wave-function, without loss of

generality and as discussed in [83], maybe written as

χ(R, t) = e
i
~S(R,t), (5.21)

with the assumption that the complex function S(R, t) can be expanded as an asymptotic

series in powers of ~,

S(R, t) =
∑
α

~αSα(R, t). (5.22)

Inserting Eq. (5.21) in Eq. (5.4) and keeping the terms only up to within O(~0) leads to

− ∂tS0(Rc, t) = Hn

(
R,
{
∇νS0(Rc, t)

}
ν=1,Nn

, t
)

(5.23)

that gives the classical limit of the nuclear dynamics as the zero-th order ~ expansion of

the nuclear wave-function, if S0(R, t) is the classical action. Here,

Rc(t) = (Rc
1(t)...Rc

Nn(t)), (5.24)

is the classical path along which the action, S0(Rc(t)), is stationary and ∇νS0 is the

conjugate momenta,

Pc
ν = ∇νS0, (5.25)

associated to the ν-th nucleus and evaluated along the classical trajectory and Eq. (5.23)

is the Hamilton-Jacobi equation [84]. The classical evolution is, therefore, generated by

the classical Hamiltonian

Hn =

Nn∑
ν=1

∣∣Pc
ν + Aν(Rc(t))

∣∣2
2Mν

+ ε(Rc, t), (5.26)

and the canonical momentum, as in the case of a classical charge moving in an electro-

magnetic field, is

MνVν = Pc
ν + Aν(Rc(t)). (5.27)
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Employing Hamilton’s equation of motion and after some algebra we arrive at the clas-

sical equation of motion,

MνV̇ν = Eν +
∑
ν′ν

Fνν′ , (5.28)

that determines the classical trajectory [85]. Here,

Eν = −∇νε+ ∂tAν , (5.29)

is an electric-like field and

Fνν′(R
c) = −Vν′ ×Bνν′(R

c) (5.30)

+
[
(Vν′ · ∇ν′)Aν(Rc)− (Vν′ · ∇ν)Aν′(R

c)
]
,

contains a generalized magnetic-like field,

Bνν′(R
c) = ∇ν ×Aν′(R

c), (5.31)

and together with (5.29) gives the generalized Lorentz force,

Fgν = E +
∑
ν′ν

Fνν′ , (5.32)

that influences the nucleus ν and couples its motion to the motion of all the other nuclei

via the time-dependent vector potential (5.40) and the nuclear velocities. The effect

of the electric-like field, the first term in (5.32), on the classical trajectory is clear. In

order to understand the effect of the second term of the generalized Lorentz force (5.32),

we recall a discussion in (2.3.1) stating that the vector potential is the difference of

paramagnetic nuclear velocity fields derived from the full and nuclear wavefunctions.

In the classical treatment of the nuclear degrees of freedom, what we call a general-

ized magnetic-field is actually the generalized vorticity of this difference which now is

Aν(Rc(t)). The vector potential, Aν(Rc(t)), that explicitly expresses the coupling be-

tween electrons and nuclei as the variation of the electronic wavefunction in terms of

the nuclear displacement, contributes to an effective inter-nuclear force. These are re-

ferred to as current-induced forces that have been observed experimentally [86, 87] and

attracted extensive theoretical attention [88–95] due to the importance of the interplay

between electronic and mechanical (nuclear) degrees of freedom in nanoelectromechani-

cal systems (NEMS).
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Note that Eq. (A.12) is derived by acting with the gradient operator, ∇ν , on Eq. (5.23)

and using the hydrodynamic time derivative,

d/dt = ∂t +
∑
ν′

Vν′ · ∇ν′ . (5.33)

The full derivation of the equation (A.12) is presented in an appendix.

Now we approximate the nuclear wavefunction that appears explicitly in the electronic

Hamiltonian (5.3) by its classical expression that is derived using (5.21),

−i~∇νχ
χ

= ∇νS0 +O(~), (5.34)

up to within the zero-th order terms in ~,

−i~∇νχ
χ

→ Pc
ν , (5.35)

and we assume that in the classical limit, the spatial derivatives of the expansion coef-

ficients, Cj , are zero, i.e.,

∇νCj(Rc(t)) = 0

∇2
νCj(R

c(t)) = 0. (5.36)

This will be proved in section (5.3). For the sake of simplicity, we further consider that

the BO states, φjR, are real and introduce new forms of non-adiabatic couplings

d
(1)
jl,α = 〈ϕ(j)

R |∇Rϕ
(l)
R 〉r = iFBOjl,α (5.37)

and

d
(2)
jl,α = 〈∇Rϕ

(j)
R |∇Rϕ

(l)
R 〉r = i∇α · FBOjl,α − GBOjl,α. (5.38)

d
(1)
jl and d

(2)
jl fulfil the following symmetry relations

d
(1)
lj,α = −d(1)

jl,α

d
(2)
lj,α = d

(2)
jl,α. (5.39)
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Using the approximations (5.35) and (5.36), and the relation (5.37-5.39), the coupling

potentials (5.6-5.8) become

Û corren →
Nn∑
α=1

1

Mα

[ i~∇α ·Aα(Rc(t))−A2
α(Rc(t))

2
−Pc

α ·Aα(Rc(t))
]
,

ε(R, t) →
∑
j

|Cj(Rc(t))|2εjBO(Rc(t)) +
∑
jl

C∗j (Rc(t))Cl(R
c(t))Hc

jk

+
∑
α

~2

Mα

[∑
j<l

<
[
C∗jCl

]
d

(2)
jl,α(Rc(t))−A2

α(Rc(t))
]
,

Aα(Rc(t)) → 2~
∞∑
j<l

=
[
C∗jCl

]
d

(1)
jl,α(Rc(t)).

(5.40)

Then, the electronic equation (5.15) that is coupled to the classical nuclear motion reads

Ċj(t) = − i
~

[
ε
(j)
BO −

(
V R
eff + iV

(I)
eff

)]
Cj(t)−

∑
l

Cl(t)Djl, (5.41)

where

V
(R)
eff =

∑
j

|Cj |2 ε(j)BO(Rc) +
∑
j<l

<
[
C∗jCl

]∑
α

~2

Mα
d

(2)
jl,α(Rc)

+ 2~
∑
j<l

=
[
C∗jCl

]∑
α

Pc
α

Mα
· d(1)

jl,α(Rc) , (5.42)

is the real effective potential, while

V
(I)
eff = −

∑
j<l

=
[
C∗jCl

]∑
α

~2

Mα
∇α · d(1)

jl,α(Rc) , (5.43)

is the imaginary effective potential, and

Djl =
∑
ν

1

Mα
∇αPc

α · d
(1)
jl,α(Rc)

− i~
2Mα

(
∇α · d(1)

jl,α(Rc)− d(2)
jl,α(Rc)

)
(5.44)

are the effective NACs that couple the evolution of the populations.

The electronic equation (5.41) describes the (norm-conserving) evolution of the time-

dependent coefficients of the expansion (2.63). The first term on the r.h.s. of (5.42) is

a diagonal term containing the BO potential energies corrected by the real effective po-

tential from Eq. (5.42) and the imaginary effective potential (5.43), V
(I)
eff . In particular,

the imaginary effective potential appears as a sink/source term and is responsible for
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population exchange of the adiabatic states, even in the absence of the off-diagonal cou-

pling terms. The last term in the r.h.s of (5.41) contains the off-diagonal terms (5.44),

Djk, that are expressed in terms of the NACs (5.38 and 5.38) and are responsible for

driving the population exchange between state j and k.

Interestingly, the modulus squared of the expansion coefficients, Cj(t), that are the

solutions of the electronic equation (5.41), are actually the classical limit of the exact

populations of the BO states (4.11),
∫
dR|Fj(R, t)|2. This can be seen by using Eq. (4.8),∫

dR|Fj(R, t)|2 =

∫
dR|Cj(R, t)|2|χ(R, t)|2, (5.45)

and taking the classical limit of |χ(R, t)|2,∫
dR|Fj(R, t)|2 =

∫
dR|Cj(R, t)|2δ(R−Rc(t)) ,

= |Cj(Rc(t))|2. (5.46)

The classical nuclear Hamiltonian (5.26), on the other hand, may be rewritten as

Hn =

Nn∑
ν=1

|Pc
α|

2

2Mν
+ V

(R)
eff (Rc,Pc). (5.47)

It contains the real effective potential (5.42), V
(R)
eff (R), that effectively accounts for the

coupling between the electronic and nuclear degrees of freedom via a mean-field term,

Emf (Rc) =
∑
j

|Cj |2 ε(j)BO(Rc(t)) (5.48)

which is the average of the BO energies weighted by the populations of the states, a

non-adiabatic term,

Ena(R
c) =

∑
j<l

<
[
C∗jCl

]∑
α

~2

Mα
d

(2)
jl,α(Rc(t)) (5.49)

that contains second-order NACs (5.38), and a kinetic term,

Ek(R
c,Pc) = 2~

∑
j<l

=
[
C∗jCl

]∑
α

Pc
α

Mα
· d(1)

jl,α(Rc(t)) , (5.50)

which couples the nuclear momentum to the first-order NAC (5.38).
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parameter value (a.u.)
M 1836.1528
L 19.050
Rf 5.0
Rl 3.1
Rr 4.0

Table 5.1: List of parameters in the Hamiltonian (3.15).

The real effective potential

V
(R)
eff (Rc,Pc) = Emf (Rc) + Ena(R

c) + Ek(R
c,Pc) (5.51)

that governs the classical motion of the nuclei contains all electronic non-adiabatic ef-

fects, beyond mean-field, via the kinetic term, Ek(R
c(t), which couples the vector po-

tential to the nuclear momentum, and the non-adiabatic term, Ena(R
c(t)), containing

second-order non-adiabatic couplings. The last two terms of (5.51), on the other hand,

contribute to reproduce the nuclear kinetic energy corresponding to the mean nuclear

kinetic energy, calculated from the full quantum calculations. This can be shown by

taking the classical limit of (2.72) using (5.40) and (5.21) up to within the zeroth-order

term in ~. Hence,

< Ψ|T̂N |Ψ >→
Nn∑
ν=1

|Pc
α|

2

2Mν
+ Ena(R

c) + Ek(R
c,Pc). (5.52)

5.2.1 Numerical results

Here, we employ the Shin-Metiu model (3.2.2), with the parameters used in (4.2.1) and

summarized in table (5.1). The first four BO surfaces (left) and the NACs between the

first two BO states (right) of the system are shown in Fig. 5.1. For this model we examine

the performance of the MQC scheme, by using single-trajectory (ST) and multiple-

trajectory (MT) approaches, in comparison with the exact solution of the TDSE. In

a MT calculation the same equation of motion as the single trajectory calculation is

applied to many initial conditions with the goal of recovering some quantum features of

the nuclear dynamics such as spreading of the wave-packet.

The initial state for the quantum propagation is Ψ(r,R, 0) = Gσ(R−R0)ϕ
(2)
R (r), where

Gσ is a normalized Gaussian centered at R0 = −4.0 a.u. with σ = 1/
√

2.85 a.u. and

ϕ
(2)
R (r) is the excited BO state (see 4.10). Hence, the initial population of the second
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Figure 5.1: BO surfaces ε
(l)
BO(R) (left) from the Hamiltonian in Eq. (3.15) and NACs

(right). The red dot indicates R0 (see text).

electronic state is one. The mean initial momentum is zero, i.e., the initial nuclear wave-

function is real. We propagate the TDSE numerically with the time-step 0.05 a.u. using

the second order split operator technique [59], to obtain the full molecular wave-function,

Ψ(r,R, t), and from that we calculate the expectation values.

The classical trajectory starts in the position R0 with zero initial momentum. If multiple

independent trajectories (6000 in this case) are used, initial conditions are sampled

according to the Wigner distribution associated to Ψinitial(r,R). The electronic and

nuclear equations, in the MQC scheme, are integrated with the time-step 0.1 a.u. and

using the fourth-order Runge-Kutta and the velocity-Verlet algorithm, respectively.

The populations of the BO states and the nuclear kinetic energy, as functions of time,

calculated from the full electron-nuclear wave-function and from the MQC scheme (using

|Cj(t)|2 and 5.52) are depicted in Fig. 5.2. It is shown (left panel) that the MQC

evolution (red line, ST-MQC, and dashed green line, MT-MQC) is able to reproduce

the branching of the populations of the electronic states after the passage through the

avoided crossing (t ∼ 500 .a.u.) in a close agreement with the quantum calculations

(blue line). The use of several trajectories improves the agreement during the time

interval in which the population exchange takes place. The nuclear kinetic energy (right

panel) from MQC calculations shows a qualitative agreement with exact results, though

presenting a slight deviation after the passage through the avoided crossing: this small

deviation reveals the fact that quantum corrections, quasi-classically or semi-classically,

need to be added to the purely classical nuclear dynamics. Here, deviation from quantum
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Figure 5.2: Left panel: populations of the BO states as functions of time determined
by quantum (blue), ST-MQC (red) and MT-MQC (dashed green) propagation schemes.

Right panel: nuclear kinetic energy as function of time.

behavior occurs at the nuclear position R ∼ 2.0 a.u., where the lower BO surface has a

negative slope and the upper BO surface has a slightly positive slope. Therefore, in the

quantum evolution the nuclear wave-packet propagating “on” the upper surface is slowed

down while the wave-packet “on” the lower surface is accelerated, producing the splitting

of the nuclear wave-packet. This feature cannot be captured by a simple independent

trajectories approach. Note that a better agreement with exact calculations is achieved

within the MT-MQC scheme at initial (inset in Fig. 5.2) and final times, where the

nuclear kinetic energy does not become zero as consequence of the spreading of the

quantum nuclear wave-packets.

5.3 The classical limit of the nuclear motion: an extensive

study

The classical limit of the nuclear motion has been discussed briefly in (5.2). Here,

we delve deeper into the derivation and interpretation of the classical limit of nuclear

motion.

The general nuclear wave-function may be written in polar representation as

χ(R, t) = e
i
~S0(R,t)

∣∣χ(R, t)
∣∣ , (5.53)
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in the classical limit amplitude and phase have to satisfy the following requirements∣∣χ(Rc, t)
∣∣2 = δ

(
R−Rc(t)

)
(i)

∇RS0(Rc, t) = Pc(Rc, t). (ii)
(5.54)

Here, Rc(t) is the classical trajectory and Pc(t) is the classical nuclear momentum, eval-

uated along the classical trajectory. Condition (5.54 - i) can be understood intuitively,

since we expect the density of a classically moving point particle to be infinitely local-

ized, at each time, at its position Rc(t). Condition (5.54 - ii) must hold in order to

recover classical dynamics, at the lowest order in ~, starting from quantum dynamics.

Formally, conditions (5.54 - i) and (5.54 - ii) involve the limits

Σ→ 0 (a)

~→ 0, (b)
(5.55)

where Σ in (5.55 - a) is the variance associated to the nuclear density and (5.55 - b)

is performed in all terms containing the nuclear wave-function (see 5.2). We anticipate

that the effect of (5.55 - a) and (5.55 - b) is

∇RCj(R, t), ∇2
RCj(R, t)→ 0 if Σ→ 0 (5.56)

−i~∇Rχ(R, t)

χ(R, t)
→ Pc(t) if ~→ 0. (5.57)

Eq. (5.56) is valid when the first and second derivatives of the modulus |Cj(R, t)| and

the phase ϑj(R, t) of the expansion coefficients are zero. At each time t, it is sufficient to

require that Eq. (5.56) holds in Rc, however, in the classical limit, |Cj(R, t)| is a constant

function of R. This is usually taken for granted [72–74] in the expansion (2.63), given

that the nuclei are classical and will be proved here, together with Eq. (5.57). To this

end, we suppose that χ(R, t) is a Gaussian wave-packet,

∣∣χ(R, t)
∣∣2 = GΣ

(
R−Rc(t)

)
, (5.58)

with GΣ

(
R−Rc(t)

)
a normalized Gaussian centered at Rc(t) with variance Σ. The

Gaussian moves with mean momentum Pc. The partial normalization condition of the

electronic wave-function is used to derive the relation

∣∣χ(R, t)
∣∣2 =

∑
j

∣∣Fj(R, t)∣∣2 . (5.59)

In the classical limit, the term on the l.h.s. reduces to a δ-function at Rc(t), consequently
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at each point R where
∣∣χ(R, t)

∣∣2 is zero, all terms on the r.h.s. have to be zero, since

they are all non-negative. Therefore,
∣∣Fj(R, t)∣∣2 should become δ-functions at Rc(t).

Since we are interested in this limit, we represent each term of the sum on the r.h.s.

by a non-normalized Gaussian (Fj(R, t) is not normalized), but centered at different

positions, Rj(t), than Rc(t). Using this hypothesis, Eq. (5.59) becomes

GΣ

(
R−Rc(t)

)
=
∑
j

B2
j (t)Gσj

(
R−Rj(t)

)
, (5.60)

where
∑

j B
2
j (t) = 1 accounts for the normalization of χ(R, t). The pre-factors B2

j (t)

have been introduced because Fjs are not normalized. Then we show that

Σ = σj (i) (5.61)

Rj(t) = Rc(t) ∀j, t. (ii) (5.62)
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To this end, we compare the behavior of both sides of eq. (5.60) for R→ ±∞: we need

to show that

1 = lim
R→±∞

∑
j

B2
j (t)

Σ

σj
exp

[
−
(
R−Rj(t)

)2
σ2
j

+

(
R−Rc(t)

)2
Σ2

]
, (5.63)

where the explicit expressions of the Gaussians Eq. (5.60) is used. The limit (5.63)

implies that

lim
R→±∞

e−(σ−2
j −Σ−2)R2

<∞ (5.64)

or, equivalently,

σ−2
j − Σ−2 ≥ 0⇒ σ2

j ≤ Σ2. (5.65)

A similar argument is applied to the Fourier Transform (FT ) of both sides of eq. (5.60)

ĜΣ̃,Rc(k) =
∑
j

B2
j (t)Ĝσ̃j ,Rj

(k), (5.66)

where

ĜΣ̃,Rc(k) = FT
[
GΣ(R−Rc)

]
(k) =

e−iR
c·k

2π
eΣ̃2k2

(5.67)

(a similarly for Ĝσ̃j ,Rj
(k)) with Σ̃ = Σ/2. The Gaussian transforms in another Gaussian
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with inverse variance, and if we calculate the limit k→ ±∞, we obtain a relation similar

to Eq. (5.65), namely

σ̃2
j − Σ̃2 ≥ 0⇒ σ2

j ≥ Σ2. (5.68)

Eqs. (5.65) and (5.68) must be simultaneously satisfied, then

σ2
j = Σ2 ⇒ σj = Σ, (5.69)

and this proves statement (i). On the other hand. Eq. (5.60) at R = Rc(t), becomes

1 =
∑
j

B2
j (t) exp

[
−

(Rc(t)−Rj(t))2

Σ2

]
(5.70)

and, since the pre-factors B2
j (t) sum up to unity, the relation

Rj(t) = Rc(t) (5.71)

must hold, otherwise

0 ≤ exp

[
−

(Rc(t)−Rj(t))2

Σ2

]
< 1 if R

j
(t) 6= Rc(t). (5.72)

This proves statement (ii). Consequently,

∣∣Cj(R, t)∣∣ =

B2
j (t)Gσj

(
R−R

j
(t)
)

GΣ

(
R−Rc(t)

)


1
2

= Bj(t) (5.73)

is only a function of time and is constant in space. The first and second derivatives of

phase, ϑj(R, t), of the coefficient Cj(R, t) satisfy the relations

∇Rϑj(R, t) = ∇Rλj(R, t)−Pc(R, t) (5.74)

∇2
Rϑj(R, t) = ∇R

(
∇Rλj(R, t)−Pc(R, t)

)
(5.75)

where we used Eq. (4.8) to represent λj(R, t) in terms of the phases of Fj(R, t), λj(R, t),

and χ(R, t), S0(R, t) and the relation, Pc(R, t) = ∇RS0(R, t), is imposed by the classical

limit (Eq. (5.54 - ii)). Classically (or semi-classically), Pc(R, t) governs the motion of

Rc(t) and, since Rj(t) = Rc(t) ∀t, it also determines Rj(t),

Pj(R, t) = ∇Rλj(R, t) = Pc(R, t). (5.76)
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This observation proves that∇Rϑj(R, t) = ∇2
Rϑj(R, t) = 0, and together with Eq. (5.73),

shows the validity of Eq. (5.56).

5.3.1 Validity of the classical approximation

The classical approximation of the nuclear motion is valid if the nuclear density remains

localized around the classical position Rc(t). Due to the fact that |χ(R, t)|2 is the sum

of contributions, or partial densities, evolving “on” different BO surfaces, this condition

is also applied to each contribution. Moreover, in a classical evolution, the displacement

of the nuclear wave-function, as well as of the partial contributions, are driven by the

classical nuclear momentum P c. This further guarantees that the previous condition is

satisfied at all times. In this very last section, by discussing some numerical results, we

investigate limits of validity of the classical approximation of the nuclear motion.

We compare the position of the classical movable ion in Fig. (3.1) with the expectation

value of the position operator calculated using the nuclear wave-function, χ(R, t),

Rqm(t) =

∫
dRR |χ(R, t)|2 (5.77)

and using the partial contributions, Fj(R, t),

Rqmj (t) =
1

ρj(t)

∫
dRR |Fj(R, t)|2 (5.78)

with the normalization factor from Eq. (4.11). Fig. (5.3) (lower panel) shows that the

classical position Rcl (red line) almost coincides at all times, up to about 1200 a.u., with

the mean position Rqm calculated from the nuclear density (blue line). Here we should

mention that Rqm is the average of Rqm1 and Rqm2 (orange and green lines), weighted by

the populations of the states, namely

Rqm(t) =
∑
j

ρj(t)R
qm
j (t). (5.79)

Larger deviations are observed in the comparison between the classical position and

Rqm1 , before the passage through the avoided crossing at about 500 a.u., or Rqm2 , after

this time. However, they do not negatively contribute to the overall agreement between

Rcl and Rqm, because at short times, the population, and thus the weight of the BO

state 1 is (much) smaller than that of the BO state 2, and vice-versa at longer times.

Furthermore, it is evident that |F2(R, t)|, moving on the upper BO surface, slows down



Chapter 5. Mixed quantum-classical scheme 97

-6 -4 -2 0 2 4 6
R (a.u.)

0

0.5

1

| F
1
 | 

2

| F
2
 | 

2

| χ | 
2

G
Σ

0

0.5

1

n
u
cl

ea
r 

d
en

si
ty

0

0.5

1

t = 200 a.u.

t = 1000 a.u.

t = 600 a.u.

Figure 5.5: Nuclear density |χ(R, t)|2 (blue line) and partial contributions |F1(R, t)|2
(orange line) and |F2(R, t)|2 (blue line). They are shown at different times, namely 200,
600 and 1000 a.u., as indicated by the arrows in Fig. 5.4. The red dashed lines are the
Gaussian functions GΣ(R − Rqm) with the same mean value Rqm (from Fig. 5.3) and

variance Σ (from Fig. 5.4) of the nuclear density.
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at about 700 a.u., as the curve representing the momentum (computed as the rate of

variation of the mean position) shows in Fig. (5.3) (upper panel). From the comparison

between the classical momentum (red line) and P qm = MṘqm (blue line), we notice that

already at about 1000 a.u. classical evolution starts to deviate from quantum evolution.

The oscillations of P qm1 and P qm2 , missing in the classical approach, in the time range

400 - 700 a.u., indicate the crossing of the strong non-adiabatic coupling region. The

large oscillations of P qm1 , before 400 a.u., do not affect the behavior of P qm, since, as

stated above, the population of the BO state 1 is very small before the passage through

the coupling region.

In the previous section (5.3), it was shown that Eq. (5.56) is valid if the variance Σ

associated to the nuclear density is equal (or close) to the variances σj of |Fj(R, t)|2.

Such condition is satisfied in the classical limit and shall be proven to be approximately

verified in quantum calculations. In Fig (5.4), Σ and σj are shown, as functions of time.

Up to about 700 a.u., the hypothesis at the basis of the classical treatment of nuclear

dynamics are approximately fulfilled, since the variances Σ and σj do not deviate too

much from each other. The deviation becomes important at 1000 a.u. and the effect on

the nuclear density is shown in Fig. (5.5): it confirms that the classical approximation

holds as long as the nuclear density is well localized at one center (as at t = 200 a.u.

and t = 600 a.u.), whereas a single trajectory cannot capture the evolution when it

develops different centers (as at t = 1000 a.u.). Moreover, the approximation of the

nuclear density as a Gaussian wave-packet, in Eq. (5.58), is well-grounded at t = 200

and t = 600 a.u., as shown in Fig. (5.5), and fails at later times. This is clear from the

comparison between the dashed red and blue curves in Fig. (5.5), where the red curves are

normalized Gaussian functions with the same mean values and variances as the nuclear

densities. At t = 200 and t = 600 a.u., |χ(R, t)|2 coincides with a Gaussian, while at

t = 1000 a.u. the two curves are quite different from each other. At t = 1000 a.u., the

classical approximation breaks down as the nuclear wave-function becomes delocalized

and the hypothesis at the basis of Eqs. (5.56) and (5.57) are not fulfilled.

Fig. (5.6) shows the comparison between the mean-field potential Emf (Rcl(t)) from

Eq. (5.51), felt by the classical particle at Rcl, and

εexactmf = 〈ΦR(t)|ĤBO|ΦR(t)〉r (5.80)
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Figure 5.6: Comparison between the classical mean-field potential (dashed red line)
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t = 750 a.u. and t = 900− 950 a.u. indicate the space points, with the corresponding
time intervals, where, respectively, the potential energy curves start to disagree and

εexactmf coincides with ε
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BO(R).

component of the exact TDPES, evaluated at the mean position Rqm. The BO surfaces

are also shown as a reference. It can be seen in Fig. (5.6) that up to t = 700− 750 a.u.,

the two curves are in very good agreement, meaning that an extremely (in the limit,

infinitely) localized nuclear wave-function feels a “quantum” potential (the exact TD-

PES), due to the presence of the electrons, which coincides with the classical mean-field

potential. We already observed that at longer times |F1| and |F2| follow different paths

in R-space and a description in terms of a single trajectory cannot capture this feature.

In particular, at t = 900 − 950 a.u., εexactmf coincides with the lower BO surface ε
(1)
BO(R)

because Rqm ' Rqm1 as the population of the BO state 1 is larger than the population

of the BO state 2.





Chapter 6

Summary and Outlook

The interplay between electronic and nuclear motion causes many fascinating phenom-

ena in molecules and solids that usually cannot be described within the adiabatic ap-

proximation. The exact solution of the time-dependent Schrödinger equation for the

coupled system of electrons and nuclei contains the complete information on the system

but is currently out of computational reach except for the very simplest of molecules

with a few degrees of freedom. To make numerical calculations feasible, the description

usually involves approximations such as a classical or semiclassical description of the

nuclear dynamics. In our journey towards a full ab initio description of the coupled

electron-nuclear dynamics, we have presented an exact factorization of the complete

electron-nuclear wavefunction into an electronic contribution, ΦR(r, t), and a nuclear

part, χ(R, t), that leads to a rigorous separation of electronic and nuclear motion (Chap-

ter 2). The electronic and nuclear wavefunctions retain the usual probabilistic meaning,

i.e., the exact nuclear Nn-body density is |χ(R, t)|2 while |ΦR(r, t)|2 represents the exact

conditional probability of finding the electrons at r, given the nuclear configuration R.

The equations of motion that the electronic and nuclear wavefunctions satisfy are given

in (2.29)-(2.34), and show explicitly how the electronic and nuclear systems are coupled

through the rigorous concepts of the time-dependent potential energy surface (2.33)

and the time-dependent vector potential (2.34) as well as the electron-nuclear coupling

operator (2.32).

The crucial point of this representation is that it provides a unique definition of the

time-dependent potential energy surface and time-dependent vector potential (unique

up to within a gauge transformation): If one wants the TD many-body Schrödinger
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equation (2.30) to give the correct Nn-body density and current density of the nu-

clei, then the scalar potential and the vector potential must be given by eq. (2.33)

and (2.34). There is no other choice apart from the gauge. That means that with any

advanced technique that yields the molecular wavefunction, Ψ(r,R, t), one can evaluate

the time-dependent potential energy surface and vector potential by first calculating the

factors from Eqs. (2.26)-(2.27) and then evaluating the TDPES and vector potential

from Eqs. (2.33)-(2.34).

We have shown a detailed study of the TDPES in two cases (Chapter 4). First, we

have presented generic features of the exact TDPES for situations in which, according

to the standard BO expansion framework, significant non-adiabatic transitions occur

and the nuclear wave-packet splits at the avoided crossing of two BOPESs. For the one-

dimensional model system studied here, the TDPES is the only potential that governs the

dynamics of the nuclear wavefunction (the vector potential can be gauged away) and

provides us with an alternative way of visualizing and interpreting the non-adiabatic

processes. We have shown that the TDPES is characterized by two generic features:

(i) in the vicinity of the avoided crossing the TDPES becomes identical with a diabatic

PES in the direction of the wave-packet motion, (ii) far from the avoided crossing the

TDPES as a function of nuclear coordinates, is piecewise parallel to different BOPESs

and exhibits steps in between. The latter feature holds after the wave-packet branches

and leaves the avoided crossing. These features of the TDPES support the use of diabatic

surfaces as the driving potential when a wave-packet approaches a region of strong NAC.

Moreover, they are in agreement with the semi-classical picture of non-adiabatic nuclear

dynamics that suggests calculating the classical forces acting on the nuclei according to

the gradient of only one of the BOPESs. We expect that these findings will ultimately

lead to improved algorithms for the mixed quantum-classical treatment of electrons and

nuclei.

Next, we have studied the one-dimensional H+
2 molecule in an oscillating electric field

and shown that the TDPES is a powerful tool to analyze and interpret different types of

dissociation processes. By studying the shape and evolution of the TDPES, comparing

classical dynamics in this exact potential to the exact quantum dynamics, we were able to

distinguish whether the dissociation proceeded via nuclear tunnelling or more directly

in Coulomb-explosion. The example demonstrated the importance of capturing both

quantum effects in nuclear motion and electron-nuclear coupling; the Hartree approach,
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for example, despite treating the nuclei quantum mechanically, was unable to capture

dissociation via tunnelling as the shape of its potential surface was completely wrong.

For both cases presented here, the TDPES is the only potential determining the nuclear

dynamics, exactly containing the coupling with electronic dynamics. In more general

cases than the ones studied here, the vector potential cannot always be set to zero and

together with the TDPES governs the time evolution of the nuclei.

From a practical point of view, Eqs. (2.29)-(2.34) are not easier to solve than the time-

dependent Schrödinger equation for the full electron-nuclear system. Rather they form

the rigorous starting point for making approximations, especially for the systematic

development of (semi)classical approximations. As a first step on this path, we have

proposed a mixed quantum-classical scheme (Chapter 5) by taking the classical limit of

the nuclear dynamics in Eqs. (2.29)-(2.34). The classical force, thus arising, is expressed

as a generalized form of a Lorentz-like force that contains the gradient of the TDPES,

the time derivative of the vector potential and coupling of the nuclear velocity to a

generalized magnetic-like field that is defined as the curl of all of the vector potentials

as well as the cross couplings of all the nuclear velocities to the vector potentials of

all of the nuclei. We have evaluated the performance of the scheme by studying the

nuclear dynamics through an avoided crossing in the Shin-Metiu model and showed

that the result of the MQC scheme is in close agreement with the exact calculations in

reproducing the nuclear kinetic energy and occupation of the BO states, especially using

multiple trajectories. The domain of validity of the classical limit of the nuclear motion

is investigated analytically and numerically.

A direction for future research is to capture some nuclear quantum effects by a semi-

classical or quasiclassical procedure built on the exact foundational equations presented

here without using the adiabatic basis. Another direction is to use the formalism as a

possible starting point to develop electron-nuclear correlation functionals in a density-

functionalized version of the electron-nuclear problem [96]. A promising route is to

develop a time-dependent generalization of the optimized effective potential scheme pro-

posed in Ref [33, 34].

The factorization, presented here, is a natural extension of the work of Hunter [1] and,

Gidopoulos and Gross [33, 34], in which an exact decomposition was developed for the

static problems. Both in the static and in the time-dependent cases, the factorization
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leads to an exact definition of the PES, and also of the vector potential. In Chapter 3,

we have investigated the exact PES in fully non-adiabatic situations, i.e., when the

corresponding BOPESs exhibit points of avoided crossings or conical intersections. We

have shown that the exact PESs have no conical intersection and behave in a similar

way to the diabatic PESs. This is also in agreement with the results of Chapter (4) for

the time-dependent case. These results may challenge the existence of the Berry-phase

as an exact feature of molecular systems.

The alternative representation of the full electron-nuclear wavefunction in the factorized

form, presented in this work, lends itself as a rigorous starting point to approach the

coupled electron-nuclear dynamics in various different situations. For instance, the com-

plete electron-nuclear wavefunction can be equally factorized into a nuclear contribution,

χr(R, t), and an electronic part, Φ(r, t), in which the nuclear part, parametrically de-

pends on the electronic configuration, r, and satisfies the PNC for every r and at any

time. In this case the TDPES and time-dependent vector potential appear in a TDSE

that describes the time evolution of the electronic wavefunction that reproduces the

exact electronic density and current density of the complete system. These potentials

account for the coupling of the electronic sub-system to the nuclear sub-system in a

formally exact way and may lead to a better understanding of electronic processes in

attosecond lasers such as the laser-induced localization of the electron in H+
2 [97].



Appendix A

Generalized Force

In this appendix, we provide the details of the derivation of the generalized classical

force presented in (5.32). Starting with the classical Hamiltonian (5.26):

Hn =

Nn∑
ν=1

∣∣Pc
ν + Aν(Rc(t))

∣∣2
2Mν

+ ε(Rc, t), (A.1)

we obtain the classical nuclear equation of motions using the Hamilton’s equations

Ṙν =
∂Hn

∂Pν
=

Pν + Aν

Mν
≡ Vν (A.2)

Ṗν = −∂Hn

∂Rν
= −∇νε−

∑
ν′

Pν′ + Aν′

Mν′
· ∂Aν′

∂Rν

= −∇νε−
∑
ν′

Vν′ ·
∂Aν′

∂Rν
. (A.3)

Taking another time-derivative of the coordinate, then gives

Mν
d2Rν

dt2
= Ṗν +

∂Aν

∂t
+
∑
ν′

Vν′ ·
∂Aν

∂Rν′
(A.4)

where we have used
d

dt
=

∂

∂t
+
∑
ν′

Vν′ · ∇ν′ . (A.5)

Replacing Ṗν in (A.4) with (A.3) leads to

Mν
d2Riν
dt2

= Eiν −
∑
ν′

3∑
j=1

V j
ν′

(
∂Aiν

∂Rjν′
−
∂Ajν′

∂Riν

)
, (A.6)

where

Eν = −∇νε+
∂Aν

∂t
. (A.7)
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Here, Latin letters such as i and j refer to the Cartesian component of a vector. In order

to write the second part on the l.h.s of Eq. A.6 in a closed form we define

Bνν′ = ∇ν ×Aν′ → Bk
νν′ = εklm

∂Amν′

∂Rlν
, (A.8)

hence,

(Vν′ ×Bνν′)
i =

(
εkijV

j
ν′

)(
εklm

∂Amν′

∂Rlν

)
=

∑
jlm

(δilδjm − δimδlj)V j
ν′
∂Amν′

∂Rlν

=
∑
j

(
V j
ν′
∂Ajν′

∂Riν
− V j

ν′
∂Aiν′

∂Rjν

)
. (A.9)

Therefore, ∑
j

V j
ν′
∂Ajν′

∂Riν
= (Vν′ ×Bνν′)

i + (Vν′ · ∇ν)Aiν′ , (A.10)

and ∑
j

V j
ν′
∂Aiν

∂Rjν′
= (Vν′ · ∇ν′)Aiν . (A.11)

Plugging (A.10) and (A.11) into (A.6) leads to

MνV̇ν = Eν +
∑
ν′ν

Fνν′ , (A.12)

where

Fνν′(R
c) = −Vν′ ×Bνν′(R

c) (A.13)

+
[
(Vν′ · ∇ν′)Aν(Rc)− (Vν′ · ∇ν)Aν′(R

c)
]
.
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Deutsche Kurzfassung

Mit dem Ziel einer ab-initio-Beschreibung von Systemen aus Atomkernen und Elektro-

nen, welche sich in einem zeitabhängigen externen Potential bewegen, leiten wir eine

exakte Faktorisierung der Wellenfunktion eines Systems in Elektronen - und Atomkern-

wellenfunktion her. Wir präsentieren die exakten Gleichungen für diese Wellenfunktio-

nen, welche zu strikten Definitionen der zeitabhängigen Potentialfläche (TDPES) und

des zeitabhängigen Vektorpotentials führen. Diese Behandlung des korrelierten Kern-

Elektron-Vielköperproblems ist zudem sehr vorteilhaft, da die Kernwellenfunktion die N-

Körper-Teilchendichte und die N-Körper-Teilchenstromdichte der Gesamtwellenfunktion

reproduziert. Die Zeitentwicklung der Kernwellenfunktion ist allein durch die TDPES

und das zeitabhängige Vektorpotential bestimmt, welche bis auf eine Eichtransforma-

tion eindeutig bestimmt sind. Mit anderen Worten: Möchte man eine zeitabhängige

Schrödingergleichung, welche die N-Körper-Teilchendichte und N-Körper-

Teilchenstromdichte reproduziert, sind die darin auftretenden Potentiale (bis auf Eich-

transformation) durch die TDPES und das zeitabhängige Vektorpotential eindeutig

gegeben. Eine andere Wahl der Potentiale ist nicht möglich. Wir untersuchen den

Zusammenhang dieser exakten Faktorisierung mit der Born-Oppenheimer-Entwicklung.

Des weiteren untersuchen wir die exakte TDPES an zwei relevanten Beispielen: Moleküle

in starken Feldern und die Aufspaltung des Kern-Wellenpackets an vermiedenen Kreuzun-

gen von Born-Oppenheimer-Flächen. Wir zeigen wie die TDPES des H+
2 Moleküls nach-

dem es einem Laser-Feld ausgesetzt wurde hilft, verschiedene Dissoziationsmechanismen

zu identifizieren. Andrerseits zeigen wir, dass die TDPES Stufen zwichen stückweise

adiabatisch geformten Potentialflächen entwickelt, wenn sich ein Kern-Wellenpacket an

einer vermiedenen Kreuzung zweier Born-Oppenheimer-Flächen aufspaltet. Diese Unter-

suchungen bilden die Basis (grundlegende Bewegungsgleichungen sowie das Verständnis

der Kopplungspotentiale) um Näherungen und insbesondere (semi-)klassische Näherungen
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systematisch zu entwickeln. Wir entwickeln, ausgehend von den exakten Bewegungs-

gleichungen, eine Methode, die es erlaubt die Dynamik des gekoppelten Systems aus

Elektronen und Kernen zu behandeln, indem für die Bewegung der Kerne der klassis-

che Limes gebildet wird. Wir bewerten die Qualität dieses Ansatzes indem wir mit

numerisch exakten Ergebnissen vergleichen und führen eine genaue Untersuchung des

klassischen Grenzfalls der Kernbewegung durch.

Um die exakte Faktorisierung im statischen Fall [1] besser zu verstehen, untersuchen wir

die exakten statischen Potentialflächen in Situationen starker Kopplung der entsprechen-

den adiabatischen Potentialflächen durch konische durchschneidungen oder vermiedene

Kreuzungen. Wir zeigen, dass sich die exakten Potentialflächen in diesen Fällen ähnlich

wie die diabatischen Flächen verhalten.
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