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Abstract

In this dissertation, we investigate some boundary value problems for com-
plex partial differential equations in fan-shaped domains. First of all, we es-
tablish the Schwarz-Poisson representation in fan-shaped domains with angle
w/n (n € N) by the reflection method, and study the corresponding Schwarz
and Dirichlet problems respectively. Further, the Schwarz-Poisson formula is
extended to the general fan-shaped domains with angle 7/a (o« > 1/2) by
proper conformal mappings, and then the Schwarz and Dirichlet problems for the
Cauchy-Riemann equation are solved. Next, we also establish a bridge between
the unit disc and the fan-shaped domain with o = 1/2, and the Schwarz-Poisson

formula for the unit disc is derived from the Schwarz-Poisson formula for o = 1/2.

Then, we firstly obtain a harmonic Green function and a harmonic Neumann
function in the fan-shaped domain with angle 7/« (o« > 1/2), and then investigate
the Dirichlet and Neumann problems for the Poisson equation. In particular, the
outward normal derivative at the three corner points is properly defined. Next,
a biharmonic Green function, a biharmonic Neumann function, a triharmonic
Green function, a triharmonic Neumann function and a tetra-harmonic Green
function are constructed for the fan-shaped domain with angle 7/n (n € N) in
explicit form respectively. Moreover, we give the process of constructing a tetra-
harmonic Neumann function and the expression of the tetra-harmonic Neumann
function with integral representation. Accordingly, the Dirichlet and Neumann

problems are discussed.

Finally, we establish the iterated expressions and the solvability conditions
of polyharmonic Dirichlet and Neumann problems for the higher order Poisson
equation in the fan-shaped domain with angle 7/n (n € N) respectively. In the
meantime, the boundary behavior of polyharmonic Green and polyharmonic Neu-
mann functions by convolution are discussed in detail. Besides, in the Appendix,

the tetra-harmonic Green function and the triharmonic Neumann function for

iii



the unit disc are constructed in explicit form.

Keywords: Schwarz-Poisson representation, polyharmonic Green function, poly-
harmonic Neumann function, Schwarz problem, Dirichlet problem, Neumann

problem.
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Chapter 1

Introduction

Complex analysis is a comparatively active branch in mathematics which has
grown significantly. In particular, the investigation of boundary value problems
possesses both theoretical and applicable values of importance to many fields,
such as electricity and magnetism, hydrodynamics, elasticity theory, shell the-
ory, quantum mechanics, medical imaging, etc. In recent years, many investi-
gators have made great contribution to boundary value problems for complex
partial differential equations. Numerous results are achieved, which rapidly en-
rich the development of generalized analytic functions, boundary value prob-
lems, Riemann-Hilbert analysis, mathematical physics and so on, reference to
6, 31, 32, 37, 45, 50, 51, 55, 56].

The classical boundary value problems initiated by B.Riemann and D.Hilbert
are the Riemann and the Riemann-Hilbert problems [46, 38]. The theory of
boundary value problems for analytic functions is extended to many branches.
Analytic functions are in close connection with the Cauchy-Riemann operator 0-.
Then one aspect is to investigate boundary value problems for different kinds of
functions and the functions satisfying particular complex differential equations,
e.g. generalized analytic functions, functions with several variables, functions in
Hardy space, functions satisfying the Cauchy-Riemann equation, the Beltrami
equation, the generalized Poisson equation, even the higher order complex differ-
ential equations, reference to [3, 4, 5, 6, 48, 50, 56]. In particular, great interest
has arisen for polyanalytic and polyharmonic equations, see [15, 22, 24, 39, 40].
On the other hand, various types of conditions imposed on the boundary lead
to different boundary value problems, such as the Riemann, the Hilbert, the
Dirichlet, the Schwarz, the Neumann, the Hasemann, the Robin boundary value
problems [18, 22, 33, 35, 39, 43]. Moreover, besides the study in the classical



unit disc, much attention has been paid to boundary value problems in some
particular domains, for example, a half unit disc, a triangle, a fan-shaped do-
main, the upper half plane, a quarter plane, a circular ring and a half circular
ring [5, 19, 26, 36, 49, 54, 60]. Also, some investigators have extended boundary
value problems to higher dimensional spaces, such as a polydisc, a sphere and

other torus related domains, reference to [21, 42, 44].

Generally speaking, the fundamental tools for solving boundary value prob-
lems are the Gauss theorem and the Cauchy-Pompeiu formula. Besides, the
higher order Cauchy-Pompeiu operators T}, ,, due to H. Begehr and G. Hile [20],
establish a bridge for boundary value problems between the homogeneous and

the inhomogeneous complex partial differential equations.

As is well known, Green, Neumann and Robin functions are three useful
fundamental solutions for certain boundary value problems via integral represen-
tation formulas. Especially, in order to solve some polyharmonic Dirichlet and
Neumann problems, certain polyharmonic Green and polyharmonic Neumann
functions need to be studied. In fact, there are several different kinds of polyhar-
monic Green functions. Convoluting the harmonic Green function with itself con-
secutively leads to an iterated polyharmonic Green function, which can be used
to solve an iterated Dirichlet problem for the higher order Poisson equation. In
addition, different from the above polyharmonic Green functions, polyharmonic
Green-Almansi functions are firstly introduced for the unit disc by Almansi [1],
which also give rise to some particular polyharmonic Dirichlet problems. Sim-
ilarly, convoluting the harmonic Neumann function with itself consecutively re-
sults in an iterated polyharmonic Neumann function. Besides, iteration of the
harmonic Green, Neumann and Robin functions pairwise leads to different hybrid
biharmonic Green functions due to H. Begehr [10, 11]. Furthermore, convoluting
the iterated polyharmonic Green functions with the polyharmonic Green-Almansi

functions also gives a variety of hybrid polyharmonic Green functions [9, 12, 28].

However, it should be noted that the expressions of the polyharmonic Green
and Neumann functions by convolution are not easily constructed in explicit form

even in the classical unit disc, although the iterated polyharmonic Dirichlet and



Neumann problems can be solved by iterated forms.

Many results have been obtained for boundary value problems of complex
partial differential equations in some particular domains. In the unit disc, basic
boundary value problems (Schwarz, Dirichlet, Neumann, Robin problems) for the
Cauchy-Riemann equation are studied and several hybrid biharmonic functions
are given explicitly by convoluting the harmonic ones [7, 12, 25]. Moreover, poly-
harmonic Poisson kernels for the higher order Poisson equation are constructed
in a complicated form using vertical sums [16, 34], but the iterated polyharmonic
(m-harmonic)Green and Neumann functions by convolution are established only
up to m = 3 [29]. For the upper half plane [17, 36], polyharmonic Green-Almansi
functions are given explicitly to solve the related polyharmonic Dirichlet problem.
And in the circular ring [52, 53, 54|, the existing results mainly include solving
four fundamental boundary value problems for the Cauchy-Riemann equation,
and then establishing the harmonic Green, Neumann, Robin functions as well
as the biharmonic Green function in detail. Besides, the investigation for the
quarter plane is just at the beginning with basic boundary value problems for
the Cauchy-Riemann equation solved [2, 19]. As to in the higher dimensional
spaces, the related results can be viewed in [13, 14, 21, 41, 42, 44]. Especially,
the Schwarz problem for the Cauchy-Riemann equation, the harmonic Green and
Neumann functions are studied in half disc and half ring [26]. Also some results
are achieved in fan-shaped domains [57, 58, 59].

In this thesis, we systematically investigate some boundary value problems
in fan-shaped domains. First of all, the Schwarz-Poisson representation for-
mula is obtained in fan-shaped domains with angle 7/n (n € N) by the re-
flection method, as well as the Schwarz and Dirichlet problems are discussed for
the Cauchy-Riemann equation. For the general fan-shaped domains with angle
m/a (o > 1/2), the Schwarz-Poisson representation is established by a proper
conformal mapping, and then some boundary value problems for the Cauchy-
Riemann equation are investigated. In particular, the boundary behavior at the
three corner points are discussed in detail for the above two kinds of domains.
Next, the situation for a = 1/2 is especially investigated. Furthermore, we de-

velop a bridge between the unit disc and the fan-shaped domain with o = 1/2,



and then the Schwarz-Poisson formula for the unit disc can be derived from the

Schwarz-Poisson formula for the fan-shaped domain with angle 27 (o = 1/2).

Next, the harmonic Green and the harmonic Neumann functions are con-
structed in the fan-shaped domain with angle 7/a (a > 1/2). What is more, the
outward normal derivatives at the three corner points are introduced properly
and the corresponding Dirichlet and Neumann problems for the Poisson equation
are studied. As we know, the construction of polyharmonic Green and polyhar-
monic Neumann functions of arbitrary order m in explicit form is a demand-
ing and complicated procedure. Here the biharmonic Green, the biharmonic
Neumann, the tri-harmonic Green, the tri-harmonic Neumann, and the tetra-
harmonic Green functions are established explicitly for the fan-shaped domain
with angle 7/n (n € N), by means of a series of proper polyharmonic functions.
Then we also give the construction process for the tetra-harmonic Neumann func-
tion in detail and obtain the expression of the tetra-harmonic Neumann function
with integral representation. Accordingly, the Dirichlet and Neumann problems

are investigated respectively.

Finally, even though the explicit expressions for polyharmonic Green and
Neumann functions are unknown except for the above lower order ones, we still
establish the inductive expressions of solutions and solvability conditions for the
iterated polyharmonic Dirichlet and polyharmonic Neumann problems in the fan-
shaped domain with angle 7/n (n € N). At the same time, the recursive expres-
sions of polyharmonic Green and polyharmonic Neumann functions are given by
convolution, and their boundary behaviors are investigated in detail. Besides, in
the Appendix, the tetra-harmonic Green function and the tri-harmonic Neumann

function for the unit disc are constructed in explicit forms respectively.



Chapter 2

Boundary Value Problems for the Inhomogeneous

Cauchy-Riemann Equation

In this Chapter, the Schwarz-Poisson representation formulas are obtained in
fan-shaped domains with angle 7/n (n € N) and 7/a (o > 1/2) respectively,
and then the solutions and solvability conditions for the Schwarz and Dirichlet

problems are given explicitly.

2.1 Preliminaries

Let C be the complex plane and the variable z =z +1i y, =, y € R. Introducing

the complex partial derivatives,

o _1(0 0y 2 _1(0, 0y
dz 2\ox 0Oy) 0z or Oy

If a continuously differentiable function w(z) satisfies the following homogeneous

Cauchy-Riemann equation

then w(z) is analytic.
The main tools for solving boundary value problems of complex differential

equations are the Gauss theorem and the Cauchy-Pompeiu representation.

Theorem 2.1.1. [6, 7] (Gauss Theorem) Let D C C be a regular domain, w €
CYD,C)NC(D,C), z=x+1y, then,

/wz Ydxdy = —/ (2.1)
/wz Jdzdy — ——/ az. (2.2)



The above Gauss theorem leads to a generalization of the Cauchy represen-

tation for analytic functions, that is the so-called Cauchy-Pompeiu formula.

Theorem 2.1.2. [6, 7] (Cauchy-Pompeiu representation) Any w € C'(D;C) N

C(D;C) for a reqular complex domain D C C can be represented as

1 a1 d¢dn w(z), z€D,
: ¢ _ = —(¢ = 2.3
e K= ij<k_z o aep Y

and

1 ac 1 d¢dn w(z), z€D,
- 2 — 2.4
3wt | 07 W[[w(;(oc_z o e Y

The Pompeiu operator

=——/f 9§@,feLchxzeD (2.5)

studied in detail by I.N.Vekua [50] plays a critical role in treating boundary
value problems for the inhomogeneous Cauchy-Riemann equation. It has some

important properties.

Theorem 2.1.3. [6, 50] Let D C C be a bounded domain, then for f €

L,(D;C), p > 2, T is a completely continuous linear operator from L,(D;C)

-2
into C*(C) with ay = b=z
p

Theorem 2.1.4. [6, 50] If f € Ly(D), then for all ¢ € C}(D)

/fmm%<mw+/f 2)dady = 0.

D

Remark 2.1.1. Theorem 2.1.4 implies that for f € L,(D), T|f] is differentiable
ol _
0z

The Poisson kernels for the unit disc D = {z € C: |z| < 1} and the upper

with respect to z in weak sense with

half plane Ht = {z: Imz > 0} are, respectively,

I
|

—1, zeD, ( € 0D,




and

1 1
- H* OH™.
iy z € , €

Then for v € C(9D,R), v, € C(OH,R) [47, 36],

lim L/%(C)LEZJr < —11%—%(15)-

z—t, |z|<1 271 (—=z
teoD [¢|=1
and
1 r | 1
li — - d¢ = v (t).
= R Gl e i e AT
teoHt —00

2.2 Schwarz Problem with Angle 7/n (n € N)

Let €2 be a fan-shaped domain in the complex plane C defined by
T
Q:{zeCz|z|<1,0<argz<—}. (2.6)
n

0,1,w = €' are three corner points of the domain 2 and the oriented circular arc
L is parameterized by
L: t—=¢€7, 7€]0, 0],
where 6 = . The boundary 0Q = [0, 1]U LU [w, 0] is oriented counter-clockwise.
T
In what follows, we always regard n as a fixed positive integer, § = — and
n
if
w=-e".

By rotations, we define some domains
B=wQ={w*2:2€Q}, k=0,1,--- ,n—1, (2.7)

where Qy = 2 is the sector defined by (2.6). By reflections on the real axis, we
define

Ek:{Z:zer}, k:0717"'7n_1' (28)

Besides, by reflections on the unit circumference, define

Di={z':z2eW}, &={z"':2€E} k=01 n—1 (29



Obviously, Q, D, Ex, &, k=0,1,--- 'n— 1 are disjoint domains and

n—1
C=|J(WUDLUE,UE). (2.10)
k=0
Moreover,
n—1 n—1
U@UE) ={zeC: |z| <1}, |JDrUE) ={z€C: |2 >1}.
k=0 k=0

Obviously, the following lemma holds.
Lemma 2.2.1. If z € Q, then zw* € Q, z2w™? € E,, z7'w* € D, and
R e & fork =0,1,--- ,n—1, where Qy, Ex, Dy, & are defined by (2.7)-
(2.9), respectively.

2.2.1 Schwarz-Poisson Representation

To solve the Schwarz problem, the Schwarz-Poisson formula is derived from

the Cauchy-Pompeiu formula.

Theorem 2.2.1. Any w € C*(Q;C) N C(Q;C) can be represented as

1 1 z
w(z) = i /w(C) Z (C — w2k 2k — ZC) d¢
oo 0 (2.11)
1 — 1 z '
- Q/ wx () > ( S C> dedy, = € 0

and for z € Q

_ 1 w (C(+taw®  CHaw N\ d¢  n [ Imw(()
o) =g [ R0 (i - ) €7 [ e
L

z
+E / Rew(() (C w2k ZC) dC

;U

(2.12)



Proof: From Lemma 2.2.1 and Theorem 2.1.2,

P PRI (S ! w(¢)
:;{%/C—zw%dc—i_% / ¢ — Zu}deC
= L [w,0]U[0,1]

1 [ we(C)
— ﬁdgd'ﬂ}, z € Q,
T Q/C 2w?

1 zw(() 1 zw(()
O_Z{ ﬂi/ZC—WdeC+27ri / 2( — w%d(
L

[w,0]U[0,1]
1 zwe ()
— | ——.-dé&d Q
W/ZC—w%én’ z €,
Q
n—1
1 w(¢) 1 / w(()
0= — | —2—d(+ — ——d
Z {ZM /C—Ew% ¢+ 2mi ¢ —zZw2k ¢
k=0 L [w,0]U[0,1]

L[ welC) }
— [ ———zdédn,, z€,
T Q/ ¢ —Zw2k

and

k=0 [w,0]U[0,1]
1 Zwe ()
- 0
W/E( —zdédn o,z €
Q

Clearly, adding (2.13) and (2.14) leads to the validity of (2.11).

(2.13)

(2.14)

(2.15)

(2.16)

Taking complex conjugation on both sides of (2.15) and (2.16), respectively,

gives

n_l{%/fifc‘%/c e

k=0

1
L Y T Q
27 ¢ — zw2k+2 /g o dedn } 2€

[w,0]

(2.17)



and

& LwQd 1 [ =
{27”/ —wk ¢ 27m'/z§—u)2"?dC
0

1 2w(() 1 / 2wg(C)

Comi 2( — w2k 2 C_W 2C — w2k
[w,0] Q

dfdn}, z €.

Obviously, (2.17) and (2.18) can be, respectively, rewritten as
1

S w( w(¢)
O{Qﬂ'Z/C w2k § _% / Q—zw%dc

[w,0]U[0,1]

we ()
;Q/dedn}, 2eq,

—J 1 [=Zwd 1 aw(()
O‘Z{%/zzw%?‘% e
L

[w,0]U[0,1]

_l/ “we(c) dgdn}, Zeq.

T Z< _ w2k
Subtracting the sum of (2.19) and (2.20) from (2.11), we easily get
U}(Z) =1L+ L+ Is, z €

with

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)



and

1 [~ 1 z
I3 = —%Q/; [wc(é) << — ok 2%k — ZC) (2.24)
1 z
By simple computation, we have
1 A+t CHzw N\ dAC n Imw(¢)
L= Rew(() ; (C oy zwz’f) T +- / TdC (2.25)
= L
and .
1 - 1
IL=— / Rew(() (C —— zC) .. (2.26)
[w,0]U[0,1] k=0

This completes the proof.

Remark 2.2.1. When n = 1, the sector € is the upper half disc and Theorem
2.2.1 coincides with Theorem 1 in [26].

2.2.2 Schwarz Problem

Firstly, the boundary behavior of some linear integrals are investigated. Let

n—1 1 1 —
K(z,¢) = Z (C Tt (g T 2C _Zw—% T _Zw2k:> . (227)

k=0

Lemma 2.2.2. [fy € C(L;C), then

im = [ (0 = A K (2. 0dC = A1) — (1), t € L\ {w},

2€Q, z—t 274

1 (2.28)
el o [ V() = V(@) K (2, ()dC = (1) — v(w), t € LA\{1}
and .
Zeglirrzl_n% Y((O)K(z,¢)d¢ =0, t € (w,0]U][0,1), (2.29)

L

where K is defined by (2.27).

11



Proof: Simple computation gives

n—1 _
lim L =0
€0, 2ot £\ ( — 2w (—Zw? (- W Z(— w2k

for t € L\ {w} and ¢ € L by Lemma 2.2.1. Hence we see that

im [ () = ()] K(z0)d¢

2€Q, z—t 271

L
1 ¢ ¢ ¢ ¢ \d¢
= im o [V(C)—v(l)](C_Z—Z_ZﬂLZ_E—g_g)f (2.30)
L
o1 ¢ 5 d¢
_Zeslzl,H;HtQ_ﬂ'i/AI(C><C_Z+@_1>?7 tEL\{w},

LUL

where L = {7: 7=, = < < 0} is oriented counter-clockwise and

A1(C)={ WO =), (el
_7(2)—'_'7(1)7 CEZ

Therefore, by the continuity of A;(¢) on LU L and the boundary property of the

classical Poisson kernel on the unit circle, (2.30) implies that

im [ B(0) = AW K (2 Od¢ = 1(t) — A1), t € L\ {w}.

2€Q, z—t 271
L

Similarly, the other equality in (2.28) is valid. Finally, if ( € L and z € (w,0] U
[0,1), then K(2,() = 0, and hence (2.29) holds.

Lemma 2.2.3. If v € C([0,1];C), then
1

im [ (0 — A K (. 0dC = A1) — (1), te(0,1],  (231)

2€Q, z—t 271
0

lim QLM / YOK (2, 0)dC = 0, ¢ € 00\ [0,1], (2.32)
0

2€Q, z—t
where K is given by (2.27).

12



Proof: Similarly as before, we have

1

im [ () — (U] K(20)d¢

2€Q, z—t 271

= lim = h(C)—v(D]( Lo z : )dc

2€0, 2t 27 (=2 (-7 -1 -1

+oo
1 1 1
= o [ 200 << " m)d@ re 0]

with

Q) —~(1),  Ce(0,1],

(1) + (1), €€ (1,+0).
Thus, from the continuity of Ay on (0,400) and the property of the Poisson
kernel on the real axis, (2.31) is obtained. If { € [0,1] and z € 9Q \ [0, 1], then
K(z,¢) =0, and hence (2.32) is true.

AQ(O =

Similarly to Lemma 2.2.3, the following lemma is valid.
Lemma 2.2.4. If v € C(|w,0];C), then

lm / () = A1) K (2, 0)dC = 4(t) = 7(w), t€ [0,0),  (2.33)

2€Q, z—t 271

[w,0]
lim / (OK(2,0)d¢ =0, t €2\ [w, 0] (2.34)
2€Q, z—t 271 v ’ - T ’

[w,0]

where K is given by (2.27).

It should be noted that the boundary behavior at the corner z = 0 needs to
be especially investigated because 0 is the common point of the boundary of all
the sectors , By, k=0,1,--- ;n— 1.

Lemma 2.2.5. If v € C(|w,0] U [0, 1];C), then
1

o [ RO =201 KO =0, (235)
[w,0]U[0,1]

where K is defined by (2.27).

13



Proof: Firstly, we have

lm - / 7€) = A0)] K (2, Q)¢

z€Q, z—0 271
[w,0]U[0,1]

(2.36)

n—1

. 1 1 1
= zg(lll,nzlﬁo 2_77'2 / [V(C) - ’7(0)] Z (C — 02k o ¢ — Eka) dg.

w,0]U[0,1] k=0

Next we discuss the boundary behavior at z = 0 in two cases.

Case 1: if n is an even number, by (2.36),

im = [ () = (0] K (= )¢

2€Q, z—0 271
0

— Jim = h<c>—7<o>lz< SR

2€Q, 20 270 —~\(— 2wk (= ZwTk
" —

(2.37)

1 1
— d
+( + 2w (4 zw—%) ¢

1
= k Zegl){n;_)o 5 /A3(O (C — w2k ¢ — Zw_2k>d<

with
V(C) - 7(0)7 Q S (07 1]7
—(=¢) +~(0), ¢€[-1,0).

Since for z € Q, all zw?*, k =0,--- ,5 — 1 are in the upper half-plane, (2.37)

leads to
1
1
dim o [ (O = 1 (0)] K (2, 0)dC = SAs(0) = 0. (2.38)
0
Similarly,
fim o [ Q) =0 K (0 =0 (2:39)
26Q, z—0 271 4 v ’ - '
[w,0]

Thus, the sum of (2.38) and (2.39) gives the desired conclusion (2.35).

14



Case 2: if n is an odd number, then (2.36) equals

1 —_—
. 1 ]
zeflll,nzl—m {271’2 / Z ( _ Zka C . 2{,@)_2]9)(1(

0 =

1 - 1
+2_7Ti [v(¢) —~(0)] < (C"‘ Sw2k—1 ¢+ zw (Qk 1 )
" =
- 0 = 1
o [V(Cw) —( )] ¢ — Sw2k—1 5 (2k 1)
J k=1
X s (2.40)
2 1
, =
n—1 1
2 1 1 1
= zesllmzl—m ;:0 i A4(<) << — k(= Zw_%)dC
= -1
n—1 1
2 1 1 1
B zesllmzl—mzl i /AE’(C) <§ — 2wl (- Zw (2’“—1)>d§
-1
with
- ’V(O>7 C S [0, 1)7
—CUJ) - 7(0)7 C S [_170)7
and

ol
) { Y(¢w) —(0), ¢ e[o,1),

_C) - 7(0)7 C € [_170)
Then the continuity of A4, A5 at ¢ = 0 implies that the limit in (2.40) equals

n+1 n—l
5 A4(0) —

Therefore (2.35) is valid in this case. In conclusion, the desired conclusion (2.35)

A5(0) =

is always true.

Lemma 2.2.6. If v € C([w, 0] U0,1];C), then
lm - / 7(C) = 1O K (2 O)dC = 7(t) — 4(0), ¢ € (w,0]U[0, 1),

2€Q, z—t 271
[w,0]U[0,1]

where K is defined by (2.27).
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Proof: By Lemma 2.2.5, we only need to prove

i o= [ RO = O K( 04 =116 = 9(0), ¢ € 0,0V (0.1)

2€Q, z—t 271
[w,0]U[0,1]

(2.41)
By Lemmas 2.2.3 and 2.2.4, (2.41) is equivalent to

o [ O = A0 KEOd =10 = 10), te @0 (@242
[w,0]
and
lm 1 =
o [ O A0 K Od =10 = 10), te 0D (243

The left-hand side of (2.42) equals

zexlll,nzlﬁt % / [P}/(C) N 7<O>] (C -z ¢ - EWQ) *

[w,0]

1

: 1 1 1
- zeglinz}—ﬁ omi [y(¢w) =(0)] (C —w ! (— iw) d
0

= V(t) - ’7(0)7 te (w> O)

Hence (2.42) is true. Similarly, (2.43) is also valid.

Theorem 2.2.2. If v € C(0€;C), then

lim L Y(Q)K(z,0)d¢ = ~(t), t € 09, (2.44)
2€Q, z—t 271’2
G)

where K is defined by (2.27).

Proof: Let ¢t € (w,0]U[0,1), by Lemmas 2.2.2 and 2.2.6, the left-hand side in
(2.44) equals

2€Q, z—t 211
[w,0]U[0,1]

) =]+ Tim 1O / K (2 ¢)dC. (2.45)
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On the other hand, by (2.12),

CH 2w (+ 2w 2 dC
27?2/;( — zw?k Z—zw—%)?

1 - ] (2.46)
— d
x| Ym )«
w,0jufo,1] *=0
Taking the real part on both sides of (2.46) gives
1
"y [w,0]U[0,1]

Then, by (2.47) and (2.29), (2.45) equals

3(t)— lim / K (2,€)d¢ = (1),

2€Q, z—t 271'2

Therefore, (2.44) is valid for t € (w,0] U [0,1). Similarly, (2.44) is also true for
t €0\ [0,1] and t € 90 \ [w, 0], respectively. This completes the proof.

We introduce the Schwarz-type operator as follows

nl<<+zwk Z_i_ZW—Qk)%
k=0

+%L / 7(¢) S

[w,0]U[0,1]

Shiz) =
(2.48)

[y

1 z
(C—zw%_uﬂk’—zg)dc’ z €€,

where v € C(0Q; R). Obviously, S[v](2) is analytic in the domain €2, denoted as
S| € A(Q). Further,

i

0

ReSh(2) = - / AOK (2, 0)dC, =€ (2.49)

271
a0

for v € C(0Q;R), where K is defined by (2.27). Thus, by Theorem 2.2.2, the

following result is valid.

Theorem 2.2.3. If v € C(9Q;R), then {ReS[y]}T(¢t) = v(t), t € 09, where S
is the Schwarz-type operator defined by (2.48).

17



Finally, a Pompeiu-type operator for €2 is introduced by

T(f](2) = —%/ni [f(C)(C_lzwzk - wzkz_zg>

— 1 z
_f<C) (Z 2k - o2k _ ZZ>] dgdn, A Qa

(2.50)

where f € L,(£2;C), p > 2. By simple computation, we have

~

ReT(f1() = —5- [ [FOK(20 - TR0 dedn, ze0, (250)

Q

where K is defined by (2.27).

Theorem 2.2.4. If f € L,(Q;C), p > 2, then O-T[f1(2) = f(2), z € Q in weak
sense, and {ReT[f]}T(t) = 0, t € 99, where T is the Pompeiu-type operator
defined by (2.50).

Proof: By (2.50), it is obvious that %f[f](z) = 0T[fl(z) = f(2),z € Qin
weak sense, where T is defined by (2.5). On the other hand, K(z,() = K(z,({) =
0, (2,¢) € 9Q x Q implies that {ReT[f]}*(t) =0, t € O

Therefore, we obtain the following Schwarz problem.
Theorem 2.2.5. The Schwarz problem

ozw=f1inQ, Rew=ry ondf,

o | (2.52)
— /Imw(ew)dgo =c¢, ceR
T
0
for feL,(Q;C), p>2, ve C(O%R), is uniquely solvable by
w(z) = SPI(2) + T1f)(z) +ic, (2.53)

where S,T are defined by (2.48) and (2.50), respectively.
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Proof: By Theorem 2.2.1, if there is a solution for the Schwarz problem (2.52),
it must be of the form (2.53). Thus we only need to verify that (2.53) provides
a solution.

If w is given by (2.53), then &:w = f in Q since S[y] € A(Q) and &T[f] = f
by Theorem 2.2.4. Also by Theorems 2.2.3 and 2.2.4, Rew = 7 on 0f). Finally,

we only need to prove that

s
n

L / Imw(e¥)dy =¢, c€R. (2.54)
7r
0
Actually,
/Z ¢+ 2w Z—irzw_% 1 /Z ¢+ 2w C—l—zw dz
2mmi — 2wk Z w2 | 2z 2mi — zw% ¢ —zw?* | 2
L
L Ctzde 1 12
2mi (—zz 2m (z z—() © ¢€
|z|=1 |z|=1
and
1/”§< 1 2 )dz_ 1 /”‘1 1 1 dz
27 C— 2wk w2k —2C) 2 2mi C—z2w?  (—zw* ) 2
7, k=0 T k=0
1 1 dz
- — =0 f 1
57 s 0 for (€ (w,0]U0,1)
|z|=1
Hence
dz
ImS[y|(2)— = 0. (2.55)
z
L
Similarly, for ¢ €
l / ( ! : ) dz
— 2k 2% _
21 ) = (— 2w w z2() =z
1 /n_l ( 1 B z ) dz 0
2w ) = ( — 2w 2C ’
which implies that
d
/ImT[f]( ) ZZ 0. (2.56)
L

Thus, (2.53), (2.55) and (2.56) lead to (2.54). Then the proof is completed.

19



2.3 Dirichlet Problem with Angle 7/n (n € N)

We firstly consider the Dirichlet problem for the homogeneous Cauchy-Riemann

equation

d=w(z) =0, z €,
(2.57)
wh(t) =~(t), teon,

where the boundary data v € C(99; C).

Theorem 2.3.1. The Dirichlet problem (2.57) is solvable if and only if

1 n—1 1 5
o /W(C) > % o % d¢ =0, z€Q, (2.58)
o0

k=0

and its solution is uniquely expressed as

1 n—1 1 5
w(z) =5~ /v(C) > <§ — Z€>d<, z€Q. (2.59)

B! k=0
Proof: By (2.11) in Theorem 2.2.1, if there is a solution for the Dirichlet prob-

lem (2.57), then its solution can be represented as (2.59).

Now we prove that (2.58) is a necessary condition. If w is the solution to
the Dirichlet problem (2.57) given by (2.59), then

wh(t) =~(t), te. (2.60)
Let )
1 = 1 z
h(z) = %agv(é) 2 (C ——% zg“)dC’ zeQ
Obviously,
1
w(z) = hz) = o [AOK(dc,
o0

where K is defined by (2.27). By Theorem 2.2.2,

lim [w(z) — h(2)] =~(t), t €. (2.61)

z€Q, z—t
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By (2.60) and (2.61), we have h*(t) = 0, t € 9Q. Since h(z) is analytic for z € Q,
then by the maximum principle of analytic functions, h(z) = 0 for z € Q, which

is just the condition (2.58).
On the other hand, If the condition (2.58) is satisfied, then

1 ] 1
w(z) = 5 [ (¢ Z( —mt Zw%)dc — o [ HOKE O
o0

0 a0

z € €.

Hence, obviously dzw(z) = 0, z € Q, and w*(t) = (¢), t € 9Q by Theorem
2.2.2.

Theorem 2.3.2. The inhomogeneous Dirichlet problem

dzw(z) = f(2), 2€Q, felL,(C), p>2,

(2.62)
wt(t) =~(¢), ted, ~eC(0C)
15 solvable if and only if for z € Q,
n—1 >
27m Zo ( zw% z( — w%)dC
no1 . ~ (2.63)
z
/f — ( T zZ¢ — w%)d&dn,
and its solution can be uniquely expressed as
1 — 1 2
mn (2.64)
z
—— déd Q.
SEC)S (C_Zw% + ZC_W%> fy, e

Proof: If the Dirichlet problem (2.62) is solvable, then its solution can be rep-
resented as (2.64) due to Theorem 2.2.1. Let ¢(z) = w(z) — T[f](z), then

9:6=0inQ ¢ =7 —T[f] ond
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where T is defined by (2.5). From Theorem 2.3.1, the condition of solvability is

27m/{V }Z< w%_w%z—zC)dC:O’

which is just condition (2.63) by computation.

Conversely, if the condition of solvability (2.63) is satisfied, (2.64) can be

rewritten as

w(z) = L/ (O)K(z,¢)d¢ — —/f ¢)dé&dn, z € Q. (2.65)

a9
Since ——ff K(z,¢)dédn tends to 0 as z — t € 0f2, (2.65) implies that

wh(t) = 7( ), t € 0D by Theorem 2.2.2. Obviously, we also have d;w(z) =
f(2), z € Q. This completes the proof.

2.4 Schwarz Problem with Angle 7/a (o > 1/2)

In Section 2.2, we give the Schwarz-Poisson formula for the domain €2 with angle
7w/n (n € N) explicitly by the reflection method. However, for a general angle
w/a (a > 1/2), it is difficult to bring this formula into effect likewise. This
Section is devoted to extending the Schwarz-Poisson representation formula to a
fan-shaped domain Q% with angle 7/« by a proper conformal mapping and to

solving the Schwarz problem in detail.

Let QF be a fan-shaped domain with angle ¥ = Z (o > 1/2), that is,
7r
Q+:{\z\<1, 0<argz<—}.
«

Its boundary 9Q* = [0,1]UTcU|[w, 0] is oriented counter-clockwise with w = €.
Further, 0, 1, @ are the three corner points and the oriented segment I'y is
parameterized by
[y: T— €™, 7€ [0, z}
«
Obviously, the domain Q = Q for a = n.

Similarly, except for additional indication, we always assume that o (o >

1/2) is a fixed real constant, ¥ = m/a and w = €.
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2.4.1 Schwarz-Poisson Representation

From [26] and Theorem 2.2.1, when n = 1, the following lemma holds.

Lemma 2.4.1. Any w € CY(D*;C) N C(D*;C) can be represented as

1 1 z
omi w(C)[C—z+zC—1]dC
oD+

» w(z), ze€D",
_l/wc(g)lcl + ]dgdn: )

—z z(—-1 =T
™ ¢ 0, 2¢D-,

and for z € D

w(z) b Rew(()<<+z—£+Z>%+l/1mw(od§

(2.66)

2w (=2 (—-z)C¢ ¢
Lo
1

1 1 z
+E Rew(C)(C_z — 1_Z<>d§

-1

_%/ [wC(O(Ciz ] _ch> _W(Ziz 1 jzz>]d§dn,

D+
(2.67)
where Dt = {|z| < 1, Imz > 0} and Ly = {|7| = 1, Im7 > 0}.
We consider the conformal mapping [30]
: Qf - Dt
¢ (2.68)
z = 2

with the branch cut along (0, +00), which especially maps the boundary I'y onto
Ly, [@,0] onto [—1,0] and [0,1] onto [0,1], respectively. The inverse mapping is
: Dt — Qf
° 1 (2.69)
2 2

which transforms Ly onto Ty, [—1, 0] onto [z, 0] and [0,1] onto [0,1], respectively.

Remark 2.4.1. Obviously, the above two conformal mappings can be firstly 1-1
extended to the boundary except for 0. Since the argument at 0 can be arbitrary
and a > 1/2, we can assume that the argument of z* and 2"/ at z = 0 are 0.

Hence, the above 1-1 mapping between the boundary is proper.
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1/a

In what follows, the main analytic branches of z* and z'/® are always chosen

as above, respectively. Moreover, on the basis of the analytic branches of z* and

2Y/% we define the analytic branch of several functions as follows,

1/

_ z% _ z _ z

O 1 _ ’ Zl a _ ’ Zl/a 1 _ .
o

z z z

Then, based on Lemma 2.4.1 and the conformal mapping, we obtain the

following Schwarz-Poisson representation for an arbitrary angle T (v >1/2).
a

Theorem 2.4.1. Any w € C*(Q+;C) N C(Q+; C) can be represented as

1 a
% w(() [Ca _ s« + zagi —1 gaildg
a0+
(2.70)
B 1 2~ a1 ) el s
WQ[ we(©) [ca — e JC e
and for z € QF
_a et T\ a [ ()
w(2) _%F Rew(C)(CazaC—aza>?+;F/ ¢ d¢
Q 1 = o
+E / Rew<C) (Ca _ s« a 1— ZQCQ)C 1dC
[@,0]U[0,1] (2.71)
a 1 - “
_;/ [wdc)(@ —zo 11— ZO‘CO‘>< 1
O+
1 z¢ o
—UJE( ><C_a _ o 1— ZOAC_O&)C(X 1] dgdn

Proof: Let d-w(z) = f(z) and denote a new function
Wo(z) = w(z"/*),  zeD",

then for z € D*,

1 7=
0:Wo(z) = — zat f(2V),
1 1

0.Wo(z) = o L o,w(2Y%).
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We observe that Wy(z) € CY(DF;C) N C(D*;C), thus from Lemma 2.4.1, we

have for z € Q7

a - a\ |
W) =5 Rew()(o(gf; - gt;)%JF%/ImV?(OdC
Lo A
1
1 1 le'
+E RelVy(¢) (C a1 _Zzac>d§
-1
1 1 za 1 Zoe
_;/ [W05<C>(C _ a1 ZQC) - Wo<(<)<z_ o 1 ZQZ>]d§dn
D+

1 —=2
where Wie(¢) = — ¢a! f(¢*) and Ly is defined in Lemma 2.4.1. Applying
!
the transformation (2.68): ( = 7* with 7 = 7y + i1, 71, 72 € R, thus, d&dn =
J dridm, with the Jacobi determinant

J = oz2|7'|2("‘_1).

Therefore,
o a o) o d I W a
Wo(z) = - Rew(](Ta)(T T )i 2[R,
271 T — z0 g _ o | o1 T T
Fo FO
1
1 «
+2 ReWO(Ta)< _ > a-lgr
v T — 20 ] — e
0
o o 1 2% o1
+— [ ReWy(79) - 77N dr
v TY — 2@ 1 — zore
[,0]

Za

1 — zo7a

—Tlfam<T_a i i ﬂ X a2|7'|2(°‘_1)}d7'1d72.

By simple computation, this is the desired conclusion (2.71). Similarly, expression

(2.70) is also true.

Remark 2.4.2. We can verify that when a = n (n € N), the Schwarz-Poisson

representation formula in Theorem 2.4.1 is just the result in Theorem 2.2.1.
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In particular, the investigation for o« = 1/2 should be especially noted. For

the case a = 1/2, the fan-shaped domain with angle 27 is just
Dy ={z, 2| <1,2¢1[0,1)} with 9Dy =1[0,1]UT U][L,0],
where
I=A{r [r]=1 7#1},
is oriented counter clockwise. Let the unit disc
D={z:|z| <1} with 0D = {7, |7| =1}.
Then we observe that
Dy =D\[0,1), I'=0D\{1}. (2.72)
From Theorem 2.4.1, the result for « = 1/2 holds.

Corollary 2.4.1. Any w € C*(Dy; C) N C(Dy; C) can be represented as

1 21/2

1 ~1/2
+ i JC d¢

E 'LU(C) [Cl/g — L1/2
Do

1 1 S1/2 w(z), z € Dy,

- [ () + ¢ 2dgdy =
27?/ ¢ [ 12 _ /2 " Jij2cijz _ 1] —
DO C C 07 z ¢ DO?

(2.73)

and for z € Dy

1 Gy GRL2NAC 1 [ Imw(()
w(z) =1 Rew(g)(g1/2_zl/2_m_21/2>?+%/ ¢ d¢

r r

1 R 1 21/2 1y
—l—% ew(() (12 — 2172 1 21720172 ¢ ¢

[1,0]U[0,1]
1 1 21/ 1
_%/ [w4(<)<<1/2 12 1 _ Z1/2<1/2>C :
Do
- 1 ~1/2 -
- _ —1/2

(2.74)
where for ¢, € [0,1], (_ € [1,0] and (; = (_, we have Rew((_) # Rew((,), as
well as w(().
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Actually, the classical Schwarz-Poisson formula for the unit disc ( see [7] )

can be derived from Corollary 2.4.1.

Proposition 2.4.1. Any w € C*(D;C) N C(D; C) is represented as

w(z) = [ Rew)tT2L L L / () &

- 2“'4'_1 (—z (¢ 27T|C‘_1 ¢
- — - (2.75)
1 (e |
7Td/ (C_Z+1—ZZ dédn, |z| < 1.
<1

Proof: Obviously, when w € C'(D;C) N C(D;C), we have w € C'(Dy; C) N
C(Dp; C). Moreover, w(¢y) = w(¢_) for ¢, € [0,1], ¢_ € [1,0] and ¢, = (_.
Thus the third integral on the right-hand side in (2.74) equals 0. Then from
(2.72) and (2.74), w(z) is expressed as

1 ¢V 422 242\ dC 1 [ Tmw(C)
w(z) =-— Rew(()(CI/2 —— i L z1/2)_ + —/—d{

D oD
1 1 S1/2 R
_%/ wi(g)(glﬂ _ 12— 21/2<1/2>C :
D
- 1 S1/2 _
—we(C) (m a2 - zl/zm>< 1/2] dédn.

(2.76)

Since

1 _ lg—lﬂ 1 . 1
(—2 2 (12— 12 " (124 12 )
z _ _21/2—<_1/2 1 L 1 _
1—2( 2 1—21/2C12 14 212012 ’

therefore, the area integral in (2.76) can be converted into

(0O 2welQ) L

D
Z1/2C71/2 m ZI/ZW
1 — zl/QCl/Z + UT( ) W _ 12 - 14 21/2@ dfdﬁ
(2.77)

C_1/2

+
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Let Ay be the second area integral in (2.77), then from the Gauss theorem,

o ¢ 2202
AO = alif(% R / — / w(C) <1/2 + 21/2 + 1— Zl/2<‘1/2
Cl=1 [¢l=e
12 1/2¢1/2 d
Rl e S B )

CU2 — 212 14 21/2¢1)2 q
1 C1/2 _Ll2 14y 21/2@/2 d¢
4mi G2 4212 0 1= 212012 | ¢

=1

Thus, by (2.76)-(2.78),

oo :% / Ing(é)dc_%/ (?C—(Ceriw—CfZ)) deds

I¢l=1 I¢]<1

1 12 4 ,1/2 712 4 L1/2
L1 Rew(() ¢+t C_ +z
47ri QU2 —2Y2 12 )2

I¢]=1
C1/2 _ 21/2 14+ 21/2<1/2 dc
+€1/2 4212 T 1 — Z12¢12 ?

By simple computation, (2.75) is valid. Then, the proof is completed.

2.4.2 Schwarz Problem

In this part, we consider the Schwarz problem in the fan-shaped domain Q"
with angle 7/a (o > 1/2).
Schwarz boundary value problem Find a function w satisfying the following

conditions
ws; = fin QY, Rew =~ on 90T,

o [E . (2.79)
—/ Imw(e)dp =¢, c€R,
T Jo
with f e L,(Q7;C), p>2, ve€CO0";R).
Firstly, introducing a new kernel
1 1 2° 2°
H = - — — — o=l 2.80
(Z’C) {Ca — s Ca — 1 — Zaé‘a + 1 — Zaé‘oz C ( )

Then, the following lemmas are valid.
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Lemma 2.4.2. If v(¢) € C(0Q;C), then

lim  —— [ [(¢) = y(1)]H(2,¢)d¢ = 0.

z€Qt, 2—1 271
To

Proof: By simple computation,

lim  — [ [4(¢) = y(1)]H(z,¢)dC

z€Qt, z2—1 271

Io

! ¢ d

Lo
: e ¢ ¢ d¢
+2—m.~ [ (¢ + (1)) lC—za tETm 1] ?}
Lo
= 1 L ¢ ¢ ¢
=1

where Ly = {7 : |7| = 1, Im7 < 0} is oriented counter-clockwise and

T (C) . { V(Cl/a) - ’7(1)7 < € L07
1 - =1/« ~
(T +2(1), Ce L.
Therefore, from the continuity of I';(¢) at ( = 1 and the property of the Poisson

operator on the unit circle,

lim [ [y(Q) = y(1)]H(z,0)d¢ = T4(=*) | __, = 0.

2eQt, 2—1 271
Lo

Lemma 2.4.3. With ~(¢) € C(0QT;C),

m / () — A(]H (=, €)dC = .

zeQt, 2—1 271
[0,1]U[ew,0]
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Proof: We observe that
1

Lm0 = v(IH G OdC
0

~ {% [ b i [ A - 2] ac
e[ (@) 0] [l

= lim = +OOF2(C){ L 1—]dC>

2€QF, 21 21 0 C— 2% C— A

where

{ V(CI/Q) - 7(1)7 C € (07 1]7
Ty(¢) =

1/a
= (") +2(1), ¢e (1,+00)
Hence, similarly from the continuity of I's(¢) at ( = 1 and the property of the
Poisson operator on the real axis,
1

lim = [ [4(¢) = y()]H(z,)d¢ = Ty(1) = 0.

2eQt, 2—1 27TZ 0

Thus, the desired conclusion is obtained also from H(z,() = 0 for (z,¢) € {1} x
(e, 0].

Lemma 2.4.4. With ~(¢) € C(9Q";C),

lim  — [ [4(¢) — (@) H (2, )¢ = 0.

2€Qt, 2w 271
1)

Proof: Similarly to Lemma 2.4.2,

lim  —— [ [y(¢) = (@) H (2, ()

2eQt, z—w 271
1)

~ lm - F3(<)[

zeQt, z—w 211
I¢l=1

where

() =y(w), (€ L,
P3(<) - —1/a ~
—(¢") +v(®w), (€ Lo.
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Since when z — @, z* tends to —1 and I's is continuous at { = 2® (z = w), thus,

lim [ [1(C) = (@) H(2,¢)d¢ = Ts(=%)]___ =0,

z€Qt, z2—w 271
To

Lemma 2.4.5. With ~(() €

(6]

li — — H =0.

Lm0 - @) O =0
[0,1]U[ww,0]

Proof: Since H(z,() =0 for (z,¢) € {w} x [0, 1], then

im / () — 1@ H (2 ()¢

2eQt, 20w 2T

C(09";C),

[0,1]U[w,0]
1/ 1 1
= li — r — — | d
Y e 1) [C —z¢ (- za} &

where

Ia(C) = ’Y(Cl/a) _1’7(w)’ C€ [_170)a
L AT @) e (o),

Therefore, similarly from the continuity of I'y({) at ( = 2 (z = @), we obtain,

i o [ 5O = @IHE I = L), =

zeQt, z—w 271
[0,1]U[ew,0]

Lemma 2.4.6. With ~(¢) € C(0Q";C),

lim_ 2% [ b(0) =10 H .0 =0,

2€Qt, 2—0 271
o0+
Proof: By H(z,() =0 for (z,() € {0} x I'y, we see that
lim_ % [ 0O 2O 0

2€QF, 20 271

o+
1 1 1 1
= ZEQIHLO{% i [(¢) = 4(0)] & — g‘—z_a} d¢
1 0 N 1 1
o | E) = 2(0)] L_Zu - C—z_o‘] dC}
1 ! 1 1
= dm o [ e =) {g — T Z—a} d¢ = [7(2) = 1(0)]|.z0 = 0.

31



Remark 2.4.3. Lemmas 2.4.2-2.4.6 suggest that the following boundary behav-

ior is valid at the three corner points, that is,

m / (O — A(OIH(z OdC =0, ¢ € {0, 1,0,

26QF, 2—t 271
o0+

According to the representation formula in Theorem 2.4.1, the next result

1S true.

Theorem 2.4.2. The Schwarz problem (2.79) for the domain Q1 is uniquely
solvable by

w(z) . 7(C)<Ca+za —§+Za>d—<+ic
1)

= 2—7” Ca — g Ca — o C
1 o
w2 [ ( R Ca)galdc
[@,0]U[0,1] (2.81)
o 1 z° o
_E/ [f(o<ga — 1_Za<a)C 1
O+

—_— 1 2 —
T )T ] dedn, =€ Q.

Proof: From Theorem 2.4.1, we only need to verify that (2.81) provides a solu-

tion. Since for z, ( € Q7,

acafl
li — =
Cinz(g Z) CO‘ — 2@ 7
a—1
then we know that z is a simple pole of in Q" and
o ZO[
acet 1
- + ) ’
o=, Tk )

where for arbitrary z € QF, g(z,() is analytic with respect to z. Thus, we

obviously see that

dzw(z) = 0= _%/%dfdﬁ = f(2).
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When ¢ € Ty, i.e, [(| =1,

Q@ Co 42 (o422 dz 1/ (“+2z (“+z\dz
o — = — == + — | —
2mi (¥ —2¢ (a—za) 2 2mi (*—z (*—z] z
Ty Lo
1 (% + zdz
2 (*—2z 2z
|z|=1

and for ¢ € [0,1) U (ww, 0] U QT,

o ( 1 B z¢ >dz_ 1 ( 1 . 1 >dz
27ri CO‘— a1 —zee) 2 2mi (*—z (*—7Z/ z

Lo

=0,

" omi Ca—zz
|z]=1

Similarly, for ¢ € QF,

«Q 1 2% dz _0
27TZ C_O‘ — zo 1 _ Zaé'a o
1)

g/a Imw(e™)dyp = g/a cdp = c.
T Jo T Jo

Let wy be the area integral in (2.81), then

Thus,

«

= [ 100 + Q) Hz ) dean,

O+
Since H(z,{) =0 for (z,() € 90" x Q, we obtain Rewy(z) = 0 for z € 9QT.

We can write Rew(z) as

Rewq(z) = —

Q

Rew(2) = 5 [ HOH (L + Rewn(2) (2.82)

21
o0+

Since H(z,¢) = 0 for (z,{) € {To\{l,@}} x {[w,0] U [0,1]}, then for ¢, €
FO\{L w}7

.« e! L2 1] ] d¢
i g [ O8O0 =t 5 [ Lca —F =R
o0+ Fo
Lo 1—[2*]* d¢ 1 1 Ll dC
—};%O%/V(C)m? —ZIL\%%/W(C )|C 22 ¢ 7(Co)-
To Lo
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Similarly, H(z,{) =0 for (z,{) € (0,1) x {[zw,0] ULy}, then for ¢, € (0, 1),

1
«

« 28 — 2@ 28 — 2
lim — H d¢ = lim — _ a-1g
i 5 [ @G Q= tm % ”<<>[|<a_za|2 FErTTE R
oot 0

1 1

a 22 1 1, 2% — 2%
tim % [ 2O e = lim o [ () e = 1(G)
0 0

Moreover, when (z,() € (w,0) x {[0,1]UTy}, H(z,¢) = 0. Thus for ¢, € (w,0),
0

(6% 1 1Y Z_O‘
lim —— H(z,¢)d¢ = lim — o) d¢ = .
6 2mi / VOH(z ()d¢ = lim 5= /V(C = zapde =%
o0+ 1
In a word, we have lin<1 Rew(z) = v((p) for {y € 90T except for the three corner
zZ—C0
points.

With respect to the three corner points, we can convert (2.82) into different

representations. Firstly, Rew(z) can be expressed as

o avy(1
Rew(s) =5 [ (0 =901 (e e+ 2 [ 12,0 + Rewo ).
27 2mi
oQ+ o0+
(2.83)
Applying the representation (2.71) to w(z) = 1 and then taking the real part on

both sides, we obtain

a o) 1 1
o [ 00— | [(a—za_(a—z_a
oo+ o0t (2.84)

= = ]ca—ldc 1,

+ =
1—zof> 1 —2z29C

then, also from Lemmas 2.4.2 and 2.4.3,

lim Rew(z) =~(1).

2eQt, 2—1

Similarly as before,
Rew(:) = 2 [ Q) — 1) H(z Oac + 1) [ H 0 + Reunz),

271
a0+ a0+

(2.85)
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Hence, Ql+1m Rew(z) = v(w) follows from (2.84), Lemma 2.4.4 and Lemma
ze , oW
2.4.5.

Also obviously, we can rewrite Rew(z) as,

a ay(0
Rew(s) = o [ (O =201 0dc+ T [ H(z,0dc + Rewo(2).
o0+ a0+
(2.86)
Thus, the desired result Qlim . Rew(z) = 7(0) is true from (2.84) and Lemma
zZe , Z—>

2.4.6. Therefore, the proof is completed.

2.5 Dirichlet Problem with Angle 7/a (o > 1/2)

In this Section, a Dirichlet boundary value problem for the domain Q7 is

discussed.

Theorem 2.5.1. Dirichlet boundary value problem

wr=fin Q" feL,(Q7C), p>2,
w=r"yondQ", ~eC(O0;C),

is solvable if and only if for z € QF,

a 1 2 o1
% 7(<)<<0‘—Z_0‘+Z_O‘CO‘—]_>< dC
oar ' o (2.87)
« A 1
= — — 4+ — 47 dédn.
W/}@(@_ﬁ+w@_Jc £y
QO+
Then the solution can uniquely be expressed as
() =2 [ 3O+ |
O = on ] TS e T T e
ot (2.88)

« 1 e o
_;/f(o(@—za + zaga—1>< 'dédn, € Q.
O+
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Proof: If there is a solution, it must be of the form (2.88) from Theorem 2.4.1.

Let w be the solution to the Dirichlet problem, then we know

limw(z) =~(¢) for (€ o0*. (2.89)

z—C

We consider a new function

G(z) = % 7(¢) (Ca iz_a + Z_a;_a_ 1><a—1d<
s
——/f ( - Zaci_a_1>§“‘1d§dn, zeQF.
Thus, we have
w(z) = G = 5 [ WOHE e - —/f (2,0)dédn. (2.90)

o0+

Since the area integral in (2.90) vanishes on 9", then from the proof of Theorem
2.4.2, we easily obtain, for ¢ € 9Q7,

li — = 2.91
L () - 6 = (0, (291)
which implies
li =
e G)

We observe that @ is analytic for z € Q1, and then by the maximum principle
for analytic functions, we know G(z) = 0 for z € Q| which is just the condition
(2.87).

On the other hand, if the condition (2.87) is satisfied, then we can rewrite
w(z) as

w(e) = o [0 z<d<——/f H(z, ¢)dédy.
ont

Obviously, dzw(z) = f in QT and w = 7 on IQF. This completes the proof.

36



Chapter 3

Harmonic Boundary Value Problems for the

Poisson Equation

In this Chapter, we study a harmonic Green and a harmonic Neumann functions
in the fan-shaped domain Q% with angle 7/a (o > 1/2), and then solve the
corresponding Dirichlet and Neumann problems for the Poisson equation. Here

Qt, Iy, @, 9 are given as in Section 2.4.

3.1 Harmonic Dirichlet Problem

Definition 3.1.1. [6] A real-valued function G(z,() = %Gl(z, ¢) in a regular
domain D C C is called the Green function of D, more exactly the Green function
of D for the Laplace operator, if for any fired € D as a function of z, it possesses
the following properties:

1. G(z,() is harmonic in D\{(},

2. G(z,¢) +1og|C — 2| is harmonic in D,

3. lim DG(z,C) =0, tedD.

z—t, z€

The Green function is uniquely determined by 1-3. Actually, it also has the
additional properties:

4. G(z,¢) > 0,

5. G(z,¢) = G((, 2).

It must be noted that not any domain in the complex plane has a Green function.
The existence of the Green function for a given domain D C C can be proved

when the Dirichlet problem for harmonic functions is solvable for D.

The harmonic Green function G, for the fan-shaped domain Q* with angle
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V=m/ais

@)=

Gl(za <) = log ) (31)
=)= =0)
which can be verified easily.
The outward normal derivative of the boundary 9Q% is given by
20, + Z0s, zeTo\{1, =},
aVz = _i(az - 62)7 S (Oa 1)7 (32)

i(e”0, — e "0;), 2z € (w,0).
Thus, for z € T'\\{1, w},
0,.G1(2,() = (20, + 205)G1(2,()

:Zal L _F I z_},

Ca_za Ca_z_a Ca_za C‘a_za

and for z € (0,1),

0,,G1(2,¢) = —i(0. — 0:)G1(z,()

1
= 2z} + — = — .
[é‘@z — o 1 _ ZaCa Ca — zQ ]_ _ ZozCa

¢ 1 e }
When 2 € (,0), ie. z=(1-p)e?,0 < p <1, we have 2% = 2@ and €221 =
e~ Wza-1 then

0,.G1(2,¢) =1i(e"0, — e 70,)G (2, )
1 ¢ 1 e }

= e’ 21 + — — .
|:Coz — 1 _ ZO‘CO‘ Ca o 1 _ Zozga

From [27], we obtain the following representation formula.

Theorem 3.1.1. Any w € C?*(Q+;C) N CY(QF;C) can be represented as

w2) = ~3- [ w086 s~ [ulQ)Gaz¢)den

47
o0+ o+

where s¢ is the arc length parameter on OQYT with respect to the variable ( and

G1(z, Q) is the harmonic Green function for QF.
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Based on Theorem 3.1.1, the representation formula provides a solution for
the related Dirichlet problem.

Theorem 3.1.2. The Dirichlet problem
0,0;w=f in QF, feL,Q"C),p>2 w=v on N, ~veCON";C)

15 uniquely solvable by

_« ¢ e S S
w(z) —% 7(() {ga_za+g_a_z_a_g_a—za_(a_z_a}?
o
1
a 1 1 2° R e
-I—% 7(¢€) lga_za_(a—z_a_1—20‘Ca+1_z_a<°‘}< d¢
0
« 1 1 a = o=
o 7(¢) {Ca_za_ca_z_a_1_za<a+1—z_o‘ca}< ld¢
[@,0]

[ 1061 0dcn, zen
O+

(3.3)

where Gy is given in (3.1).

Proof: Obviously, if the problem is solvable, it must be unique. By Theorem

3.1.1, we only need to verify that (3.3) is a solution. Since

L ¢ 1 S
0.G1(z,¢) = az*! + e — — |,
1( C) Ca — 1— ZaCa Ca — o 1 — ZaCa
- oz ! :
then similarly to the proof of Theorem 2.4.2, o o can be written as

—z

az ! 1 ~

Ca—Za—C—Z+g<Z7<)7

where for any z € QF, g(z,() is analytic in z. Thus, we obviously see that
expression (3.3) is a solution to the Poisson equation. Moreover, by the properties
of the Green function, the area integral in (3.3) vanishes on 0Q*. Actually, we

can rewrite w(z) as

w(z) = g [ HOHEOU -+ [ 16z agan,

o0+
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with H(z, () defined by (2.80). Then, similarly from the proof of Theorem 2.4.2,
we obtain
limw(z) = v(¢) for ¢ € 9O0T.

z—(

This completes the proof.

3.2 Harmonic Neumann Problem

Definition 3.2.1. [6] A real-valued function N(z,() = %Nl(z,C) in a regular
domain D is called a Neumann function (for the Laplace operator), if as a func-
tion of z, it satisfies

1. N(z,() is harmonic in D\{(},

2. N(z,C) +log|C — z| is harmonic in D,

3. 0,.N(z,() is constant on any boundary component of D for any ( € D.

Remark 3.2.1. The Neumann function is not uniquely defined by 1-3 above. It

is only given up to an arbitrary additive constant.

Example 3.2.1. A harmonic Neumann function for the ring domain R = {z €

C: 0<r <|z] <1} can be written as (see [54])

Ni(2,¢) = —log | (¢ — 2)(1 - 20)

2= rOGL - ()1 a0 |
gl 2PICP |

k=1

and its boundary behavior is

— -2, |z| =1,
al,le(Z,C) =
0, |z|=r

A harmonic Neumann function N;(z, () for the Poisson equation in Q can

be expressed as

Ni(z,¢) = —log| (CO‘ - zo‘) (C_a — za) (1 — zaCa) (1 — zO‘C_a) |2. (3.4)
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We verify this in the following. For z € T'\\{1, w},

Ni(z,€) = —2log |(¢* — 2) (¢= — =) %,

0y N1(2,¢) = (20 + 20z) N1 (2, ()

TS 1 ¢ ¢
= oz {Ca—za—i_g_ﬁ’é—za—i_l—za§a+1—z&<_a]
L[ i
+az [g_a_z_a+ga—z_a+1—z_aca+1_z_ag_a}_ 4o,
when z € (0,1),
NI(Z7C) = —2 10g|(<'04 - Za) (]- - ZOéCOé)|2’
0. Ni(2,0) = —i(0. — 0 Ni(2.) = —iaz"! L, ¢
vyt V1\<y z z 1\~ Ca—Za C_a—za 1_Za<a
S 1 1 ¢ S
+1—za§_0‘_<_a—z_a_go‘—z_°‘_1—z_a§a_1_z_a(_a]_O’

and for 2 € (@,0), 2= (1 —p)e?, 0<p<1,

Ni(z,¢) = —2log |(¢* — 2%) (1 — 2°¢%) %,

0,.N1(2,¢) =i(e™0, — e ™0.) Ny (2, ()

. 1 . @
— iaza—lezﬂ[ 4+ — + C + C _:|
COZ — Ca — sa 1 — ZCYCQ 1— ZaCa
— 1 1 o g
—jazo—le™ [_ — + — + C_ C__} = 0.
Coc —a CC‘C — 1— ZQCO‘ 1— ZocCoz

Moreover, the normalization condition holds, that is,

dz 2 dz
/M(z,o— S / log |2 — 22 = .
VA Z
o

o
|z|=1

Thus, Np(z,() satisfies the properties:

1. Ni(z,¢) is harmonic in z € QT\{(},

2. Ni(z,¢) +1log|¢ — z|? is harmonic in z € QF for any ¢ € QF,

—4da, ze€To)\{1,w},

for ¢ € QT
0, z € (0,1) U (e, 0),

3. 0,.N1(2,() = {
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d
4. /Nl(z,g)—z = 0.
z
1)
Then, we give a representation formula for the domain Q.

Theorem 3.2.1. Any w € C*(Q+;C) N CY(QT;C) can be represented as

we) = % [wOF + 1= [ 9wOME0ts - 1 [ uglOm(z Odedn

To on+ Q+

where Ni(z, () is the harmonic Neumann function for QF.

Proof: Let z € Q7 and £ > 0 such that
B.(2) c Q" with B.(2) ={CeC: |(—2| <e}.

Suppose that Q. = QT\ B.(z), then

+ [ ucomeaaen = 5 [ {oducom 01+ adug( M)

e (ONiE(, Q) — weO N, o}dsdn

= [ M (O — we(0)dC
—2i:/ {00000 Migle, O+ 2O €0 - 2000533 (. Ju6) ey
= 4%” Q/ N (2, Qwe ()¢ — we(Q)dC] — 4% / w(¢)[Nig(, Q)d¢ = Nig(2, Q)]d(]
1 T B0 = w005 ] do
Z%C / i (€= 2)uel0) + T=FPwrle)] 7=
ﬁwzg (€= 2)Micle.0) + T Nl )] wl€) 25
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Introducing the polar coordinates ¢ = z + ee'¥ gives rise to

1 S d
[ M0 (€= 20 + T Hudo)] 72
A
o [ Ml Ol () + e (Ol
0
which tends to 0 when ¢ — 0. Similarly,
1 d
tim o [ [(€ - Vil )+ TVl )] wl€) 5
|¢—z[=¢
2m
— —ll—% % /w(z +ee)dp = —w(z)
0
Then,
w2 = 1= [ 0awON(0) — 9 M(Qu(O] dsc - - [ wdl)N(z.¢)ded.
o0t Q+

(3.5)
Hence, the desired result follows from (3.5) and the property 3 of Ny(z,().

Next, the outward normal derivatives at the corner points are introduced.

Let the partial outward normal derivatives be

+ . . — _ .
o, w(0) = t—>0,htr2(0,1) Oy w(t), 0, w(0)= t—>0,htreI%w,O) 0, w(t), (3.6)
+ . . — . .
oy w(l) = . ltlenrlo\{l} dpw(t), 0, w(l)= Hl,htlg(o,l) Oy, w(t), (3.7)
and
oyw(w)=lim J, w(t), I, ww)= lim D, w(t). (3.8)

t—w, te(w,0) t—w, telo\{w}

Definition 3.2.2. If the partial outward normal derivatives (3.6)-(3.8) exist,

then the outward normal derivatives at the three corner points are,

0n.ult) = 5 [03w(t) +0 ()], te{0, 1, @)

Finally, the Neumann problem for the Poisson equation is discussed.
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Theorem 3.2.2. The Neumann boundary value problem
/o ]
0,0:w=f in QF, dw=~ on 0T, —/ w(e?)df = ¢
T Jo

for f € L,(2%;C), p>2, ve€ C(ONT;C) is solvable if and only if

o [ @asc=2 [ raean (39)

o+

Then the solution is uniquely expressed by

w(z) —co——/ log| )(C_a—zo‘)F%
o [ A@miice =) (1 - ey pac
’ (3.10)
o [ QO log] (¢ =) (1 - )¢
[,0]

——/f YN1(z,()dédn, =z € Q,

where N1(z,() is given in (3.4).

Proof: From Theorem 3.2.1, if the Neumann problem is solvable, it should be
of the form (3.10). Then we confirm that (3.10) is a solution. Similarly to the
proof of Theorem 3.1.2, we easily get w.z = f in Q*. Since when ¢ € 9QT,

o dZ_ 1 o dz_
log [(¢* — 2*)(1 — 2%C >|27_E / log |1 — 2 |2?—0, (3.11)

To |z]=1

e

thus, the normalization condition

T/ '
g/ w(e)dl = ¢
0

7r
follows from (3.11) and the normalization of N;(z, ().
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In addition, we have

(Z@Z + 282)10(2)
o foafe e e
—27_‘_7:F ’Y(C) _Ca_za+c_a_z_a+<‘_a_za+<a_z_a 2:| C
01
o [ 2 Z‘”C’ 2 Z_aca
+% V(C) -Ca_za+1_Za<-a+€a_z_0¢+]_—2_a<a:|d<
0
a ) 2 z¢” 2 S
—% € ’Y(C) |:Ca_za—|—1_zaga+<a_z1+1_ZTCa1dC
[@,0]

! / F(O)(20. + 20:) Ny (2, C)dedn.
m
O+

Hence, for ¢y € I'h\{1, w},

Oy, w(C) = lim (20,4 205)w(z)

2€Qt 2—(o

L a ¢ e d¢
_2691@%0{%/7(6) La—za +@—Z_O‘_1} 7

To

2 [agas+ 2 f f<<>d§dn}

ont

O+
—) =2 [ s+ 2 [ icragan,
O+

o0+t

which implies the sufficiency and necessary of (3.9). Further, from v € C(0Q7,C),

82“’(1) = lim A w(Co) = (1), (3.12)

Gl Coelo\{1,m}

0, w(w) = lim 0y w((o) = v(w). (3.13)

v B ¢o—w, oelo\{1,w}

Similarly,

—i(0, — 0:)w(z)

B _g (C) ya—l ya—l B sa—1 B sa—l %
= 27TF Y Ca_za Ca_za COl_Z_Oé Ca_z_oz C
0 1 L
a Zafl Zaflca Zafl zaflga
+2_7TZ 7(§> [Ca s 1 — ZaCa o Ca o o 1 _Z_aCCu] dC



a i ol pe-lge el Gasiga
—% e V(C) [Ca_za—i_l_zaga_ga—z_a_1—Z_aCa]d<
[,0]
_% FO(0. — 92)N1 (2, )dedn.
O+

Then for ¢, € (0,1),

3uzw(Co> = zeleir?—mo _i(ﬁz - 5’5)10(,2)
1

- im X 7(()[ - ZM_] a

2=Q+ z¢0 2T (o — 2o B (o — 2@

ori (o —za (o2
|
= dm 2—7”/7((1/"‘) [C _12a =7 1?@] d¢ =~(¢o)
0
Thus,
oLw0)=_ lm  5,u(G) =1(0) (3.14)
O w(t) = lim = 8,.w(G)=7(1). (3.15)

Finally, we also observe that,
i€, — e ) w(z)

«

2
1)

oV o1 oV o1 =i a1 ewza—ll ¢

7(()[ + = - — — c

(¥—2%  (a—za (*¥—2% (a_2@
a eiﬂzafl eiﬂzaflca efiﬂF efiﬁmca
ol e el

27i (¥ —z%  1—zo0r  (*—2% 1 — za¢

0
W a—1 i ,a—1 a -0 a—1 - a—1/a
Q@ i ez ez e Wza e Wzarl(
o / € 197(4‘) e’ e’ + ara  ra ~a Sola dC
211 (@ —z 1—22C (o —z 1—22C

[e,0]

= / FOE?, — e 02Ny (2, ¢)dedn.
O+
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Since for ¢y € (w,0), that is, (o = (1 — p)e’”, 0 < p < 1, we obtain

ng :@7 eiﬂ 00471 — 6419 6171.

Thus,

O, w() = lim i(e?d, — e Vo) w(z)

2€Qt 2—(o

' i a—1 —i0 a—1
= lim i/e—%@)[” _ Z_]dC

ZEQ"',Z—)C() 271—2 Ca — @ CO( — @

[w,O]
9 a—1 a—1 —i — =
R o —i9 i Gt S B G G
N zEQl‘*l'I,?HCO 271 € ,Y(C) [ (o — 2@ (o — ~a d¢
[w=,0]
i ra—1 — 9 Fa—1
O N
+27Ti / € 7({) [Ca _ s (o _Z—a] dC}
[=,0] | )
= 1 i . a—1 _
N ZEQIHE—KO 211 / W(C) |:<04 — o Ca _ Z_a:| C dC V(CO)'
[c,0]
Furthermore,
O, w(0) = Tim 9,w(G) =(0), 3.16
Lw) = lim 0 w(G) = 7(0) (3.16)
Ojw(w) = lim  8,w(G)="(w). (3.17)

Co—w, Co€(w,0)

Hence, by (3.12)-(3.17) and Definition 3.2.2,
O w(t)=~(t), te{0, 1, w}.

Then the proof is completed.
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Chapter 4

Boundary Value Problems for the Bi-Poisson

Equation

As stated before, convoluting the harmonic Green function with itself leads to
a biharmonic Green function. Similarly, convoluting the harmonic Neumann
function with itself also gives rise to a biharmonic Neumann function. This
chapter is devoted to the construction of a biharmonic Green function and a
biharmonic Neumann function in the fan-shaped domain Q with angle 7/n (n €
N), by using the concept of convolution and some proper transformations, and
finally give the solutions and solvability conditions for the corresponding Dirichlet
and Neumann problems explicitly. Here Q, L, w = €?, § are given as in Section
2.2.

4.1 Biharmonic Green Function

In the last Chapter, we have studied the harmonic Green and the harmonic

Neumann function explicitly in the fan-shaped domain Q" with angle 7/« (a >

1/2). Thus, the harmonic Green function for €2 is expressed as

(C" —2")(1 = 2"¢")

(¢"—2zm) (1 —z"¢n)

R D
k=0

2

Gl (Z> C) = 10g

2 (4.1)
, oz, Cef.

(
(W2 = 20)(C — 2w?*)

Remark 4.1.1. Here the factorization is used. We only take (" — 2" as an

example. For k = 0,1,--- ,n—1 and § = 7/n, we have 0 < 2k < 27. Then

k are n different roots of (" — 2" in the complex plane. Hence,

2

¢ = zw?

n—1

11 =2

k=0

|<—n . Zn’Z —
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What is more, the solution to the Dirichlet problem for 2 (o = n) is given

as follows.

Lemma 4.1.1. The Dirichlet problem for the Poisson equation
wy;=f in Q, feL,(C), p>2, w=~v on 00, e C(09;C)

15 uniquely solvable by

1 — 1 1
+% / 7(0) [C — 2w (—Zw 2k

z z
Cw k- ¢ A 2(] d
- [ 106, zen

Q

Let

>1|>—*

/ Gi(2. )G (G, O)dEd, = Ceq, (42)
(9]
).

with G1(z,() defined by (4.1

problem

Then, Gs(.,¢) is the solution to the Dirichlet

8.0:Ga(2,0) = G1(2,¢) in Q, Ga(z,¢) =0 on O (4.3)

Moreover, for any fixed ¢ € €, ég( , ¢) satisfies the properties,
1. Ga(2,¢) is biharmonic in Q\{¢},

2. aQ(Z,C + |¢ — 2|?log |¢ — 2|? is biharmonic in €,

3. Ga(2,¢) =0, 8.0:Ga(z,¢) =0 for z € 09,

4. Gy(z,¢) = Go(C, 2) for z # C.

Since the boundary 02 consists of a circular arc and two lines, it is difficult

9
)
) =
) =

to obtain @2(2, () explicitly by direct computation as in the unit disc. Therefore,
we prefer to transform @2(2, () into a new unknown function. From the property

2 of G(z, (), we sce that Ga(z, () can be represented as
@2<27C): ‘C_Z|2G1(2a<)+h2(z7C)7 2 CEQ, (44)
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() is a biharmonic function in . Thus from (4.3)

where hy(z, () i
0.0zhs(2,¢) = 2Re[(( — 2)0.G1(2,()] in Q, hy(z,() =0 on 0N

Then from Lemma 4.1.1, we obtain
.0 =+ [ PG 06z Q)déan, (4.5)
Q
n—1
> e s el S
F((, () = —
9 ;L—Cw% ¢ — Cw—% W~ << w2k — &¢
+Cw2k C Cw72k C N w2k _Ei N w* . EQ '
¢ — Cw% C—Cw2k W00 wk—(C
Define a new biharmonic function
Z (2C+2¢ - —2¢w ) log [¢ — 2w ?
k=0
+ (gw + iw —2( — z() log |w=2F — 2¢]?
(4.6)
+ (z(w% + sz —2( — ZC) log |¢ — Zw™2k|?
+ <ZZ+EC — 2 zw_2k> log w2 zCP]
¢ ¢
Then, the next result holds
Theorem 4.1.1. For z, ¢ € Q)
h‘2<Z7 C) = _HO(Zv C) + J0(27 C)v
where Ho(z,() is given by (4.6) and
— 112 -
JO 1 2715‘ / { [C 2k —2k] log‘c _ §w2k’2
L 2
[gw% 4 gw 2k] log‘g - Cw_2k|2}
n—1 ~ = = ~ ~
B ) R S S S S
o ¢ — 2wz (— g (—zw |

(4.7)



Proof: We can easily verify that
az&zHO(Zug) = F(Z7C)7 2, C S Q.

What is more, for z € L,

n—1
Ho(z,¢) = Z { (zw% + Cw 2k _ 2Cw — ECw%) log |¢ — 2w |?
ke

0 B (4.8)
+ <z§w2k +zZCw 2k — Zw 2o ) log |¢ — Zw™2¥|? 5,
¢ ¢
and when z € | Ow] that is, z = pe?, 0 < p <1,
H [( C619+pce 0 pzw—(Qk‘—l) —PCW%_1> 10g\€ _pw—(Qk—1)|2

+

prw—(2E=1) o2k—1 — Y _
( C - pGe’ —pCe‘Z)log W=t — p(]?

=0
+ (,0 kL 4 ly= (@R _ Pt pCe’i(’) log |¢ — pw7(2k+1)‘2

2%k+1 —(2k+1)
= i —i pw pw _
+ <pC€ O+ pCe — —— — : ) log |w @k — pCP]

¢
= 0.
Obviously, we also obtain Hy(z,{) = 0 for z € [0,1]. Thus, again by Lemma
4.1.1 and (4.8), the proof is completed.

Now we only need to compute the boundary integral in Theorem 4.1.1. In
fact, we observe that Jy(z, () can be converted into an integral on the whole unit

circle. That is

Jo(z <) 1_|<|2/ Z[ L = : ]

Zy—2k
Zw
I¢1=1 ¢

(g §>log|c 3 - (g §>1og|c C|2]C
(4.9)

B 1— ¢ ¢
= 2Re{ o / Z ( — w2k E—Zw2k>

Cl=1 "

[1og|< - 1og|< q?]dc}

52



Since

1 ¢ S _
= o el P = e log ) G (@)
Cl=1
1 5 TeaF . 2k 2%y 7
st | el Tl = st o -6 T )
I¢]=1
L_ Mdgz iw% log(1 — 2w ™2k), (4.12)
27 R C — Zw2k Z
I¢]=1
L‘ Mdgz iw% log(1 — ZCw™2k), (4.13)
2m . C — Zw-2k Z
[¢]=1

then from (4.9)-(4.13), we have

T _ 2 S I = ok
0(, ) =11 v +Z_Z log(1 — 2Cw™)
k=0

+ [L;—Zk + %w_%} log(1 — zZ¢w™2%) — [z%% + wz‘gkl log(1 — z¢w?*)
_ {2_2_; + iwg_%] log(1 — EZw_%)}.
(4.14)
By (4.6), (4.14) and Theorem 4.1.1,
n—1
ho(z,¢) = Z { (zzw% + 2w — 2C — 2() log |¢ — zw?|?
k=0
+ (ZZ +2¢ — 2w — z(w%) log |¢ — Zw ™2 ?
+ (2 +2¢ - Zw*% + L_Qk — 2w — ngk) log(1 — 2Cw?®)
¢ 28 z
¢ L (4.15)

20+ 2C — —w + >~ 2w 2k — gw%) log(1 — Z(w ™)

<
(o
O
<

— z(w ;w_%) log(1 — z¢w?)

— 2 +2¢ - %wzk + Li—_ — 2w — %w%) log(1 — EZw%)}.



Hence, by (4.4) and simple computation,

n—1 — —2k _ 2k
i =5 e
k=0
log(1 — 2Cw?)  log(1 — Z(w™ %)
= 1 - 1)[ o ——
log(1 — z¢w™)  log(1 — Z(w™")
2Cwk ZCw—2k '
(4.16)

Finally, we can verify that expression (4.16) is exactly the solution to the problem

0.0:G(2,0) = G1(2,¢) in Q, Ga(z,¢) =0 on 0.

Remark 4.1.2. In particular, when n = 1, the biharmonic Green function for

D* (half unit disc) is
2

Galz.) =1~ 2Plog | T——| ~ I¢ — =P log |{—
log(1 = 20) _ log(1 — =0)
+<|<|2—1><|z|2—1>[ ol
log(1 —2¢) log(l —2()
2( zZ ’

4.2 Biharmonic Neumann Function

Similarly to the biharmonic Green function, we construct a biharmonic Neumann
function based on the convolution of the harmonic Neumann function with it-
self. By the conclusion in Section 3.2 and Remark 4.1.1, we know the harmonic

Neumann function for the domain €2 can be rewritten as

Z log ‘ — 2w? )( — zw%) (w’% — z() (of% — zZ)

z, ¢ €.

2

T (4.17)

Especially, the boundary behavior and normalization condition are, respectively,
—4n, z € L\{l,w},

0, Ni(z,¢) = for (e,
0, z€(0,1) U (w,0),
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and

/Nl(Z,C)% =0.
L

In addition, the following result for the Neumann problem is true.

Lemma 4.2.1. The Neumann problem for the domain 2

w/n '
0.0w=f in Q  OJ,w=~ on 0N, 2/ w(ew)de = ¢
m™Jo
for f € L,(%;C), p>2, ve C(00C), ¢ € C is solvable if and only if
1
I (Q)ds¢ = /f )d&dn. (4.18)
80

Then the solution is uniquely expressed by

n—1
v =05 [0 hl(c - )@ - P
/T

q) i log | (C — zw%) (1 — szQk) |?d¢
(4.19)

-l—i ey Zlog| — 2w? (1—z<w2k)| d¢
——/f QM= dgdn, =€ Q.

where Ny(z,() is defined by (4.17).
Similarly,

Na(z,0) = =1 [ Nl OMC e, 2 ¢ e 9
Q

is introduced. Applying Lemma 4.2.1 to w(z) = |2]* — 1, we easily obtain

1
—;/Nl(z,Od&dn: -1 zeq

Then, from the above properties of Ny(z, (), Na(.,() satisfies
1. Ny(z,() is biharmonic in Q\{(},
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2. No(z,¢) + |¢ — 2|?log|¢ — z|* is biharmonic in 2,
3. 0,0:Ny(z,() = Ni(2,(), 2z, €9,
2 [ NGO = (g~ 1), = € A1, w)
4.0, No(2,0) =1 " ¢
0, z€(0,1)U (w,0),

d
5. Normalization condition /NQ(Z,C)—Z =0.
z
L

Thus, Na(z,() can be rewritten as
NQ(ZaC): ‘C—ZPNl(Z,C)‘{—EQ(Z,C), Z,CEQ, (42())

with /fzg(z, ¢) being a biharmonic function in €.

From the properties 3-4 of Ny(z, () and (4.20), we obtain,

0,0:h3(2,¢) = (€ — 2)8.N1(2, ) + (C — 2)8=N1 (2, C)

n—1 2 2k % T 2 2k 2%
:8n+22Re{|q2kw_+gw CLew C}, (4.21)
-
k=0

- Zg C . szk W—Qk _ ZC C_ ZC{)Q]C

z,C €,

and
( (20, +20:)ha(z,¢) = (2C + ¢ — 2)[Ni(2,¢) — 4n],
z € L\{1,w},
—i(0, — 9)ha(2, Q) = —i(C = ONi(2,0), =€ (0,1),

(€0, — e ) hy(2,¢) = i(Ce? — Ce= )Ny (2,¢), 2 € (w,0).
(4.22)

Let fo(z,¢) be the expression on the right-hand side in (4.21) and suppose

a1/2/};2 (Z7 C) =

\

n—1
Fo(z,¢) = 8nl2]? + (2C + ZO)Ni(2,¢) + > { (2Cw? +ZCw™?*) log [¢ — 2w
k=0

1 (ngk 4 %w%) 10g|w—2k . ZZ|2 4 (%w% i §w2k> log |w—2k — 2

+ (2¢w + 2(w ) log |¢ — 2w2k|2}, z,( €.

(4.23)
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Then we can verify that
0.0:Fy(2,¢) = fo(z,() for z, ¢ €9, (4.24)
and for z € L\{1,w},
Oy, Fo(z, ) = (20; + 20z) Fo (2, ()

n—1
= —4dn(2( +2¢) + 16n+2) Re{Q(zguﬂ’f + 2w 2F)
k=0
+ <ZCZ% + 2Cw?* — QzZ) log |¢ — 2w?|?
_ 4.25
+ <zw< * +ZCw 2k — 22() log |C — zw?*|? (4.25)
¢ (zw%/g + Ew_zk/z — 2Cw? — E(w_%)
+
¢ — zw?k
¢ (2w /¢ + 2w /¢ — ZCw™F — 2(w™) }
_|_ —— .
¢ —zZw2k
Also for z € (0,1),
a,sz(](Z, C) = _Z(az - &Z)Fb(za C)
B n—1 B ) (4.26)
=2i(C - Q) ) log|(w ™ = 20)(¢ — =™)[",
k=0
and for z € (w,0), as ze™* = ze | then
0y Fo(2,¢) =i(e?9. — e 0:) Fy(2,()
(4.27)

n—1
= —2i(Ce® — (e7) Z log |(cu_2]’C —20)(¢ — ,zw%)‘2 .
k=0
By (4.22) and (4.25), we obtain for z € L\{1,w},

8,,ﬁ2(z, ¢) — 0. Fo(2,¢) = —=8n —2Re {A1(2, () + Aa(z,¢) + As(z,Q)}, (4.28)

where

¢

n—1 Zw2k _
A (z,() = ( + 2Cw? — 2) log |¢ — 2w |?
0
=, —2k
+ (zw + 2w — 2) log |€ — zw2’“|2] ,

(4.29)
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Ao(z,0) = nz_i ¢ (2w /¢ + 702 T — 2w — 2w )

k=0 ot 130
¢ (2w /¢ + 202 ¢ — Z(w™2F — 2(w) (4:30)
+ — ;
( —zZw 2k
n—1
Ao(5,0) =23 (C + 20 (131)

e
i

0
Hence, the following result is valid.

Theorem 4.2.1. For z,( € Q,

ha(2,¢) = 4n(|¢2 = 1) + Fy(z,)

_Re{% / 841G, + 25(0,0) + A48, Q)| N1<z,z>%},

L

where Fy(z,(), Ay, A, Ay are determined by (4.23), (4.29), (4.30), (4.31) re-

spectively.

Proof: Let F(z,¢) = ha(z,¢) — Fy(z,¢), then from (4.22), (4.24), (4.26) and
(4.27), we obtain

8.0:F(2,()=0 in Q, 8, F(z,()=0 for z€ (0,1)U (w,0). (4.32)
Since
1 A A A dz
5 | [B1(2:0) + A2(z, 0) + As(z,¢)] —
L
= L { {5—1—22—2] log [¢ — 2> + Cz/C+7/¢ = 26 = 2C) —1-2,2(}% = -2,
211 ¢ (—z z
|z]=1
and . 1
z
L

then by (4.28) and (4.32),
1
2me

~ dz 1 ~
/aVzF(Z7C)7 - O = % /al/zF(Z7C)dsz - 07
L o0
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which implies that the solvability condition (4.18) for F(z,() is true. Moreover,
by (4.20), (4.23) and the normalization of Ny(z,(), Na(z,(),

n

Co = . (Z C)
L
1 2
= —8n — 2Re{% / log |¢ — Z\de} = 4n(|¢]* - 1).
|z|=1
Then, from Lemma 4.2.1,

~ 1 ~ ~ dC
P00 = anllP =1+ o [ [0:halC.0) = 0 RGO M2 O

L

Thus, the desired result follows from (4.28) and the normalization of Ny(z, ().

n—1
Let By = Zw%, then we have
k=0
1, n=1,
By = (4.33)
0, n>1.
Suppose
~ 1 - - ~ ~ 7
f(¢) = <z +(— 2C> log | (1 —ZCw? ) (1 — 2¢w®) |,
and

g(g) = (% + ZZ — 2) log (1 — 7&0%)(1 _ Zgw%): .

Then, the following lemmas are valid.

Lemma 4.2.2. Forl=0,1,---,

o e N s b
A O O e aprerm <1—25w2’“>”1]
L A e o
g+ e <1—z5w2k>l*2]
(4.34)
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Proof: When [ = 0, we obviously obtain
_ = 2k 2k
) =4 [ zZw 2w }
1 - 2k 2k\2

= + =
1—zZC¢w? 1- szQk
¢ 1—2Cw?)? (1 — 2(w?)?
Suppose that when [ = m, (4.34) is true, then we have for [ =m + 1,
FH(Q) = A F Q)]

= 2(m+ 2!+ (m+ 1) {(1 (_ng_cj;;mﬁ i (_Zf:@j;:;mﬁ}
B 1 B . - (Zw2k)m+3 (szkr)erB
(Z +¢ 2()( +2)! Tt e zEw2k)m+3]

which implies that (4.34) is also true for [ = m + 1. This completes the proof.

In exactly the same way, we have the following result.

Lemma 4.2.3. Forl=1,2,---,

RS

~ =1
¢ ~ 2k 202k ] !
— | = -2 = —
<<+CC > [1—§(w2’“+ 1 — 2¢w?k }’

g(l)(é-) _ B B 1 _ (— Qk)l 1
{1(1 2)! <<+c)

Zw
(1— §Cw2k)l—1 1 _ Z<w2k -1
{ (2
-2 —
=) <<+C< 2) [( —?Cw%) szQk ]}
1=23,..

(4.35)

Next, several integrals are studied.

Lemma 4.2.4. For z,( € (),
1 ~ ~d¢
Q_M/AZ(Cac)Nl(27<)?

— —2(1 __|C|2>(E—|— 2)By + 201 |C|l<’ AN Zlog 1 — 2w ) (1 - szzk)} ,
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where Ao, By are defined by (4.30) and (4.33) respectively.

Proof: Since
2

1 log|(€ - 2 - 2w) .
~5 ¢-¢ A¢ =log [(1 = 2¢w™)(1 = 2¢w™)],

I¢l=1

and
2

¢ 1—|c)? log ‘(Z— zw’%)(z— zw%)‘ dg
) :

§ (—¢ (2
[¢]=1

_ (ﬁ _ 1> log(1 — Z¢w™)(1 — 2(w™) +

thus, the lemma follows from

n—1
1 ~ ~ 2 =
_ A 1 ‘_ 2k‘ 1 ‘_ 2%k
= 2<<,c>k§o{og< ] +1og|C — 2w
7 —

9

1 _ZKP(E—'— z)w%

Q]d_z

—|1- ¢I? (C C) 2%\ (>~ 2k |2 d¢
= — : ¢ log |(¢ — ¢ — ==
| 2 5/1 Y R L s
. n—1 . 2
— 1 |C|’§| log [(1 — 2w )1 — sz%)} + i Z|C| (Z+ 2)By.
k=0
Lemma 4.2.5. For z,( € (),
L / A€ OM (2,0 f Az +2)Bs,
where Az, By are defined by (4.31) and (4.33) respectively.
Proof: The result derives from
—5 As(C, Q) Z2{10g‘§ 2k2+1og(f—zw2’f 2} d—f
L
n—1 " — 2
= —4(2 ZLm / log ‘( — 2Cw™) (1 — 2¢w)| d¢
: Cl=1
= A0y |Oplog(1 — 21— 2w )| =40z +2)Bo.
k=0
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Lemma 4.2.6. For z,( € ),

3 2
271r M (GOM(= Q) 5 —4n (1+[¢f?) - M(zjﬁ)&)
L
n—1 oo
+ Z lfl ch—%)lﬂ +(z <w2k)1+1+(zcw72k)l+l (ZZw%)ZH}
k=0 I=

o [ (1= 2w ) log(1 — Zw™) (1 — 2(w?*) log(1 — 2(w?)
ZCw—2k * 2Cw?k

e [(1 — ) log(1 — ™) + (1 — 2Cu™) log(1 — 2Cu™) }
where Ay, By are defined by (4.29) and (4.33) respectively.
Proof: We observe that

2dZ

- / MG <>Zzlog]<5 — 2)({ - 2| S
=0

i 1 i - e _ = 2d¢
= —220 %~/ <Z + (¢ — 2) log |1 — (¢|* log ‘(1 — 20w (1 — 2w?) ?
Cl=1
n—1
= (J1+J2+J3+J4)
k=0
where
1 d¢
h=—5 (% +C 2) log(1 — CC)log |(1 = ZCw™)(1 - 2w™)] ?C =0,
I¢l=1
1 ac
Jo=—o— (% +¢C 2) log(1 — ¢¢) log [( 2w ™M) (1 = 2(w )} 7
|¢]=1 _
1 -~ d
——or: [ | (3¢ 2) tout1 = @ytog (1 - w21 - 0] ] %
¢l=1
=0 |5+~ 20) tog(1 ~ T logl1 — w1~ :G)| =0,
(=0
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Moreover, from Lemma 4.2.2 and Lemma 4.2.3,

Jy= o (g +C- 2> log(1 — C0) log | (1 — 2Cw™)(1 — 20w %

d¢

El+3

<2 +¢- 25) log | (1= 2Gw™)(1 = 2Cu™) ]

(1+2)

(% +¢- 25) log(1 — Z¢w™)(1 — Zgw2k>]

¢=0

S [(FCw ™)1 4 (2Cw )] — 'C'ZT“(Z +2

[(1 — ZCw ) log(1 — 2w ™) + (1 — 2¢w ") log(1 — sz’%)],

=g [ (St D (- s -] £

(— +0C— 2) log(1 — ZCw™) (1 — z&u%)] dc

<l+2

(14+1)
CZ—H

:;(Hrl)(lntl)!
>

(g 13- 2) log(1 — 5Cw) (1 sz”“>]

i=0

[(ng%)l—i—l + (Zgw%)l—H} -9 (1 + |<|2)

(1 —zZ¢w? ) log(1 — zZ¢w?*) (1 — 2¢w?*) log(1 — 2¢w?)
(e [ Sl + o ] .

Hence, the proof is completed.

Remark 4.2.1. Here the Taylor expansion of log(1 — ) is used, that is,

oo

log(l —z) = — T lz| < 1.

=0
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Therefore, from (4.23), Theorem 4.2.1 and Lemmas 4.2.4-4.2.6,

32(27 () =— i A [(2@)‘2’“)”1 + (2Cwh)H

_‘_(zzw—%)Hl + (ZZ(JJ%)HI]

- Z {8 (|2 + |¢]?) (sz% + 2w — 2 — z() log |¢ — 2wk |2

+ (z(w% + 2w — 2( — () log |¢ — Zw™ 2|2
+ (wzgk gw_% + %w_% — 2Cw — 2C — EC) log(1 — zCw?*)

w? sz ook —, 2k R =/ —2k
+ ——i—gw + —w™ —ZCw " — 2¢ — Z(¢ ) log(1 — Z¢w™*")

+ <wz_§2k + gw% + ?w% — 2w — 2( — EC) log(1 — z¢w?)
+ (w—Q_k + gw% 42w g C zg) log(1 — z(w™2*)
¢z ¢

(4.36)
Finally, by (4.20) and (4.36), Na(z, () can be represented as

—_

n—

No(z,¢) =4 (I¢— 2w +|¢ —2™)
-1 o0 4
Z (I+1)2

k=0 I=1
S (FCw k) 1 (ZZWQk)l—H]

£
I
o
3

[sz )z+1 (ZCW%)H-I

—Z{l< 2™ P log |¢ — 2| + |¢ — 2w [ log |¢ — 7w 7

+‘C+zw2k} 10g|1—z(w2k| + |¢+ 2w Qk‘Qlog}l—szQk‘Q

log(1 — z¢w?*) N log(1 — zZCw™2k)

2Cw?k Z(w—2k
log( — 2Cw*) N log(1 — sz%)] }

ZC(JJZk ngf%

—(IKF+1) (2 +1)

(4.37)
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By computation, we can confirm that expression (4.37) exactly satisfies
az&zNQ(Za C) = Nl(za g) n Q:

—4n(|¢]* = 1), z € L\{1,w},

0y, Na(2,() = { 0, z€(0,1) U (w,0).

Moreover, the normalization condition for Ny(z, () is also true,
= dz

[ e 0F =P+ ) =3 o [ 10+ S

1=0
|2[=1

_20¢P+ 1) / {logK_Z‘z_log(l—zC)_log(l_—EZ)}%zo_

271 2C Z(

|21=1

Thus, all the above verifications mean that expression (4.37) is the desired bi-

harmonic Neumann function.

Remark 4.2.2. When n = 1, the biharmonic Neumann function for D" is

No(2,¢) =82 +[¢|*) = [¢ — 2 log|¢ — 2> — |¢ — Z[*log | — 7|
—|C+z|210g‘1 —22‘2 — |C+2|210g|1 —ZC|2

o0

_ Z ﬁ [(zc)l—&-l + (2O + (ZOH + (ZZ)I-H]
1=0
+(ICP+ 1) (2 + 1)
" log(1 — 2() log(l —Z() N log(1 — 2() N log(1 — %¢)
% ZC = ES

4.3 Dirichlet and Neumann Problems for the Bi-Poisson
Equation
On the basis of the biharmonic Green and the biharmonic Neumann functions,
we discuss the related Dirichlet and Neumann problems.

Firstly, the biharmonic Green function provides a representation formula as

follows.
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Theorem 4.3.1. [6, 27] Any w € C*(;C) N C3(Q; C) can be expressed as

/8 G1 dSC — —/8 Gg 846%w(()ds¢

- / Gz, 0)(9:02)?w(C)dedy,

Q
where G (z, (), @g(z, ¢) are the harmonic Green and the biharmonic Green func-

tions, respectively, for the domain €.

Similarly to the result in [27], the above representation formula also gives a

solution to the Dirichlet problem for the bi-Poisson equation.

Theorem 4.3.2. The Dirichlet problem
(0:0:)*w(2) = f mn €2,
w=r, O0.0:w=y on 0,
with f € L,(S;C), p> 2, 7, 11 € C(99;C) is uniquely solvable. The solution

18 represented as

1

0(2) = =1 [ [ (2:0m(0) + 0, Gl (©)] dse— [ Gtz 1 aean,

o0N Q

with Gy(z,¢), Ga(z,¢) given in (4.1), (4.16) respectively.

Finally, we have the following representation formula related to the Neumann

problem for the bi-Poisson equation.

Theorem 4.3.3. Any w € C*(Q;C) N C3(Q;C) can be represented as
2_ 1)
w@=3/<> LD /a

1

4—/ O+M(O%@&W@M%
PY
1 [ M Q@@ e, 2 e,
0

where Ny(z,(), No(2z,() are the harmonic Neumann and the biharmonic Neu-

mann functions for € respectively.

66



Proof: Applying the representation formula in Theorem 3.2.1 to 9,0w(z) leads

to
0.0:u(2) = - / 0, 0:0e(QON: (2, ) — 0,:0(Q) Va2, )] i
(4.38)
1 / N (z 20(¢)dédy,
In addition, we also have
w(e) = - / [0, (N (2,C) — w(Q) Ni(2,C)] dse
(4.39)
1 / N (2, )0z (C)dédy,

Then, putting (4.38) into the area integral of (4.39), we obtain the desired con-
clusion from the boundary behavior of Na(z, ().

Theorem 4.3.4. The Neumann problem for the bi-Poisson equation

(az&z)Zw - f m Q auzw =7, ayzé &’LU =Yy ON 89,

E. w(C = co, /@&w = ¢y,
i
L L
for f € L,(;C), p>2, 71, 12 € C(0Q;C) is solvable if and only if
1
o [ (s = / F(Q)dedn, (4.40)

a0
and

n

2 [on@dsc+ 2 [P = Datc)dse =26+ 5 [P = 1A(Oden. (141)

[2]9] o0

The solution is uniquely expressed as
1
w(z) = o+ (1l = Der + o= [ IV 0mQ) + Mol ()]

. 60 (4.42)
[ Ml OrOdn, zen

with N1(z,(), Nao(z,C) given by (4.17), (4.37) respectively.
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Proof: The boundary problem above can be transformed into two boundary

problems,

)

az&zw:wl in Q, ayzw:71 on 89, E/w(c)d—zcm

and

d
aza%wlzf in €, 31/2101:72 on 0€, %/wl(o—c—ﬁ.
L

Then from Lemma 4.2.1, if and only if

5 [22(0dsc=2 [ 7(acan (4.43)
o0 Q

the second problem has the unique solution

w) =+ g [ M 0nROds - T [ MEOfQd. (1)

o0N Q

Similarly, if and only if

o [ 1Odsc =2 [wicyagan, (1.45)
o0 Q
is satisfied,
we) = ot o [ M OmQds - 3 [ M Quic)dgdn. (4.4
o0 Q

Putting (4.44) into (4.45) and (4.46) respectively, we obviously see that (4.41)
and (4.42) follow from

1

1 1 —
—/1d§d77 =— and - —/Nl(z,g)dgdn =]z*P-1, z€qQ.
T 2n ™
Q Q

This completes the proof.
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Chapter 5

Triharmonic Boundary Value Problems for the

Tri-Poisson Equation

In this Chapter, we continue to consider the construction of a triharmonic Green
function and a triharmonic Neumann function explicitly in the fan-shaped do-
main with angle 7/n (n € N). A triharmonic Green function is established by
convoluting the harmonic Green function with the above biharmonic Green func-
tion. At the same time, convoluting the harmonic Neumann function with the
biharmonic Neumann function also results in a triharmonic Neumann function.
Here 0, L, w, 0 are defined as before.

5.1 Triharmonic Green Function

Firstly, convoluting the harmonic Green function with the above biharmonic

Green function leads to

Ga(210) = = [ Gi(=.0GC. . = Ce, (5.1)
Q

where G1(z,¢), Ga(z,¢) are given in (4.1) and (4.16) respectively. Then we easily
obtain that for any fixed ¢ € €, @3(,2, () has the properties,
1. Gs(z,¢) is triharmonic in Q\{¢},

2. @3(2, () + i\( — z\4log ¢ — 2\2 is triharmonic in €2,

3. (0,0:)2G3(2,¢) = G1(2,¢) for z € Q,

Ga(2,0) =0, 0.0:G5(2,¢) =0, (0.0:)2Gs(2,() =0 for 2 € 99,
4. Gs(2,¢) = Gs(C, 2) for 2 # C.

Thus, we can rewrite @3(27 () as
~ 1
G3(27C> = Z|<_Z|4G1(Z,C)+h3(2,g>, (52)
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where h3(z,() is a triharmonic function in Q. Hence, h3(z, () is the solution to

the Dirichlet problem

(8282)2}73(27 C) = f1<27 C) in Q? (5 3)
ha(z,C) = 0, 0.0:hs(2,C) = gi(2,C) for 2 € 09, '
with

Fi(2:€) = 2T~ 2)0:G1 +2(C — 2)0:G1 — 5(C ~ 270G — 5(C ~ 206

R{ (P~ | (€= (@ -w™)? (=~

w 2k __ ZC)2 (Z_ Zka)Q ( —2k ZC) (C — 2w2k)2

OM

C2 —w —2k Cw2k o C |C|2 o w—2k Cw2k - Z
+2 w2k — 2( + ¢ — 2wk o w2k _ ZZ - Z_ Zw2k] }
(5.4)
and

9(2,0) = %(4 = 2T~ 2P 0:G1 + 5~ 2P~ )06

B S S (W —¢ [(P—w* ™ ¢

_|C—z|k§:0 { ZC+C zw%_w—”ﬂ—zz_z-zw%}‘
(5.5)

Next, we need a new triharmonic function,

Fi(z0) =30 4+ + 5(12P + [KP)E + 20 (2,0

+Z{ 217 + 16

2|¢|? (2™ 26w™)

2<2w4k + 3262w—4k

] log |2 — 2(|?

4|¢1*
RS
oje (G W)
_ B —2
_Z2C2W 41;542% W4k] log w2 — 2CJ2

+| 506 + )G + 2T

1 _
_Z<22<2w4k +E2<2w4k>] log |¢ — Sw2k|2
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| 5002 1) EC + 2¢u)

(5.6)
i(z Cwlt 47 C W™ )] log |¢ — zw2k|2}, z, C €.
Then we have the following result.
Theorem 5.1.1. For z, ( € 2,
1 -~
h3(27 g) = Fl(zv C) +R / {al/EGl(Zv C)Fl(ga ()
L _ (5.7)
~ = ~ ~ d
Here Fy, g, are given in (5.6) and (5.5), respectively, and for EE L,
n—1 1 Z g
&hG =2 — = — = , (5.8
1 ZO [ z(oﬂ’“ — ZCw2k " (—zw2k (- zw%] 5:8)
and
A 2 — C 2k = 2k
0,.G(2,¢) =2(2* = 1) Z log(1 — 2¢w )
+§wz2k log(1 — ZCw?) — CWT% log(1 — 2Cw?) (5.9)
sz’“ log(1 — Ew%)}.
z
Proof: We can verify that
(az82)2F1(27C) = f1(27C)7 Z, C € Qa
(5.10)
Fl(’va):O? ZE[O,l]U[W,O]
Then, by Theorem 4.3.2,
1 (5 =, = =~
2 [ Gate DA )
(5.11)

Q
== Fl (Zv C) + i / [&/EGl (Za Z)Fl (Zv C) + 81/562(27 Z)aEZ'Fl (ga C)] ds;

o0
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Moreover, by (5.3) and Theorem 4.3.2,

ha(5:0) = ——= [ 8,.Ga(2. 00 s — = [ G / (2, Of(C OdédF. (5.12)

An T
o0 Q

Hence, from (5.11) and (5.12),

h3(27 C) = Fl(z> C) "’% / {&/EG1<Z7 E)Fl(a C)
o9 (5.13)

+81/E/G\2<z7 E) [aE’E‘Fl(Ea C) — 0 (Ea C):| }d5~

We also know that for z € [0, 1],

1
az(%zFl(za ) 5 ‘C - Z|2 [ ok w_g;f_ ZC
= w% (5.14)
+E — 2w (- ZW%] 7
and for z € [w, 0],
1 - — :
0.0:F1(2,¢) =35 [((=2)*((=2) = ((—2)(C—2)%"]
n—1 =
C w2k C w2k
N e =r ]
(5.15)
Thus, by (5.5), (5.14) and (5.15), we obtain,
0=F1(C.¢) = 91(¢.¢) =0 for ¢ € [0,1]U[w,0]. (5.16)
Also from (5.10), (5.13) and (5.16), the conclusion is true.
From (5.6) and (5.5), for z € L,
( |C|4 - 1 Z Re{ [ 2C24k - zwc_%} log |C - EW_%’Q
(5.17)

22w4k Zw?k
T o)
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and

0.0:F1(2,¢) — g1(2,¢) = 2(|¢[* = 1) nlee{A(zwz"’}C) - A(Ew%,é)}, (5.18)
=
with B ,
A(z,{)z%log|(—2]2+2(<1_2) {%—%Hz]. (5.19)
Then, the next two lemmas are true.
Lemma 5.1.1. For z, ( € Q,
Ki(2.0) = 1 [ 9 Gi(= OB o%g
4
_ (gt ;|i|>2<||§||; i - om,
_WjT—l :z;é { [(W‘Q;E;C)Q G —?2’“)2 B 2] log(1 — 2™
. '<w2'; Q—;Z)? (¢~ ;w) o] tog(1 — 7Ty
_ :(w”;%zf)z L —52002’“)2 B 2: log(1 — 2Cu™)
- -w; 2—;02 NG —?2’“)2 ~ o] gt _ECW_Q,C>}7

with 81,5(}’1(2,(), By given in (5.8) and (4.33) respectively.

Proof: By (5.17) and (5.8), we can transform K(z,() into an integral on the

whole unit circle. That is

1 =7 dC
K1(27C) = 81/~G1(Z7C)F1(ga C)T
47T2L/ < ¢
1—|¢[* 1 . o

I¢1=1
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Lemma 5.1.2. For z, ( € Q,

Kalz,0) = / 0,:Ga(,0) [0=F1(C.0) — 91(C. )] %

(S (i P it
- = -9~ OB+ (¢ = 1) - 1)

n—1 oo
Cka)l + (ng—%)l . (ch%)l . (Ezw—%)l
k=0 1=0 l+ 1
(e —21|>C<||2z\2 Sils { (gw . Zgw%> log(1 — 2Cw™)
k=0

[l oy

+ (—wzk + EZw_%) log(1 — Z(w™2k)

<C 2k 4 ZCw™ 2"’) log(1 — zZ¢w™2F)

- (gw_zk + szQk) log(1 — sz%)},

where 8,,56’2(2,6), By are given in (5.9) and (4.33) respectively.

Proof: Similarly, from (5.18) and (5.9), the lemma derives from

4m/8”~G2 3-F1(C ¢) = il C)]d?g

(\cP—lRe{ /awGQ NINES f}

C=1

where A(C, ¢) is defined in (5.19).

Hence, from Theorem 5.1.1,

h3(27C) :K1(27<)+K2(Z>C)+F1<Z>C)' (52())

Furthermore, by (5.2), (5.20) and Lemmas 5.1.1-5.1.2, we see that ég(Z,C) can

74



be expressed as

Gi(.€) =~ (1CP = (12 = (= = 2)(C = OBy

HCE = D=~ 1) 303 g [ (2w + (2w
— (¢ — (zzw—%)l]

n—1 1 C o C — 9k
3 {ZIC - 2|t log | = |+ i -zt og | o
(ISt =1)(=*=1) | 1 1 1 1
+ 1 2w a2k - Z(w2k - 2wk
log(1 — 2z¢w?)  log(l —Z(w™2¢)  log(l — Z(w™*)  log(1l — 2(w?)
EaL G G R (ay
_USP = D)= = 1)(|=P + [CP) | log(1 — 2€w™)  log(1 — ZCw ")
2 2Cw?k Z(w—2k
log(1 — Z¢w™2¢)  log(1 — z{w?)
- ZCw™2k - 2Cw?k ’

(5.21)
where By is defined by (4.33). At the same time, we can validate that expression

(5.21) is exactly the solution to the following problem
(0.0:)2G5(2,¢) = G1(2,¢) for z€Q,
G3(2,0) =0, 8.0:G5(z,¢) =0 for z € 9.

That is to say, the expression (5.21) is just the desired triharmonic Green function
for €.

5.2 Triharmonic Neumann Function

Similarly, we consider the convolution of the harmonic Neumann function and

the biharmonic Neumann function,

= ——/N1 Nz C C)dfdn, z, €€, (5.22)
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where Ny(z,(), Na2(z,() are given in (4.17) and (4.37) respectively.

For convenience, we restate some properties of Ni(z,(), Na(z, (),

—4n, z € L\{1l,w},

for ¢ € Q, (5.23)
0, z€(0,1)U (w,0),

aVzN1<Z7C) - {

An(1—|CP%), 2 € L\{L w},

f Q 5.24
0, z€(0,1) U (w,0). or (e (52)

8VZN2(Z, C) = {

and the valid normalization conditions,
dz dz
L L

1

Applying Theorem 4.3.4 to w(z) 4(|z|2 — 1), we have

1 1 1
— [ Ml Odedn = (6P~ 12 = SR - 1),z
Q

Then, some properties for N3(z, () hold,

1. N3(z,() is triharmonic in Q\{(} with respect to z,
2. N3(z,¢) + i|§ — 2z|*log |¢ — z/|* is triharmonic in €,
3. 0,0:N3(z,() = No(2,(), 2z, €9,

o 2 [ Na¢, O = —n(€l* - AP+ 3). = € D\{Lw,
. Oy, 3\ <, = Q
0, z€(0,1)U (w,0),

d
5./N3(z, O =0for CeQ.
z
L

Therefore, we can transform N3(z, () into
Ny(2,0) = 16 = 2"Na(, Q)+ Bs(3 ), 2,C €, (5.20)
where /fzg(z, () is a triharmonic function in €. Then, ﬁg(z, () satisfies
(0:0:)°3(2,0) = ga(2.0). 2 (€, (5.27)
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with
022, 0) = 2T = DN +2(C — 2)0.N, — 5T~ 270N — 5(C— 2PN

n—1
B (<2 _ w—2k>2 (C _ Cka)Q
—12n — kz:; Re{ T 0 T (¢
(6P —w ™) | (€= ™

W =) (¢ P

_2[C2 _ 2k . szk —¢ . ’C’Z _ o2k . CW% _Z] }’ leq

w2k —2¢ " (— 2wk w2k — ZZ Z — 22k
(5.28)

and

~ 1 _
0:0zhs (2, () = —IC = 2[*N1 + 51¢ = 2P [(C=2)0:N1 + (€ = 2)0Ni] + Na,
z, ¢ €
(5.29)
Moreover, we have

;

¢ = 2[*(2C + 2 — 2) N1 (2, Q)
+n[[¢ —2* = [¢]* +4[¢|* = 3], ze L\{l,w},

N | =

Ohs(z)=4 5
_§|C_Z| (C_C)N1<Z7<)7 26(071)7

$1C = 2P @ ~ )Nz, ), 2 € (0,0),
(5.30)

and

([ 4n(|¢[? — 1) + (2C + 2 — 2)[Ny — 8n]

+Re {| — 2(2¢ — 22)02N, — (¢ — 2)?20.\1},
z € L\{1,w},

0,.0.0F5(2.€) = { T {2CN, + [C — 42(C — DN, + (¢ — 2PN}, (531)
z € (0,1),

Im{QCe*ieNl —e¥|¢ — 22(¢ — 2)0*° Ny
—e (¢ = 2)?0.N,}, z € (w,0).
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Then, some particular Neumann problems need to be studied. Firstly define

a new triharmonic function
1 —2
Fa(2,¢) = 3n(l¢]* +[21Y) = (% + 27T )Ni(2, )

LGP + 1B+ DMz, 0

n—1

+ { S+ 1) (G + 2u)

k=0
1(52 —4k 2’ )| ok 2
——(sw "+ 5w ) log |w™ =" — 2¢
1 _4 CQ CQ | ’ ’
+ {§(|z|2 + |C|2)(%w‘2k + gw”")
1(52 —ak 2’ 4k)- log | ok Z,Q
— | =w —w og |lw™" — 2
4 52 2 ] &

306 + k) (g 4 0
_411(52<2w_4k i 2262w4k):| log [¢ — 2?2
] 08 1) (70 + 2

1 — _
_Z<52C2w_4k +Z2<2w4k)1 log|C — Zw2k|2}’ 5 (e,

(5.32)
and suppose
F2<Zac) :/ﬁ?)(ZvC) _F2(Z?C>7 <, C €. (533>
Then by computation, we have the following properties for /Zf:;(z, (),
(0.0:)°Fy(2,¢) =0, =z, (€,
8, Fy(z,¢) =0, z € (w,0)U(0,1), (5.34)
8,.0.0:F5(2,() =0, z € (w,0)U(0,1).
Furthermore,
0.0:F5(2,¢) = —(I¢]* + N1z, ¢) + Na(2,¢) +6n(|* — 1)
(5.35)

n—1
=) Re{Zp(2w™, Q) + Eo (2w *,()}, z€L,
k=0
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8, Fy(2,¢) = —(2|C]* + 1)Ni(2,¢) — 14n + 8n|¢|?

(5.36)
_ZRG{‘—‘l 7C ( 72k7<)}7 z € L\{law}a
8,.0,0:F5(2,¢) = —2n — ZRe{HQ W )+ By (zw 2 0)Y, 2z € L\{1,w},
(5.37)
where
- _ 22(|¢P+1) =2 (ICP+1)(EE - 2%)
*—'O(Z7C) - fbgu _Z<|2_ |C|2(C_Z> ) (538)
10) =gt ULV DU 0y
¢ [A—1dY), = . A=) =
T e CE S ]
(5.39)
and
2 =2
22,0 =2 |2 ol togpn st - s [ - il + X
I e e %]
et
(5.40)
Thus, the following theorem is valid.
Theorem 5.2.1. For z,( € Q,
Rafz,0) = Falz,0) = on(IC*+ 1)+ 2n(20C ~ 1)(2el? ~ 1) + 20
- - ~ — - d¢
+ﬁ [Nl(z,g)ayzFQ(QC) + Na(2,¢)0,,0=F (¢, ) &

L
where Fy(z, (), 8VZE(Z, ), 8%8&??;(5, ) are defined in (5.32), (5.36) and (5.37)

respectively.

Proof: First of all, we verify that the first solvability condition for E(Z, ¢) in
Theorem 4.3.4 holds, that is,

% / 0,,0.0-F (2, C)ds. — % / (0.0:)2F3 (=, C)dedy, (5.41)
Q

Q
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with z =z + 4y, z, y € R. Obviously, by (5.34) and (5.37), the right-hand side
in (5.41) vanishes and the left-hand side is

L ayzaza;ﬁ;@,o%:—l—Re{—. / Eg(z,C)%} —0,
z

271 z
L

which implies that the first condition (5.41) is true.

The second solvability condition is

2 [0 B O)dse+ 2 [(af = 100, 0.0.Fa(z. s,
o0

in o0 (5.42)
=20+ [(f? = D@0z, )dady
Q

where ¢; is obtained from (5.35) and the normalization of Ny, N,

o= [00R 0T 6n(|<|2—1>—Re{% / 50(270%} = an(@CP-D).

T
L |z|=1

In addition, from (5.34), (5.36) and (5.39),

“/ ayﬂz,odsz:8n|<|2—14n—Re{% / 51<z,<>%}=8n<2|<|2—1>.
o0

|2=1

Thus, the second solvability condition (5.42) is valid. We also need to calculate

o =2 [ B 0T = -3n(d +1)
L
1+ (¢1%)?  22(¢ +1 d
_Re{%/ [z< <| ) _z<|2|<2 qlogm_z‘z;z}

|21=1

3
= —Zn(lCl* + 1) + 4nl¢P.

Hence, from (5.34) and Theorem 4.3.4,

F,0) = —3n(lgl* +1) + 2n(2I¢ ~ 1)(2lel? 1) +2n
1 . &
i | (M 00FC 0 + Nl 0, 0RC0)| 7
L
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That is, the desired conclusion is true.

Next, we need the following two results.
Lemma 5.2.1. For z,( € (),

C
K3(2,¢ 47rz/N1 8V~F2 (C.0)= z

= 2n(|¢1* + (¢ +3) - 5 n(|¢*+1)

N e <
+[ e 4\z|2|c|2

+5| G+ + DB - 2020+ )

n—1 oo

ZZ ZCw2k)l+1 (sz )l+1 (Zzw%)l—l-l + (Ezw—2k>l+1]
k=0 1=0
+Z{ <P " log (1 — G ) (L — Zur )P + S(IC + 1(IC +3)
k=0 - ) 1
[ ZCw—Qk = >10g(1 ZCw ™) + (z(w% >10g( — z(w?)
=2, —4k 4k
+%(1 +1¢1) [ (Z v ;@) log(1 — 26w
+< % ) o (;_W_C> lo5(1 — =)

n (zz(z:k B :4;2> log(1 _zzw%)] }’
z

where By is given by (4.33).

Proof: From (5.36), the above expression follows from

¢
- / Ni(z 00, Fo(C 0% :
¢

-2 / Ni(2:Q) [Snlel? = 1an = QAP+ DMC0] T

-~ - dC
—RG{E / N1(27<>E'1(C7<)?C}7

I¢1=1
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where = (z, () is given by (5.39).

Lemma 5.2.2. For z,( € (),

/N2 < C u~a-F2 C O CC

(|<|2+1><|z|2 1) +8n(|¢I* + 2|2|* + 3)
A+ A+ )

TIIGE (z+2)(¢C+()Bo
= 8 4+ (P +D(?+1)
+ Z{(l+l)3_ Q10?2 (12 ]

X (ZCOJQk)H_l (sz‘zk)lH—l—(sz%)lH—l—(Efw_%)lﬂ}

k=
log(1 —2Z¢w™2)  log(1 — zCw?)  log(l — z¢w?)  log(l — Z(w™%)
" [ ZCw2k * 2wk " 2Qw?* " Z(w=2*

g ligw_% log(1 — Z¢w™ ) + 2Cw* log(1 — 2(w?)

+2¢w log(1 — 2(w?*) + Z(w™* log(1 — EZw_%)]

N [(H 1¢1%)°
ICI?

22+ I+ 3)] log | (1 — 2C?) (1 — zcoﬂ'f)r?},
with By given in (4.33).

Proof: Similarly by (5.37), the result derives from

/ Na(2 80, 0F(C. C) f

d
= QM/NQZC CC Re{ /N22C~2(<C>CC}

=1

where Zy(z, () is given by (5.40).
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Therefore, by Theorem 5.2.1,

Fs(2,€) = =3n(lcl* + 1) + 20 (2l ~ (2P ~ 1)

+2n + K3(z,C) + Ky4(z,C) + Fs(z,(),

(5.43)

with K3(z,(), K4(z,() determined by Lemmas 5.2.1-5.2.2 respectively. Hence,
also from (5.26),

N3(z,¢) = 3n(|¢|* + |2]*) + 10n(|¢]* + 1)(|2* + 1) + 4n(|¢[* + |2|* + 6)

. {M FICP 4+ |2 - 1] (+2)(C+ 0By

4 [zPICP
— 8 P+ D22 +1) 42> +4|¢P +6
+;;{[(z+1>3_ (+22  (+1p ]

% [(ZCWQI@)I+1 + (zcw72k)l+l + (Zzw2k)l+1 + (Ezw72k)l+l] }

n—1 2

1
+Z {ZK — zw*|*log

k=0

1 — 2(w? ? 1 — 2w

¢ — 2wk ¢ —zZw—2k

- [2<|z|2 PR +2)+ 2 + |z|4>] log (1 — 2Cu®)(1 — 2Cw™)?

|

1
+ ZK — zZw ?*|*log

(IS17 + [=*) (J21* + 1)(ICF* + 1) + 4(]2* + [¢* + 2)}

log(1 — 2ZCw™2¢)  log(1 — z(w?)
— + =
ZCw 2k zCoﬂk
+log(1 — 2Cw?*) N log(l__— ZCw™2k)
ZCW% sz*%

X
— N =

log(1 — 2¢w™2¢)  log(1 — z(w?)
(ng—%)? (Zzw2k)2

+log(1 — 2Cw) N log(1 — EZw_%)] }7

(et (g + )

(ZC(A}Qk)Q <7ZW_2k)2
(5.44)

where By is given in (4.33). By computation, the expression (5.44) satisfies

(az&z)zNB(27C) = Nl(ZaC)a Z, C € Q7
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— 4 41C)? +3), L\{1,w},
auzN3<27C) = n(|C| |C| i ) “c \{ w} fOl" C € Q,
0, 2 € (0,1) U (w,0),

—4n(|¢)? = 1), z € L\{1,w},

for ( € Q.
0, z€(0,1)U (w,0),

avzaz{)%N?o(Za C) = {

Also, the normalization condition is valid,

1 d 3
o [ Nalz.OF = Sallcl + 1)+ 120(G + 2
L

+Re{2[(|4|2+1>2f4(|<\2+3>1 / log(1 — 2¢) dz

21 zC z
EE

(¢l + D) / log(1 - 2Q)dz)|

=0.
27 22¢? z

|z[=1

Therefore, the expression (5.44) is exactly the desired triharmonic Neumann

function for the domain 2.

5.3 Triharmonic Boundary Value Problems

Obviously, as in [27], we obtain the following representation formula and the

solution to the Dirichlet problem.

Theorem 5.3.1. Any w € C%(Q;C) N C®(Q;C) can be expressed as
3
= e 002 w(C)dsc — ~ [ @ 0:0:)*w(¢)ded
w() = -3 = [ 0,600y w(Odsc ~ L [ Gtz @00 w(C)agan,
=L 50 Q
where G1(z,¢) = G1(z,¢) and @M(Z,C) (u = 2,3) are the harmonic Green, the
biharmonic Green and the triharmonic Green functions for ) respectively.

Theorem 5.3.2. The Dirichlet problem

(0.0:)w(z) = f in Q,
w =", 0.0:w=ry, (0.0:)*w=ny on 00,
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with f € L,(;C), p>2, v, M1, 72 € C(0;C) is uniquely solvable by
1 ~ ~
w(z) = =3 [ [0 Ga(2C100) + Bl 1 €) + B4, Bz Calc) s
o9

1 [ Gl 0rOgan, zen
Q

~

where G1(z,¢), Ga(z,¢), Gs(z,¢) are given by (4.1), (4.16) and (5.21) respec-
tively.

Next, we give another representation formula and the statement for the

Neumann problem related to N;(z,() (i = 1,2, 3).

Theorem 5.3.3. Any w € C%(Q;C) N C*(Q;C) can be represented as

we) =2 [+ LD / 20(0)F

{08 - 12 - 1<|z|2—1>] 2 [ooeruo
+% / [Ny (2, Q) w(C) + Na(2, Q) (0:02)w(C)
o0

V(2,00 (00 0lC)]ds; — 1 [ Na(e. 00D w( (e

where N;(z,() (i = 1,2,3) are the harmonic Nuemann, the biharmonic Neumann

and the triharmonic Neumann functions respectively.

Proof: Applying the representation formula in Theorem 4.3.3 to 0,0>w(z) gives

o.0(z) =2 / 20+ LY o000

™ ¢
L wz, V00 DDe(€) + Vol V01, (0,0 w(C)] i
o
— [ Ml 002 (e
) (5.45)
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Then, we substitute (5.45) into the following representation formula

w(z) = 1= [ (N2 0) — (OB N2, dc
60 (5.46)
[ M QoD (Ocn
Q

thus, the result follows from

1 [ Wit gdedy = 2 -1,
0 (5.47)
— [ 6P = 1Nz, ey = (P = 12 = (1P - ).

™
Q

Theorem 5.3.4. The Neumann problem

(0.0:)3w=f in Q, O, w=r, 0,.0.0:w=r, 0,(0.0:)*w =" on 09,

ﬁ, = (o, /84((%@0 n, /(8{3?)2w(<')% = Co

m m ¢
L

for f € L,(S:C), p>2, 71, 72, 73 € C(0Q;C), is solvable if and only if

/ ¢)dsc = / (¢)dgdn, (5.48)

o

2 [n@dse+ 2 [P = Datc)ds; =2+ 5 [P = 17(Odn, (5.49)

o0 o0

and

n

2 [onase+ 2 [e 1) [0+ §alk - )] as
o0 aQn (5.50)
=20~ cxt 2 [P = DCP = Dr(Odn

Q
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Then its solution is uniquely expressed as
’LU(Z) =+ (|z|2 _ 1)@1 + {i(’ZP _ 1)2 . %(‘2‘2 o 1) ¢
1
+- / [Nz O0(€) + Na(z O (Q) + Na(z One(Qldse (5 57

o2
2 [ Ml (Odean, 2 e
Q

where Nyi(z,(), Na(z,(), N3(z,() are given in (4.17), (4.37) and (5.44) respec-
tively.

Proof: Rewriting the above Neumann problem as the following system

(0,0:)*w =w; in Q, d,w=ry, 0,0.0:w=r~ on 05,

d d
2 JwoF=a % [a0w0F =a
L L
and 1
0.0:w; = f in Q, 0, wy ="y, % /wl(C)?< = Co.

L

Hence, from Theorem 4.3.4 and Lemma 4.2.1, if and only if

o [ ra(0sc =2 [ ficyagan, (552)
oN Q

o [1(©asc=2 [ w0 (559)
o0 Q

and

n

2 [an@dsc+ 2 [P = D(@se =2e0+ 2 [P = Dnlc)dedn (550

™
[2}9] [2}9]

are satisfied, then w, w; are uniquely expressed as, respectively,

wile) =t 1 [ NilaOnl@ds - 1 [ M= Qs (559)
o0 Q
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and

w(z) = o+ (12 = Dew + 1 [ D102, 06) + Nl Q)]

A (5.56)
_% / Na(z, O)wy (¢)dédn.

Thus, putting (5.55) into (5.53) and (5.54) respectively, the desired solvability
conditions (5.49) and (5.50) follow from (5.47) and

1

0

1
[P = vagan = -

Q

Similarly, putting (5.55) into (5.56) gives that the unique solution (5.51) is also

valid from

~+ [ Mate ety = 10af = 12 = (1P - ).
Q

Then the proof is completed.
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Chapter 6

Tetra-harmonic Boundary Value Problems

On the basis of m-harmonic Green and Neumann functions (m = 1,2, 3), we seek
to find a tetra-harmonic Green function and a tetra-harmonic Neumann function
for the domain €2, and then study the related tetra-harmonic boundary value

problems. Also, 2, L, w, 0 are defined as before.

6.1 Tetra-harmonic Dirichlet Problem

A tetra-harmonic Green function @4(2,C ) determined later for the domain €
should satisfy the properties,

1. @4(2, () is tetra-harmonic in Q\{(},

2. Ga(z,¢) + 3—16|C — 2|%log |¢ — z|* is tetra-harmonic in €,

3. (0.0:)>G4(z,¢) = G1(2,¢) for z € Q,

(8.0:)71Ga(2,() =0, j=1,2,3,4, € dQ,

4. Gy(2,¢) = Gu(C, 2) for 2 # .

Actually, 64(2, () is equivalent to another expression,

é'(\4('% C) = _%/Gl(z75)@3(67 C)dgdﬁa Zs C € Q7 (61)

Q

where Gy, Gs are defined in (4.1) and (5.21) respectively. We represent @4(z, Q)

as

@4(Z7C) = 3_16|C - Z|6G1(27§) + h4(2,<), Z7C € Q? (62)

with h4(z, () being a tetra-harmonic function. Then, hy4(z, () satisfies the prop-

erties,
(0:0:)°ha(2,¢) = fa(2,0); 2€Q,  ha(2,() =0, z€09, (6.3)

89



and for z € 011,
az&zh4<za C) = %‘C - 2‘4 [(Z - 5)&2G1(Z, C) + (C - Z)azGl(Za C)] ) (64>

(az&z)2h4(z7 C) = |C - Z|2 [(g - Z)azGl(Z7 C) + (Z - E)a?Gl(Z> C)}
(6.5)
—SIC— 2P [ = 202G (,0) + (¢ — 28G5, 0)],

where precisely,

S B L e e B
k=0

w2k — ZZ ¢ — 2wk w2k — 2 (- 2w?*

S e g = i Cl 1

Bl =207 T () WF P ()

RS ) N (< O S (St <<:w2’f—<>2}

(=20 (- (@20 (C— )

(6.6)
Introducing a tetra-harmonic function
1 - 1 —
35 (3¢ +20°G1(2, Q) + Z(ECH 2O + [21)°Ga (=, )

S EC 2T + PG (2,0

n—1 — —
(2Cw? +ZCw™ )3 (2w + ZCw™ )
*,;{l olce | 12lP

F4(27C) =

(17 + 2%

2,2 4k | =272 4k
G 1;'54@“ - )(|C|2 + |z|2)} log |w™2* — 2¢|?

(sz2k+§(w*2’“)3 (ZZW%—I—ECLU*%)
_{ 361¢[° 12/CJ?
(E2C2w_4k + 2252&)4’“)
- 12/¢[*

(1% + [2[%)®

(12 + rzrﬂ log | — (P

L= o | —n ok L= ok | = ok
| gl 30 + T 4 (G + 4P

1 B —9
T W log ¢ — 2w [?
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1 k| =75 —2k 1 k| =5 —2k
- %(Z“Cw2 + 2w )3+E(ZCw2 +ZCw ™) (1K1 + |2%)?

1 ) (6.7)
~ B ET T AP + )| g ¢ - zw%F}.
Through computation, we obtain
(82&2')3[]14(2’ C) - F4(Zu <)] - 07 <, C € Qa (68)
and
h4(z>C)—F4(37C) :07 KAS [07 1]U[w70]7
828?[h4(z7 C) - F4(Z’ C)] = 07 KRS [07 1] U [w, 0]7 (69)

(0.02)*[ha(z,¢) — Fu(2,¢)] =0, z€[0,1]U [w,0].

Also, we have

n—1
ha(z,¢) — Fy(2,¢0) =2 Z Re{zg(zw%, ¢) — Z5(Zw2*, g)}, ze L, (6.10)
k=0

n—1

0.0z [ha(z,() — Fy(2,0)] = 22Re{54(zw2k,§)—54(7w2k,()}, z€ L, (6.11)

k=0

(az&z)Q [h‘4<Z>C) - F4(27C)] = QZRG{Eg,(Zka,C) - E5(Ew2k7<)}a YIS La

k=0
(6.12)
with
6 _ 4 2
2a(2.0) — {\%’d; (205 4 3201C) + (I¢] 112)|(<1|2+ <9,
(6.13)
+Z2(1 - ’C’4z(21 + ‘CP) } log |1 o ZC|2a
12¢
- ¢ -1 -1 <
=42 0) = '1‘2|<|4 (612 +2)=€ — 3:2¢?] log [1 — =([? + 6|m2 lZC - Zw]
-1 1 7
T T2 {_ A+ + QZC]’
(6.14)
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ey 2l =) L [z0-p)
=) = U iogy s+ g [ + -1 -
L [EKP=0) g q] 4 20
e R R R
(6.15)

Then, the next theorem holds.

Theorem 6.1.1. For z, ( € Q,

271
I¢|=1

ha(=,0) = Fi(=,¢) — Re {i. / [a%al(z,azg@,o

04, Ca(z OF4(C.0) + 8, G 5 (€. o] CC}

where Fy, 0,,Gy, &,ECA}'Q, =i (1 = 3,4,5) are given in (6.7), (5.8), (5.9) and
(6.13)-(6.15) respectively. Moreover, By is defined by (4.33) and for z € L,

~ ‘C‘4 -1 B A2
n—1 oo 1 _ _ B -
> 3 ; (l - 1>2 [(ng Zk)l + (ZC(,U%)l o (ZCCU%)Z . (ZCW 2k)l}
1 < [log(1 — 2¢w?) log(l —ZCw2)  log(l — Z(w™2)
‘|‘(’C’ - ) e <Z<w2k)2 (Ezwfgk)g o (Eg‘w—2k)2
log(1 — 2Cw®)  log(l — z(w?)  log(1 — Z(w™2*)
B (2Cw?k)2 N 2Cw?k - ZCw—2k
log(1 — Z¢w™2¢)  log(1 — z(w?*)
+ ZCw—2k - sz% }

Proof: Let Fy(z,¢) = hy(z,¢) — Fy(2,¢), thus from (6.8), (6.9) and Theorem
5.3.2, we obtain

M0 = 0 - 1 [ 2,6 0RE0
L _ (6.16)

+0,,Ca(2, DOFL(C. Q) + 0, Gl O) (00 TG, )| 2.
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Then from (6.10)-(6.12), the boundary integral in (6.16) can be represented as

lae{-égt/“{engcu<z,<>[ 3(C™, €)= Zy(Cw, )

+0,,Ga(2,0) 21, 0) = Ea(Cw,0)|
)

- d¢
#0632, 0) [E(0, 0 - 5. 0] } 2
—Red on [ 0,61 0Za(C.0) + 0,6l OZ(C O
= o veG1l% 6)=3 V=72 =G,
¢[=1
+@¥%<<pa<o}f}
Thus, the proof is completed.
n—1
Suppose Cy = Zw4k then we have
k=0
1, n=1,
Co=<{ 2, n=2 (6.17)
0, n>2

Next, the following three lemmas are needed.

Lemma 6.1.1. For z, ( € (),

_ Red b 2 d
Hl(Z,C) = —R {27TZ / al/EGl( 7C)~3(< C) C }

I\l

_ A )(1—|<! ) 72 _

u—vmu—m%
TR

SRS P

e
ity

(2w?)?

(BICI* + 11ICI* +5)(C = ¢)(Z — 2) Bo

log(1 — Z(w™%k)

=3

¢
(zw%)3

+ [(2&02’“)3 + } log(1 — 2zCw?*) — [(z(w%)g + ] log(1 — 2Cw?)
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[+ s s - zzw—%)}

(P
g [P+ 12— 10+ L Z{ e+ 2 tos - 2
e o e i ot o
_LCcluz’“ Z%Q log(1 — 2Cw?* }
—1—12<1—|<|4><1+|<\2>:Z_‘;{[ + B g1 - 0
e o [ -

N -

with By, Cy given by (4.33) and (6.17) respectively.

Lemma 6.1.2. For z, ¢ € (),

Hz(z,C)z—Re{% / aV562<z,E>E4<Z,<>%}
&=t
EE O DICERE)

(C=Q)(F~2)By

12]2[(¢[?
L -l —1¢") = v U= D= = 6| +2)

n—1 oo

XZZ
k=0 [=0
(1¢]* — |z\2—1”‘1
" 12|<|2 Z{

k
B S S (4

P 2w (2Cw)?

Zgw_%)l + (ch%)l o (ZZCL)Qk)l o (?Cw_%)l}

—2k ZC
3 2k
zZCw + 7 + P2

log(1 — 2Cw?®)
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2k; >/
z
+|3zCw* +t— + ¢

|C|2w2k
- [3sz2k + w;;k + m;f_%
—2
B <?£|k>] }log(l e
[32Cw2k + —Qk + K;C o
} 2<|2<,2 - zc‘i‘i’f ! <z§f;>21 ol _EM%)}’

where By, Cy are given by (4.33) and (6.17) respectively.

Lemma 6.1.3. For z, ( € Q,

[ 064050 <>df}

1

:{(1—|Z|2)( %) (=2 +2) | 5(1 — [2[")(1 -

Hg(Z, C) = —1{6{L

2me
IC=

'5'2)] - OF-2)B,

6[z|?|¢[? 72|¢]?
n—1 oo
+(ICP = 1)(J2)* = 1) ZZ (ZCw™)" + (20w’
k=0 [=0

_ (szQk)l _ (ECka)l]

—5 | Eh 3l = it + 3062 - (el - 1)

30> e [ (™) — () — (2w )]

== (D)
+Z{§<|<|2—1><|z\4—1>[10g&;§§°§ Hlog&ff,‘;‘)’; )
Clog(l— 3w ) log(1— 2] (P - (=1,
(E w—2k)2 (ZZLU%)Q :| 12|C|2 (2 ‘ | )
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X [z{w% log(1 — 2Cw®) 4+ Z(w ! log(1 — Z(w™2F)

—Z(w % log(1 — Z(w™?*) — 2(w?* log(1 — sz%)]

2R = Dl ~ 1 !

- [FRIE =D i = v+ S = - 1)
log(1 — 2¢w?)  log(1 — Z(w™2k)

: [ L

_log(1 —z¢w™)  log(1 — szQk)] }

w2k 2Cw?k

with By given by (4.33).
Then from Theorem 6.1.1,

h4(Z7C) = F4<Z>C) + H1(27C) + H2(Z7C) + H3(za C)? (618>

where Fy, H; (i = 1,2,3) are defined by (6.7) and Lemmas 6.1.1-6.1.3 respec-
tively.

Therefore, by (6.2) and (6.18), G, is represented as

Gi(2:€) = 51" = DGR ~ ) = (T ~ A)Co

1 4 4 - =
(el ~ Dt~ D(E - 2)C - OB
(1= = DCP = VP + 12 2)C - OB
+(l2 = D¢ - 1) ZZ z+1 (2¢w™)! + (Zw™*)!
(T >—<zcw—%>l]
22 = (0P = D(el? + 1€ + 1 22 | (26 o (T

—(2Cw?) — (ZCw™? ]



1 1 — 2Cw?* 1 o ¢ — Zw 2k |
+ 2 {% }C zw2k|6log C ZZ:)% 36 |( — Zw 2kflog T o zz}w%
1 ) 1/ 1 1 1 1
_%OZ‘ - 1)(‘C| — 1){5 (ZCW% + EZw*% - Ecw_% o sz%)
1 1 1 1 log(1 — z¢w?)
T T Ew e T Ee e e ()
+10g(1 —2Cw™*)  log(1 —z¢w™**)  log(1 — 2¢w™)
G @ BP (G

S [(|2|6 = D" =1 + (21" = (|1 = 1)

12
(]2 — D — 1)+ 3(=l — 1) — 1>]

log(1 — 2¢w?)  log(l —zCw™2*)  log(1 — Z(w™%*)  log(1 — z(w?)
X (2Cw?F)2 (ZCw2k)2 N (Z(w2F)2 - (2Cw?k)2

1 1 1 1
“f‘ZCka + zzw_% - chf% o ZZUJ%
53 0" = 0GP = 1+ (P = 1l ~ 1)
#3001 = (<1 = ) + 38 - 116 - V]

y llog(l — 2(w) N log(1 — zCw™2k)

ZCM% EZw‘Wf
log(1 — Z¢w™2¢)  log(1 — z{w?*)
- ECW_% B ,sz% ’

(6.19)
where By, Cy are defined by (4.33) and (6.17) respectively. We also can verify
that the expression (6.19) satisfies the properties

(82&2)3§4(Z7 C) = Gl(zv <)7 2y C S Q7

(0,05 'Ga(2,() =0, 2€09, j=1,23,

which implies that expression (6.19) is just the desired tetra-harmonic Green

function for the domain 2.

Furthermore, the following representation formula and the statement about
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the Dirichlet problem hold.

Theorem 6.1.2. Any w € C3(Q;C) N C7(Q;C) can be represented as

w(e) = =3 1= [0tz 002 w(Odsc - - [ Gule (02 w(( e
p=l aa

Q

where G1(z,¢) = G1(z,¢) and @M(z, ¢) (u=2,3,4) are the harmonic Green, the
biharmonic Green, the triharmonic Green and the tetra-harmonic Green func-

tions for €1 respectively.

Theorem 6.1.3. The tetra-harmonic Dirichlet problem
(0.0:)w(z) = f in Q,
w =", 0.0:w=nm, (aza%)Qw =72 (@az)gw =73 on 01,

with f € L,(;C), p>2, v, 71, 72, 73 € C(0Q;C) is uniquely solvable by

w(z) =4 / 10,:G1(2:0(C) + i G2, O (€) + 0, Ga(z. )(€)
o0

+0, G ()]s = 1 [ Gl 1O, = e

Q

where G1(z,¢), Ga(z,¢), Gs(z,¢), Gulz,¢) are given in (4.1), (4.16), (5.21) and
(6.19) respectively.

6.2 Tetra-harmonic Neumann Function
In the following, we want to find a tetra-harmonic Neumann function Ny(z, ()
which satisfies,
1. Ny(z,() is tetra-harmonic in Q\{{} with respect to z,
2. Ny(2,Q) + %K — 2[%log |¢ — z|? is tetra-harmonic in €,
3. 0:0:Nu(z,¢) = N3(2,(), z,¢ €,
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(¢, C)dediy

ﬂl?
TR

N3
1
L 0=, = = G = 1 = 5GP 1) = (i~ 17

z € L\{1,w},

L 0, z€(0,1)U (w,0),

d
5./ N4(z,<)7z —0for ¢ €,

where N3(z, () is given in (5.44), and the boundary behavior 4 above follows from
1
applying Theorem 5.3.4 to the function — 36 (|z|2 1)%.

We also have

N4(Z, C) = _%

/ Ny(z, ON(C, Q) dEdR, =, Ceq,

Q

where Nj, Nj are given by (4.17) and (5.44) respectively. Then we firstly trans-
form Ny(z, () into

Ni(2,€) = 55l = 2 Na(2, Q) 4+ B2, 0), =C €9 (6.20)

where 714(2, () is a tetra-harmonic function in 2. Then we have

(az&z)gﬁ4(za C) - f4(zv C)v 2, < S Qa (621)

~ 1 1 —
Ocha(2,C) = Na(2,€) = 7¢ = 2*Ny + T5I¢ — 2| (€ = 2)0=My

(6.22)
H((=2)0M), 2 CeQ,

(0:0:)*ha(z,0) = Na(2,0) = [¢ — 2I*\y

+%|C — z|2Re{6(C —2)0. Ny — (¢ — 2)232]\71}, z, C €9,
(6.23)
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where

f4(Z7C> = QRG{?)(C - Z)aZNl(ng) - g(( - 2)28§N1<Z7C)

6
B 44 n—1 |C|2 N w_Qk <w2k o Z <2 _ (.U_2k Cw?k _ C
—z”mgk%w%_i+zﬁwkw%—x+«mw
LA —w™) (G —¢
et =
B [

2 (w—% _ ZZ)2 Z — 2k

+1@—ZP@NN%O}

3 N (CW%_C 3:|

S— | —— S— | N—
w
_I_
|~
E|
(3]
El
|
W
s
w

In addition,
. 1 _
0. N3 + 516 = 2[2(2C +2¢ = 2)N1 + 2n|¢ — 2[*
—%yg _ z|2Re{2z(< ~ 220N, — |C — 22(=C — z2)8§N1},
z € L\{1,w},

o oot —éK—ZWZ—O{MW—2@+C—2@@N1
v, U2 UzI4\ <, =
—|¢ - ZPale}, z € (0,1),

éK — z|*(Ce” — (ei"){6N1 — ¢ — 2?02V,

—2(Ce*? + ¢ — 22)82N1}, z € (w,0).

(6.25)
00 Ni+ 1C — (T + 2~ DNz, 0) + gl — 21

z € L\{1l,w},
I = 2 - M), 2€(0,0)

| Sl @ - N, 0), 2€0),
(6.26)

(
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0,.(9.0=)?ha(2,C)

Oy, Ny + (2 +2¢ — 2)Ny + 12n|¢ — 2|* + 2Re{ —2Z(¢ — 2)%0.Ny

+ Bz(C —2)|¢—2)* + éz(g — 2)3] O’N,| — éz!( —22(¢ - z)Qale},

z € L\{1,w},
—i(C — C){M — (C+¢—22)0.N, + él( — 2]+~ 22)0 N,
_ EK —z? = é(ZQ + [¢]* +¢* = 32¢ — 32( + 322)} agNl}, z€(0,1),
i(Ce? — Ce”’){Nl — (Ce + ¢ = 22)0.N, + é\c — 22 ((e* + ¢ - 22)82 Ny

3 9 1 -2 4 , —
_ l§€219|<_z‘2_6(C26419+|<—|262z9+<2_3Z<_3ZC6219+322)] 33]\71},

\ z € (w,0).

(6.27)
Then a tetra-harmonic function is introduced by

11
ﬁn
@+ 2P+ PN =)

N nz_i { [(z(u}% + ZCw™2k)3 N (2Cw?* + 2w ™)
k=0

Fi(z,€) = gonlldl® + 121%) + 5 (30 + 20°Ny 4 75 (3¢ + )¢ + &M,

N g PR
2,2 4k | =272 4k
GRS 1;L|Z|4< - )(|C|2 + |z|2)} log |w™2F — 2¢|?

{(sz% +2Cw72k)3 (szzk _}_szka)

(1% + [=%)*

36/ 12[¢]?
=22, —dk 272 Ak
R o) tog - =P

+ [i(z&u% + ZCw™ k)3 + 1

= S (T + 2 (P + |22

1 B —9
—E@%%4Ma%w%MW+vmy%m—wﬁﬁ
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1 k| w7, ,—2k 1 k| =7 —2k
35 (W™ + W) 4 S (T + 2T (I + 12

, (6.28)
—E(EZZQw*‘*’f +22CCw™) (IC)? + Izﬁ} log |¢ — zw%lz}.
Let
E(Z,C) :/H4(Z7C) _F5(Z’C>7 Z7CE Q’ (629>
By computation, we obtain that ZA?;(Z, () satisfies,
(((0.0:)°F5(2,0) =0, 2 (€,
0y F5(2,¢) =0, 2 € (w,0)U(0,1),
g - (6.30)
0,,0.0:F5(2,() =0,  z€ (w,0)U(0,1),
| 0,.(8.0:)2F5(2,¢) = 0, z € (w,0)U(0,1).
Furthermore,
Fil,0) = g (€1° + D = 5 [(P + 1 + 61 + 1)] Mi=,0)
n—1 (631)
-2 Z Re{O(2w*,¢) + 60,(Zw*,0)}, 2z €L,
k=0
Enl 1 4 2 4 2 10
0.0:Fi(,0) = Na = 1 (1" + 4GP + 1) N+ (I + 2P = 3 )
n—1 (632)
—2) "Re{O(2w™, () + O2(7w ()}, z€ L,
k=0
— 34
(0:00)Fs(2,¢) = Na = (IC[* + DNy +6nC ] — Fon
1 (6.33)
—i-QZRe{@g(szk,C) +05(zw™*,0)}, z€L,
k=0
0 Fa(2,0) = 5 (1C1* +2CP + % ) Mo+ 2n (I¢]* — ¢ - &
) 3)°1 9
n—1
—2) Re{O,(2w™, () + O4(7w*,()}, z € L\{Lw},
o (6.34)
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46
0,,0:0:F5(2,() = == n + 12n|¢]* = 2[¢) + 1)V,

—22Re{@5(zw2k,o +05(zw *,0)}, ze L\{1,w},
. (6.35)

n—1

—~

Dy (0.02)2F5(2, () = —4—;71 — 2N, +2 3 Re{@4 (0™, €) + 0572, O},

k=0
z € L\{1,w},
(6.36)
where
6 2 3
01(2) = 3—16{ L g0+ iy + 2L
(6.37)

S0t (P 1>22<2} log |1 — =P,

12 I
! 2 ¢1*+1 o
+M{ TR IC[* = 4[¢]* =3+ T [Z3C3 37 }
2
L ZBIC +<41<P +3) }
(6.38)
2
Pals 0 oy 1= 2P+ 3(1 i () {5|<!2 i ﬁ
2
+3(1|—£—’l€‘)z2<2 _ (6 +3’C|2) 2 — (& n 3) EZ}
(6.39)
1 2 =
+m{ = G = 104 125 (20 204 2%+ 2GcP)

+102¢(I¢% + 1) + 2(2¢ + 2°¢%) — 62°C — 222C2|C|2},
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64(2,0) = g{ 'C‘f;; L2368 1 35¢(cP) + (|<||2<|+2 D% P +5)z¢

21+ 1><|<|2+2>22C2}10g|1 _ep

95

ey { e e M e o0
_3(¢l* - |1£|§'<'2 LI Ezzz)}
b+l + SL L o Kt s
(2, ¢) = 1—12{ (18||<<|2|4+ 2 L 6lcP +22> - % 22 }mgu ]2
+m{ﬁ LKL o it ol - 1}
g = Al = o 20 - 11}
+%{ _wj%c [%—ﬁ+2[g]2+15l
i P+ g 3}’
(6.41)
and
Os(2.) = —wlogu ~ P
+— {3\(\2 3|'22|§2 52C + 22C — (W + 3> Z}
+ﬁ{ =g (g a) 7o (7 318+ ) ¢

e (2 i) EZ}
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1 1
+a1—%w{1+<mw+6+”“ﬁ ~ (G ¢

o i (6.42)
KP"*“S‘EC}'

Therefore, the following theorem is true.
Theorem 6.2.1. For z,( € Q,

ha(.0) =&@o+m+qw—nm+EwP—W—§WF—m@

5 (1t 24P + ) 4o — elgl + )4, - 22,

1

I¢l=1

Nz o@dco]f}

Ni(2,0)04(C, ¢) + Na(2,0)05(¢, €)

where Fs, ©; (i = 4,5,6) are defined by (6.28), (6.40)-(6.42) and
(b= (e T L L 2 B
b= (= gl° 4 GIel* + g+ 2P = 55 ) m
4 16 3
by 4+ —I¢)? - = 6.43
— (Gt + g+ hE =3 ) (6.43
n 4
by =~ | 28 2+——12>
b= (287 +
Besides,
n—1 oo 2 Z|2 4
A — 2
vo=Bnlf ) Z[ (I+ 1) (z+1)3]

k=0 =0
[(zgw% Y+ 4 (2R 4 (2Cw?)H 4 (30w )l+1}

n 1
— log(1 — z¢w?)
2 4 1 2k\[2
2= + {ogl R
~log(1 — Z(w —2F) ~log(1 — z(w?) ~log(1 - ZCw™2k)
ZCw—2k 2Cwk ZCw—2k ’
(6.44)
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(6.45)

= 8 10 + 4]z 222 + 1) 12|22 + |2|* + 25
2 [(l+1)4 I+ 1)3 (1+22(1+1) 2(1 +1)2 ]

X | (2w 4 (ZCw2RYH 4 (2¢w ) 4 (20w )l+1]
+ [|z|4 + 6]z]* 4+ 13 — i |2|* + } Z log |(1 — z¢w™)(1 — ;:Zcu%)’2

n—1

1 1_ Qk loo(1 — ok

— []2[* + 62> + 13] Z{ og(l — 2Cw™) | log(1 — ZCw™)
k=0

ZCCU2k ECw‘Qk

log(l — ;Cw ) N log(1 — zZ(w™2k) N 4}

szZk 5@)—%

n—1
log(1 — z¢w?)  log(1 — zZ(w™ k)
4
v3-{ B
0

Z‘ Zngk (ECUJ_2k)2

+log( — zCw?* n log(1 —zCw™")  (2+2)((+C) o
(2Cw?k)? (ZCw—2k)2 ¢[?

+2

(6.46)

Proof: We firstly prove that the first solvability condition for /ﬁ’;(z, ¢) in Theo-

rem 5.3.4 is true, that is,

/ 0,.(0 2 s, = 2 / (0.0-°F5 (= O)dedy,  (6.47)

Q

with z = xz + iy, x, y € R. By (6.30) and (6.36), we know that the right-hand
side in (6.47) equals 0 and the left-hand side is

N dz 22 1 dz
27”/3”2 OO = ?“”Re{% / @G(Z’Qz} =
|z|=1

Thus, the first condition (6.47) is valid.
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Next, the second solvability condition is

/ 0,,0.0:F5(2,()ds. + / (127 = 1)8,,.(0.0=Fi(z, () ds.

d= 4n . (6.48)

% (0.0:)Fy(=, )2 (2P — 1)(8,0:)° Fy =, O)dardly,

e z ™
L Q

then from (6.30), the second term of the left-hand side and the right-hand side
in (6.48) vanish respectively. Moreover by (6.33),

2 [0.07F 08 =<6|<|2—3—4>n+4nRe{% / @3@,4)%}

™

Besides, from (6.30) and (6.35),

N

—~ 46 1 d
g/&/z@z@f’%(za ()ds, = (12|C|2—§) n—4nRe{2—m_ / @5( ,C)—Z}
o0

|z|=1
2n 2
3 (28'4‘ e 12)

which means that the second solvability condition (6.48) holds. Finally, we also
need to verify the third solvability condition,

/6VZF5szsz ]2]2—1 0, G&Fg,zc

(IZ\2 — 3)0,.(0.0:)°Fy 2, C)] ds.

Ny (6.50)
/8 &Fg, (2 C)— — E (0,05)? F5(Z C)
42 /(|z\2 —1)(|2]2 - 3)(0.0:)* Fy (=, )dady,
Q

where the second term of the left-hand side and the third term of the right-hand
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side disappear and by (6.32),

2 [ o.0F 0%
e z
L
S (31¢]* + 6[¢|* — 10) — 4nRe = Oy (2 g)% (6.51)
3 2mi A
|z|=1
(B A 160 3

From (6.34),

— d
? [0 B o)ds. =20 (|4|4—|<|2—§)—4nRe{2im [ e )5}
oN

|2|=1

13 ., 4 4,
= (= = 1

(6.52)
thus, by (6.49), (6.51) and (6.52), we see that (6.50) holds. Moreover, from

(6.31),

—
2 [ReoT =—§—§<|¢|6+1>n—4nﬁe{2ii / @1<z,c>;} -

/=1

B 11, .6 7 1 5, .o 11
Hence, from Theorem 5.3.4,

Fae:6) = bt (12 = Db + | 30 = 172 = 50 = 1)

+4Lm [N1(27 Z)GVZFE(E, ¢) + Na(z, Z)aygaggﬁ?,(i ¢) (6.54)
L

~ — ~ lac
+N3(Z> C)al/g(agE)QF%(Ca C)] ?C
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Actually, we also have

¢

1 ~ ~d¢
Ay = R/Nl(QC)Nl(Z’O?g,
L ~
1 ~ ~d
A = 4—M/N1(§,C)N2(zyc)?g, (6.55)
L ~
1 ~ ~d
A= g [ MEONEDT
\ L

Therefore, from (6.34)-(6.36), (6.54) and (6.55), we obtain the desired conclusion.
Hence, by (6.20) and Theorem 6.2.1,

Ni(z,¢) = 52lC = 2PNiz, Q) + Fo(z,0) + o + (12 =

# [0 = 07 = 30 - )

5 (1t 24P + ) 4o — 2l + )4, - 22,
1 - -
_Re{% / [N1<Z7<)@4<<7C) +N2(Z7C)®5(67C)
=1

Ny(2.0)8%(C, o] d—g}

where Ny, Fy, b; (i =0,1,2), A; (i =0,1,2), ©; (i = 3,4,5) are defined by
(4.17), (6.28), (6.43)-(6.46) and (6.40)-(6.42) respectively.

Remark 6.2.1. From the procedure of constructing the m-harmonic Green and
m-harmonic Neumann functions (m=2, 3, 4) explicitly for the fan-shaped domain
) by convolution, we observe that the critical step is to construct a proper
function, which establishes a bridge such that finally we only need to compute
the boundary integrals on the whole unit circle. However as we see, the process
is very complicated. Unfortunately, up to now, it is still not easy to construct the
expressions of the polyharmonic Green and polyharmonic Neumann functions of

arbitrary order m explicitly.
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Chapter 7

Polyharmonic Dirichlet and Polyharmonic

Neumann Problems

As we know, by convolution, the expressions of iterated polyharmonic Green and
polyharmonic Neumann functions can not be easily constructed in explicit form
because of complicated computation. However, similarly to the unit disc, they
can be defined recursively and used to solve the related higher order Dirichlet
and Neumann problems for the m-Poisson equation in the fan-shaped domain (2.

Also €, L, w, 6 are determined as before.

7.1 Polyharmonic Dirichlet Problem

The polyharmonic Green function of order m is introduced by,

G2, 0) = —l/@(zf)ém_l(ﬁ, OdEdi, 2 CeQ, m>2, (7.1)

™
Q

where G4(z,() = @1(2, () is defined by (4.1). Then @m(z, () has the properties
1. @m(, () is polyharmonic of order m in Q\{(},

R ‘C Z|2(m 1)
2. Gm(z, C) + W

3. (0,0:)"G(2,() =0for 0< p<m—1,z €00, e

log |¢ — z|? is polyharmonic of order m for z € Q,

4. Go(2,0) = G(C, 2) for z,¢ € Q.

Moreover, the following representation formula and the statement about the
Dirichlet problem are valid [8, 27].

Theorem 7.1.1. Any w € C?™(Q;C) N C?™1(Q;C), m € N, can be expressed
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w) = =3 1 [ 0Gule, 0D (s — — / G (2, O)(Dc0) "w(¢)déd,

o) Q
where @M (= 1,---,m) are the polyharmonic Green functions of order n re-

spectively.

Theorem 7.1.2. The Dirichlet problem
(0c0:)"w=f in Q, (0:0:)'w ="y, 0<pu<m-—1 on 09,
feLl,(C), p>2,7,€C(0%C), 0<u<m-—1,is uniquely solvable by

w(z) ==Y 1 [ 0uGule s = 1 [ Gl Or(Oden
= g0

Q
z €€,

where Gy = G4, CA}’#(Z, ¢) (m > 2) are defined in (4.1) and (7.1) respectively.

7.2 Polyharmonic Neumann Problem

Similarly, convoluting the harmonic Neumann function N (z, () with N,,_1(z, ()

leads to a higher order Neumann function

Nm(za C) = ! /Nl(za E)Nmfl(g7 C)dgdﬁa ZaC € Q; m 2 27 (72>
Q

oo
with Ny(z,() given by (4.17). And obviously it has the properties
azasz(Z>C) = Nm—l(z7C)> 2, C € Qa (73)

e / No 1 (C.Q)dEdT, = € L\{1,w},
Q

aVsz(Zv C) - m Z 2. (74)

0, z € (w,0)U(0,1),
Then (7.4) implies that 0,, N,,(z, () is independent of z for z € 9. Moreover,

the normalization condition is also true,

/Nm(z,C)% —0, m>1 (7.5)
L

Next, we give the following higher order representation formula.
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Theorem 7.2.1. Any w € C?™(Q;C) N C?*™1(Q;C), m € N, can be erpressed

as

W) = Y g [ Vet (5. 00060 0(0) = BNy (2,050, w0)] i

_%/Nm(27<><3caz)mw(C)d£dn, Zeq.
(7.6)

Proof: By Theorem 3.2.1 and Theorem 4.3.3, (7.6) is true for m = 1, 2. Suppose
that (7.6) is valid for m < k—1 (k > 2), then when w € C?*(Q; C)NC?*~1(Q; C),

the above representation formula of m = k — 1 is true for 0,0;w(z), that is,
-2
D.0a0(z) = Y o / [ 1 (2,000, (00w (Q)
pn=0
—0u N1 (2, O (0c0)* 1w (€) | s (7.7)

1

- / Ni1(2 O)(0e) P () dgdn.
Q

In addition, we have

w(e) = 5 / 0, (N (=€) = Q) N (2, )] e
(7.8)
. / Ny (2, ()2 (O)déchy
Inserting (7.7) into the area integral of (7.8) leads to
[ M ga0u)aedy
s I )
= E {aug(afaz)!ﬁ_lw(C) [;/N1<27C)Nu+l(C7C)d£dn]
r=0 50 ) (7.9)

_(053?)%1@0 0) [l/Nl 2 C@,hNMH(C, E)dgdn] }dSZ
+%/ 8~E% [ /Nl C)N-1(¢, C)dde] dfd%
0
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then, we see that (7.6) is also valid for m = k due to (7.2) and (7.9). Thus, the

proof is completed.

Next, we restate several lemmas.

Lemma 7.2.1. [23] For any m, k € N,

=0
0< 20 <k,

1
(2m — 1)!?

m—k—1 _ _ | 2 _ m—1-k—r
= mtk (2m —7 = DI([[* — 1) L 0<k<m-—1,
—\ r ) Cm—Dlim—1-Rm—1—k=-7)

(828;)m+k (|Z’2 o 1)2m—1

mik__ L (122 — [ mtk (2m — 7)!(|z]2 — 1)k
(0.0 (I = 1)? Z( >2m)_(m e

0<k<m.

=

Lemma 7.2.2. [23] For |z| =1,

1
(2m — 1)!?

1
(2m —1)12

(0:0z)° (I =D =0, 0<o<m-—1,

(m + k)!?
2m — 1)l (m—1—-K)"22k+ 1)V
0<k<m—1,

(az(%>m+k: (|Z|2 . 1)2m71 —

(0:05)" G

1 9 m !
(2m)!2(|2| -1 T em)lm— kKRR =TS

(az &Z> m—+k

Remark 7.2.1. Obviously, we see that for m € N,
(9:0)" — (VV—l) =1, z€eq,

(7.10)
ayz(azag)am(w _)m =0, 0<o<m—1, z€ (w0)U(0,1).
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Then, the following result is valid.

Lemma 7.2.3. For any k, m e N, 2k —1<m —1 and 2k < m — 1,

1
——/N% (2 Oy = (G =
| 26D e
+R ; (2k — D12k — 1 — p)12(2u — 2k+1)|6w Ny (2, 0),
(7.11)
1

——/NZk; z,()dxdy = (2/{)!2(|<|2 —1)%*

! 2 (7.12)

k
!
an ; (2k)!(2k — 10)12(2p — Qk)!a”zN“H(Z’ <

where
. Ny+1(2,¢) = 20, N1 (2, Q) + 20:Ny1(2,¢) on L.

Proof: Applying (7.6) to W(MQ 1)?*=1 and then from (7.4), (7.10) and
the normalization for NV; (1 <i < m),

1

5 ),Q(W P+ / Noka (2, )y

X Lo (113)
N )(0,0) | ——— 2 _ 1)2k-1 az .
4mi Z /3Z w2 y {(2k—1)!2(|z| ) z
Thus, expression (7.11) follows from Lemma 7.2.1 and the property that 0, N,+1(, ()
is only depending on ¢ for z € L. Similarly, (7.12) is also true.
Therefore, from (7.4) and Lemma 7.2.3, we obtain the recursive boundary
behavior for N,,(z, ().

Theorem 7.2.2. Form > 2 and ¢ € €2,

( m—2 )
!
- N
o = Dlm — 1 - p)PEa —m o+ i (50
aysz zZ, = 2 An .
o _m(\dz—l) L ze L\{1,w},
0, z € (w,0)U(0,1),
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where n is defined with respect to the angle w/n for Q as before and

—4n, ze€ L\{1l,w},

Q.
0. sewou@, 7 CE

0,.N1(2,¢) = {

Finally, the polyharmonic Neumann problem is studied.

Theorem 7.2.3. The polyharmonic Neumann problem

(azaz)mw = f in Q; 81,2(62([%2)011) =7 Oon (9(2,
n o o dC
2 J@oru©
L
for f e L,(2;C), p>2, v, € C(0;C), ¢, € C is solvable if and only if

m m—1

=cC,, 0<o<m—1,

89 “:"“1 p=o+l (7.14)
+1 / Oy Nuo(2, O F(O)dedn, 0<o<m—1,
T
Q

where 0, = 20, +Z0s for z € L and

k—2 )
!
be-1 = — by, 3<k<
k—1 < (k—l)!(/{:—l—u)!z@u—k‘f‘l)! M SR>,
Kr=l3
Then its solution is uniquely expressed as
m—1 1 1
w(z) = { - Rcuﬂwl(z) T /’YM(C)NMH(Z,C)dSC}
" ) 2 (7.15)
—%/Nm(z,g)f(()dgdn, ceq,
Q

with
ﬁu-&-l(z) = aVCNM-i‘l(Z’C)? 0< H <m-—1 fO?" C € L7 z €L
Besides, it should be noted that
1
buzﬂayzﬂu-i-l(z)v 1 S/’Lgm_]w

with 0, = 20, + Z0s for z € L.
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Proof: We adopt the inductive method to prove the conclusion. From Lemma
4.2.1 and Theorem 4.3.4, the conclusion is true for m = 1, 2. We assume that
the solution and the solvability conditions are valid for m < k — 1 (k > 2), then

the polyharmonic Neumann problem for m = k can be transformed into
(82(%)’“’110 =w; in Q, 0,,(0.05)°w =1, on 0,

= J@aruo?

L

=c¢y, 0<0< k-2,

and

0.0:wy = f in Q, 0, w; =1 on 0N, %/wl(()%:ckl.

L
Then, we know if and only if
3 [er(Oase =2 [ foyaa (7.16)
o V-1 ¢= 7 m, .
o0 Q

and

/Z%l 0. Ny—o (2, ()ds¢

80 M= o+1

k—2 ] (7.17)
= N ot /ayszlg(z, Owi(Q)dédn, 0<o<k—2,
p=o+1 T Q

are satisfied, wy, w can be uniquely expressed as, respectively,

@) =i+ 1 [N Odsc - 1 [ HOMEOdedn, (7.9

o0N Q

and

M@:{—f@mu> ;/%@Mm@gw%
(7.19)
__/Nk 1 (¢)d&dn.
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Putting (7.18) in the area integral of (7.17) gives

~ 2N Qui@)aedn = 92 [0, Mooz, )y
Q

™
Q

& / 1€ Neo (2, s+~ / H(©)9r.Ni—o (2, €)ddln,

o0N Q

thus from
4n
00,0y Ni—o(2,¢) = — Ov.Ne—1-6(2,0)dédn, 0<o0<k-—2,
Q

with 0,, = 20, +Z0:, =z, (€L,

we have
1 k k—1
5 [ X 00N Ods = 3 b
bo M=ol p=otl (7.20)

- / O Nieol2,Q)F(Q)dedn, 0<o<k—2.
Q

Then, (7.20) and (7.16) imply that (7.14) is true for m = k. Similarly, (7.15) is

also valid. This completes the proof.
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Appendix A: The Tetra-harmonic Green Function
for the Unit Disc

Similarly to the tetra-harmonic Green function @4(z, () constructed in (6.19) for
the fan-shaped domain €2 with angle 7/n (n € N), we also establish the tetra-
harmonic Green function a;(z, () explicitly for the unit disc by convolution, that
is,
— zC 1 _ =2
Ga(2,0) = = IC — 2|’ log C — 352 = DU = DEE +2°C - 30)
1

+E(|Z|2_ D¢ = D(C + ]2 )(EC+ZC—4)—%(Iz\4—1)(|<|4—1)(54+25)

1 ool 1y, 1 1

gl — D 1){2' (‘C zZ) COERNESE
log(1—%¢) _ log(1— <0)
TTEE o }

_1_12 [(Izl6 = D(¢l* = 1)+ (21" = DI = 1) + 3(]=* = D(I¢I* — 1)

g s log(1 —2¢)  log(1 — 2() 1
431~ (¢ 1>]x{ o b0, 2y C}

- [w — D(CR = 1)+ (12 = D¢~ 1) +3(lel* = (1) - 1)

[log(lzc— I log(lzz— ZZ)}

X

3 — 1)(CP - 1>}

=([=1* = D(I¢P +(2¢)']

=0

+§<|z|2—1><|<|2 =P +1¢P

+(20)"], =z(eD,

l:O
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with the unit disc D = {z, |z| < 1}. We can exactly confirm that Gy4(z, () above

satisfies - s
aZaEGéL(Z?C) - G3<Z,<>, 2,y C S ]D)a
Gi(2,¢) =0, 20D, (D,

where the tri-harmonic Green function Gj(z, () for the domain D is, (see [29])

=~ 1 4 zQ N/ F | =

Gafz:6) = 3o = =1*tog L2 o - 2 - o) + 2 -
1 L log(1—2¢) log(1 — () 1
T e - o) [P Cra L]
PR [~ P2 + [P [log“zg =) e E)
(L= 2 (1= [¢P) +(20)] -

Hence, obviously 5/4(27 () is just the tetra-harmonic Green function for the unit

disc D by convolution.
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Appendix B: The Tri-harmonic Neumann Function
for the Unit Disc

In [29], a tri-harmonic Neumann function for the unit disc is constructed by
convolution. However, the expression of the tri-harmonic Neumann function
]AV;,(z,C) is given via integral representation. As a matter of fact, it can be

established via elementary functions explicitly. That is,
~ 3
Ny(2,Q) = S+ 219 +5(IC” + D(1= + 1) + 2(1¢]° + |=I* + 6)
1—2( ?
(—z

=2+ 206+ 20+ S0t + 1249 o -

o

(2 = D¢ = D=+ 2C) + —|C — z[*log

NH

l\D|’—‘

(1C1 + 1P (1= + DCP + 1) + 40P + |2 + 2>]

. Fog(l —20) |, log(1— zZ)}

z( ZZ
1 S| 4 log(1 —2¢) | log(1 - 2() 1
=+ D¢+ 1) ERE 7 z(+ e
8 (ISP +1)(|2[>+1)  4|2> +4[¢]* +6
+Z{{l+1 R (0, }

x [(ZO)M! + (20)] }, z,¢ € D.

By computation, we can verify that ]f\Tg(z, () has the properties,

az&z]/\\fji('z?C) = ]/\\[;(Z7C)> YAS D?

~ 1
0. Falz0) = = |31 KPP + (1= 1P)] . e ap. ceD
Further, the normalization condition holds,
1 ~ dz

— Ns — =0



where the harmonic Neumann function val(z, () and the biharmonic Neumann

function Na(z, ¢) for the unit disc are determined in [11, 29],

Ni(2,0) = —log|(¢ — 2)(1 = 2Q)]%, =z ¢ €D,
and

No(z,¢) = |¢ — 2]* [4 — log | (¢ — 2)(1 — 20)?] — 2(=C + () log |1 — 2C|?

4 IV | =yl

log(1 = %) _log(1— 20)
- + = ;

F(CR + 1122 + 1) [ v CED.

Therefore, by the properties of ]f\Tg(z, (), we easily know that it is just the desired

tri-harmonic Neumann function for the unit disc D by convolution.
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Zusammenfassung

In dieser Dissertation werden einige Randwertprobleme flir komplexe par-
tielle Differentialgleichung in Kreissektoren untersucht. Zuerst wird die Schwarz-
Poisson Integraldarstellung in Kreissektoren mit dem Offnungswinkel 7 /n (n €
N) mit Hilfe der Reflektionsmethode bewiesen und die entsprechenden Schwarz
und Dirichlet Probleme studiert. Danach wird die Schwarz-Poissonsche Integral-
darstellung mit Hilfe einer geeigneten konformen Abbildung auf allgemeine Kreis-
sektoren mit Offnungswinkel 7/a (o > 1/2) erweitert. Damit werden die Schwarz
und Dirichlet Probleme flir die Cauchy-Riemann Gleichung gelost. Es wird eine
Briicke zu den entsprechenden Formeln im Einheitskreis und dem Kreissektor
mit a = 1/2 geschlagen, und die Schwarz-Poisson Formel fir den Einheitskreis
aus der Schwarz-Poisson Formel ftir « = 1/2 hergeleitet.

Eine harmonische Greensche Funktion und eine harmonische Neumannsche
Funktion werden fiir Kreissektoren mit Winkel 7/a (o > 1/2), konstruiert und
damit die Dirichlet und Neumann Probleme fiir die Poisson Gleichung behandelt.
Insbesondere wird die auflere Richtungsableitung in den drei Eckpunkten des Ge-
bietes in geeigneter Weise definiert. Eine biharmonische Greensche Funktion, eine
biharmonische Neumannsche Funktion, eine triharmonische Greensche Funktion,
eine triharmonische Neumannsche Funktion und eine terta-harmonische Green-
sche Funktion werden fiir die Kreissektoren mit Offnungswinkel 7/n (n € N)
in expliziter Form konstruiert. Dariiber hinaus wird aufgezeigt, wie sich eine
tetraharmonische Neumann Funktion gewinnen lésst, und ein Ausdruck fuir diese
Funktion wird mit Hilfe einer Integraldarstellung angegeben. Die zugehorigen
Dirichlet und Neumann Probleme werden gelost.

Schlieflich wird ein Iterationsprozess zur Behandlung von polyharmonischen
Dirichlet und Neumann Problemen fiir die Poissonsche Gleichung héherer Ord-
nung in Kreissektoren mit Winkel 7/n (n € N) und zugehérige Losbarkeitsbedingungen
angegeben. Auch wird das Randverhalten der gefalteten polyharmonischen Green-

schen und Neumannschen Funktionen ausfiihrlich untersucht. In einem Anhang
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werden eine tetraharmonische Greensche Funktion und eine triharmonische Neu-

mann Funktion fiir den Einheitskreis explizit konstruiert.

Stichworter: Schwarz-Poisson Darstellung, polyharmonische Green Funktion,
polyharmonische Neumann Funktion, Schwarz Problem, Dirichlet Problem, Neu-

mann Problem.
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