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Abstract

Conical intersections (CIs) and the related non-adiabatic coupling terms

(NACTs) are essential for the description of radiation-less processes involved

in photochemistry. It was found that the molecular symmetry imposes con-

straints on CIs, NACTs and the transition dipole moments with respect to

symmetry-adapted coordinates. These have consequences for ab initio quan-

tum chemistry calculations of the NACTs, transition dipole moments and for

the non-adiabatic reaction dynamics which is mediated by the NACTs. In this

study, a new combination is presented of the three field of research: quantum

chemistry, quantum dynamics and theory of the molecular symmetry groups.

This combination shows the importance of the molecular symmetry of the

CIs, NACTs and transition dipole moments for the photo-induced nuclear

dynamics. These investigations are demonstrated for the cis-trans isomer-

ization of the model system Cyclopenta-2,4-Dienimine (C5H4NH) which has

C2v(M) molecular symmetry, by photo-induced torsion of the H-atom versus

the C5H4N fragment around the CN axis.





Kurzfassung

Konische Durchschneidungen und die zugehörigen nicht-adiabatischen Kopp-

lungsterme sind wesentliche Bestandteile bei der Beschreibung strahlungsloser

Vorgänge in der Photochemie. In der vorliegenden Arbeit wird gezeigt, dass

die molekulare Symmetrie Bedingungen an die Form der konischen Durch-

schneidungen, die nicht-adiabatischen Kopplungsterme und die Übergangsdipol-

momente stellt. Diese wirken sich auf die quantenchemischen ab-initio-Berech-

nungen der nichtadiabatischen Kopplungsterme und der Übergangsdipolmomente

sowie auf die nichtadiabatische Reaktionsdynamik aus, welche durch die Kopp-

lungsterme beeinflusst wird. In dieser Arbeit werden drei Forschungsfelder

kombiniert: Quantenchemie, Quantendynamik und Theorie der molekularen

Symmetriegruppen. Diese Kombination begründet die Bedeutung der moleku-

laren Symmetrie der konischen Durchschneidungen, der nichtdiabatischen Kopp-

lungsterme und der Übergangsdipolmomente für die lichtinduzierten Kerndy-

namik. Die Unterschungen erstrecken sich auf die cis-trans-Isomerisierung

des Modelemoleküls Cyclopenta-2,4-dienimin (C5H4NH), das zur molekularen

Symmetriegruppe C2v(M) gehört, durch lichtinduzierte Torsion des H-Atoms

gegenüber dem C5H4N-Fragment um die CN-Achse.
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1. Introduction

Photochemistry is the study of chemical changes made possible by energy of light. The

first observation of a photochemical reaction was described by Trommsdorf in 1834 [1],

when he noticed that a-santonin crystals turn to yellow and burst when they are exposed

to light. Nature involves a lot of fundamental processes which are triggered by photo-

chemical reactions. Perhaps the most important photochemical reaction is photosynthesis

where carbon dioxide and water are converted into starch. This process depends on the

absorption of sunlight by chlorophyll in the leaves. The net results is that the energy

absorbed is stored as chemical energy in the starch. In photochemical reactions, light can

be either in the reactant, i.e. light absorption, or product (emission of light as fluorescence

and phosphorescence or light transferred to another molecule or atom). When a molecule

absorbs light, it enters an excited state whose physical and chemical properties differ from

the initial state. The excited state then changes by reacting with other molecules or gives

off its extra energy. The complete understanding of photochemical reactions and the

abilities to control them will help to design artificial experimental photochemical systems

mimicking the natural ones, such as motors, machines and switches in nano scale. Photo-

chemical reactions involve electronic reorganization initiated by electromagnetic radiation.

The reactions proceed on typical time scales from tens of femtoseconds (1fs =10−15s) to

picoseconds (1ps =10−12s). These reactions are several orders of magnitude faster than

thermal reactions. Contrary to thermal reactions, which proceed on a single potential

energy surface, photochemical reaction involve at least two.

The Born-Oppenheimer approximation is the keystone to the visualization of chemical

processes. It enables to picture molecules as a set of nuclei moving along a potential

energy surfaces (PES) provided by the electrons. However, whereas the validity of the

Born-Oppenheimer approximation for many chemical systems is not in doubt, it is now

clear that in many other important cases the approximation breaks down [2, 3]. That

is to say, the nuclear and electronic motions are coupled. This is mostly common in

the photochemistry of polyatomic molecules where a large number of energetically close-

lying electronic states and many nuclear degrees of freedom are involved. An important

example of the result of coupling between nuclei and electrons is a conical intersection (CI)

between electronic states, see Fig.1.1. Many investigations show that the most efficient

transition from one electronic state to another is at a conical intersection. Perhaps the

3



4 Chapter 1. Introduction

earliest examples for the importance of coupling between the electronic states were found

during the 1930s. In 1934 Renner wrote about the non-adiabatic coupling in electronically

excited states in CO2 [4]. Teller in 1937 [5], showed that conical intersections are very

important for the non-radiation decay in photochemical reaction, without performing any

quantum dynamical simulation. He already discussed the possibility that one can ”get a

transition in a short time” by internal conversion via a conical intersection. Moreover, in

a semi-classical framework L. Landau [7] and C. Zener [8] quantified the fast radiation-less

decay that occur at a CI. The first quantum dynamics simulation of internal conversion

via conical intersection was carried out by Köppel et al. [9], demonstrating internal

deactivation on the sub-100-fs time scale. Since then, CIs known to provide ultrafast

important mechanism for many photo-chemical reactions [10]. One area in which conical

intersections are important is in biological systems. Nonadiabatic processes are common in

photobiology, affecting essential processes, such as photosynthesis, light harvesting, vision

and in the photochemical damage and repair of DNA [12]. For example, the stability of

DNA with respect to the UV irradiation is due to such conical intersection [12, 13]. This

comes from the very important role they play in non-radiative de-excitation transitions,

where a molecular wavepacket which is excited to some excited electronic state by the UV

photon follows the slope of the potential energy surface (PES) and reaches the conical

intersection, see Fig.1.1. At this point the strong non-adiabatic coupling terms induces a

non-radiative transition which leads the molecule back to its electronic ground state [14].

Reactant Product

CI

S0

S1

a
b

s
o
rp

ti
o
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E
n
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Reaction coordintes

Figure 1.1.: Schematic view of the radiative excitation and it is deactivation via conical

intersection between the electronic states S0 and S1. The arrows visualize

the motion of a nuclear wavepacket.
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A full understanding of photochemical reactions requires the knowledge about:

1- The location of the conical intersections.

The conical intersections are the set of molecular geometry points where the two

potential surfaces of the same spatial irreducible representation and spin state in-

tersect (see Fig.1.1). As a consequence, to give a precise explanation of photochem-

ical reactions it is important to localize these conical intersections. Herzberg and

Longuet-Higgins [15, 16] pointed out that the electronic wave function changes its

sign when transported along a closed loop around a CI. This phase-change theorem

is applied to localize the conical intersection in many system. This model, developed

by Haas and Zilberg [17, 18], is one of several methods for locating the conical in-

tersections and has been used to explain many different reactions. For this purpose

the stationary points, i.e. the minima and transition states in the electronic ground

states are considered as so called an anchors. Each Longuet-Higgins (LH) loop con-

sists of a unique pair of reaction paths from reactant via one of the transition states

to the product. According to this model, a single CI exists within any LH-loop

if the electronic wavefunction changes it is sign when the system goes around the

closed loop. Then the CIs can be located by interpolation of paths which connect

the anchors of the surrounding LH loop [17, 18].

2- The potential energy surfaces (PES) and the non-adiabatic coupling terms (NACTs)

which couple the potential energy surfaces.

The derivative coupling that couples two different electronic states is inversely pro-

portional to the energy difference between the two electronic states [3]. Therefore,

the smaller the energy difference, the larger the coupling. This phemonon is a result

of the break down of the Born-Oppenheimer approximation, where it is assumed

that the non-adiabatic coupling terms are zero. So it is necessary to calculate these

coupling terms for non Born-Oppenheimer processes, in particular if conical inter-

section are involved. The determination of the properties of conical intersections

requires a high level of quantum chemical calculations of PESs and non-adiabatic

coupling terms (NACTs), which are now possible by modern programs based on

quantum chemistry [19, 20, 21, 22]. A common approach to determine the strength

of coupling elements is the multi-mode vibronic coupling method, where the diabatic

coupling are modelled by linear or higher order functions of the nuclear coordinates

[23, 24, 25, 26]. The coupling elements can also be obtained by a quasi-diabatization

procedure from the adiabatic potential energies [27, 28, 29]. Ab initio calculations

of the non-adiabatic coupling terms which appear in the adiabatic representation of

the molecular Hamiltonian have also been employed for the simulation and control
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of non-adiabatic nuclear dynamics in the adiabatic representation [30, 31]. Accu-

rate methods to calculate NACTs have now been implemented in quantum chemical

packages like MOLPRO [32].

At conical intersection, the NACTs have poles, i.e. they approach infinity. The

singularity of the NACTs at the CIs makes simulation of nuclear dynamics on cou-

pled electronic states very difficult in the adiabatic representation. In order to

remove these singularities an adiabatic-to-diabatic transformation (ADT) is applied

[3, 10, 11, 33]. Moreover, the NACTs must fulfil quantization rules [3], i.e. the

contour integrals of the NACTs evaluated along closed loops around a individual

CI between two electronic states have to be equal to ±π. The numerical agree-

ment of the NACTs with these quantization rules in many systems demonstrate the

quantum chemical accuracy in the calculations of the NACTs [3, 33, 34].

3- Quantum dynamics of the nuclear wavepackets on coupled surfaces.

A complete understanding of photochemical reactions requires a knowledge about

the dynamics of the nuclear wavepackets evolving on the coupled PESs. The simu-

lation of wavepacket dynamics requires quantum chemistry calculation of the tran-

sition dipole moments in order to evaluate the initial photo-excitation [2]. Since

the 1980s, methods for time-dependent wavepackets have been employed to explore

the quantum dynamics in the presence of conical intersection, both with ab initio

based model and with simplified generic model Hamiltonians [23, 24]. Quantum dy-

namics make it possible to investigate for example photo-dissociation [2, 37, 38] and

photo-isomerization [39, 40] processes. A prominent example is the isomerization

around a C=C double bond [41]. The quantum dynamical simulations of photo-

chemical reactions via conical intersections serve as a basis for developing methods

for their control using special designed laser pulses. Numerical exact technique for

quantum dynamics of nuclear wavepackets does not allow to simulate polyatomic

photochemical in full dimensionality. As a consequence, the reaction dynamics is

often simulated using models with reduced dimensionalities [10, 36].

4- Symmetry of the conical intersections and NACTs.

Longuet-Higgins [42] has pointed out that a powerful way of treating molecular sym-

metry properties begins not with the traditional concept of molecular point groups,

but rather with concepts associated with the exchange of identical particles. The

molecular symmetry operations are the operations that leave the Hamiltonian of the

system invariant. This consists of the inversion of all nuclear and electronic coordi-

nates and of the feasible permutations of identical nuclei [43, 44] and thus determines
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equivalent configurations of a molecule. The molecular symmetry is a fundamental

concept in chemistry, since it can predict or explain many chemical properties of a

molecule such as selection rule for spectroscopic transition [43]. Moreover, by ex-

ploring the symmetry of a molecule one can simplify quantum chemical calculations.

The relative phase of the electronic wavefunctions and thus the sign of the NACTs

is, however, not easily obtained by traditional quantum chemistry methods. For

symmetric molecules, which have several conical intersections, this phase can play

an important role: The electronic wavefunctions and the NACTs transform accord-

ing to the irreducible representations of the molecular symmetry of the molecule,

which determines by the phase of the wavefunctions. We should emphasis here the

difference between the molecular symmetry of an electronic state, which describes

its global symmetry with respect to the nuclear coordinates, and the molecular point

group which determines the local symmetry of an electronic wavefunction at a given

nuclear configuration.

The goal of this thesis is to develop methods in order to determine the symmetry of

the CIs and the related NACTs with the help of a combination of molecular symmetry

and quantum chemical methods. Moreover, the importance of molecular symmetry for

photo-induced nuclear dynamics is demonstrated with the help of quantum dynamics sim-

ulations. To achieve these aims, the photo-induced torsion around CN-bond of C5H4NH

is considered as an example.

This work is sectioned into the main parts: First, the theoretical concepts used in this

thesis are briefly summarized. The second part contains the assignment of the molecular

symmetry of the conical intersections and related non-adiabatic coupling terms. Third,

we investigate the effect of the irreducible representations (IREPs) of the NACTs on the

nuclear dynamics. This is done by investigating the photo-induced cis-trans isomeriza-

tion of C5H4NH by studying the H-atom movement on coupled electronic states. In more

details, the structure of this thesis is as follows:

CHAPTER 2 includes the theoretical concepts of quantum chemistry and quantum

dynamics of isolated molecules. It provides a definition of conical intersections and

non-adiabatic coupling terms. Quantum chemical approaches to calculate the PESs and

NACTs are introduced. Also, all numerical methods used to solve the nuclear Schrödinger

equation are presented. Moreover, the interaction between laser field and molecule are

discussed. Finally, the chapter includes an introduction to the concept of the molecular

symmetry.

CHAPTER 3 includes a brief presentation of the model system, C5H4NH and its prop-

erties.
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CHAPTER 4: In this chapter, we introduce the molecular symmetry properties of

the CIs and the related NACTs in molecules with large amplitudes motion such as tor-

sion, focusing on groups with only one-dimensional irreducible representation. These

foundations are important for applications, e.g. we will show that locating one CI and

the assignments of its IREPs generate automatically the complete set of analogous CIs

at symmetry-related locations. Then, we present the PESs and related non-adiabatic

coupling terms calculated using ab initio quantum chemical methods for the model sys-

tem C5H4NH for three couple electronic states. Finally, this chapter is completed by

calculating the adiabatic-to-diabatic transformation matrix which is applied to transform

the adiabatic potentials and non-adiabatic coupling elements into a diabatic presentation.

CHAPTER 5: The CIs, NACTs and dipole and transitioon dipole moments which

appear in the nuclear Schrödinger equation, determine the photo-induced process of a

given system. The knowledge of symmetry properties should thus be important for ade-

quate predictions of the non-adiabatic reaction dynamics, including interferences. In this

chapter, we present the investigations of the effect of the molecular symmetry and the cor-

responding irreducible representations of the non-adiabatic coupling terms and transition

dipole moments on photo-induced nuclear dynamics, with application to radiation-less

decay and intra-molecular torsion. This chapter contains two parts for the quantum dy-

namics without and with considerations of the laser pulses.

CHAPTER 6 includes the summery of this study and the conclusions.
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This chapter includes a brief description of the theoretical methods and techniques used

to achieve the goals stated in the introduction. The total non-relativistic time-dependent

Schrödinger equation (TDSE) will be separated into two parts: namely the electronic

TISE and the nuclear TDSE. Ab initio quantum chemistry methods will be used to solve

the electronic time-independent Schrödinger equation (TISE). The methods used to cal-

culate the non-adiabatic coupling terms (NACTs) and the concept of conical intersections

(CI) will be introduced in Section 2.3. The adiabatic-to-diabatic transformation (ADT)

is discussed in Section 2.5. In Section 2.6, the interaction between molecules and light

will be introduced. Numerical time-dependent and time-independent solution methods

will be presented for the nuclear Schrödinger equation in Section 2.7. The last section

will include a brief introduction to the molecular symmetry (MS).

2.1. Born-Oppenheimer Approximation

The time dependent Schrödinger equation which defines the total time dependent wave-

function ψtot is given by

i~ ∂
∂t
ψtot = Htotψtot (2.1)

Here, the total Hamilton operatorHtot contains all system information, which for a molec-

ular system consisting of Nel electrons and Nnuc nuclei has the form [51],

Htot = Tel + Tnuc + Vel,el + Vnuc,nuc + Vel,nuc (2.2)

The kinetic energy of the electrons has the following form

Tel =

Nel∑
j=1

P⃗ej
2

2me
, (2.3)

where me is the electron mass, and P⃗ej represents the momentum of the j-th electron.

For the nuclei, the kinetic energy is

Tnuc =

Nnuc∑
n=1

P⃗ 2
n

2Mn
, (2.4)
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with the nuclear massesMn, and nuclear momenta P⃗n. The Coulomb interaction between

the electrons is given in the following form:

Vel,el =
1

4πε0

Nel∑
j=1

∑
j<i

e2

| s⃗ei − s⃗ej |
, (2.5)

where e and s⃗e are the charge and the position of the electrons, respectively. The Coulomb

interaction between the nuclei is

Vnuc,nuc =
1

4πε0

Nnuc∑
n=1

∑
n<m

ZmZne
2

| s⃗m − s⃗n |
(2.6)

Where Zne and s⃗n represent the charge and the position of nuclei, respectively. Finally

the Coulomb interaction between nuclei and electrons is given by:

Vel,nuc = − 1

4πε0

Nnuc∑
n=1

Nel∑
j=1

Zne
2

| s⃗n − s⃗ej |
. (2.7)

The solution of the non-relativistic TDSE Eq.(2.1) with this Hamilton operator Eq. (2.2)

is a complicated many-body problem. Fortunately, there are ways to simplify the many-

body problem by mean of reasonable approximations so that the Schrödinger equation

with total Hamiltonian can be solved numerically. The most well-known approximation

is called Born-Oppenheimer method [52].

The Born-Oppenheimer approximation is based on the fact that there is a large difference

between the masses of the nuclei and electrons, which implies that the nuclear motion

is slow compared to the electronic motion [52]. The Born-Oppenheimer approximation

simplifies the solution by separating nuclear and electronic motions. The physical picture

of Born-Oppenheimer approximation is one where the fast-moving electrons are able to

re-adapt instantaneously to new nuclear geometry, as a result of the light electron mass

with respect to the nuclear one. Therefore, one first solves the TISE for the electronic

Hamiltonian

Hel = Tel + Vel,el + Vel,nuc (2.8)

with fixed nuclear coordinates. Here, Hel depends explicitly on the electronic coordinates

s⃗e1, s⃗e2, · · · , s⃗eNel
, while the nuclear coordinates s⃗1, s⃗2, · · · , s⃗Nnuc

are parameters.

The task of the quantum chemistry is to solve the associated electronic TISE

Hel | ψi
el⟩ = Ei

el | ψ
i
el⟩ (2.9)

The solution of the electronic TISE Eq.(2.9)(the methods will be presented in the next
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section) provides the electronic eigenfunctions or electronic states | ψi
el⟩ as well as the

electronic energies Ei
el for the i-th electronic state (which will be dropped in next section

for simplicity). The total energy of a given electronic state i with fixed nuclear geometry

is equal to the electronic energy plus the nuclear repulsion energy Vnuc,nuc, i.e.

Ei = Ei
el + Vnuc,nuc (2.10)

The electronic TISE Eq.(2.9) can be solved for various nuclear geometries, so that the

electronic energies Ei
el(s⃗1, s⃗2, · · · , s⃗Nnuc

) depend on the nuclear coordinates. Also the

quantity Ei, is a function of s⃗1, s⃗2, · · · , s⃗Nnuc
and thus can be written as [51, 52]:

Ei = Ei
el(s⃗1, s⃗2, · · · , s⃗Nnuc

) +
1

4πε0

Nnuc∑
n=1

∑
n<m

ZmZne
2

| s⃗m − s⃗n |
. (2.11)

The quantity Ei is called potential energy (hyper)surface (PES) for the i-th electronic

state. The solution of the electronic TISE with given nuclear geometry represent one

point of the PES. It will be shown in Section 2.3 that Ei is the effective potential energy

(V ) for the Nnuc nuclei and depending on the nuclear positions:

Ei(s⃗1, s⃗2, · · · , s⃗Nnuc
) = Vi(s⃗1, s⃗2, · · · , s⃗Nnuc

) (2.12)

In the Born-Oppenheimer approximation, the nuclei move in the ground electronic state

according to the Hamiltonian:

Hnuc = Tnuc + V0(s⃗1, s⃗2, · · · , s⃗Nnuc
) (2.13)

The solution of the nuclear TISE yields the nuclear eigenstate | Φj
nuc⟩ and eigenenergies

Ej
nuc describing the vibration, rotation and translation of the molecule.

Hnuc | Φj
nuc >= Ej

nuc | Φj
nuc > (2.14)

Within the Born-Oppenheimer approximation the eigenfunction of the total Hamiltonian

Eq. (2.2), Φj
tot for the electronic ground state (j=0) is expressed in the following formula:

Φ0
tot(s⃗1, s⃗2, · · · , s⃗Nnuc

, s⃗e1, s⃗e2, · · · , s⃗eNel
) = Φ0

nuc(s⃗1, s⃗2, · · · , s⃗Nnuc
)

×ψ0
el(s⃗e1, s⃗e2, · · · , s⃗eNel

, s⃗1, s⃗2, · · · , s⃗Nnuc
) (2.15)

The solution of the TDSE will be presented in Sections 2.3 and 2.7.2.
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2.2. Electronic Schrödinger Equation

In this section we will focus on the solution of the electronic Schrödinger equation (Eq.

2.9) which provides a potential energy for nuclear motion. First, we show how to write

the wave function approximately as a single Slater determinant consisting of spin orbitals

which are a product of spatial and spin functions. Then we express the spatial function

as a linear combination of basis functions. The variational method, Hartree-Fock and

post Hartree-Fock methods will be discussed. The solution of the electronic Schrödinger

equation will provide the framework to solve the nuclear Schrödinger equation.

2.2.1. Variational Method and Hartree-Fock Theory

The variational principle described in the following equation is the basis of quantum

chemical methods for solving the electronic TISE:

⟨ψel | Hel | ψel⟩
⟨ψel|ψel⟩

= E ≥ Eel. (2.16)

For a pure one-body system, like the hydrogen atom, it is possible to solve the Schrödinger

equation (Eq.2.9) analytically. For systems with few electrons, such as helium, the ”many-

electron” problem can be solved nevertheless exactly. However, many-electron systems

cannot be treated with such precision in general case.

The Hartree-Fock method is widely used as an approximation for many-electron problems.

Accordingly, every electron moves in the potential created by the nuclei plus the average

potential of the other electrons. This leads to what is known as the independent particle

model which essentially reduces the many-electron problem to the solving a set of coupled

single electron equations.

In the Hartree-Fock frame the N-particle wavefunction consisting of N single orbital func-

tions χj(x⃗i, s⃗ ) gives a so-called Slater determinant (SD):

| ψel⟩ ≈ (N !)−
1
2

∣∣∣∣∣∣∣∣
χ1(x⃗1, s⃗ ) χ2(x⃗1, s⃗ ) ... χN (x⃗1, s⃗ )

χ1(x⃗2, s⃗ ) χ2(x⃗2, s⃗ ) ... χN (x⃗2, s⃗ )
...

...
...

χ1(x⃗N , s⃗ ) χ2(x⃗N , s⃗ ) ... χN (x⃗N , s⃗ )

∣∣∣∣∣∣∣∣ (2.17)

where (N !)−
1
2 is a normalization factor and χj(x⃗i, s⃗ ) is called a spin-orbital, defined as
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a product of a spatial orbital ϕj(s⃗ei, s⃗ ) which represent the spatial part of the molecular

spin orbital and a spin orbital, α(ωi) or β(ωi) indicate spin up and spin down functions

which depends only on the spin coordinates ω:

χj(x⃗i, s⃗ ) = χj(s⃗ei, ωi, s⃗ ) = ϕj(s⃗ei, s⃗ ) ·
{
α(ωi)

β(ωi)

}
(2.18)

here, the ϕj also depends on the nuclear coordinates s⃗ . Below, we shall use a simplify-

ing notation which needs the spatial coordinates s⃗e, but deletes the spin functions and

coordinates.

In HF, we assume that the trial wavefunction consists of a single Slater determinant.

Choosing the single determinant as a trial function, the variational principle can be used

to derive the HF equations, by minimizing the energy subject to the boundary condition,

that the χj are orthonormal. This gives the HF equations which by considering the

closed-shell case and after eliminating the spin coordinates read

f(s⃗e1, s⃗ )ϕj(s⃗e1, s⃗ ) = ϵjϕj(s⃗e1, s⃗ ) (2.19)

where ϵj are the orbital energies and f , ϕj and ϵj depend parametrically on nuclear

position s⃗ , which will be dropped out in the next part for simplicity. The Fock operator

f consists of the one electron operator h(s⃗ei) and the Hartree-Fock potential V HF ,

f(s⃗e1) = h(s⃗e1) + V HF = h(s⃗e1) +

N/2∑
j=1

(
2Jj(s⃗e1)−Kj(s⃗e1)

)
(2.20)

where the one-electron operator h(1s⃗e1) is given by

h(s⃗e1) = − P⃗e
2

2me
− 1

4πε0

Nnuc∑
n=1

Zne
2

|s⃗e1 − s⃗n|
. (2.21)

The one electron operator h(s⃗e1) describes the motion of a single electron in the field

of the nuclei, while the Hartree-Fock potential (V HF ) describes the interaction of each

electron with the average field of the other electrons. It consists of the Exchange operators

(Kj) and the Coulomb operators (Jj), i.e.

Jj(s⃗e1)ϕi(s⃗e1) =

[∫
ds⃗e2ϕ

∗
j(s⃗e2)

1

| s⃗e1 − s⃗e2 |
ϕj(s⃗e2)

]
ϕi(s⃗e1) (2.22)
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Kj(s⃗e1)ϕi(s⃗e1) =

[∫
ds⃗e2ϕ

∗
j(s⃗e2)

1

| s⃗e1 − s⃗e2 |
ϕi(s⃗e2)

]
ϕj(s⃗e1) (2.23)

The Hartree-Fock equation (Eq.2.19) is an integro-differential problem which has to be

solved numerically. Roothaan − Hall proposed to expanded the HF orbitals into a set of

atom centred orbitals [53]. This will transform the HF equation into a linear algebra type

problem. Specifically, the spatial orbitals ϕi are expanded into a linear combination of

basis function ηj . These are also called atomic orbitals (AO) given by

ϕi(s⃗e1) =

k∑
µ=1

ciµηµ(s⃗e1) (2.24)

where s⃗e1 denote the coordinates of an arbitrary electron (e.g. the ”first” one labelled ”1”)

and ηµ also depends parametrically on nuclear position s⃗. Eq.(2.24) is also referred to

as the linear combination of atomic orbitals (LCAO) method used to calculate molecular

orbitals. The coefficient ciµ need to be calculated. Using the variational method and

vary the expectation value of the energy with respect to these coefficient, we get a matrix

eigenvalue equation. In matrix notation it reads

FC = SCϵ (2.25)

Here ϵ is a diagonal matrix of the orbital energies, F is the Fock matrix and S is the

overlap matrix given by

Sµv =

∫
ds⃗e1η

∗
µ(s⃗e1)ηv(s⃗e1) (2.26)

and the Fock matrix

Fµv =

∫
ds⃗e1η

∗
µ(s⃗e1)f(s⃗e1)ηv(s⃗e1). (2.27)

The matrix C contains the coefficients ciµ of the basis function ηµ(s⃗e1). The HF method

may then be understood: It simply involves optimizing the orbitals (or in other words

the coefficient ciµ defining the MOs in terms of the AOs). Even if a large basis set

is employed, the HF method yields only an approximation to the exact solution of the

electronic Schrödinger equation [51, 53]. For highly accurate results, one has to go beyond

HF.
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2.2.2. Basis Sets

In modern computational chemistry, quantum chemical calculations are typically per-

formed within a finite set of basis functions. The linear combination of atomic orbitals

(LCAO) is a superposition of atomic orbitals and technique for calculating molecular

orbitals.

There are two commonly used types of functions to built the atomic orbitals: Slater-type-

orbitals (STO’s) and Gaussian-type-orbitals (GTO’s). The STO’s were used as basis

functions due to their similarity to atomic orbitals of the hydrogen atom. They are

described by a function depending on spherical coordinates [51, 55, 56]:

ηSTOζ,n,l,m(se, θ, ϕ) = Nsn−1
e e−ζseYlm(θ, ϕ) (2.28)

where N is a normalization constant, and ζ the ”orbital exponent”. The se, θ, and ϕ are

spherical coordinates, and Ylm is the angular momentum part which describes the shape.

The n, l and m are the principal, angular momentum and magnetic quantum numbers,

respectively.

Unfortunately, the STO function is not easy to apply for fast calculations of two-electron

integrals. So there is a need to introduce another orbital type, such as the cartesian

Gaussian-type-orbitals, which is given by

ηGTO
ζ,lx,ly,lz(x, y, z) = N · xlx · yly · zlz · e−ζse

2

(2.29)

here N is the normalization constant and x, y, and z are cartesian coordinates and se
2 =

x2+y2+z2. The triple lx, ly and lz are integers; the sum l = lx+ ly+ lz is used to classify

the primitive Gaussian-functions as s-type (l=0), p-type (l=1), d-type orbitals (l=2), etc.

Due to the exponential dependences on se
2, a GTO has zero slop at the nucleus while

STO has discontinuous derivatives. As a consequence, a GTO does not represent a proper

behaviour of the wavefunctions near the nucleus as well as parts far away from it. GTOs

are usually optimized for atoms, not being able to provide an adequate description of

chemical bonds. In order to achieve a certin accuracy as with STOs more GTOs are

needed. So, contracted Gaussian-type-orbitals (CGTOs) are used as linear combination

of the primitive GTOs, these are given in the following form:

ηCGTO
ζ,lx,ly,lz(x, y, z) =

∑
p

dpµη
GTO
ζp,lx,ly,lz(x, y, z). (2.30)

The coefficients dpµ are chosen such that contractions describe electronic orbitals in most

realistic way.
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If only the least number of contracted basis functions per atom is used required to describe

the occupied atomic orbitals of the atom, then a so called minimal basis set is employed.

If more than one contraction is used the basis set is called double zeta, triple zeta, etc.

[55, 56, 57, 58].

2.2.3. Post Hartree-Fock Method

The Hartree-Fock picture lacks electronic correlation as a result of insufficient taking

into account the mutual interaction between electrons. As a result, there is an energy

difference between the HF method for a complete basis set and the exact non-relativistic

energy Eel, which is called correlation energy ,

Ecorr = ϵel − EHF. (2.31)

Two types of electron correlation can be distinguished, the dynamical correlation, describ-

ing the interaction between electrons in the same spatial orbital and static correlation,

accounting for inter-orbital interaction for two spatially close orbitals. Many ab initio

methods have been developed in order to add correlation to the HF-method, and they

are denominated by post HF methods. Generally, they try to calculate the Ecorr via

perturbation theory or configuration interactions.

In the configuration interaction method, the way to introduce the correlation energy is to

expand the exact electronic wavefunction in a linear combination of Slater determinants.

A set of 2K spin orbitals describing a single determinant ground state wavefunction for

N electrons, is given in the following expression [59, 60]:

| ψ0
el⟩ ≈| χ1χ2 · · ·χaχb · · ·χN ⟩. (2.32)

Eq.(2.32) is used to generate determinants according to the number of electrons excited

to the virtual orbitals. The number of determinants depend on the number of electrons

promoted to virtual orbitals. If one electron is excited from its occupied spin orbital (a)

to the virtual spin orbital (v), then the wavefunction has the following form:

| ψv
el,a⟩ ≈| χ1χ2 · · ·χvχb · · ·χN ⟩. (2.33)

So, one can have single excitation where one electron is promoted to a virtual orbital

(Eq. (2.33)) or double excitation where two electrons are promoted, · · · etc. , see ref.

[51, 59, 60]. The full configuration interaction expansion for the ground state wavefunction
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[59, 60] is given by

| ψ0
el⟩ ≈ c0 | ψ0⟩+

∑
av

cva | ψv
a⟩+

∑
a>b,v>r

cv,ra,b | ψ
v,r
a,b⟩+ · · · (2.34)

where the subscript (occupied orbitals) denotes the electron promoted to the virtual

orbitals (superscript). This method cannot be applied for large molecules where a large

number of electrons must be taken into account.

2.2.4. Multi-Configuration Self Consistent Field (MCSCF)

Multi -Configuration Self -Consistent field method uses a linear combination of configuration

state functions (CSFs) or configuration determinants to approximate the electronic wave-

function of an atom or molecule. MCSCF is the most frequently used method to study

excited states. In MCSCF calculations, the set of the coefficients in front of determinants

and the basis function of the molecular orbitals are optimized to obtain the total elec-

tronic wavefunction with lowest energy. This method is considered as a combination of

configuration interaction (where the molecular orbitals are not varied but the expansion

of wavefunction) and HF (where there is only one determinant but molecular orbitals are

varied). The multi-configuration wavefunction is given by

| ψel⟩ ≈| ψMCSCF ⟩ =
∑
k

CMCSCF
k | ψk⟩. (2.35)

Here, the CMCSCF
k are the configuration interaction expansion coefficients. MCSCF wave-

functions are often used as a reference states for multireference-configuration interaction

(MRCI) or multi -reference perturbation theories. These methods can deal with complex

chemical situations and may be used to reliably calculate molecular ground and excited

states.

2.2.5. Complete Active Self Consistent Field (SCF)

In quantum chemistry, a Complete Active Space Self -Consistent Field is a type of configuration

interaction with an defined sub-set of molecular orbitals [61]. In the CASSCF method,

orbitals are classified into three classes: core orbitals, which always hold two electrons

(occupied), active orbitals which are partially occupied and virtual orbitals which always

are assumed to hold zero electrons. That classification allows to develop a set of Slater

determinants for description of the wavefunction as a linear combination of determinants.

One can also extend the active classification to all the molecular orbitals to obtain the full
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configuration interaction treatment, but this is limited due to high computational cost.

The choice of the active orbitals is very difficult and it depends in our knowledge about

the system and what kind of chemical process one needs to study. The chosen orbitals can

be distributed in all different ways to give total spin and space symmetry of the system.

A CASSCF wavefunction maybe constructed for any type of electronic structure, such

as open or closed shell, ground or excited states,...etc. The only limitation is the size of

the chosen active space. A common notation is (n,m)-CASSCF, which indicates that n

electrons are distributed in all possible ways in m orbitals.

In the quantum chemistry part of this study, the state average CASSCF (SA-CASSCF)

method is applied. Using that method orbitals are optimized for a suitable average of

the desired states for a given symmetry and spin. In SA-CASSCF method all states are

expressed using the same MO’s, thereby ensuring the orthogonality.

2.3. Conical Intersections (CIs) and Non-Adiabatic

Coupling Terms (NACTs)

The Born-Oppenheimer approximation is the keystone to the visualization of chemical

processes by enabling to picture molecules as a set of nuclei moving along a PES provided

by the electrons. However, whereas the validity of Born-Oppenheimer approximation for

the many of chemical systems is not in doubt, it is now clear that in many important cases

the approximation breaks down [2, 3]. That is to say, the nuclear and electronic motions

are coupled. This is mostly common in photochemistry of polyatomic molecules where

there are a large number of energetically close-lying electronic states and many nuclear

degrees of freedom.

An important example of the result of coupling between the nuclei and electrons, named vi-

bronic coupling, is a conical intersection (CI) between electronic states. CIs offer pathways

for ultra-fast interstate crossing on the femtosecond time scale. Conical intersections have

important consequences for the nuclear dynamics. A CI permits efficient non-adiabatic

transitions between PESs. A derivative coupling that couples the different electronic

states is inversely proportional to the energy difference of the two electronic states. There-

fore, the smaller the difference, the larger the coupling. This phemona is a result of the

break down of the Born-Oppenheimer approximation, where it is assumed that the non-

adibatic coupling terms are zero. So it is necessary to calculate these coupling terms for

non Born-Oppenheimer processes. In order to solve the Schrödinger equation for the total

Hamiltonian Htot describing both nuclear and electronic motion, the total wavefunction
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is expanded into the i electronic states,

| ψtot⟩ =
∑

ψi
nuc(s⃗, t) | ψi

el(s⃗e, s⃗)⟩ (2.36)

here s⃗ = (s⃗1, s⃗2, · · · , s⃗Nnuc
) denotes all nuclear coordinates, and s⃗e = (s⃗e1, s⃗e2, · · · , s⃗en)

denotes all electronic coordinates.

The total Hamiltonian Eq. (2.2) can be written as

Htot =

Nnuc∑
n=1

− ~2
2Mn

∇2
n +Hel + Vnuc,nuc (2.37)

The ∇n is a three dimensional gradient with respect to the nuclear coordinates. To

solve the Schrödinger equation Eq.(2.1), the total Hamiltonian has to be applied to the

wavefunction Eq.(2.36). Applying the ∇n operator to the wavefunction on the right hand

side of Eq.(2.36) gives

∇2
n[ψ

i
el(s⃗e, s⃗)ψ

i
nuc(s⃗, t)] = ∇n[∇nψ

i
el(s⃗e, s⃗)ψ

i
nuc(s⃗, t)]

= ψi
el(s⃗e, s⃗)∇

2
nψ

i
nuc(s⃗, t) + ψi

nuc(s⃗, t)∇2
nψ

i
el(s⃗e, s⃗)

+ 2∇nψ
i
nuc(s⃗, t)∇nψ

i
el(s⃗e, s⃗), (2.38)

where s⃗e denotes all electronic coordinates for simplicity.

Using expression (2.38), Eq.(2.8) and Eq.(2.9), the Schrödinger equation Eq.(2.1) can

be multiplied from the left with the electronic state ψj
el, followed by integration over

electronic coordinates. This leads to the following coupled equations:

i~ ∂
∂t
ψj
nuc(s⃗, t) =

[
Tnuc + Vj(s⃗)

]
ψj
nuc(s⃗, t)

+

[∑
i

Nnuc∑
n=1

− ~2
2Mn

(2τ
(1)
ji,n∇n + τ

(2)
ji,n)

]
ψi
nuc(s⃗, t) (2.39)

with

Tnuc =

Nnuc∑
n=1

− ~2
2Mn

∇2
n, (2.40)

τ
(1)
ji is the (first-order) non-adiabatic coupling (vector) matrix with the elements

τ
(1)
ji,n = ⟨ψj

el(s⃗) | ∇nψ
i
el(s⃗)⟩ (2.41)
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and τ
(2)
ji is the non-adiabatic (scaler) matrix of the second-order with the elements

τ
(2)
ji,n = ⟨ψj

el(s⃗) | ∇
2
nψ

i
el(s⃗)⟩ (2.42)

If a group of states forms a Hilbert space, so that the τ matrix fulfil the divergence

condition [3], then τ
(2)
ji,n can be presented in terms of τ

(1)
ji,n as follows:

τ
(2)
ji,n = τ

(1)
ji,n

2
+∇nτ

(1)
ji,n (2.43)

In this thesis, we investigate the motion of a single atom in a molecule. Therefore,

we consider only the nuclear coordinates of this atom (n=1) in the nuclear Schröinger

Eq.(2.39). Writing M1 = M , τ
(1)
ji,1 = τ

(1)
ji , τ

(2)
ji,1 = τ

(2)
ji and ∇1 = ∇, Eq. (2.39) can be

written as

i~ ∂
∂t
ψj
nuc(s⃗, t) =

[
Tnuc + Vj(s⃗)

]
ψj
nuc(s⃗, t)

− ~2
2M

∑
i

(
2τ

(1)
ji ∇+ τ

(2)
ji

)
ψi
nuc(s⃗, t) (2.44)

Substituting Eq.(2.43) in Eq.(2.44) yield

i~ ∂
∂t
ψj
nuc(s⃗, t) =

[
Tnuc + Vj(s⃗)

]
ψj
nuc(s⃗, t)

− ~2
2M

∑
i

(
2τ

(1)
ji ∇+ τ

(1)2

ji +∇τ (1)ji

)
ψi
nuc(s⃗, t) (2.45)

If two state become close to each other, or degenerate, the mixing between them, i.e.

the coupling terms Eq.(2.41) and (2.42) become larger. So one must consider the non-

adiabatic coupling terms and the motion on several PES [3]. This is not easy task since

the kinetic energy operator is not diagonal. For this reason the wavefunctions are trans-

formed into the diabatic basis where the kinetic energy is diagonal, i.e. the non adiabatic

coupling term vanish. The adiabatic-to-diabatic transformation will be described in Sec-

tion 2.5. The way to calculate the non-adiabatic coupling terms quantum chemically will

be explained in the next section.

2.4. Quantum Chemical Calculation of the NACTs

In order to calculate the non-adiabatic coupling terms we used the MOLPRO program

package [32]. The method implemented in the program is based on the analysis of the
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configuration interaction vectors. The basic assumption in this method is neglecting any

change of the CASSCF orbitals as a function of geometry, since the configuration in-

teraction vectors of diabtic states are approximately geometry independent. Using this

assumption, the NACTs can be computed for state-average CASSCF (SA-CASSCF) wave-

function. The configuration interaction wavefunction of electronic states i is given by

| ψi,MCSCF
el ⟩ =

∑
k

Cik | ψk
el⟩ (2.46)

The pervious equation can be rewritten for two different electronic states i and j in the

following form:

⟨ψi
el | ∇ψ

j
el⟩ = ⟨

∑
l

Cilψ
l
el | ∇

∑
k

Cjkψ
k
el⟩ (2.47)

simplifying Eq.(2.47) leads to∑
l

∑
k

Cjl(∇Cik)⟨ψl
el | ψ

k
el⟩+

∑
l

∑
k

CjlCik⟨ψl
el | ∇ψ

k
el⟩

=
∑
l

Cjl(∇Cil) +
∑
l

∑
k

CjlCik⟨ψl
el | ∇ψ

k
el⟩ (2.48)

The firs term in Eq.(2.48) refer to the Cij-term which involves differentiation of the con-

figuration interaction coefficients. The second term contains derivatives of configuration

or determinants.

The diabatic MCSCF orbitals can be generated by maximizing the overlap of CASSCF

orbitals at displaced geometry with respect to the reference geometry (This can be done by

using the invariance of the CASSCF and multi reference configuration interaction energies

with respect to unitary transformations). As a result, the relative contribution of the

orbitals and configuration interaction to the matrix elements of non-adiabatic coupling

elements (τ
(1)
ij ) are modified. This can be achieved by maximizing the overlap of the

active CASSCF orbitals with those of reference geometry at which the wavefunction are

assumed to be diabatic. As a result, the second term in Eq.(2.48) is minimized and to very

good approximation the matrix elements of τ
(1)
ji could be obtained from the configuration

interaction vector (Cij-term) alone.

MOLPRO has two procedures to calculate NACTs for the CASSCF: first-order and

second-order algorithms. In both cases the displaced geometries must be calculated and

stored in one of these order. In first-order algorithm the wavefunction of the reference

geometry (s⃗) and positively displaced geometry (s⃗+∆s⃗) are calculated, while in the sec-

ond order, the negatively displaced geometry must be calculated (s⃗ − ∆s⃗). Then, the
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transition densities matrix is computed from the configuration interaction vectors and

these displacement geometries by the following formula

⟨ψi
el | ∇ψ

j
el⟩ ≈

1

2∆s⃗
⟨ψi

el(s⃗+∆s⃗) | ψj
el(s⃗−∆s⃗)⟩ (2.49)

where the left subscripts i, j refer to the two different states, and ∆s refers to the small

increment. The transformation matrix of the configuration interaction vectors between

the s and s+∆s, is chosen such that non-adiabatic coupling matrix ⟨ψi
el | ∇ψ

j
el⟩ elements

are minimized for all the internal coordinates.

2.5. Adiabatic-to-Diabatic Transformation (ADT)

In the following part we will introduce what is known as adiabatic-to-diabatic transforma-

tion (ADT). Through the ADT the diabatic nuclear wavefunctions ψi,d
nuc will be determined

from the adiabatic ones ψi
nuc using a unitary transformation [3, 63, 67, 69].

The starting point of the adiabatic-to-diabatic picture is the nuclear Schrödinger equation

Eq.(2.45) [3], which can be written in matrix form as

i~ ∂
∂t
ψ⃗nuc = − ~2

2M
(∇+ τ (1))2ψ⃗nuc +Vψ⃗nuc (2.50)

where

ψ⃗nuc =

 ψN
nuc
...

ψ0
nuc

 , (2.51)

the matrix

τ (1) =

(
τ
(1)
ij

)
(2.52)

includes the NACTs, see Eq.(2.41), and

V =

 VN 0
. . .

0 V0

 (2.53)

is a diagonal matrix containing the PES of each electronic states.

In Eq.(2.50) the NAC terms τ (1) can be eliminated by performing adiabatic-to-diabatic

transformations. This can done by replacing the adiabatic wavefunction ψ⃗nuc by the
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diabatic basis function ψ⃗d
nuc, where the two functions are related as follows

ψ⃗nuc = Aψ⃗d
nuc (2.54)

Here A is a matrix to be determined by the requirement that the matrix (τ (1)) will vanish

in the Schrödinger equation for ψ⃗d. In order to fulfil this condition [3], we evaluate the

following expression

(∇+ τ (1))2Aψ⃗d
nuc = (∇+ τ (1))(∇+ τ (1))Aψ⃗d

nuc

= (∇+ τ (1))(A∇ψ⃗d
nuc + (∇A)ψ⃗d

nuc + τ (1)Aψ⃗d
nuc)

= 2(∇A) · ∇ψ⃗d
nuc +A∇2ψ⃗d

nuc + (∇2A)ψ⃗d
nuc + (∇τ (1))Aψ⃗d

nuc

+ 2τ (1)(∇A)ψ⃗d
nuc + 2τ (1)A(∇ψ⃗d

nuc) + τ (1)2Aψ⃗d
nuc (2.55)

which can be rearranged to become

(∇+ τ (1))2Aψ⃗d
nuc = A∇2ψ⃗d

nuc + 2(∇A+ τ (1)A) · ∇ψ⃗d
nuc

+ {(τ (1) +∇) · (∇A+ τ (1)A)}ψ⃗d
nuc (2.56)

The grad operator, in the third term, does not act beyond the curled parentheses { }.
Next, by choosing A to be the solution of the following equation

∇A+ τ (1)A = 0 (2.57)

Eq.(2.56) becomes

(∇+ τ (1))2Aψ⃗d
nuc = A∇2ψ⃗d

nuc (2.58)

Substituting Eq.(2.54) and Eq.(2.58) in Eq.(2.50) yield

i~ ∂
∂t

Aψ⃗d
nuc = − ~2

2M
(∇+ τ (1))2Aψ⃗d

nuc +VAψ⃗d
nuc

i~ ∂
∂t

Aψ⃗d
nuc = − ~2

2M
A∇2ψ⃗d

nuc +VAψ⃗d
nuc (2.59)

Multiplying Eq.(2.59) by A† (the conjugate matrix of A), we get the nuclear Schrödinger

equation,

i~ ∂
∂t

A†Aψ⃗d
nuc = − ~2

2M
A†A∇2ψ⃗d

nuc +A†VAψ⃗d
nuc

i~ ∂
∂t
ψ⃗d
nuc = − ~2

2M
∇2ψ⃗d

nuc +Wψ⃗d
nuc (2.60)
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where W is the diabatic potential given by

W = A†VA. (2.61)

Eq.(2.60) represents the time-dependent Schrödinger equation in the diabatic representa-

tion. Here, the kinetic energy is diagonal, and the coupling has been transferred to the

diabatic potential matrix which has off-diagonal elements. This equation will be used to

simulate the nuclear dynamics. The value of A depends on the contour L along which it

is calculated. In general , the solution of A in Eq.(2.57) for N-state model is given by

A(s⃗ | L) = ℘ exp

[
−
∫ s⃗

s⃗0

ds⃗
′
· τ (1)(s⃗

′
)

]
A(s⃗0) (2.62)

where ℘ is the ordering operator. s⃗0 and s⃗ are the initial and final points of the contour

L, respectively. Since in this study, we calculate the A-matrix along a circle described by

the angle ϕ and the radius r, Eq.(2.62) can be simplified for constant r

A(r, ϕ) = ℘ exp

[
−
∫ ϕ

ϕ0

dϕ
′
· τϕ′ (ϕ

′
)

]
A(r, ϕ0) (2.63)

where

τϕ = (τ i,jϕ ) (2.64)

with

τ i,jϕ = ⟨ψj
el |

∂

∂ϕ
ψi
el⟩. (2.65)

Numerically one can evaluate Eq.(2.63) by successively calculating the values of A at

point ϕj from ϕj−1:

A(r, ϕj) = exp

[
−
∫ ϕj

ϕj−1

τϕ(r, ϕ
′
)dϕ

′
]
A(r, ϕj−1) (2.66)

where the grid point are chosen such that during the interval △ϕ = ϕj −ϕj−1 the NACT-

matrix τϕ(r, ϕ) is constant. Thus, Eq.(2.63) can be approximated by

A(r, ϕj) = exp

[
− τϕ(ϕ̃j)△ ϕ

]
A(r, ϕj−1) (2.67)

where ϕ̃j =
ϕj−ϕj−1

2 .

The next step is to derive the value of the exponential matrix F = exp[−τϕ(ϕ̃j)△ϕ]. The
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matrix F can be written as

F = G†DG (2.68)

where D = exp(λ) and λ is diagonal matrix that contains the eigenvalues of [τϕ(ϕ̃)△ ϕ].

Equation (2.66) can then be rewritten in the following form

A(ϕj) = G†(ϕ̃j)D(ϕ̃j)G(ϕ̃j)A(ϕj−1) (2.69)

where

D(ϕ̃j) = exp(λ̃(ϕ̃j)∆ϕ) (2.70)

and λ̃(ϕ̃j) is the matrix that contains the eigenvalue of τϕ(ϕ̃j).

If the A-matrix is calculated along a closed circle, here from ϕ0 to ϕ0+2π, the conditions

Aii(ϕ0 + 2π) = ±1 (2.71)

and

Aij(ϕ0 + 2π) = 0 (2.72)

for i ̸= j must be fulfilled if the initial matrix A(ϕ0) = 1. Otherwise the elements of the

diabatic potential matrix W, see Eq.(2.61), are not single-valued. The number of plus

(+) and minus (-) in Eq.(2.71) is determined by the number of conical intersection CIs

located inside closed loop [3]. In particular, the plus sign indicate that an even number

of conical intersection are enclosed by closed loop L from ϕ = 0 to ϕ = 2π [3, 71].

2.6. Interaction of Molecules with a Laser Field

In this thesis, the nuclear dynamics of photo-excited molecule is investigated. Therefore,

we have to consider the interaction between a molecule and a laser field. The TDSE is

therefore modified to

i~ ∂
∂t

| Ψ(t)⟩ = H(t) | Ψ(t)⟩ (2.73)

The Ψ(t) represent the total wavefunction which consists of the sum over all orthonormal

electronic and nuclear wavefunctions. The time-dependent Hamiltonian operator is given

by [51]

H(t) = Htot − µ⃗ · E⃗(t)︸ ︷︷ ︸
Eint

(2.74)
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The above total Hamilton consists of two parts, total molecular Hamiltonian and the

time-dependent potential energy as a result of interaction between the molecular dipole

moment µ⃗ and the external electromagnetic field E⃗(t). The interaction of the dipole

moment with the external field gives a time-dependent potential energy term Eint.

The total dipole moment includes both the nuclear and electronic dipole moment and has

the following form:

µ⃗ =

Nel∑
i=1

(−e)s⃗ei
Nnuc∑
j=1

(Zje)s⃗j (2.75)

Since we treat more than one electronic state, the Hamilton operator should be written

in the matrix form

i~ ∂
∂t

 | ΨN (t)⟩
...

| Ψ0(t)⟩

 =

 HNN (t) · · · HN0(t)
...

. . .
...

H0N (t) · · · H00|(t)

 | ΨN (t)⟩
...

| Ψ0(t)⟩

 (2.76)

where the indexes 0, 1, 2, · · · , N denote the electronic states. The time dependent Hamil-

ton operator (assuming three electronic state 0, 1, 2) is given by the following equation:

H(t) =

 Tnuc + V2 0 0

0 Tnuc + V1 0

0 0 Tnuc + V0

+

 Λ22 Λ21 Λ20

Λ12 Λ11 Λ10

Λ02 Λ01 Λ00



−E⃗(t)

 µ⃗22 µ⃗21 µ⃗20
µ⃗12 µ⃗11 µ⃗10
µ⃗02 µ⃗01 µ⃗00

 (2.77)

with

Λji = − ~2
2M

(
2τ

(1)
ji ∇+ τ

(2)
ji

)
and τ

(1)
ji and τ

(2)
ji defined in Eq.(2.41) and (2.42), Tnuc is the kinetic energy of the nuclei,

V0, V1 and V2 are the ground and excited state PESs. The coupling with a laser field

is treated using the dipole moments µ⃗ii of the electronic state S0, S1 and S2 and the

transition dipole moments µij , j ̸= i.
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As described in Section 2.5, it is easier to solve the TDSE in the diabatic basis. Thus one

can write the matrix elements of the diabatic Hamiltonian, which is given in the following

formula:

Hd(t) = A†H(t)A =

 Tnuc +W22 W21 W20

W12 Tnuc +W11 W10

W02 W01 Tnuc +W00



−E⃗(t)

 µ⃗d22 µ⃗d21 µ⃗d20
µ⃗d12 µ⃗d11 µ⃗d10
µ⃗d02 µ⃗d01 µ⃗d00

 (2.78)

The diabatization scheme leads to the diabatic potentials with W = A†VA and also the

diabatic dipole and transition dipole moments with µ⃗d = A†µ⃗A. The diabatic terms arise

as a result of using adiabatic-to-diabatic transformation where the unitary transformation

matrix A is used, which has been introduced in Section 2.5.

Equation (2.74) is a semi-classical dipole approximation which represent the operator for

the interaction between molecule and laser field [72]. The electromagnetic field used to

control intra-molecular motion is given by:

E⃗(r⃗, t) = ϵ⃗ · E0 · f(t) · e
i(k⃗r⃗−ωt) + e−i(k⃗r⃗−ωt)

2
(2.79)

where E0 is the amplitude of the field with the carrier frequency ω, ϵ⃗ is the polarization

vector, k⃗ the wave vector and f(t) the shape function which describes the envelope of the

laser pulse. The following expression can be expanded using Taylor series:

eik⃗r⃗ ≈ 1 + i⃗kr⃗ + ... (2.80)

Since the laser pulse are considered which cover a range of wavelengths in the visible or

UV range, λ ≈ 400nm or 400 · 10−9m. If a molecule with dimension several Å(10−10m)

are investigate k⃗r⃗ ≪ 1, so after first term the Taylor series can be truncated. As a result

the expression for the position-independent field is given by:

E⃗(t) = ϵ⃗ · E0 · f(t)e
iωt + e−iωt

2
= E⃗0 · f(t) cos(ωt) (2.81)



2.7. Numerical Methods for the Solution of the Nuclear Schrödinger

Equation 29

where the shape function f(t) is given by:

f(t) = sin2
[
π(t− td)

tp

]
(2.82)

for td ≤ t ≤ td + tp and s(t) = 0 elsewhere. Here tp is the pulse duration and td is the

delay time.

2.7. Numerical Methods for the Solution of the Nuclear

Schrödinger Equation

2.7.1. Solution of the Nuclear TISE: Fourier-Grid-Hamiltonian

Method

The time independent nuclear Schrödinger equation for a single electronic state reads

Hnuc|Φj
nuc >= Ej

nuc|Φj
nuc > (2.83)

where the nuclear Hamiltonian is given in Eq.(2.13), see Section 2.1.

The resulting eigen functions | Φj
nuc⟩ describes the rotation, vibration and translation of

the Nnuc nuclei. These eigenfunctions are used as an initial state for quantum dynamical

calculation. In order to solve Eq.(2.83) or in general a time independent Schrödinger

equation

H | Φj⟩ = Ej | Φj⟩ (2.84)

a Fourier Grid Hamiltonian (FGH) is used [73, 74]. FGH uses the forward and backward

Fourier Transform (FT) between momentum and position space for evaluating the position

and momentum operator, with discretization of position and momentum space on series

of equidistant N grid points. This method exploits the fact that the kinetic energy of the

FGH is diagonal in momentum space while the potential energy is diagonal in position

space [73, 74]. Assuming for simplicity the one dimensional case where a particle of mass

m is moving in x direction with momentum p within a potential V (x), the Hamilton

operator H is written as the sum of kinetic and potentials energy:

H = T + V (x̂) =
p̂2

2m
+ V (x̂) (2.85)

The basis sets are chosen such that the Hamilton operator spans a subspace of the Hilbert



30 Chapter 2. Models, Methods and Techniques

space. The basis for the position space is given by

x̂ | x⟩ = x | x⟩ (2.86)

where the basis vectors form an orthonormal basis and fulfil the completeness relationship

⟨x | x
′
⟩ = δ(x− x

′
) (2.87)

and

Îx =

∫ ∞

−∞
dx | x⟩⟨x | (2.88)

while the potential is diagonal in position space, and given in the following form:

⟨x′ | V (x̂) | x⟩ = V (x)δ(x− x′) (2.89)

Equivalent expressions hold for the momentum space with the momentum operator,

p̂ | k⟩ = ~k | k⟩ (2.90)

and analogous completeness and closure relations:

⟨k | k′⟩ = δ(k − k′) (2.91)

Îk =

∫ ∞

−∞
dk | k⟩⟨k′ | (2.92)

So, the kinetic energy operator is diagonal in momentum space,i.e.

⟨k′ | T | k⟩ = Tkδ(k − k′) =
~2k2
2m

δ(k − k′) (2.93)

with the eigenvalue ~2k2

2m . The coordinate space can be transformed to the momentum

space and vice versa by

⟨k | x⟩ = 1√
2π

exp(−ikx) (2.94)

From the above definition, the matrix elements of the total Hamilton operator in position

space can be written in the following equation:
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⟨x | H | x′⟩ = ⟨x | T | x′⟩+ V (x)δ(x− x′)

= ⟨x |
{∫ ∞

−∞
| k′⟩⟨k′ | dk′

}
T

{∫ ∞

−∞
| k⟩⟨k |

}
| x′⟩dk + V (x)δ(x− x′)

=

∫ ∞

−∞
⟨x | k⟩Tk⟨k | x′⟩dk + V (x)δ(x− x′)

=
1

2π

∫ ∞

−∞
eik(x−x′)Tkdk + V (x)δ(x− x′) (2.95)

In this equation, the identity operator presented in Eq.(2.92) is inserted on the left and

right sides of T in Eq.(2.93). The continuous variable x is now discretized into a series of

N grid points with equal intervals

xi = i△x, i = 1, 2, · · · , N (2.96)

For even N, the eigenvectors of the discrete basis satisfy

△x⟨xi | xj⟩ = δij (2.97)

and

Îx =

N∑
i=1

| xi⟩△x⟨xi | (2.98)

The Hamiltonian matrix elements in the discrete basis are given by using the discrete

basis in position space. The matrix elements are given by

Hij = ⟨xi | H | xj⟩ =
1

△x

( N
2∑

l=−(N
2
−1)

e
il2π(i−j)

N

N
Tl + V (xi)δij

)
(2.99)
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where

Tl =
~2
2m

· (l△k)2 (2.100)

and

△k =
2π

N△x
(2.101)

The expectation value of the energy Ej is :

Ej =
⟨Φj | H | Φj⟩
⟨Φj | Φj⟩

(2.102)

Minimizing this energy with respect to variation of the coefficients Φj
i yields the standard

set of secular equations, and its root corresponds to the bound state energies of the

systems. Each root has an associated set of the coefficients Φj
i that give the amplitude of

the wavefunction | Φj
i ⟩ for each grid point.

2.7.2. Solution of the Nuclear TDSE: Split Operator Method

The TDSE is used to study the motion of the nuclear wavepacket. The TDSE can

be written using the evolution operator U [51, 75]. The evolution operator is used to

propagate the wavefunction for an interval of time, from t0 to t. The solution of the

TDSE equation can be written in the following form:

| ψ(t)⟩ = exp

[
− i

~H(t)

]
| ψ(t0)⟩ = U(t, t0) | ψ(t0)⟩ (2.103)

In general, the Hamilton operator is time-independent, i.e. H(t) = Hmol − µ⃗ · E⃗(t). In

this case, use discrete time ti = i△t, and approximate H(t) = H(t
′

i) ≈ constant for time

intervals [ti−1, ti]. Then propagate from t0 to t1 using H(t
′

0), from t1 to t2 using H(t
′

1),

etc. The approximate result is

| ψ(t)⟩ ≈ exp

[
− i

~H(t̃n)△t
]
· exp

[
− i

~H(t̃n−1)△t
]

· · · exp
[
− i

~H(t̃1)△t
]
· exp

[
− i

~H(t̃0)△t
]
| ψ(t0)⟩ (2.104)
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where t̃i is chosen in the time interval [ti−1, ti] and △t = ti − ti−1. Formally, Eq.(2.104)

can be written as

| ψ(t)⟩ ≈ Tt exp

[
− i

~

(
H(t̃n)△t+H(t̃n−1)△t · · ·H(t̃1)△t+H(t̃1)△t

)]
| ψ(t0)⟩

= Tt exp

[
− i

~

n∑
i=0

H(t̃i)△t
]
| ψ(t0)⟩

≈ Tt exp

[
− i

~

∫ t

0

H(t
′
)dt

′
]
| ψ(t0)⟩ = U(t, t0) | ψ(t0)⟩ (2.105)

where Tt is time ordering operator, which is necessary because H(t) do not commute if

H(t) is time-dependent. If the system is conservative, i.e. the total energy of the molecule

is constant, the Hamilton operator is time-independent (H ̸= H(t)) then the evolution

operator can be written as follows:

U(t, t0) = e−
i
~H(t−t0) (2.106)

The Split Operator

There are various propagation schemes to solve the TDSE, e.g. the Second order differentiator

[76, 77], the Chebyshev polynomial expansion [78] or the split operator . The simulation

in this work done using the split operator, therefore, in this section we will focus on the

split operator method [79, 80]. Since the commutator between T and V is not equal to

zero, the evolution operator e−
i
~H∆t cannot be split into kinetic and potential term, i.e.

e−
iH∆t

~ = e−
i(T+V )∆t

~ ̸= e−
iT∆t
~ e−

iV ∆t
~ (2.107)

Nevertheless, one can use an approximation where the propagator can be split into three

parts, with error in third order of ∆t [79, 80, 81, 82, 83]:

e−
iH∆t

~ = e−
i(T+V )∆t

~ ≈ e−
iT∆t
2~ · e−

iV ∆t
~ · e−

iT∆t
2~ +O(∆t)3 (2.108)

or

e−
iH∆t

~ ≈ e−
iV ∆t
2~ e−

iT∆t
~ e−

iV ∆t
2~ +O(∆t)3 (2.109)

Each propagation step using the propagator specified in Eq. (2.108) consists of several

Fourier Transforms (FT) between momentum and position space, and also of the evalua-
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tions of V and T. First, a forward FT of Ψ(s⃗, t0)⟩ to the momentum space is performed,

then result is multiplied with e−
iT∆t
2~ . Also the potential energy will be evaluated by

multiplying with e−
iV ∆
2~ after applying the backward FT to obtain the wavefunction in

position space. Using another forward FT to the momentum space will evaluate a new

T. In order to obtain the wavefunction | Ψ(t)⟩ at t = t0 + ∆t, a backward FT to the

position pace applied. The information about the whole wavefunction | Ψ(t0)⟩ from time

t0 to tf = t0 + n∆t can be gained after performing a number n of the above steps.

In diabatic picture for more than one state, the propagation is more complicated since

the potential matrix is not diagonal, the time evaluation operator for the diabatic picture

has the following form [84]:

exp

− i

~

 Tnuc +W22 W21 W20

W12 Tnuc +W11 W10

W02 W01 Tnuc +W00

∆t


= exp

[
− i

~

 Tnuc 0 0

0 Tnuc 0

0 0 Tnuc

∆t− i

~W∆t

]
(2.110)

In the split operator method, Eq. (2.110) is approximated by

exp

[
− i

~(Tnuc +W)△t
]

≈ exp

[
− i

~
Tnuc1

2
△t

]
exp

[
− i

~W△t
]

exp

[
− 1

~
Tnuc1

2
△t

]
+O(∆t)3 (2.111)

The exponential containing the diabatic potential matrix can be written as

exp

[
− i

~W△t
]

= exp

[
− i

~A
†VA△t

]
(2.112)

=

∞∑
n=0

1

n!

(
− i

~A
†VA△t

)n

=

∞∑
n=0

1

n!
(− i△t~ )nA†VnA

= A† exp

[
− i

~V△t
]
A

(2.113)
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Therefore, the nuclear wavefunction can be propagated as follows:

| ψ(t+△t)⟩ = exp

[
− i

~
Tnuc1

2
△t

]
A† exp

[
− i

~V△t
]
A exp

[
− i

~
Tnuc1

2
△t

]
| ψ(t)⟩

(2.114)

The time step must be very small in order to get reliable results. In accordance of

uncertainty principle, the time step △t must not exceed a critical time step △tc which is

related to the maximum energy of the system by

△tc =
~

Emax
with Emax = Tmax + Vmax (2.115)

The maximum potential energy Vmax is given by the potential energy surface on the

respective grid. For the maximum kientic energy on the same grid the following expression

is used:

Tmax =
~2( π

△x)
2

2m
(2.116)

where △x is constant spacing of N grid points in the position space and m is the mass.

This method is unconditionally stable and norm preserving [89].

2.8. Molecular Symmetry (MS)

Molecular symmetry is a fundamental concept in chemistry, as it can predict or explain

many molecular properties, such as selection rules for spectroscopic transitions [43]. The

symmetry operations which define the molecular symmetry (MS) group are the oper-

ations that leave the Hamiltonian of the system globally invariant, i.e. operator that

commute with the Hamiltonian. In contrast, molecular point group only describes the

local structure like minima, transition states and conical intersections.

The symmetry operations include the permutation of identical nuclei and the inversion of

a molecule in space [43]. For example, Figure 2.1 shows the water molecule which consist

two protons labelled ”1” and ”2” and oxygen atom (labelled 3). The nuclear permutation

operation of the two identical protons (12) is shown in Figure 2.1a. This operation shows

that the two proton position and spin are interchanged without effect the electrons in the

molecule. Figure 2.1b shows the effect of the second symmetry operation i.e. the inversion

of molecule in it is center of mass. This operation inverts the spatial coordinates of all

nuclei and electrons in the molecule [43].
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1 12 2

1 2

12

3 3(12)

E*

a)

b)

Figure 2.1.: The effect of symmetry operation on water molecule a) the effect of (12)

operation b) The effect of E∗ operation [43].

For every molecule one can define the complete permutation group which contains all

possible permutation of identical nuclei. The direct product of the complete permuta-

tion and iversion group{E,E∗} yield the complete nuclear permutation inversion group

(CNPI). The order of the permutation group is n!m! · · · , where m,n, · · · are the number

of identical nuclei. As a consequence, the CNPI can be extremely large. It may be reduced

to what is known as molecular symmetry (MS) group, which consists of only the feasible

elements of the CNPI group.

The character table (for each symmetry group) summarizes information on its symmetry

operations and on its irreducible representation (IREPs). The number of irreducible

representations is always equal to the number of classes of symmetry operation. The

table itself consists of characters of the irreducible representations. Any operation in

a MS group leaves the molecular Hamiltonian unchanged. For simple groups without

degenerate IREPs, the characters are either 1 or -1, where 1 means that the sign or phase

(of the vector or orbital) is unchanged by the symmetry operation (symmetric) and -

1 denotes a sign change (anti − symmetric). Character tables also include information

about how the Cartesian basis vectors and quadratic function of them transform if the

symmetry operations of the group are applied. The following character table shows the

C2v(M) molecular symmetry group:
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C2V (M) E (12) (12)∗ E∗

A1 1 1 1 1 r, Z

A2 1 1 -1 -1 ϕ(R̂ϕ)

B1 1 -1 1 -1 y

B2 1 -1 -1 1 x

Table 2.1.: The character table for the C2v (M) MS group [43].

Later in this study we will implement the molecular symmetry to the non-adiabatic cou-

pling terms. This will determine the IREPs of the NACTs. Besides that, the effect of

IREPs of NACTs in the nuclear dynamics will be investigated.
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In this chapter, the model system used in these investigations will be presented. The

Cyclopenta-2,4-dienimine C5H4NH will serve as model for assigning the IREPs of the

NACTs, locating the CIs and for investigation of molecular symmetry effects on nuclear

dynamics.

3.1. Cyclopenta-2,4-dienimine C5H4NH

The Cyclopenta-2,4-dienimine C5H4NH is a challenging model since it is a rather larger

exocyclic analogue of methylene-imine CH2NH. The C=N double bond provides two dif-

ferent reaction pathways from reactant (the planar syn-configuration) along a large am-

plitude motion via three different transition state to the planar anti-configuration of the

product (see Figs. 3.1 and 3.2)[71]. In this study, the three lowest electronic states are

considered in quantum chemistry calculations and for the investigation of the symmetry

properties of C5H4NH. The three electronic state are the electronic ground state S0 which

has a potential minima for the planar syn-configuration and anti- configuration and the

two lowest excited singlet states S1 and S2. For purposes of this investigation, i.e. for

describing large amplitude motion, the ”global” notation Sj , with j = 0, 1, 2 which in-

dicates the energetic order of the adiabatic potential Vj is used (instead of employing

the notation for the local symmetry). At equilibrium configuration, traditional quantum

chemistry assign the notation S0=1A
′
, according to the local IREPs A

′
of the corre-

sponding molecular point group Cs. Moreover, the next two excited singlet states for the

same geometry have a local A
′
symmetry, S1 =2A

′
and S2 =3A

′
.

Syn- Anti-

Figure 3.1.: The minimum structures of the syn- and anti-configuration of Cyclopenta-

2,4-dienimine geometry.

Conical intersections of C5H4NH, which are related to the syn-anti isomerization, have

been located by the group of S. Zilberg (Hebrew University of Jerusalem) [71] with help
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of the Longuet-Higgins sign change theorem [15, 16, 17]. The structures of the CIs are

shown in fig. 3.2. A S0/S1 CI with local 1A
′
/1A

′′
symmetry has been located 2.80 eV

above the ground state for a twisted geometry. Moreover, a triple CI between the states

S0, S1 and S2 has been discovered with energy of 3.46 eV.
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Figure 3.2.: The optimized structures of the ground state minimum (syn-configuration)

and the S0/S1 CI and S0/S1/S2 CI, with energy relative to the minimum

structure. The figure also shows the three transition states which have been

used to locate the CIs. The IREPs for the local molecular point groups

(NOT the molecular symmetry group) are shown. The geometries are plotted

against their relative energy to the minimum of the adiabatic potential V0 in

the electronic ground state. The figure is adapted from ref. [71].

3.2. Quantum Chemistry of C5H4NH

The structures shown in Fig.3.2 (see also Fig.3.3) have been calculated with quantum

chemistry methods. All calculations are done using CAS(10,9)/cc-pVDZ level of theory,

the CASSCF methodology [126] as implemented in the GAMESS [99] and MOLPRO [32]

program. The active space of the CASSCF calculations includes 9 molecular orbitals

(MO) occupied by 10 electrons, see Fig. 3.4. The molecular orbitals include 6π orbitals

(three occupied π ones and three unoccupied π* orbitals), together with three σ-type

MOs. The σ MOs include the occupied one for the lone electronic pair of the N atom,
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the occupied N-H bond MO, and the virtual σ* (mainly N-H) MO. These σ-MOs were

taken into account because the syn-anti isomerization involves a change in hybridization

of the N-atom. The full π-active space together with these σ-orbitals provide an adequate

description for this part of the PES, using the standard cc-pVDZ basis set. The quantum

chemical calculation of the one-dimensional PESs, NACTs and dipole- and transition

dipole moments which are required for the present study are performed in the same way.

The CASSCF calculations employ the ”local” molecular point groups of these stationary

states, as it is adequate for quantum chemistry. The resulting planar geometry of C5H4NH

at the potential minimum (it is called the syn-A
′
form of C5H4NH, with IREP A

′
for the

local Cs symmetry) and the three transition states are shown in Fig. 3.3.
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Figure 3.3.: Geometries of the syn-form of C5H4NH in the electronic ground state S0 (GS),

three transition states (TS) with different local IREPs A′ and A” between the

syn- and anti-forms. The results are obtained by performing CAS(10/9)/cc-

pVDZ calculations. Here, the IREPs are for the local molecular point groups

NOT the molecular symmetry group.
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17 18 19 20 21

22 23 24 25

Figure 3.4.: The 9 molecular orbitals (MOs) occupied by 10 electrons used as an active

space of the CASSCF calculations. In quantum chemistry calculations the

first 16 MOs are assumed frozen while the orbitals from 17 to 25 are assumed

to be active.

The ”global” molecular symmetry C2v(M) implies that C5H4NH possesses an equivalent

minimum of the PES for the anti-form. The anti-configuration form has the same local

IREP A
′
. The geometries of the reactant, products and the three transition states are

similar except for:

1- The hybridization angle (CNH bond angle).

2- The CN and NH bond lengths, which are shorter for the TSinversion than for the

minima, due to sp−hybridization, see Fig. 3.3.

3- The torsion angle (ϕ), i.e. the torsion of the H-atom around the axis of the CN

bond in C5H4NH, which is used in this study as one of the adapted coordinate in

order to calculate the 1D PES, see Section 4.3.

In the following, we shall use a one-dimensional model of C5H4NH which only includes

the torsion angle while keeping the other complementary coordinates frozen. The struc-

tures shown in Fig.3.3 have the similar C5H4N-fragments so its reasonable to freeze the

coordinates of the C5H4N-fragments in a C2v symmetry-adapted manner, see Section 4.4.
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Chapter 4. Quantum Chemistry and Molecular Symmetry Effects of

C5H4NH

4.1. Introduction

The purpose of this chapter is to discover the molecular symmetry properties of conical

intersections and related non-adiabatic coupling terms in molecules which allow large

amplitude motions such as torsion, focusing on molecular symmetry groups with only

one-dimensional irreducible representations. This goal is not only fundamental but also

important for application. The NACTs and CIs determine the nonadiabatic processes

[45, 10, 101]. If a molecule has CIs at symmetry configuration, the knowledge of the

symmetry properties is important for the adequate prediction of the nonadiabatic reaction

dynamics, including interferences. Also, the quantum chemical calculations of the NACTs,

sepecificly in domains far a way from conical intersection where the absolute values of the

NACTs may drop possibly below the level of accuracy of the applied method. In such

cases, the symmetry properties of the NACTs determine their relative signs in analogous

symmetry-related locations, even far away from each other. The chapter aims to achieve

the following points:

1- Assigning the molecular symmetry group for C5H4NH, which undergoes large am-

plitude motion, i.e. torsion of the proton (H) around the CN axis (Section 4.2).

2- Defining the irreducible representations of the symmetry-adapted nuclear coordi-

nates used to generate the one-dimensional PESs. As consequence, their derivatives

should transform as the IREPs of MS group (Section 4.3).

3- Calculating the adiabatic potential energy surfaces, the conical intersections and

the related non-adiabatic coupling terms for the related symmetry-adapted nuclear

coordinates (Section 4.4 and 4.5.2).

4- Deriving two general theorems which relate to the IREPs of different NACTs to

each other.

5- Discovering the molecular symmetry properties of conical intersections and related

non-adiabatic coupling terms in a molecule (C5H4NH) which allow large amplitude

motion, such as torsion. This will be done in the frame of the relevant molecular

symmetry group (Section 4.5).

6- Determination of symmetric nodes of the NACTs, together with the (relative) signs

of the NACTs in different symmetry-related domains, even far away from the CIs

(Section 4.5).

7- Defining the signs of the conical intersections and assign their corresponding IREPs

(Section 4.5).

8- Adiabatic-to-diabatic transformation of adiabatic potential energy surfaces of C5H4NH
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at related symmetry-adapted coordinates (Section 4.6).

4.2. The Molecular Symmetry Group of

Cyclopenta-2,4-dienimine

The goal of this chapter is to discover molecular symmetry properties of the CIs and

the related non-adiabatic coupling terms of C5H4NH in the frame of molecular symmetry

groups [43].

In this section, the molecular symmetry group of the model system C5H4NH, see Fig.

3.1, will be defined. In general the MS group consists of G symmetry operations Ŝg, with

g = 1, 2, ..., G. The symmetry operations of a MS group generally include:

1- The identity Ŝ1 = E.

2- All feasible permutations P of identical nuclei.

3- The inversion E∗ of all nuclear coordinates s⃗ and electronic coordinates s⃗e.

4- The inversion-permutations P ◦ E∗.

Applying these symmetry operations to a set of coordinates, say s⃗e, s⃗ = [s⃗e, s⃗ ]1 generates

a set of other values of the coordinates,

[s⃗e, s⃗ ]g = Ŝg[s⃗e, s⃗ ]1 with g = 1, 2, · · · , G. (4.1)

These will be called symmetry-related coordinates. They may be far away from each

other. Nevertheless, large amplitude motions may provide feasible paths from nuclear

coordinates [s⃗ ]1 to the symmetry-related ones [s⃗ ]g [43].

A molecular symmetry group with only one-dimensional IREPs possesses G IREPs de-

noted as Γg, with g = 1, ...., G, say Γ1 = A1, Γ2 = A2, Γ3 = B1, · · · etc. For one-

dimensional IREPs, the symmetry projection operators P̂Γg with associated characters

χg,h are given by

P̂Γg =
1

G

G∑
h=1

χg,hŜh. (4.2)

These symmetry projection operators P̂Γg commute with each other, and also with the
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total Hamiltonian of the system,

Htot = Tnuc + H̃el (4.3)

where Tnuc is the nuclear kinetic energy operator and H̃el = Hel + Vnuc,nuc, where Hel is

the electronic Hamiltonian as defined in Eq.(2.8). Moreover, they commute also with the

electronic Hamiltonian Hel. As a consequence, the (real-valued) electronic eigenfunctions

ψj
el(s⃗e, s⃗ ) of Hel, satisfying the time-independent electronic Schrödinger equation,

H̃elψ
j
el(s⃗e, s⃗ ) = Vj(s⃗ )ψ

j
el(s⃗e, s⃗ ) (4.4)

transform according to the IREPs of the MS group. The adiabatic potential energy

surfaces Vj(s⃗ ) transform according to the totally symmetric IREP. Due to the invariance

of H̃el with respect to the Ŝg, quantum chemistry calculations would yield the same

absolute values of the wavefunctions

|ψj
el([s⃗e, s⃗ ]1)| = |ψj

el([s⃗e, s⃗ ]2)| = · · · = |ψj
el([s⃗e, s⃗ ]G)|, (4.5)

but the relative signs of the ψj
el([s⃗e, s⃗ ]g) are not provided automatically. It is indeed

exceedingly difficult to determine those signs quantum chemically. This deficit is due to

the fact that different domains close to the symmetry-related [s⃗, s⃗e ]g with large values of

|ψj
el([s⃗, s⃗e ]g)| may be separated by rather large domains where the absolute values of the

|ψj
el([s⃗, s⃗e ]g)| may drop even below the level of accuracy of the quantum chemical method.

These may be due to two reason: symmetric nodes which implying sign change or just

tunnelling without any change in sign. Quantum chemistry methods fail to discriminate

these two cases. As consequence, it is difficult to assign the IREPs of the related NACTs

and CIs. This provides one of the motivations for this study, i.e. assigning the IREPs

of NACTs and CIs without knowing the IREPs of the wavefunctions. The investigations

presented here are restricted to a finite number of electronic states, i.e. the ground state

S0 and few excited states S1,S2, · · · ,Sjmax .

The model system C5H4NH allows large amplitude motions, where the H-atom of the NH

bond moves around the CN axis, see Fig. 4.1. The C5H4NH molecule shows only four

symmetry operation Ŝg. They are shown in Fig. 4.1 and consist of:

1- The identity E.

2- The inversion E∗.

3- The permutation (12), which shows the simultaneous permutation of the four nuclei

of one of the fragments H-C=C-H (labelled ”1”) of the C5H4NH ring with the

opposite one (labelled ”2”), see Fig. 4.1.
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4- Inversion permutation (12)∗ = (12) ◦ E.

The four (G=4) symmetry operations Ŝ1 = E, Ŝ2 = (12), Ŝ3 = E∗ and Ŝ4 = (12)∗

constitute the molecular symmetry group C2v(M), where the notation (M) reminds of the

molecular symmetry. The MS group C2v(M) is isomorphic to the molecular point group

C2v, with corresponding IREPs A1, A2, B1, and B2. The character table of C2v(M) is

shown in the Table 4.2.

C2v(M)
E (12) E∗ (12)∗

ϕ ϕ− π −ϕ π − ϕ

A1

1 1 1 1

A2

1 1 -1 -1

B1

1 -1 -1 1

B2

1 -1 1 -1

Table 4.1.: Character table of the molecular symmetry group C2v(M) of C5H4NH, which

is isomorphic to the molecular point group C2v. The table also shows the effect

of the symmetry operations on the torsion angle ϕ as defined in Fig. 4.1.
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Figure 4.1.: Effects of the four symmetry operations E, (12), E∗, and (12)∗ of the molec-

ular symmetry group C2v(M) on the model system, with arbitrary configura-

tions (panel (a) courtesy of Prof. Dr. D. Haase), and with constraints to a

planar fragment C5H4N with the molecular point group C2v (panel b). The

ring-type trajectory in panel b illustrates the torsion of the NH bond along

the torsional angle ϕ and with constant radius r. The effects of the symme-

try operations on ϕ are also illustrated in panel b (see Table 4.2), while r

remains unaffected. Also shown are the orientations of the x- and y-axes for

the related coordinates x = r cosϕ and y = r sinϕ. Adapted from Ref. [71].



4.3. Defining the Symmetry-adapted Nuclear Coordinates 51

4.3. Defining the Symmetry-adapted Nuclear

Coordinates

The corresponding sets of the molecular symmetry-adapted nuclear coordinates s⃗ = {sk},
together with the ∂/∂sk derivatives must be defined. These should be transformed as the

IREPs of the MS group, and they should allow to describe the characteristic large ampli-

tude motions of the molecular, as well as vibrations with small amplitudes. In principle,

accurate presentations of all coupled vibrations and rotations of a non-linear molecular

with Nnuc nuclei would call for 3Nnuc − 3 coordinates sk, subtracting 3 coordinates for

the motion of the molecular center of mass. Subsequently, the molecule is assumed in

the rotational ground state such that the wavefunction does not depend on the rotational

Euler angles. All the subsequent results are valid, therefore, for arbitrary re-orientations

of the molecule; this assumption has been used implicitly for the molecular rotation which

are illustrated in Fig. 4.1. For simplicity, one may also employ models of reduced dimen-

sionality, with explicit considerations of a smaller number of molecular symmetry-adapted

coordinates sk, k = 1, 2, · · · , n ( including those which account for the large amplitude

motions) while freezing the other ones.

The derivation of the molecular Hamiltonian in reduced dimensionality has been explained

in Ref. [107]. These types of n-dimensional models imply constraints on the molecular

geometries but not automatically exactly equal to the equilibrium structures. In other

words, the reduced dimensionality describes configurations which are close to the reac-

tants, products, transition states, conical intersections and corresponding large amplitude

motions between these configurations. It depends on the purpose of the specific inves-

tigations, whether the model of reduced dimensionality suffices to provide satisfactory

semi-quantitative results, or whether one prefers to include additional degrees of freedom

for higher accuracy, at the expense of higher computational demands.

One of the aims of this study is to demonstrate the molecular symmetry properties of

the CIs and NACTs. For this case, it is sufficient to use reduced dimensionality and

consider only two symmetry adapted coordinates s⃗ = {s1, s2} while freezing the other

3 × 11 − 3 − 2 = 28 coordinates. The fragment C5H4N which includes CN bonds and

cyclopentadienyl ring, is frozen in the planar configuration corresponding to the local C2v

molecular point group symmetry, see Fig. 4.2. In this study we restricted our investigation

to only two symmetry-adapted coordinates. The chosen coordinates are:

1- One of our molecular symmetry-adapted coordinates should describe torsional mo-

tion. The torsion angle values cover all space from syn-form of C5H4NH to the

anti-form, i.e. s1 = ϕ with −π ≤ ϕ ≤ π which describe the isomerization by torsion

of the NH around the axis of the CN bond of the frozen fragment.
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2- The second symmetry-adapted coordinate is s2 = r with 0 ≤ r ≤ ∞ which describes

the distance of the proton of the NH bond from the axis of torsion (CN bond axis).

In C2v(M) symmetry, the torsion angle ϕ (or more precisely the related torsion R̂ϕ) and

r , as well as their derivatives ∂/∂ϕ and ∂/∂r, transform as A2 and A1, respectively, see

Table 4.3. Alternatively, one may also employ the related symmetry-adapted Cartesian

coordinates:

x = r cosϕ

y = r sinϕ. (4.6)

These and their derivatives ∂/∂x and ∂/∂y transform as B2 and B1, respectively, see

Table 4.3. Rigorously, the Cartesian coordinates refer to the heavy C5H4N fragment.

The relation (4.6) yields the values of these coordinates depending on the values of the

coordinates {r, ϕ} which describe the motion of the light proton of the NH-bond relative

to C5H4N.

The effect of applying the symmetry operations E, (12), E∗, and (12)∗ on the system

model C5H4NH in a constrained configuration space of the two symmetry adapted co-

ordinates ϕ and r are illustrated in Fig. 4.1(b). As an example, it is assumed that the

original configuration is specified by [s⃗ ]1 = [{r, ϕ}]1, where 0 ≤ ϕ ≤ π/2. While keeping

the radius r constant, one readily sees that this transform into symmetry-related struc-

tures with torsional angles ϕ, −π + ϕ, −ϕ, and π − ϕ , respectively, covering the entire

torsional domain from −π to π, see Table 4.2 and Fig. 4.1. For this reason, the investiga-

tion of the symmetry properties of the NACTs and the related CIs is done using arbitrary

values of ϕ, while the radius r is kept as a free but constant parameter. For the present

example, Eq.(4.1) reads:

[{r, ϕ}, s⃗e]1 = E[{r, ϕ}, s⃗e ]1 = [{r, ϕ}, s⃗e ]
[{r, ϕ}, s⃗e]2 = (12)[{r, ϕ}, s⃗e ]1 = [{r,−π + ϕ}, C2(z)s⃗e ]

[{r, ϕ}, s⃗e]3 = E∗[{r, ϕ}, s⃗e ]1 = [{r,−ϕ}, σxz s⃗e ]
[{r, ϕ}, s⃗e]4 = (12)∗[{r, ϕ}, s⃗e ]1 = [{r, π − ϕ}, σzy s⃗e ] (4.7)

see Table 3.3, and Eq.(4.5) is specified as

|ψj
el([r, ϕ, s⃗e ])| = |ψj

el([r,−π + ϕ,C2(z)s⃗e ])| =
|ψj

el([r,−ϕ, σxz s⃗e ])| = |ψj
el([r, π − ϕ, σzy s⃗e ])|. (4.8)
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coord.

C2v(M) E (12) E∗ (12)∗ (rotation) derivatives

A1 1 1 1 1 r ∂/∂r

A2 1 1 -1 -1 ϕ(R̂ϕ) ∂/∂ϕ

B1 1 -1 -1 1 y ∂/∂y

B2 1 -1 1 -1 x ∂/∂x

Table 4.2.: Character table of the molecular symmetry group C2v(M) of C5H4N, which

indicates the transformation of the relevant coordinates, rotation, and deriva-

tives of the symmetry adapted coordinates.

4.4. Calculating the Potential Energy Surfaces of

C5H4NH

The LH theorem helps locating the CIs, which will provide a convenient way to generate

the PES. As shown in the previous section, in order to describe the motion along the

path of the cis-trans isomerization ( i.e. the paths connecting different reaction pathways

between syn- and anti-forms of C5H4NH, the three TSs and the located CIs) one needs

many molecular symmetry-adapted coordinates s⃗ = {sk}, see Section 4.3.

To demonstrate MS effects on NACTs and CIs as a proof of principle, it is enough to choose

only two coordinates s⃗ = {s1, s2}. The other complementary coordinates are considered to

be frozen. The structures shown in Fig. 3.3 have the similar C5H4N-fragments- so it will

be reasonable to freeze the coordinates of the C5H4N-fragment in a C2v symmetry-adapted

manner, see Fig. 4.2. This fragment is planar and has local C2v symmetry. In contrast,

for the S0/S1 CI (1A
′
/1A

′′
), the five-membered carbon ring turns out to be not exactly

planar. More specifically, the shape of the C5H4NH fragment reminds of the symmetrical

(Cs) wings of a butterfly. These wings are folded away from the planar reference plane by

just 0.037 radians (2.1◦), with the CN- bond as head of the butterfly, in the (local) vertical

symmetry plane between the wings. The two limiting albeit very similar geometries of

the C5H4N fragment for the syn-, anti-forms and for S0/S1 CI suggest, as a compromise,

that this fragment should be frozen, the frozen fragment has local C2v symmetry, see Fig.

4.2, with the nuclear coordinates close to those of the limiting forms.
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Figure 4.2.: The frozen C5H4N-fragment in a C2v symmetry adapted manner.

For simplicity, all bond lengths and angles of the ”butterfly” form of S0/S1 CI are frozen,

except for the wings which are rotated just slightly by those 0.0367 radians such that the

C5H4 ring becomes planar. Moreover, the CN bond is also rotated by just 0.004 radians

into the plane of the C5H4 fragment. As a consequence, the local symmetry of the C5H4N

fragment becomes C2v, with the CN axis as (local) C2 axis. The distance of the proton

of the NH bond from this CN axis is r ≈ 1.0 Å. Figure 3.3 shows that all geometries of

the C5H4N fragment are similar to this C2v structure, not only for S0/S1 CI but also for

all the other stationary points.

Furthermore, Fig. 4.1 shows that this C2v geometry is robust with respect to all symme-

try operations E, (12), E∗ and (12)∗ of C2v(M). With this implicit definition of the frozen

coordinates, the symmetry-adapted torsional angle ϕ and the complementary radial co-

ordinates r are defined as two cylindrical coordinates for rotation of the proton of the NH

bond around the CN axis, relative to the C5H4N (C2v) fragment. Their (global) IREPs

are A2 and A1, respectively, see Table 4.3.

The prize for this reasonable and rather simple choice of just two C2v(M)-adapted coordi-

nates is that motions along s⃗ = {r, ϕ} may approach geometries of the syn- and anti-forms

of C5H4NH as well as S0/S1 CI rather closely but not perfectly. For example, the syn-,

anti-forms and the S0/S1 CI are approximated for {r, ϕ} = {r, 0}, {r, ±π} and {r, π/2}
, respectively, with r ≈ 1.0 Å. As consequence, the energy of the approximated syn-,

anti-forms and the S0/S1 CI geometries are 0.47 eV and 2.69 eV which differ from the

energy of the structure shown in Fig. 3.2, which are 0.00 eV and 2.80 eV, respectively.

The two symmetry-adapted coordinates {r, ϕ} are used to calculate the PESs and related

NACTs. In this study, three different values of r are used, i.e. r≈ 1.0, 0.8 and 1.2 Å,

while the range of the torsion angle is −π ≤ ϕ ≤ +π, see Fig. 4.3.
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y

z

-

Figure 4.3.: The two symmetry-adapted coordinates s⃗ = {r, ϕ} of Cyclopenta-2,4-

dienimine compound, which are used to calculate the PESs and related

NACTs.

The resulting adiabatic PES Vj (j= 0,1,2) as function of ϕ for r ≈ 0.8 Å is shown in

Fig. 4.4. The PES shows two symmetry-adapted avoided crossings between V0 and V1
at ϕ = π/2 and −π/2. The energy gap V1(r ≈ 0.8 Å, ϕ = π/2) - V0(r ≈ 0.8 Å,

ϕ = π/2) = 0.381 eV. In addition, Fig. 4.4 shows a near degeneracy located between

V1 and V2 at the coordinates [{r ≈ 0.8 Å, ϕ ≈ 1.047(60◦)}]1, which will be called CI1,21 .

Applying the symmetry operations of C2v(M), i.e. E, (12), E* and (12)* to CI1,21 will

generate a complete set of symmetry-adapted CIs including CI1,22 at [{r ≈ 0.8 Å, ϕ ≈
−π+ 1.047 ≈ −2.0946(−120◦)}]2 , CI1,23 at [{r ≈ 0.8 Å, ϕ ≈ −1.047(−60◦)}]3 and CI1,24

at [{r ≈ 0.8 Å, ϕ1,2 ≈ π − 1.047 ≈ 2.0946(120◦)}]4.
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Figure 4.4.: Cut through the PESs with symmetry-adapted coordinates {r ≈ 0.8 Å, ϕ},
for the ground state energy V0 (blue line), first excited state V1 (green line)

and the second excited state V2 (red line).
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Figure 4.5 shows the PES for r ≈ 1.0 Å. The figure shows a near degeneracy of V0 and

V1 with the mean energy (V0+V1)/2 =2.69 eV and with energy gap V1 − V0 ≤ 0.03 eV,

located at {r ≈ 1.0 Å, ϕ = π/2}. This CI named CI0,11 confirms the signature of the

S0/S1 CI which has been located using LH theorem. Applying the symmetry operation

generates the second symmetry adapted conical intersection CI0,12 at the location [{r ≈ 1.0

Å, ϕ = −π/2}]2. Figure 4.5 also shows a near degeneracy of V1 and V2, with the mean

energy (V1+V2)/2 = 3.96 eV and energy gap V2−V1 ≤ 0.02 eV, located at the coordinates

{r ≈ 1.0 Å, ϕ = 0.628(36◦)}. By extrapolation, we conclude that this is a signature of

a conical intersection CI1,21 located at [{r ≈ 1.0 Å, ϕ = 0.628(36◦)}]1. The other three

conical intersections CI1,22 , CI1,23 and CI1,24 can be located by applying MS operations.

We find that CI1,22 is located at [{r ≈ 1.0 Å, ϕ = −π + 0.628 = −2.513(−144◦)}]2,
CI1,23 at [{r ≈ 1.0 Å, ϕ = −0.628(−36◦)}]3 and CI1,24 at [{r ≈ 1.0 Å, ϕ = π − 0.628 =

2.513(144◦)}]4.
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Figure 4.5.: Cut through the PESs with symmetry-adapted coordinates {r ≈ 1.0 Å, ϕ},
for the ground state energy V0 (blue line), first excited state V1 (green line)

and the second excited state V2 (red line)

The adiabatic PES at r≈1.2 Å shows avoided crossing not only for V0 and V1 but also

for V1 and V2, see Fig. 4.6. These point to neighbouring sets of symmetry adapted CI0,1g ,

g=1,2 similar to those which have been discovered and confirmed in Fig. 4.4 and Fig.

4.5. Apparently, the locations of the neighbouring CI0,1g are at the same torsional angles

ϕ = π/2 and −π/2, whereas pairs of corresponding torsional angles for CI1,2g have moved

to, and merged at ϕ = 0, ±π.
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Figure 4.6.: Cut through the PESs with symmetry-adapted coordinates {r ≈ 1.2 Å, ϕ},
for the ground state energy V0 (blue line), first excited state V1 (green line)

and the second excited state V2 (red line)

4.5. Symmetry of the NACTs

This section will include a general theorems leading to the assignment of the IREPs of

the NACTs. The symmetry-adapted nuclear coordinates s⃗ = {sk} are used to define the

NACTs of the (real-valued) electronic wavefunction ψi
el(s⃗e, s⃗ )

τ i,jk (s⃗ ) = ⟨ψi
el(s⃗ )|

∂

∂sk
ψj
el(s⃗ )⟩ =

∫
ds⃗e ψi(s⃗e, s⃗ )

∂

∂sk
ψj
el(s⃗e, s⃗ ) = −τ j,ik (s⃗ ), (4.9)

with 0 ≤ i < j ≤ jmax and τ i,j(1) = τ i,j where superscript (1) is dropped for simplicity.

At the configurations s⃗ = [s⃗ i,i+1]g where the CIi,i+1([s⃗ i,i+1 ]g) are located, the NACTs

have poles [3]. The τ i,jk (s⃗ ) may be considered as components k=1,2,...,n of the vectorial

NACTs, τ i,j(s⃗ ) for the n-dimensional model. For reference, we note that in principle, the

IREPs of the NACTs (Eq.(4.9)) are given by

Γ(τ i,jk ) = Γ

(
ψi
el(s⃗e, s⃗ )

∂

∂sk
ψj
el(s⃗e, s⃗ )

)
= Γ

(
ψi
el(s⃗e, s⃗ )

)
× Γ

(
∂

∂sk

)
× Γ

(
ψj
el(s⃗e, s⃗ )

)
= Γ

(
τ j,ik

)
, (4.10)
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with 0 ≤ i < j ≤ jmax.

The notation Γ in Eq.(4.10) is used for various properties, such as NACTs, the wave-

functions (ψj
el), the derivatives ∂/∂sk, and also for IREPs of other properties such as

the product of NACTs and CIs. The third equation in (4.10) follows from the antisym-

metry relation (4.9), i.e. it suffices to determine the IREPs of the τ i,jk for i < j. The

task of determining the IREPs of the NACTs would thus be finished if the IREPs of the

wavefunction ψj
el were known for the given MS group. Since it is difficult, if not even

impossible, to provide this information by means of quantum chemistry, an alternative

approach to the Γ(τ i,jk ) must be developed. Our starting point comes from relation (4.5)

which implies that the wave functions have identical absolute values at symmetry-related

nuclear coordinates. As a consequence, the NACTs, Eq.(4.9), also have identical absolute

values at symmetry-related coordinates: i.e.

|τ i,jk ([s⃗ ]1)| = |τ i,jk ([s⃗ ]2)| = · · · = |τ i,jk ([s⃗ ]G)| (4.11)

for 0 ≤ i < j ≤ jmax.

Determination of the IREPs of the τ i,jk (s⃗ ) will also provide their relative signs at the

symmetry-related nuclear coordinates, Eq.(4.1). Accordingly, for the model system C5H4NH,

the investigation of the molecular symmetry properties should be applied for the radial

and torsional NACTs τ0,1r , τ0,2r , τ1,2r , and τ0,1ϕ , τ0,2ϕ , τ1,2ϕ . The properties of the comple-

mentary NACTs τ1,0r · · · etc. follow from the anti-symmetry relation, Eq.(4.9). It will

also be useful to determine the IREPs with respect to the alternative derivatives ∂/∂x

and ∂/∂y, see Eq.(4.6). Relation (4.11) is specified as

|τ i,jk ([{r, ϕ}])| = |τ i,jk ([{r,−π + ϕ}])| = |τ i,jk ([{r,−ϕ}])| = |τ i,jk ([{r, π − ϕ}])| (4.12)

for i, j = 0, 1 or 0, 2 or 1, 2 and {s⃗k } = {r, ϕ} or{x, y}, together with the anti-symmetry

relation (4.9).

Next, we will derive two symmetry theorems which relate the IREPs of different NACTs

to each other:

1- The first theorem: Consider two NACTs τ i,jk and τ i,jl for same electronic state

i, j but different derivatives with respect to the two symmetry-adapted coordinates

sk and sl. Then the relation represented in Eq.(4.10) implies that
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Γ(τ i,jk )× Γ

(
∂

∂sl

)
= Γ(ψi

el(s⃗e, s⃗ ))× Γ

(
∂

∂sk

)
× Γ(ψj

el(s⃗e, s⃗ ))× Γ

(
∂

∂sl

)
= Γ(τ i,jl )× Γ

(
∂

∂sk

)
(4.13)

or

Γ(τ i,jk ) = Γ

(
∂

∂sk

)
× Γ

(
∂

∂sl

)
× Γ(τ i,jl ). (4.14)

Theorem (4.14) implies that one can assign the IREPs of all the NACT from the

IREPs of a single NACTs, for the same electronic state i and j.

The symmetry group C2v(M) for the model system C5H4NH allows to set up four

possible combinations of IREPs of the NACTs with respect to the derivatives of

the coordinates r, ϕ, x and y, see Table 3.3. For example, if Γ(τ i,jr ) = A1 , then

the theorem (4.14) implies that Γ(τ i,jϕ ) = A2, Γ(τ
i,j
x ) = B2 and Γ(τ i,jy ) = B1. Note,

however, that the theorem (4.14) does not suffice per se to decide which of the four

possible combinations apply to a given set of electronic states i and j.

2- The second theorem relates the IREPs of NACTs for the derivatives with respect

to the same symmetry-adapted coordinate ∂/∂sk, but for different electronic states

to each other. For this purpose, consider a loop-type sequence of Nloop molecule

states with the same spin multiplicity, see Fig. 4.7.

Figure 4.7.: Model system with Nloop electronic state Sa, Sb, Sc,· · · , Sy, Sz=Sa

The loop consists of Nloop singlet states Sa, Sb, Sc,· · · , Sy, Sz = Sa and it starts

and ends with the same state Sa, i.e. Sz = Sa. The corresponding NACTs are

τa,bk , τ b,ck , τ c,dk , · · · , τy,z=a
k = τy,ak (4.15)
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and their product is given by

τ̃a,b,c,··· ,y,z=a
k = τabk τ bck · · · τyz=a

k . (4.16)

Theorem (4.10) implies that the IREPs of τ̃a,b,c,...,y,z=a
k can be determined from

the product of the IREPs of the underlying electronic wavefunctions ψi
el(s⃗e, s⃗ ) and

ψj
el(s⃗e, s⃗ ) as well as the derivatives of the symmetry-adapted coordinates ∂/∂sk. For

one dimensional IREPs, Eq. (4.10) yields

Γ(τ̃a,b,c,··· ,y,z=a
k ) = Γ[ψa

el(s⃗e, s⃗ )]
2 × Γ[ψb

el(s⃗e, s⃗ )]
2 ×

· · · × Γ[ψy
el(s⃗e, s⃗ )]

2 × Γ

(
∂

∂sk

)Nloop

=

{
Γ
(

∂
∂sk

)
if Nloop is odd

A1 if Nloop is even
(4.17)

Theorem (4.17) imposes a condition on the IREPs of the NACTs τ i,jk which con-

tribute to the loop (4.16). Analogous conditions can be derived for similar loops for

NACTs τa,bk τ b,cl ...etc. with respect to different symmetry adapted coordinates sk,

sl ... etc. But these do not provide any additional information because they can be

re-expressed in terms of theorems (4.14) and (4.17).

Implying thorem (4.17) on the model system (C5H4NH), with considering the lowest

three molecular states S0, S1, S2, i.e. Nloop = 3, the corresponding NACTs are τ0,1,

τ1,2 and τ0,2 thus Eq.(4.16) implies

τ̃0,1,2,0k = τ0,1k τ1,2k τ2,0k . (4.18)

Considering the symmetry-related coordinates s⃗ = {r, ϕ}, then theorem (4.17) yields

the relation of IREPs of the NACTs to their derivatives, with respect to the ∂/∂ϕ

derivatives

Γ(τ̃0,1,2,0ϕ ) = Γ(τ0,1ϕ )× Γ(τ1,2ϕ )× Γ(τ2,0ϕ ) = Γ

(
∂

∂ϕ

)
= A2. (4.19)

Likewise, theorem (4.17) can be applied for the NACTs with respect to the second

derivative ∂/∂r

Γ(τ̃0,1,2,0r ) = Γ(τ0,1r )× Γ(τ1,2r )× Γ(τ2,0r ) = Γ

(
∂

∂r

)
= A1. (4.20)
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The relations (4.19) and (4.20) for the NACTs with respect to the derivatives ∂/∂ϕ

and ∂/∂r, imply symmetry constraints on their IREPs. For example, if the IREPs

Γ(τ0,1ϕ ) and Γ(τ0,2ϕ ) of the two NACTs τ0,1ϕ and τ0,2ϕ are known with respect to ∂/∂ϕ,

then the IREP of the third one, i.e. Γ(τ1,2ϕ ), will follows automatically from relation

(4.19). Consider the case where Γ(τ0,1ϕ ) = Γ(τ0,2ϕ ) = B1: applying relation (4.19)

yields

Γ(τ0,1ϕ )× Γ(τ1,2ϕ )× Γ(τ0,2ϕ ) = Γ

(
∂

∂ϕ

)
= A2

B1 × B1 × Γ(τ1,2ϕ ) = Γ

(
∂

∂ϕ

)
= A2

Γ(τ1,2ϕ ) = A2

Theorem (4.17) establish useful relation between NACTs of the loop of the electronic

states. On the other hand, it does not suffice per se to determine the IREPs of all

the NACTs, additional steps are necessary, see next. In any case, the two theorems

(4.14) and (4.17) are applicable without calculating the electronic wavefunctions or

the NACTs explicitly.

In general, theorems (4.14) and (4.17) allows to determine

1- the relation between different patterns of signs of the NACTs.

2- the corresponding different symmetric nodes for the τ i,jk (s⃗ ), depending on the IREPs

of the different derivatives ∂/∂sk.

According to the above two relations one can apply the symmetry operator P̂g in order

to generate the sign of the τ i,jk ([{sk}]h) at all the symmetry-related locations [{sk}]h.
If the IREP of τ i,jk (s⃗ ) is Γ(τ i,jk (s⃗ )) = Γg, and the value of τ i,jk (s⃗ ) at a reference loca-

tion s⃗ = [{sk}]1 has been determined to be τ i,jk ([{sk}]1), then the absolute values of the

τ i,jk ([{sk}]h) at all symmetry-related coordinates generated by applying the symmetry pro-

jection operator P̂Γg are identical, see Eq.(4.11), while their patterns of the relative signs

may differ depending on the characters χg,h which are involved in the P̂g, see Eq.(4.2).

Whenever the signs of τ i,jk ([{sk}f ]) and τ i,jk ([{sk}]h) are different, there must be a node

of τ i,jk (s⃗ ) located half-way between [{sk}f ] and [{sk}]h, i.e.

τ i,jk (s⃗fh ) = 0 at s⃗fh =
1

2

(
[{sk}]f + [{sk}]h

)
(4.21)
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if

τ i,jk ([{sk}]f ) = −τ i,jk ([{sk}]h)

for the given IREP, Γ(τ i,jk (s⃗ )) = Γg. The theorem (4.14) implies that the IREPs of τ i,jk (s⃗ )

and τ i,jl (s⃗ ) differ if Γ (∂/∂sk) ̸= Γ (∂/∂sl). By analogy of the derivation of Eq.(4.21), the

patterns of the relative signs of the NACTs τ i,jk ([{sk}]g) and τ i,jl ([{sk}]g) at symmetry-

related coordinates [{sk}]g, as well as the corresponding nodes (4.21) should also differ,

according to their IREPs.

Applying the above theorem to the model system C5H4NH will provide lists of schemes of

the different patterns of signs of the NACTs, as well as the different nodes, depending on

their IREPs. Table 3.3a shows all four possibilities which are in accordance with theorems

(4.14) and (4.17). For example, consider the third possibility when Γ(τ i,jx ) = A1. The

corresponding sign pattern implies that the τ i,jx (Ŝg[{r, ϕ}]) at all symmetry-related values

of coordinates Ŝg[{r, ϕ}], Eq.(4.8), have the same sign. This implies that τ i,jx (s⃗ ) does not

possess any nodes imposed by symmetry, see Fig. 4.8. From Γ(τ i,jx ) = A1 , it follows that

Γ(τ i,jy ) = A2. Here, the values τ i,jy (Ŝg[{r, ϕ}]) have a pattern of alternating signs at the

symmetry-related locations Ŝg[{r, ϕ}], where both the x- and y-axes are nodal lines, see

Fig. 4.8. Likewise, τ i,jϕ and τ i,jr have the IREPs B1 and B2, with corresponding different

patterns of the relative signs.
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Figure 4.8.: The relative signs and nodes for the wavefuntions, NACTs or CIs at Ŝg[{x, y}].
The + and - signs denote same and opposite relative signs, respectively; hori-

zontal and vertical double lines indicate nodes at the x and y axis, respectively.
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Ŝ
1

Ŝ
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4.5.1. Assigning the IREPs of NACTs

To assign the IREPs of the NACTs one needs additional information about the NACTs.

The previous information and results, in particular the two general theorems (4.14) and

(4.17) together with the consequences for the patterns of the relative signs and nodes of

the NACTs, are quite useful. On the other hand, they do not always provide enough

information to assign the IREPs of the NACTs. In general, the amount of information

that is required in order to specify the IREP depends on the size G of the molecular

symmetry group. All groups which are isomorphic to molecular point groups, can be

constructed by means of a maximum of three symmetry operations Ŝh which serve as

generators. Accordingly, it suffices to specify no more than three (non-trivial, i.e. beyond

χg,E = 1 for the identity E) characters χg,h, in order to deduce the corresponding IREP

Γg [43].

As a consequence, three items (or even less) of information depending on the size of the MS

group, should be sufficient to assign the IREPs of the NACTs (The two theorems (4.14)

and (4.17) are also applicable). The following items specify three additional properties

of the NACTs between two successive isolated state (ψi
el, ψ

i+1
el ) related to the CIs [3,

10]. These and another property which involves a third electronic state will provide

complementary information needed to assign the IREPs of the NACTs:

1- If a single point CIi,i+1
g is enclosed by a contour, then the contour integrals over

the τ i,i+1
k (s⃗ |Lg) calculated along a closed loop must satisfy a quantization rule [3].

This implies that the contour integrals are equal to +π or −π, which depends on

the IREP-adapted signs of the τ i,i+1 close to s⃗ i,i+1. If the loop Lg encloses one

single CIi,i+1
g , then ∮

ds · τ i,i+1(s⃗ |Lg) = ±π = ei,i+1
g π (4.22)

where ei,i+1
g = ±1 denotes the sign of the CIi,i+1

g . Else, if the loop does not enclose

any CIi,jg ∮
ds · τ i,i+1(s⃗ |Lg) = 0. (4.23)

Here, the dot represents a scalar product of the vectorial NACTs τ i,i+1(s⃗ |Lg), which

have components τ i,i+1
k (s⃗ |Lg), and ds⃗ with respect to the symmetry adapted coor-

dinates s⃗ = {sk}, respectively. The integrations (4.22) and (4.23) are over the

tangential components of τ i,i+1. For convenience, the loops Lg of the contour inte-

grals is constructed as a closed sequence of lines along individual symmetry-adapted

coordinates.

Remark: The quantization rule (4.22) holds if and only if the loop is sufficiently

close to the CIi,i+1(s⃗ i,i+1) such that the NACTs due other states j ̸= i, i+1 do not
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interfere significantly; this corresponds to the two-state model [3]. Else, interfering

give rise to more general quantization rule [3, 111]. The quantization rule for the

NACTs has been exploited previously [34] in order to reveal a conical intersection

in a given region of configuration space [3].

2- The second additional information is the pole property. The τ i,i+1
k (s⃗ ) have poles

and their values diverge to ±∞ as the coordinates s⃗ approach the CIi,i+1(s⃗ i,i+1)

[3],

τ i,i+1
k (s⃗ ) → ±∞ for s⃗→ (s⃗ i,i+1) (4.24)

It depends on the signs imposed by their IREPs, if the values diverge to +∞ or

−∞.

3- The third information is related to the character of the wave function. The wave

function ψj
el(s⃗e, s⃗ ) and ψ

j+1
el (s⃗e, s⃗ ) may change characters as the nuclear coordinates

s⃗′ pass from one side, say the ”left, s⃗l” hand side across the seam of CIj,j+1(s⃗ j,j+1)

to opposite side, say the ”right, s⃗r” hand side, see Fig. 4.9. For example, if ψj
el(s⃗e, s⃗l )

and ψj+1
el (s⃗e, s⃗r ) represent essentially covalent or biradical types of bonding, then

these characters may switch to ψj+1
el (s⃗e, s⃗r ) and ψ

j
el(s⃗e, s⃗l ), respectively. The molec-

ular symmetry implies that if the two wavefunctions change their characters near to

the specific configuration of the seam [s⃗ j,j+1]1, then equivalent switches occur at all

other symmetry-adapted coordinates [s⃗ j,j+1]g close to the CIs. As a consequences,

the two wave functions ψj
el and ψ

j+1
el have the same IREPs. Then the NACTs τ i,jk (s⃗ )

and τ i,j+1
k (s⃗ ) between two different states i < j, j + 1 should also interchange ac-

cording to the definition (4.21). Also, the relation (4.10) yields the same IREPs for

the NACTs τ i,jk (s⃗ ) and τ i,j+1
k , (see Table 3.3)

Γ(τ i,jk ) = Γ(τ i,j+1
k ) (4.25)

in case of a switch close to CIj,j+1(s⃗ j,j+1)

τ i,jk (s⃗l ) → τ i,j+1
k (s⃗r ) (4.26)

τ i,j+1
k (s⃗l ) → τ i,jk (s⃗r ) (4.27)
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Figure 4.9.: The non-adiabatic coupling terms (NACTs) of C5H4NH with r≈ 1.00 Å, τ0,1ϕ

(blue lines), τ0,2ϕ (green lines) and τ1,2ϕ (red lines) (For calculation of NACTs

see Section 4.5.2).

In the following, we apply these three additional pieces of information to identify the

IREPs of the NACTs. The determination of the IREPs of the associated τ i,i+1
k (ϕ, r) is re-

duced to the determination of the appropriate combination of IREPs of the NACTs. This

reduction is a consequence of theorem (4.17). Table 3.3 shows four possibility combination

of the IREPs of the NACTs for model system C5H4NH. In order to find the appropriate

combination of IREPs of the NACTs τ i,i+1
k (ϕ, r), two cases of CIi,i+1(s⃗ i,i+1) located at

different symmetry-adapted coordinates are considered. The first case has CIi,i+1(s⃗ i,i+1)

located at specific values of the symmetry-related coordinates [s⃗ i,i+1]1 = [{ri,i+1, ϕi,i+1 =

π/2}]1, while the second case has the CIi,i+1(s⃗ i,i+1) located at [s⃗ i,i+1]1 = [{ri,i+1, ϕi,i+1 =

0}]1. The two properties (4.22) and (4.24) of the CIs will be applied for these two cases

as follows:

1- The first case: The CI is located at the symmetry-related coordinates [s⃗ i,i+1]1 =

[{ri,i+1, ϕi,i+1 = π/2}]1, see Fig. 4.10. For this purpose, the quantization rule (4.22)

for CIi,i+1({ri,i+1, ϕi,i+1 = π/2}), as specified in Eq.(4.28), is applied in order to

eliminate two of four possible combinations of IREPs of the NACTs, see Table

3.3. Figure 4.10 schematically illustrates the conical intersection CIi,i+1
1 ([s⃗ i,i+1]1)

located at coordinates [s⃗ i,i+1]1 = [{ri,i+1, ϕi,i+1 = π/2}]1. In order to apply the

quantization rule (4.22), the loop L1 is constructed around CIi,i+1
1 (s⃗ i,i+1), as shown

in Fig. 4.10(a). The contour integral Eq.(4.28) consists of three contributions, Itor
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along torsional angle ϕ, from ϕ = ϕ2 to π − ϕ2 and two radial lines with opposite

directions along the radial coordinates r, from 0 to r1 and from r1 to 0, respectively.∮
ds⃗ · τ i,i+1(s⃗ |L1) = Itor + Irad,1 + Irad,2 = ei,i+1

1 π, (4.28)

where

Itor =

∫ π−ϕ2

ϕ2

dϕ τ i,i+1
ϕ (r1, ϕ|L1), (4.29)

Irad,1 =

∫ r1

0

dr τ i,i+1
r (r, ϕ2|L1), (4.30)

Irad,2 =

∫ 0

r1

dr τ i,i+1
r (r, π − ϕ2|L1). (4.31)

Since loop L1 encloses one CI, the absolute value of the contour integral Eq.(4.28)

should be equal to π [3]. The sign or ”charge” ei,i+1
1 is arbitrary because the signs

of the underlying wavefunctions ψi
el and ψ

i+1
el are arbitrary, see Eq.(4.9). The choice

ei,i+1
1 = +1 in Eq.(4.28) is made ad hoc, for convenience of the subsequent il-

lustrations, which implies corresponding consistent sets of relative (same or op-

posite) signs or charges of all the NACTs and CIs, but it will not affect any of

the subsequent conclusions. Accordingly, we assign the charge ei,i+1
1 = 1 to the

CIi,i+1([{ri,i+1, ϕi,i+1 = π/2)}]1), as shown in Fig. 4.10. The symmetry properties

of the NACTs are derived from their values at symmetry-related locations on the

loop, which are indicated by stars * on the torsional line and by cross + on the

radial lines.

The specification (4.28) of the quantization rule (4.22) will now allow us to elimi-

nate the 2nd and 4th combinations of the IREPs of the NACTs which have been

specified in Table 3.3. The two combination have alternating relative signs of the

τ i,i+1
ϕ (r1, ϕ) at the symmetry-related coordinates, e.g. see the stars on the loop L1

in Fig. 4.10(a). As a consequence, these alternating sign of the τ i,i+1
ϕ (r1, ϕ) have

a compensating effect on the torsional integral (4.29), hence Itor = 0. Moreover,

the NACTs τ i,i+1
r (r, ϕ2|L1) and τ

i,i+1
r (r, π − ϕ2|L1) which contribute to the radial

integrals (4.30) and (4.31), respectively, are identical (e.g. see the crosses + on the

loop L1 in Fig. 4.10(a). This implies that Irad,1 = −Irad,2. As a consequence, the

2nd and 4th combinations of IREPs would yield Itor + Irad,1 + Irad,2 = 0, which is

incompatible with the quantization rule (4.28) for the NACTs.



4.5. Symmetry of the NACTs 69

*

* *

*

+

+

+

+

x

y

y

x

a)

b)

Figure 4.10.: Assiging the IREPs of the NACTs τ i,i+1
k (s⃗ ) and the corresponding IREPs

of the seams of the CIs. In this case the CIi,i+1
1 has been discovered at the

symmetry-adapted coordinates [s⃗ i,i+1]1 = [{ri,i+1, ϕi,i+1 = π/2}]. The CI

is surrounded by loop L1 which is drawn in red lines (panel a). It consists

of three parts, as indicated by small arrows: a ”torsional” line along the

torsional angle ϕ, form ϕ = ϕ2 to π − ϕ2 (panel a) and two ”radial” lines

with opposite directions along the radial coordinate r, from 0 to r1 and from

r1 to 0, respectively. The values of the contour integral (4.28) for this loop

is assumed to be π; the + sign is used as ”charge” ei,i+1
1 = 1 for this CI.

The symmetry properties of the NACTs are derived from their values at

symmetry-related locations on the loop, which are indicated by asterisks (*)

on the torsional line and by plus (+) on radial lines. Bold arrows point

to these symbols * and +, indicating their symmetry-related values of the

coordinates. The IREPs of the NACTs and CIs imply the existence of the

additional symmetry-related CIi,i+1
2 which has opposite charge,ei,i+1

2 . This

is surrounded by equivalent loop L2 (blue lines) with additional symmetry-

related positions which are labeled again by symbols * and +, respectively.

The NACTs at these locations * and + on blue lines L2 have the same

absolute values as for the red line loop L1 but opposite sign. Panel b shows

loop L3 which does not encircle the CI; It consists of three parts, i.e. a

quarter circle along the torsional angle ϕ which approaches the CI, plus two

lines along x and y axes. The contour integrals (4.32) for these loop L3 are

zero.
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The only possible combinations of IREPs of the NACTs left are the first or the

third one, see Table 3.3. Subsequently, the pole property (4.24) is applied in order

to eliminate one of the two remaining possibilities, thus determining the one and

only one combination of the IREPs of the NACTs which is left after elimination of

the other choices. In order exploit the pole property (4.24) close to CIi,i+1, loop L3

is constructed, see Fig. 4.10(b).

The loop L3 consists of a quarter circle (quc) and two lines along the y and x axes.

The radius r′ of the quarter circle is chosen such that the loop does not encircle the

CI, but it approaches the CI for ϕ→ π/2, implying ever increasing absolute values

of the τ i,i+1
ϕ (r′, ϕ), see rule (4.24). According to Eq.(4.23), the contour integral of

the loop L3 should be equal to zero. To investigate this criteria, the contour integral

is separated into three line integrals, specifically for the quarter circle (quc) plus the

contributions on the y and x axes,∮
ds⃗ · τ i,i+1(s⃗ |L3) = Iquc + Iy + Ix = 0, (4.32)

where

Iquc =

∫ π/2

0

dϕτ i,i+1
ϕ (r′, ϕ|L3), (4.33)

Iy =

∫ 0

r′
dyτ i,i+1

y (x = 0, y|L3), (4.34)

Ix =

∫ r′

0

dxτ i,i+1
x (x, y = 0|L3). (4.35)

Now, for the first possible combination of IREPs of the NACTs, on one hand, τx
and τy have nodes along the x and y axes, respectively, hence Ix = Iy = 0, see

Table 3.3. On the other hand, the rule (4.24) implies that Iquc ̸= 0 because it is

dominated by the large contributions of τ i,i+1
ϕ (r′, ϕ|L3) close to ϕ = π/2. The net

results is thus Iqc + Ix + Iy ̸= 0, which is incompatible with Eq.(4.32).

In conclusion, for the case where the conical intersection CIi,i+1
1 is discovered at

ϕi,i+1 = π/2, one can apply the quantization rule of the NACTs, Eq. (4.22), together

with the pole property of the NACTs close to the CI, Eq.(4.24). This will eliminate

all possible combination of the IREPs of the NACTs, except the third one. The

third one shows that Γ(τ i,i+1
x (s⃗ )) = A1, Γ(τ

i,i+1
y (s⃗ )) = A2, Γ(τ

i,i+1
ϕ (s⃗ )) = B1, and

Γ(τ i,i+1
r (s⃗ )) = B2, see Table 3.3. It is equivalent to say that the two properties

(4.22) and (4.24) of CIi,i+1
1 , together with the theorem (4.10), determine the IREPs

Γ(τ i,i+1
k (s⃗ )) of all the NACTs, and this is equivalent to determining two non-trivial
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characters χg,h for each of them.

2- The second case: The conical intersection CIi,i+1
1 is located at the symmetry-

adapted coordinate ϕi,i+1=0, see Fig. 4.11(a). Arguments which are entirely analo-

gous to those which have just been applied to CIi,i+1([{ri,i+1, ϕi,i+1 = π/2}]1) will
be used to find the possible combination of the IREPs of the NACTs. The loop

L
′

1 encloses one conical intersection, this implies that the contour integral is equal

to ei,i+1
1 π. Like for first case, choosing positive sign, i.e. ei,i+1

1 = 1, implies that

the contour integral is equal to π. The contour integral of loop L
′

1 is separated into

three parts, i.e.

∮
ds⃗ · τ i,i+1(s⃗ |L

′

1) = Itor + Irad,1 + Irad,2 = ei,i+1
1 π, (4.36)

where

Itor =

∫ +ϕ2

−ϕ2

dϕ τ i,i+1
ϕ (r1, ϕ|L

′

1), (4.37)

Irad,1 =

∫ r1

0

dr τ i,i+1
r (r,−ϕ2|L

′

1), (4.38)

Irad,2 =

∫ 0

r1

dr τ i,i+1
r (r, ϕ2|L

′

1). (4.39)

The 2nd and 3rd combination show that the τ i,i+1
ϕ (r1, ϕ) has alternative sign at the

positions marked by * in L
′

1. This implies that Itor = 0, see Table 3.3. Also the

NACTs τ i,i+1
r (r2, ϕ2 | L

′

1) and τ
i,i+1
r (r2, π − ϕ2 | L

′

1) which contribute to the radial

integrals (4.38) and (4.39), respectively, are identical, hence Irad,1 + Irad,1 = 0. As

consequence, the 2nd and 3rd combinations of IREPs would yield Irad,1 + Irad,1 +

Itorr = 0. But this is in contradiction with the quantization rule.

Moreover, applying the pole property (4.24) of the NACTs close to CIi,i+1
1 applied

to the contour integral for the loop L
′

3 shown in Fig. 4.11(b) eliminates the first

combination, as follows. Since the loop L
′

3 consists of three segments: the quarter

circle along the torsional angle ϕ which approaches the CIs located at ϕi,i+1=0,

plus two lines along the x and y axes, the quantization rule (4.22) require that the

contour integral should obey

∮
ds⃗ · τ i,i+1(s⃗ |L

′

3) = Iquc + Ix + Iy = 0, (4.40)
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where

Iquc =

∫ 0

−π
2

dϕ τ i,i+1
ϕ (r

′
, ϕ|L

′

3), (4.41)

Iy =

∫ r
′

0

dy τ i,i+1
y (x = 0, y|L

′

3), (4.42)

Ix =

∫ 0

r′
dx τ i,i+1

x (x, y = 0|L
′

3). (4.43)

Table 3.3 shows that for the first possible combination of the IREPs, the NACTs

τx and τy have nodes along x and y axes, respectively, this implies that Ix = Iy =0,

while, rule (4.24) implies that Iquc ̸= 0 since its dominated by the large contribution

of τ i,i+1
ϕ (r

′
, ϕ|L′

3) close to ϕ = 0. As a consequence, Eq.(4.40) does not equal zero,

contradiction to the rule (4.24).

In conclusion, if the conical intersection CIi,i+1
1 is discovered at ϕi,i+1 = 0, then

the quantization rule will eliminate the second and third combination of the IREPs

of the NACTs, whereas the rule (4.24) for the pole property of the NACTs close

to CIi,i+1
1 eliminates the first combination. The only possible combination is the

fourth one, thus, Γ(τ i,i+1
x (s⃗ )) = A2, Γ(τ

i,i+1
y (s⃗ )) = A1, Γ(τ

i,i+1
ϕ (s⃗ )) = B2, and

Γ(τ i,i+1
r (s⃗ )) = B1, see Table 3.3.
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Figure 4.11.: Assiging the IREPs of the NACTs τ i,i+1
k (s⃗ ) and the corresponding IREPs

of the seams of the CIs. In this case the CIi,i+1
1 has been discovered at the

symmetry-adapted coordinates [s⃗ i,i+1]1 = [{ri,i+1, ϕi,i+1 = 0}]. The CI is

surrounded by loop L
′

1 which is drawn in red lines (panel a). It consists

of three parts, as indicated by small arrows: a ”torsional” line along the

torsional angle ϕ, form ϕ = ϕ2 to −ϕ2 (panel a) and two ”radial” lines with

opposite directions along the radial coordinate r, from 0 to r1 and from r1
to 0, respectively. The values of the contour integral (4.28) for this loop

is assumed to be π; the + sign is used as ”charge” ei,i+1
1 = 1 for this CI.

The symmetry properties of the NACTs are derived from their values at

symmetry-related locations on the loop, which are indicated by asterisks (*)

on the torsional line and by plus (+) on radial lines. Bold arrows point

to these symbols * and +, indicating their symmetry-related values of the

coordinates. The IREPs of the NACTs and CIs imply the existence of the

additional symmetry-related CIi,i+1
2 which has opposite charge,ei,i+1

2 . The

CIi,i+1
2 is surrounded by equivalent loop L

′

2 (blue lines) with additional

symmetry-related positions which are labeled again by symbols * and +,

respectively. The NACTs at these locations * and + on blue lines L
′

2 have

the same absolute values as for the red line loop L
′

1 but opposite sign. Panel

b shows loop L
′

3 which does not encircle the CI; It consists of three parts,

i.e. a quarter circle along the torsional angle ϕ which approaches the CI,

plus two lines along x and y axes.
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4.5.2. Calculating the NACTs of C5H4NH

The two symmetry-adapted coordinates (r, ϕ) used to generate the PESs of C5H4NH are

also used to calculate the related non-adiabatic coupling terms. The NACTs correspond-

ing to these two coordinates are

τ i,jϕ (r, ϕ) = ⟨ψi
el(r, ϕ)|

∂

∂ϕ
ψj
el(r, ϕ)⟩ (4.44)

and

τ i,jr (r, ϕ) = ⟨ψi
el(r, ϕ)|

∂

∂r
ψj
el(r, ϕ)⟩ (4.45)

In practice, NACTs are calculated by means of finite differences with help of the quantum

chemistry MOLPRO program [32]; specifically we employ the approximations

τ i,jϕ (r, ϕ) ≈ 1

2∆ϕ

[
⟨ψi

el(r, ϕ)|ψ
j
el(r, ϕ+∆ϕ)⟩ − ⟨ψi

el(r, ϕ)|ψ
j
el(r, ϕ−∆ϕ)⟩

]
(4.46)

and

τ i,jr (r, ϕ) ≈ 1

2∆r

[
⟨ψi

el(r, ϕ)|ψ
j
el(r +∆r, ϕ)⟩ − ⟨(ψi

el(r, ϕ)|ψ
j
el(r −∆r, ϕ)⟩

]
. (4.47)

These approximations are valid to third orders of the parameters ∆r and ∆ϕ for the

finite differences. The choice of the parameters is made by considering two opposite

requirements:

1- According to the numerical convergence request, the values of ∆r and ∆ϕ must be

very small and must be smaller than the width of any sharp peak which appear in

the NACTs, specially, near the degeneracy points (CIs).

2- The chosen parameters should not be smaller than the limits which are imposed by

the sensitivity of the quantum chemistry calculation of the electronic wavefunction

with respect to very small shifts of the nuclear position.

According to these opposite requirements, the values of the parameters employed in our

calculation are ∆r = 0.0189 Å and ∆ϕ = 1.74× 10−4 radiants (= 0.01◦).

The quantum chemistry results for the torsional NACTs τ i,jϕ (r, ϕ) for r ≈ 1.0 Å in the

domain 0 ≤ ϕ ≤ π/2 are shown in Fig. 4.12(b,e), see also Fig. 4.9. The results show

large peaks of τ i,jϕ near the degeneracy points. The quantum chemistry result of the

corresponding PESs at r≈1.0 Å shows two degenerate points, CI0,11 at ϕ = π/2 and
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CI1,21 at ϕ = 36◦, respectively, see Fig. 4.5. Figure 4.12(e) shows corresponding large

peaks of the NACTs τ0,1ϕ and τ1,2ϕ close to the CI0,11 and CI1,21 , respectively, with rapid

decay as one moves away from the CIs. This is due to the poles of the NACTs at the

degeneracy points (CIs), see Section 4.5.1.
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Figure 4.12.: The quantum chemistry calculated torsional non-adiabatic terms (NACTs)

τ0,1ϕ ( blue lines),τ0,2ϕ ( green lines) and τ1,2ϕ ( red lines) in domain −π ≤
ϕ ≤ +π (panels a-c) and 0 ≤ ϕ ≤ π/2 (panels d-e) for r≈0.8 Å (panels a,d),

r≈1.00 Å (panels b,e) and r≈1.2 Å (panels c,f), in unit of 1/radians. Note the

different scale i.e. on one hand, the ”blow up” panels d-f discover details such

as the crossing of τ0,1ϕ and τ0,2ϕ which cannot be resolved in panels a-c. On

the other hand, the ”global” panels a-c demonstrate the patterns of the sign

of the peaks of the NACTs, in accord with thier irreducible representation

in the frame of the ”global” molecular symmetry group C2v(M)

Figure 4.12(a,d) shows the quantum chemistry results for the torsional NACTs τ i,jϕ (r, ϕ)
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for r ≈ 0.8 Å in the domain 0 ≤ ϕ ≤ π/2. The results shows large peaks of NACTs

τ i,jϕ near the degeneracy points. The quantum chemistry result of the PESs for r ≈ 0.8

Å shows two degenerate points CI0,11 and CI1,21 at ϕ = π/2 and ϕ = 60◦, respectively,

see Fig. 4.4. Fig. 4.12(a) shows corresponding large peaks of the NACTs τ0,1ϕ and τ1,2ϕ

close to the CI0,11 and CI1,21 , respectively. For r≈1.2 Å the PES (Fig. 4.6) show avoided

crossing. As a consequence, the values of the NACTs in Fig. 4.12(f) are much smaller

than for the previous cases.

The challenge now is to define the sign of the peaks of the NACTs which appear in Fig.

4.12. The overall sign of these peaks close to the CIs (CI0,11 and CI1,21 ) are arbitrary,

because the signs of the underlying electronic wave functions ψj
el(s⃗e, {r, ϕ}), j= 0,1,2 are

arbitrary. As a convention, it is assumed that the NACTs close to the ”first” CIs - that

means for the first peak with ϕ > 0 - have positive signs, Fig. 4.12(d,e,f). In contrast,

there is no near degeneracy between V0 and V2 in the restricted domain {r ≈ 1.0 Å,

0 ≤ ϕ ≤ π/2}- the maximum absolute value of the corresponding τ0,2ϕ is, therefore, much

smaller than the peak values of τ0,1ϕ or τ1,2ϕ . Thus the signs of the τ0,2ϕ are no longer

arbitrary, they depend on the given assignments for τ0,1ϕ and τ1,2ϕ because all the torsional

τ i,jϕ involve the same electronic wavefunctions labelled i = 0,1 and j = 1,2 (i < j). As a

consequence, τ0,2ϕ is negative in the domain close to CI1,21 such that the values of τ0,2ϕ and

τ0,1ϕ interchange close to CI1,21 , see Fig. 4.12(e). This points to a switch of the characters

of the electronic wavefunctions ψ1
el(s⃗e, {r ≈ 1.0 Å, ϕ}) and ψ2

el(s⃗e, {r ≈ 1.0 Å, ϕ}) close
to CI1,21 .

For the other rings r≈ 0.8 and 1.2 Å, the signs of the ”first” peaks of the NACTs τ0,1ϕ and

τ1,2ϕ are also set to be positive, as for r ≈ 1.0 Å, compare Fig. 4.12(d) and Fig. 4.12(f)

with Fig. 4.12(e), respectively. The consistency of this assignment will be discussed in

Section 4.5.3. Thus for r ≈ 0.8 Å, Fig. 4.12(d) shows a large positive peak of τ1,2ϕ close to

the CI1,21 which has been deduced from the near degeneracy of V1 and V2 close to ϕ=1.047

radian (60◦), see Fig. 4.4. In contrast, the increase of the energy gap between V1 and

V0 causes strong decreases of the corresponding peak value of τ0,1ϕ , compare Fig. 4.12(d)

with Fig. 4.12(e). This extrapolates a general trend from near degeneracies to avoided

crossings with increasing energy gaps between 1d cuts of the PESs. These signatures of

the CIs are located at increasing distances from the corresponding CIs, causing systematic

decreases of the peak values of the corresponding NACTs, in accord with the pole property

Eq. (4.24). This conjecture is confirmed by the results shown in Fig. 4.6 and Fig. 4.12(c)

for r ≈1.2 Å. The previous near degeneracies (Fig. 4.5 for r≈1.0 Å) are transformed into

avoided crossings, not only for V0 and V1 but even more drastically for V1 and V2. Figure

4.12(f) shows that, indeed, the peak value of τ0,1ϕ at {r ≈ 1.2 Å, ϕ = π/2} is much smaller

than at {r ≈ 1.0 Å, ϕ = π/2} which is shown in Fig. 4.12(e). Moreover, the peak for τ1,2ϕ
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which is so obvious in Fig. 4.12(d) and (e) has decayed to a marginal maximum value

which is hardly noticeable in Fig. 4.12(f).

In the region close to the boundaries ϕ = 0 and π/2, see Fig. 4.12(d-f), some of the τ i,jϕ

have decayed to very small values, below the accuracy of the quantum chemistry based

method for calculating the NACTs. In these cases, quantum chemistry per se is not

sufficient to determine the signs of the NACTs in these neighbourhoods and, therefore,

also not in other connected domains. The solution of this apparent quantum chemistry

ambiguity will be presented in the next section.

4.5.3. Assignment of the IREPs of NACTs of C5H4NH

It is now straightforward to solve the combined task of the assignment of the IREPs of

the NACTs of C5H4NH together with their nodal patterns. This will be done based on

the general theorems and properties which have been derived and summarized in previous

sections, in the frame of the molecular symmetry group C2v(M). Recall the quantization

rule (4.22) and the pole property Eq. (4.24), applied for the model of two-state systems

[3]. The exclusive peaks of the NACTs τ0,1ϕ ({r ≈ 1.0 Å,ϕ}) and τ1,2ϕ ({r ≈ 1.0 Å,ϕ})
in narrow domains close to the CI0,11 and CI1,21 demonstrate the approximate validity

of the two-state scenario. This implies that there are apparently no other CIs which

interfere with CI0,11 or CI1,21 close to [{r0,1, ϕ0,1}]1 and [{r1,2, ϕ1,2}]1, respectively, see
Fig. 4.12(b). The example for r≈1.0 Å is sufficient for the derivation of the IREPs of the

NACTs, because these are global properties of the MS group C2v(M) of C5H4NH. Once

they are determined for the special case r≈1.0 Å, they apply automatically also to other

values the MS adapted coordinates.

Let us start from the discovery of the CI0,11 based on the LH theorem ( = S0/S1 CI

(1A
′
/1A”)) at ϕ0,1 = π/2. This location implies immediately that Γ(τ0,1ϕ ) = B1. Recall

that the derivation of this result exploits the quantization rule (4.22) and the pole property

(4.24), in the frame of the two-state model which is approximately valid as discussed

above. Moreover, the general theorem (4.14) immediately relates the IREP B1 of τ0,1ϕ to

the IREPs of all the other NACTs τ0,1k , for the same states i,i+1 = 0,1. Specifically, the

radial NACT has Γ(τ0,1r ) = B2, whereas the Cartesian ones Eq.(4.6) have Γ(τ0,1x ) = A1

and Γ(τ0,1y ) = A2. Symmetry Table 3.3 also lists the corresponding sign patterns for the

peaks of the NACTs, as well as their nodal patterns. As an example, τ0,1ϕ ({r, ϕ}) should
have opposite signs of the peaks for ϕ = π/2 and −π/2, and corresponding nodes at ϕ = 0

and ±π.

Next recall that the NACTs τ0,1ϕ (r ≈ 1.0 Å,ϕ) and τ0,2ϕ (r ≈ 1.0 Å,ϕ) interchange close

to the CI1,21 which is located at [{r ≈ 1.0Å, ϕ ≈ 0.628 (36◦)}]1, see Fig. 4.12(e). The



78

Chapter 4. Quantum Chemistry and Molecular Symmetry Effects of

C5H4NH

general properties of the NACTs then imply that the IREPs of τ0,1ϕ and τ0,2ϕ are the same,

as shown in Eq.(4.26) and (4.27), i.e. Γ(τ0,2ϕ ) = Γ(τ0,1ϕ ) = B1. Likewise, for each pair of

the NACTs τ0,2k and τ0,1k with respect to the other MS-adapted coordinates sk = r, ϕ or

x,y , the IREPs are also the same, see theorem (4.14). As a consequence, the pairs of

NACTs τ0,2k and τ0,1k have the same nodal patterns - for example,τ0,2ϕ should have nodes

at ϕ = 0 and at ϕ = ±π, same as for τ0,1ϕ , vide infra.

Finally, the general theorem (4.17) which includes the special case (4.19) is used to deter-

mine the IREP of the NACT which is still ”missing”, τ1,2ϕ . Theorem (4.19) implies that

Γ(τ1,2ϕ ) = A2. Using this as a reference, the IREPs of the τ1,2k for the other MS-adapted

coordinates sk are determined, again using theorem (4.14). The results for the IREPs,

the sign patterns of the peaks, and the nodal patterns for all the NACTs τ i,jk , with re-

spect to all coordinates k = r, ϕ, x and y and for the three lowest electronic singlet states

i=0,1,2 are listed in Table 3.3. For example, τ1,2ϕ should have nodes not only at ϕ = 0

and ϕ = ±π, but also at ϕ = ±π/2. It is impossible to deduce all these nodal patterns,

which are a property of the molecular symmetry of C5H4NH, from the quantum chemistry

results shown in Fig. 4.12(d-f). For example, the values of NACTs τ0,1ϕ ({r ≈ 1.0 Å, ϕ})
close to ϕ = π/2, far away from CI1,21 , are compatible with a node or with no node at

π/2, since they are below the accuracy of the method for calculating the NACTs.

4.6. Adiabatic-to-diabatic Transformation (ADT)

The kinetic couplings, i.e. the NACTs, between separated adiabatic electronic states can

be neglected while the energy gap between the electronic state is large. In contrast, near

the degeneracy points (CIs) this energy gap become very small and the NACTs have

poles, i.e. they approach infinity. The NACTs also have an important role for the photo-

induced dynamics since they determine the efficiency of the ultrafast radiationless decay

between different electronic states. The singularity of the NACTs at the CIs makes the

simulation of nuclear dynamics on coupled electronic states very difficult in the adiabatic

representation. In order to remove these singularities an adiabatic-to-diabatic transfor-

mation (ADT) is applied, as described in Section 2.5. The transformation matrix A is

given by Eq. (2.63). In the our model system, we consider just three states S0, S1 and

S2, the starting point is ϕ0 = −π, and the A-matrix at ϕ0 = −π is defined as the unity

matrix

A(r, ϕ0) =

 1 0 0

0 1 0

0 0 1

 (4.48)
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The integration along the loop L(r) with radius r from ϕ0 to ϕ0+2π, yields the topological

matrix D(r) [3].

D(r) = A(r, 2π) = ℘ exp

[
−
∫ ϕ0+2π

ϕ0

dϕ
′
τϕ′ (r, ϕ

′
)

]
A(r, ϕ0). (4.49)

The numerical evaluation of Eq.(4.49) is described in Section 2.5.

The topology matrix D(r) is diagonal if the three states form a quasi-Hilbert subspace in

the region surrounded by L(r). The D(r) matrix is also orthogonal, hence the diagonal

elements are equal to +1 or -1. Figure 4.13 shows the elements of the A-matrix of C5H4NH

as a function of ϕ for three different values of r, i.e. r≈ 0.8, 1.0 and 1.2 Å, based on the

NACTs τ i,jϕ shown in Fig. 4.12 in the domain −π ≤ ϕ ≤ +π. In the limit ϕ → π, the

ADT matrix approaches the topological matrix D(r). It is gratifying that the numerical

values of D(r) satisfy the quantization rule perfectly, i.e. it is a self-consistency test for

the NACTs and their IREPs.
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Figure 4.13.: Elements of the A(r, ϕ)-matrix as a function of ϕ for r ≈0.8 Å(panels a-c),

r≈ 1.0 Å(panels d-f) and for r ≈ 1.2 Å(panels g-i). Panels a, d and g show

the diagonal elements Aii, where A11 presented in blue lines, green lines

show A22 and red lines for A33 . Panels b,e,h and c,f,i show the off-diagonal

elements Aij and Aji, respectively. The values of A12 and A21 are indicated

by blue lines, A13 and A31 in green lines, finally, A23 and A32 are shown in

red lines.

Applying the transformation matrix A to the diagonal matrix V(r, ϕ) for the adiabatic

PESs yields the diabatic potential matrix W
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A

 V2 0 0

0 V1 0

0 0 V0

A† =

 W22 W21 W20

W12 W11 W10

W02 W01 W00

 = W (4.50)

Here W01 =W10 , W20 =W02 and W21 = W12. The coupling elements between the states

will appear in the form of potential coupling terms W01, W02 and W12. The diabatic

matrix elements are single-valued, i.e. W(r, ϕ) = W(r, ϕ + 2π), which is the result of

the quantization rule for the topological matrix. Figure 4.14, shows the three diabatic

potentials W00, W11 and W22 for different values of r. Figure 4.14(a) shows the diabatic

potentials for r ≈ 0.8 Å, while the diabatic potentials for r≈ 1.0 and 1.2 Å are shown

in Fig. 4.14(b) and (c), respectively. Note that the diabatic potentials do not transform

according to IREPs of C2v(M), e.g.

| Wii(r, ϕ = 0) |̸=| Wii(r, ϕ = ±π) | . (4.51)

As it will be shown in next chapter, diabatic quantum dynamics simulation on those

diabatic potentials lead nevertheless to consistent description of the adiabatic nuclear

dynamics of the system.
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Figure 4.14.: The diabatic potential energy surfaces for three values of r - Panel a at

symmetry adapted coordinates s = {r ≈ 0.8 Å, −π ≤ ϕ ≤ +π], Panel b for

s = {r ≈ 1.0 Å, −π ≤ ϕ ≤ +π], Panel c for s = {r ≈ 1.2 Å, −π ≤ ϕ ≤ +π],

where blue lines indicates W11, green lines W22 and blue lines W33.
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4.7. Conclusion

In this chapter we discover several properties related to the CIs and the related NACTs

with respect to symmetry-adapted coordinates. One of these discoveries is to generate

a complete set of conical intersections from the first localized CIi,i+1
1 between the PES

at symmetry-adapted coordinates s⃗ = s⃗ i,i+1
1 by applying the symmetry operations Ŝg,

g=1,2,· · · ,G of the MS. This will yield a complete set of conical intersection CIi,i+1
g at

different symmetry-adapted location s⃗ i,i+1
g = Ŝg s⃗

i,i+1
1 .

The main investigation of this chapter is the determination the IREPs of the CIs and

related NACTs. In order to do that, we derived the general theorems (4.14) and (4.17),

together with known properties of the NACTs related to the CIs [3], in particular the

quantization rule (4.22), pole properties (4.24) and switching property (4.26). These

theorems allow to assign the IREPs of the NACTs and CIs, in the frame of the MS group.

The discovering of IREPs provide several ”global” properties, such as:

1- The pattern of the sign of the peaks value of the NACTs close to the set of MS-

adapted CIs.

2- The nodal pattern of the NACTs

These properties cannot always be provided by means of quantum chemistry calculations,

they are a result of combination between quantum chemistry and global MS group. For

example, applying quantum chemistry will provide the same absolute values of the NACTs

close to several symmetry-adapted potential minima. Applying MS group will provide the

sign of the related NACTs.

These general theories and the resulting NACTs and CIs with the proper IREPs global

domain have been demonstrated in detail for model system C5H4NH which has C2v(M)

molecular symmetry. This step-by-step approach could serve as an example for extended

applications. The results are summarized in Table 3.3 as well as in several Figures. Some

of the underlying tools which have been developed or integrated in the individual steps

appear to be quite powerful. For example, the localization of the first CI0,11 at the per-

pendicular geometry (ϕ0,1 = π/2) has been achieved by means of the method based on

the Longuet-Higgins theorem [17]. This requires nothing but quantum chemistry calcula-

tions of four anchors ( the potential minima and two transition states) of C5H4NH in the

electronic ground state S0. Nevertheless, this rather restricted input from quantum chem-

istry, combined with the general results for the MS group, suffices in order to determine

the global IREPs of all the NACTs τ0,1k for the couplings of the PES of the electronic

ground state V0 and the excited state V1, including all the MS properties such as the

nodal patterns and the signs of the NACTs or the opposite charges of the MS-adapted

set of the two CI0,11 and CI0,12 .
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These and other, rather rich results for all the NACTs and the CIs of the three lowest

electronic singlet states S1,S1 and S2 of C5H4NH have been confirmed by various tests for

self-consistency. In particlar, we have calculated the A-matrices for adiabatic-to-diabatic

transformation, based on the MS-adapted NACTs, along different paths for molecular

torsion. In the limit of torsion by 2π (360◦), the A-matrices approach the so-called

topological matrices D which have to satisfy simple but mandatory quantization rules,

i.e. they must be diagonal, with diagonal elements equal to 1 or -1 where the number of

-1’s must be even [3]. We consider the successful computational tests of this demanding

rule as rewarding. Turning the table, the self-consistency tests could also be employed as

alternative criteria for the determination of the IREPs.
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5.1. Introduction

In this chapter, we investigate the photo-induced cis-trans isomerization around the CN-

bond in C5H4NH, i.e. the rotation of the H-atom around the CN-bond. The main goal

of this chapter is to investigate the effects of the molecular symmetry of the CIs and the

corresponding NACTs on the nuclear dynamics and to demonstrate the importance of the

molecular symmetry of the NACTs in quantum dynamical simulations. To achieve this

aim, the following steps are presented:

• Presentation of two cases with identical potentials and absolute values of the NACTs,

but with different irreducible representation.

• Determination of the symmetry of the transition dipole moments.

• Simulation of the radiation-less decay after δ-pulse excitation and discussion of

symmetry effects.

• Simulation of photo-excitation with laser pulse of finite duration and dipole func-

tions depending on the torsion angle, discussion of symmetry effect and comparison

between dynamics in adiabatic and diabatic representation.

5.2. PES and the Related Non-adiabatic Coupling Terms

of C5H4NH: Comparison between two cases

In order to investigate the symmetry effects on the nuclear dynamics, two cuts of the

PESs are considered with the symmetry-adapted coordinates s⃗ = {r ≈ 0.8 Å, ϕ} and

s⃗ = {r ≈ 1.0 Å, ϕ} as shown in Figs. 5.1 and 5.2. In Section 4.4, the IREPs of the

corresponding NACTs have been determined. Here, for each cut of PES, a second case

with same absolute values of the NACTs but with different IREPs is proposed. These

examples with different IREPs of the NACTs will provide insight in the effect of MS on

the quantum dynamics.

The PESs and the related NACTs for C5H4NH at symmetry-adapted coordinates r≈0.8 Å

are presented in Section 4.4. The one-dimensional cut through the PESs belonging to three

lowest electronic state S0 (blue line), S1 (green line) and S2(red line) is shown again in

Fig.5.1(a)(thin lines) together with the related NACTs (broad lines). It is shown in Section

4.5 that the NACTs must fulfil certain rules which are related to the transformation of

the Hamiltonian to the diabatic basis by the unitary matrix A. Figure 5.1(b) shows that

the diagonal elements of A-matrix, i.e. the elements Aii, fulfil the quantization condition

of NACTs, i.e. A(ϕ = 0) = A(ϕ = 2π). The corresponding diabatic potential Wii are
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shown again in Fig.5.1(c).

Moreover, it has been shown in Section 4.6 that the NACTs have to fulfil certain symmetry

rules. In particular, the following equation for the irreducible representation Γ of the

NACTs must hold (see Eq. (4.19))

Γ(τ0,1ϕ )× Γ(τ0,2ϕ )× Γ(τ1,2ϕ ) = Γ(
∂

∂ϕ
) = A2 (5.1)

As it can seen in Fig.5.1(a), Γ(τ0,1ϕ ) = B1 (broad blue line), Γ(τ0,2ϕ ) = B1 (broad green

line) and Γ(τ1,2ϕ ) = A2 (broad red line) fulfil Eq. (5.1) with

B1 ×B1 × A2 = A2 (5.2)

In the following, the NACTs with this symmetry are referred to as ”case I”.

In order to investigate the effect of the symmetry of the NACTs on the radiation-less decay,

another case with different symmetry of the NACTs is considered. Figure 5.1(a’) shows

again the terms τ0,1ϕ (broad blue line), τ0,2ϕ (broad green line) and τ1,2ϕ (broad red line).

Here, the NACTs have the same absolute values but different relative sign, i.e different

IREPs compared to Fig.5.1(a). In this case (case II), the irreducible representation Γ of

the NACTs also fulfill Eq.(5.1) with

Γ(τ0,1ϕ )× Γ(τ0,2ϕ )× Γ(τ1,2ϕ ) = B1 × A2 ×B1 = A2 (5.3)

The corresponding diagonal elements of the A-matrix, depicted in Fig.5.1(b’), show that

the quantization rule A(ϕ = 0) = A(ϕ = 2π) is also fulfilled for case II. The diabatic

potentials for case II are shown in Fig.5.1(c’) where the elements W00, W11 and W22

presented in blue, green and red lines, respectively. The two diabatic potentials for case

I and II are slightly different. The two cases I and II are the only possible combination

of IREPs of the NACTs which fulfil the symmetry rules Eq.(4.14) and Eq.(4.17) and the

quantization rule for the A-matrix.

Note that case II does not fulfill condition (4.26) and has therefore been excluded in

Section 4.5. Figure 5.2 shows again the PES, NACTs and A-matrix for s⃗ = {r ≈ 1.0

Å, ϕ}, which have been presented in Section (4.4). The IREPs of the NACTs, as in

Fig.5.1(a), fulfil the symmetry rules Eq.(5.2).

The NACTs for this case (case I) are shown in Fig.5.2(a), where τ0,1ϕ is depicted as broad

blue line, τ0,2ϕ as broad green line and τ1,2ϕ as broad red line. Again, we consider a second

case with the following IREPs Γ(τ0,1ϕ ) = B1, Γ(τ
0,2
ϕ ) = A2 and Γ(τ1,2ϕ ) = B1, as it can be
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seen in Fig.5.2(a’). Fig.5.2 panels (b) and (b’) show diagonal term of the A-matrix, with

the elements A00 (blue lines), A11 (green lines) and A22 (red lines). For both cases the

quantization is fulfilled for i=0,1 and 2 with Aii(2π) = +1. The corresponding diabatic

potentials Wii for case I and II are shown in Fig.5.2(c) and (c’), respectively.
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Figure 5.1.: The non-adiabatic coupling elements for the symmetry-adapted coordinates

s⃗ = {r ≈ 0.8 Å, ϕ} for case I (a) and case II (a’). The terms τ0,1ϕ , τ0,2ϕ and τ1,2ϕ

are depicted in blue, green and red broad lines, respectively. For comparison

the adiabatic potentials are shown in thin lines. The diagonal elements of the

A-matrix can be seen in panels (b) and (b’) for case I and II, respectively.

Here, the blue, green and red lines refer to A00, A11 and A22. Finally, the

panels (c) and (c’) show the diabatic potentials W00 (blue lines), W11 (green

lines) and W22 (red lines).
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Figure 5.2.: The NACTs for the symmetry-adapted coordinates s⃗ = {r ≈ 1.0 Å, ϕ} for

case I (a) and case II (a’). The terms τ0,1ϕ , τ0,2ϕ and τ1,2ϕ are depicted in

blue, green and red broad lines, respectively. For comparison the adiabatic

potentials are shown in thin lines. The diagonal elements of the A-matrix

can be seen in panels (b) and (b’) for case I and II, respectively. Here, the

blue, green and red lines refer to A00, A11 and A22, respectively. Finally, the

panels (c) and (c’) show the diabatic potentials W00 (blue lines), W11 (green

lines) and W22 (red lines).



5.3. Assigning the IREPs of the Transition Dipole Moments 91

5.3. Assigning the IREPs of the Transition Dipole

Moments

The transition dipole moments µi,jz also transform according to the irreducible represen-

tation of C2v(M). In this section, we show how the IREPs of the NACTs determine the

IREPs of the transition dipole moments. Since the transition dipole moments

µi,jz = ⟨ψi
el(ϕ) | µz | ψ

j
el(ϕ)⟩ (5.4)

contains the electronic dipole operator, we first determine the transformation of the x, y

and z components of the electronic coordinates in C2v(M)

(1) (1) (1)(2) (2) (2)

(1)(2)

(1) (2)(1) (2)

Y

X

Y

Y

Y

Y

Y

Z Z Z

Z

Z

Z

X X

X

X

X

+ +

+

+

-

-

-

Figure 5.3.: The transformation of the electronic coordinates (depicted by the green arrow,

where the + and - sign indicates the position of the arrow with respect to

the XZ-plane) upon applying the symmetry operations of the group C2v(M).

Here, Rπ
z and Rπ

y denote the equivalent rotations [43], and X, Y and Z describe

the molecular fixed coordinates system.
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Figure 5.3 shows the effect of the symmetry operations (12) and E∗, on the electronic

coordinates, depicted by the green arrow. Together with (12)∗=(12)E∗, these operations

determine the IREPs for the electronic coordinates as follows (see character Table 4.3):

1- The x-components of the electronic coordinates transform as B2, as a result of

Ex = +x

(12)x = −x
E∗x = +x

(12)∗x = −x

 =⇒ x ∼ B2 (5.5)

2- The y components transforms as B1,

Ey = +y

(12)y = −y
E∗y = −y
(12)∗y = +y

 =⇒ y ∼ B1 (5.6)

3- The z components transform as A1, since

Ez = +z

(12)z = +z

E∗z = +z

(12)∗z = +z

 =⇒ z ∼ A1 (5.7)

Figure 5.3 and Eq.(5.7) imply that z-component of the dipole operator transforms as A1,

i.e.

Γ(µz) = Γ(z) = A1 (5.8)

As a consequence the IREPs of the transition dipole moments can be determined from

the symmetry of the NACTs as follows

Γ(τ i,jϕ )× Γ(µi,jz ) = Γ(
∂

∂ϕ
)× Γ(z) = A2 (5.9)

or

Γ(µi,jz ) = Γ(τ i,jϕ )× A2 (5.10)

for i ̸= j.

Relations (5.10) is used to determine all components of the transition dipole moments for
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case I as follows:

Γ(µ0,1z ) = Γ(τ0,1ϕ )× A2 = B1 × A2 = B2

Γ(µ0,2z ) = Γ(τ0,2ϕ )× A2 = B1 × A2 = B2

Γ(µ1,2z ) = Γ(τ1,2ϕ )× A2 = A2 × A2 = A1

(5.11)

Table 5.1 summarize the symmetry of the NACTs and transition dipole moments (case I).

As explained in Section 5.2, we also consider a second case where the NACTs transform

according to different IREP, which are also summarized in Table 5.1 (case II). As a

consequence, also the transition dipole moments have different IREPs. According to Eq.

(5.10), µ0,1ϕ , µ0,2ϕ and µ1,2ϕ transform as B2, A1 and B2, respectively (see Table 5.1). All

dipole moments µi,iz transform as A1.

CASE I CASE II

τ0,1ϕ
B1 B1

τ0,2ϕ
B1 A2

τ1,2ϕ
A2 B1

µ0,1ϕ
B2 B2

µ0,2ϕ
B2 A1

µ1,2ϕ
A1 B2

Table 5.1.: The IREPs of the NACTs and of the transition dipole moments µi,jz for cases

I and II.

5.4. Photo-Excitation and Molecular Symmetry of the

Initial Wavepacket

In order to investigate the movement of the H-atom, i.e. the torsion around CN axis after

excitation with an ultra-short laser pulse, the time-dependent Schrödinger equation
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i~ ∂
∂t
ψ⃗nuc(ϕ, t) =

[
H+Hint(t)

]
ψ⃗nuc(ϕ, t) (5.12)

has to be solved, where

ψ⃗nuc(ϕ, t) =

 ψ2
nuc(ϕ, t)

ψ1
nuc(ϕ, t)

ψ0
nuc(ϕ, t)

 (5.13)

is the nuclear wavefunction in the adiabatic basis which depends on the torsion angle ϕ.

The molecular Hamiltonian H is given by

H = − ~2
2Ired

(
∂

∂ϕ
+ τϕ

)2

+V (5.14)

where Ired is the reduced moment of inertia, V is the adiabatic potential matrix and the

τϕ matrix contains the NACTs. Note that τϕ = τ
(1)
ϕ where (1) is dropped for simplicity.

Here, real electronic wavefunctions are considered, so the diagonal elements τ i,iϕ are zero

and the τϕ-matrix is anti-symmetric, i.e.

τϕ =

 0 τ1,2ϕ τ0,2ϕ

−τ1,2ϕ 0 τ0,1ϕ

−τ0,2ϕ −τ0,1ϕ 0

 (5.15)

The interaction of the molecule with a z-polarized laser pulse (see Fig.5.4) is described

by

Hint(t) = −E(t)µz. (5.16)

Here, we assume that the molecules are oriented along the space fixed z-axis [137].
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Figure 5.4.: Adiabatic potential energy curves for C5H4NH, with syn- and anti-form lo-

calized in the left and right well of the potential, respectively. The arrows

describe the motion of H-atom after excitation and the decay through the

conical intersections (blue circles) and avoided crossing (red dashed lines).

The initial wavefunction ψ0
nuc(ϕ, 0) is assumed to be the ground torsional state in V0.

Figures 5.5(a) and (b) show the lowest symmetric (light green line in (a)) and anti-

symmetric (orange line in (b)) eigenfunctions of the potential V0, with symmetry A1 and

B2, respectively. The anti-symmetry principle states that it depends on the nuclear spin

of the molecule whether the torsional ground states has A1 or B2 symmetry [50, 136]. If

the laser pulse is short enough to induce a vertical transition to the excited state S2, the

wave function immediately after the interaction can be written as

ψ⃗nuc(ϕ, 0) =

 ψ2
nuc(ϕ, 0)

0

0

 (5.17)

with

ψ2
nuc(ϕ, 0) = Cµ0,2z ψ0

nuc(ϕ, 0) (5.18)

where C is constant. In this part of the investigation, the transition dipole moment in

the Frank-Condon region, i.e. at ϕ ≈ 0 and ϕ ≈ π, is assumed to be constant. However,

the symmetry of µ0,2z is taken in account, see Table 5.1.

In the following, the photo-excitation for case I and II (Table 5.1) is compared. In case I,

µ0,2z transforms as B2. As a consequence, if ψ
0
nuc(ϕ, 0) is anti-symmetric, i.e. transforms as

B2, then ψ
2
nuc(ϕ, 0) is symmetric, i.e. transforms as A1, and vice versa, as it can be seen in
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Fig.5.5 (a) and (b). In case II, the transition dipole moment µ0,2z transforms as A1. This

implies that the wavefunction after excitation ψ2
nuc(ϕ, 0) is symmetric, i.e. transforms as

A1, if the initial wavefunction ψ0
nuc(ϕ, 0) is symmetric, see Fig.5.5(c).
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Figure 5.5.: Symmetric (a) and anti-symmetric (b) initial wavefunction ψ0
nuc(ϕ, 0) and

wavefunction ψ2
nuc(ϕ, 0) after excitation with short laser pulse (indicated by

dashed arrow) for case I. (c) symmetric initial wavefunction ψ0
nuc(ϕ, 0) and

symmetric wavefunction ψ2
nuc(ϕ, 0) after excitation for case II.



5.5. Effect of the IREPs of the NACTs and Transition Dipoles on the

Radiation-less Decay 97

5.5. Effect of the IREPs of the NACTs and Transition

Dipoles on the Radiation-less Decay

In this section, the photo-induced movement of the H-atom and resulting radiation less

decay is investigated. The process is sketched in Fig.5.4. The result of the effect of the

IREPs of the NACTs, transition dipole moments and wavefunctions on the radiation-less

decay will be presented for different examples. The first and second example are torsional

potentials of C5H4NH with different radii, i.e. two values of r (≈ 0.8 and ≈ 1.0 Å). The

PESs and NACTs of the two examples are presented in Section 5.2. In third example

C5H4ND is considered instead of C5H4NH.

The simulation of the time-evolution is done using the split operator method implemented

in the program package Wavepacket [134]. For the simulation, the Hamiltonian is trans-

formed to the diabatic representation, i.e.

Hd = A†HA = − ~2
2Ired

∂2

∂ϕ2
+W (5.19)

where W the diabatic potential matrix, A is the transformation matrix give in Eq.(2.63)

and Ired is the reduced moment of inertia (Ired = 4898.36u Å2 for r ≈ 0.8 Å, 6015.65u

Å2 for r≈ 1.0 Å, and 9743.86u Å2 for C5H4ND with r≈1.0 Å). The spatial grid used

in the simulation is △ϕ = 0.0123 radiants which correspond to 1024 grid points in the

domain −π/2 ≤ ϕ ≤ 3π/2. The time steps for the split operator are △t = 0.024 fs. The

subsequent results are presented in adiabatic representation. After excitation with laser

pulse, the wave packet start moving on the three coupled potentials and the populations

of the three electronic states are calculated using the following formula

P i(t) =

∫ 3π
2

−π
2

| ψi
nuc(ϕ, t) |2 dϕ (5.20)

with i=0 for S0, i=1 for S1 and i=2 for S2.

5.5.1. Isotope Effect on Radiation-less Decay

After excitation with laser pulse, the wavepacket starts moving on three coupled poten-

tials. Figure 5.6 (a) shows the adiabatic population of the electronic state S2 (red line),

S1 (green line) and S0 (blue line) as a function of time for the cut of the PES with r ≈ 1.0

Å using a initially symmetric wavefunction. During the first 5 fs the wavepacket is lo-

calized on the S2-state, then the wavepacket starts to decay to the electronic state S1
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through the S2/S1 conical intersections, see Fig. 5.4. After 20 fs approximately 50% of

the wavepacket has decayed into the first excited state while S0 is almost empty. At t≈ 18

fs the wavepacket starts populating in the ground states and within time the population

increases up to 30% at t≈ 27 fs. As the time increases the population alternates between

the highest electronic states and S1 and S0. At t≈ 70 fs, 85% of the wavepacket is again

in the second electronic state S2. After a while, the wavepacket decays again to the first

electronic state S1, then to S0.

Figure 5.6 (b) shows the adiabatic population of three electronic states S2 (red line), S1
(green line) and S0 (blue line) for C5H4ND with r ≈ 10 Å. This case is shown in order to

compare the movement of light H-atom with the movement of the heavier D-atom on the

three electronic states. Here, the reduced moment of inertia is Ired = 9743.86u Å2. The

adiabatic population shows that the wavepacket start to decay from the electronic state

S2 into S1 after approximately 18 fs, while in H-atom movement case, the decay already

starts after 10 fs. This is due to the slower movement of the heavier atom. Moreover, only

35% of the wavepacket decayed into the S1 at t≈ 22 fs which is less than for the H-atom

case. At t≈ 22 fs the wavepacket starts to decay into the ground state. Approximately

20% of the wavepacket is transferred into the ground state at t≈ 38 fs, which is also less

than in the H-atom case. The C5H4NH case is chosen to serve as model for subsequent

investigation since, it is show large radiation-less decay for higher excited state to the

ground more than for C5H4ND case.
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Figure 5.6.: Adiabatic population in S2 (red lines), S1 (green lines) and S0 (blue lines)

after excitation for (a) C5H4NH with r ≈ 1.0 Å and (b) C5H4ND with r ≈ 1.0

Å using initially symmetric wavefunctions.
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5.5.2. Effects of the Symmetry of the Initial Wavefunctions

As sketched in Fig.5.5 (a) and (b), the torsional ground state of V0 can be either symmetric

(A1 in C2v(M)) or anti-symmetric (B2 in C2v(M)). Due to the high torsional barrier in V0,

the two states are almost degenerate. In the following, we investigate how the symmetry

of the initial wavefunction affects the radiation-less decay.

The wavefunction symmetry effect on the radiation-less decay is investigated for C5H4NH

with r ≈ 1.0 Å. Figure 5.7(a) shows the adiabatic population of three electronic states,

S0 (blue lines), S1 (green lines) and S2 (red lines) using symmetric (dashed lines) and

anti-symmetric (continuous lines) initial wavefunctions corresponding to case I, see Section

5.5.2. The Figure shows that after excitation with a δ-pulse, the wavepacket starts moving

on the three coupled potentials as described in the previous section. The adiabatic pop-

ulation during the first 20 fs shows no difference between symmetric and anti-symmetric

initial wavefunction.
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Figure 5.7.: Comparison of the adiabatic populations for an initially anti-symmetric wave-

function (solid lines) and for a symmetric wavefunction (dashed lines) for case

I for the cut of the PES with r≈1.0 Å. The population of state S2 is shown

in red color, of S1 in green and of S0 in blue lines.
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The difference between initially symmetric and anti-symmetric wavefunctions at t≈ 35 fs

can be seen in particular in the ground electronic state with population of 28% for the

initially symmetric wavefunction and 43% for the initially anti-symmetric wavefunction.

This effect can be seen more pronounced for the second cut with r≈ 0.8 Å.

Figure 5.8(a) and (b) show the adiabatic population of the electronic states S2 (red lines),

S1 (green lines) and S0 (blue lines) as a function of time for the cut of the PES with r≈ 0.8

Å. Panel (a) corresponds to a initially symmetric wavefunction and panel (b) correspond

to a initially anti-symmetric wavefunction.
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Figure 5.8.: Adiabatic population in S2 (red lines), S1 (green lines) and S0 (blue lines) af-

ter excitation for (a) initially symmetric wavefunction and (b) anti-symmetric

wavefunction for case I for the cut of the PES with r≈ 0.8 Å.

In both situations, the wavepacket starts to decay from S2 to S1 after 10 fs. Another 5 fs
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later part of the population is transferred to the ground state S0. Again, during the first

20 fs, the time-evolution of the symmetric and anti-symmetric wavefunction is the same.

Afterwards, interference between the left and right part of the wavefunctions lead to

rather different behaviours, as shown in Figs.5.8(a) and (b). In Fig.5.8(a), the electronic

ground state is almost empty and the population oscillates between the first and second

excited states via the S1/S2 conical intersections at ϕ = ±0.33π and ϕ = π ± 0.33π. The

symmetry of the wavefunction prevents its decay to the ground state: As it can be seen

in Fig.5.1(a), the coupling between S1 and S0 is strongest at ϕ = π/2 and ϕ = 3π/2. The

probability density | ψ1
nuc(ϕ, t) |2, shown in Fig.5.9(a) and (a’) in blue lines for t = 22 fs

has a node at ϕ = π/2 and ϕ = 3π/2 which prevents effective radiation-less decay to the

ground state.
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Figure 5.9.: Probability densities in the electronic states S2, S1 and S0 at t= 22fs after

excitation. Panel (a) shows | ψi
nuc(ϕ, t = 22fs) |2 for i =0,1,2 for symmetric

(red lines) and anti-symmetric (blue lines) initial wavefunctions for case I.

Panel (a’) show a magnification of | ψi
nuc(ϕ, t = 22fs) |2 close to ϕ = π/2.

In Fig. 5.8(b), we find a different behaviour. After t ≈ 50 fs, approximately 50% of the

population has decayed to the ground state. The probability density | ψ1
nuc(ϕ, t) |2 has

local maxima at ϕ = π/2 and ϕ = 3π/2, see Fig.5.9(a) and (a’)(red lines). These maxima

promote the population transfer to the ground state.

In conclusion, the difference in the dynamics of symmetric and anti-symmetric initial

wavefunction is an interesting subject. Since the symmetry of the torsional wave function
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is determined by the nuclear spin of the molecule [50, 136], differences in the photo-

induced torsional dynamics and radiation less decay open possibilities for the separation

of the nuclear spin isomers.

5.5.3. Effects of the IREPs of the NACTs and Transition Dipole

Moments

In Section 5.2, we presented two cases in which the NACTs and, as a consequence, the

transition dipole moments have different IREPs. Here, we show by comparison of the

two cases how the IREPs of the NACTs affect the torsional dynamics and the radiation-

less decay. In order to achieve this goal, we consider the cut with r≈ 0.8 Å which has

large coupling elements between S1 and S2. Since the sign pattern of these coupling

elements differs between case I and case II, the influence of the symmetry is expected

to be particularly pronounced for this example. Moreover, the symmetric wavefunction

is used as initial wave function in both cases. The photo-excitation for the two cases

are depicted in Fig.5.5 (a) and (c). Figure 5.10 shows the comparison of the adiabatic

populations in three electronic states for case I (solid lines) and case II (dashed lines).

The populations in both cases are the same during the first 20 fs after excitation, while

after t= 20 fs they start to deviate.
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Figure 5.10.: Comparison of the adiabatic populations for case I (solid lines) and case II

(dashed lines) for an initially symmetric wavefunction.
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One can notice two important points here: First, the wave function ψ2
nuc(ϕ, 0) in case I is

anti-symmetric, while for case II it is symmetric, see Fig.5.5. Figure 5.11(a) shows that

at t= 22 fs the probability density function | ψ2
nuc(ϕ, t) |2 in case I (red lines) has a node

(minimum) at ϕ = π/2 while in case II (blue lines) it has a maximum. Nevertheless, in

both cases the population in the three electronic states is similar. In particular, the decay

to the ground state is prevented also in case II, where ψ2
nuc(ϕ, 0) is symmetric. Due to

the NACTs τ1,2ϕ (ϕ) between the electronic states S2 and S1, the nuclear wavefunction for

case II requires an additional phase, different from case I, since the IREPs of τ1,2ϕ (ϕ) are

different. As a consequence, the probability density | ψ1
nuc(ϕ, t = 22fs) |2 has nodes at

ϕ = π/2 and ϕ = 3π/2, see Fig.5.11 panels (a) and (a’), as in case I, and therefore the

decay to ground state S0 is hindered.
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Figure 5.11.: Probability densities in the electronic states S2, S1 and S0 at t= 22 fs after

excitation. Panel (a) shows | ψi
nuc(ϕ, t = 22 fs) |2 for i =0,1,2 for symmetric

initial wavefunction for case I (red lines) and case II (blue lines). Panel (a’)

shows a magnification of | ψi
nuc(ϕ, t = 22 fs) |2 close to ϕ = π/2.
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The second important issue is that after approximately t ≈ 22 fs, a difference in the

radiation-less decay for cases I and II, is observed. In both cases the initial wavefunction,

adiabatic potential, absolute values of the NACTs and the transition dipole are identical.

The only difference between case I and case II is the molecular symmetry of the initial

excited states, electronic states, due to the different IREPs of the NACTs and the tran-

sition dipole moments. These differences leads to different adiabatic population between

two cases. In particular, the wavefunction transfer to the intermediate state S1 in case I

is larger than in case II, see Fig.5.10.

After t ≈ 65 fs, 49% of the population populated is in state S1 in case I, while in case

II only 35 % is present in state S1. In order to further analyze this difference in the

wavepacket evolution, it is useful to calculate the angular expectation values. The angular

expectation values ⟨cos(2ϕ)⟩ are given by

⟨cos(2ϕ)⟩i =
⟨ψi

nuc | cos(2ϕ) | ψi
nuc⟩

⟨ψi
nuc | ψi

nuc⟩
(5.21)

The angular expectation values for state S2, i.e. i=2, and for S1, i.e. i=1 are shown

in Fig.5.12 panels (a) and (b), respectively. The angular expectation value for case I

represented in red lines, while the blue lines correspond to case II.

The angular expectation value is approximately one (⟨cos(2ϕ)⟩ ≈ 1), if the wavepacket is

localized at ϕ ≈ 0 or ϕ ≈ π, while ⟨cos(2ϕ)⟩ ≈ −1 for a wavepacket localized at ϕ = π/2

and ϕ = 3π/2, and a uniform distribution in the interval −π/2 ≤ ϕ ≤ 3π/2 corresponds

to ⟨cos(2ϕ)⟩ ≈ 0.
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Figure 5.12.: Expectation values ⟨cos(2ϕ)⟩i for i=2 (a) and i=1 (b) as a function of time.

The red and blue curves correspond to cases I and II, respectively.

The expectation values show that in both cases at t= 0 fs, the wavefunction ψ2
nuc(ϕ, t = 0)

is localized at the torsion angle ϕ = 0 and ϕ = π so that ⟨cos(2ϕ)⟩2 ≈ 1, see Fig.5.12(a).

As the wavepackets disperse and become localized again with time ⟨cos(2ϕ)⟩2 decreases

and increases again. With time, the differences between case I and case II becomes larger.

In case II, the wavefunction tends to be more localized at ϕ = 0 and ϕ = π. The difference

in ⟨cos(2ϕ)⟩ between the two cases is more pronounced in electronic state S1 (Note that

in Fig.5.12(b) the expectation value ⟨cos(2ϕ)⟩1 is not plotted for t ≤ 20 fs since numerical

meaningful expectation values can be calculated only if there is enough population in

the electronic state to evaluate the corresponding integrals). At t = 20fs the expectation

values for both cases are similar with ⟨cos(2ϕ)⟩1 ≈ −0.7 to -0.8. Since the coupling

between the electronic state S1 and S2 is most effective at the torsion angle ϕ ≈ ±0.33π

and ϕ ≈ π± 0.33π, the wavefunction in state S1 is initially localized between ϕ = ±0.33π

and ϕ = π ± 0.33π, which is close to ϕ = π/2 and ϕ = 3π/2. Thus, ⟨cos(2ϕ)⟩1 is close

to -1. In case I (red line), the ⟨cos(2ϕ)⟩1 value increases to approximately 0.37, while in

case II (blue line), it oscillates between -0.7 to -0.8, as shown in Fig.5.12 (b).

Figure 5.13 panels (a) and (b) show the probability densities of | ψ2
nuc(ϕ, t = 44 fs) |2

and | ψ1
nuc(ϕ, t = 44 fs) |2 for both cases. The probability density | ψ2

nuc(ϕ, t = 44 fs) |2
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for both cases it is similar, in accord with the similar results of ⟨cos(2ϕ)⟩2 for cases I and

II, cf. Fig.5.13(a). Fig.5.13(b) shows that in case II the wavefunction is trapped in the

potential minima of V1 at ϕ = π/2 and ϕ = 3π/2 while it is spread over the whole range

of torsion angle in case I.

In conclusion, the IREPs of the NACTs and the transition dipole moments effect signifi-

cantly the radiation-less decay and dispersion of the torsional wavepackets in the excited

electronic states.
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Figure 5.13.: The probability densities | ψ2
nuc(ϕ, t) |2 (a) and | ψ1

nuc(ϕ, t) |2 (b) at t= 44 fs.

The red and blue curves correspond to case I and II, respectively.

To fortify this statement, the nuclear dynamics is simulated for a situation where the

two excited states are simultaneously populated due the interaction with short laser field.

This scenario is possible due to the fact that in the Franck-Condon region (ϕ ≈ 0 and

ϕ ≈ π) the energy difference between the electronic states S1 and S2 is △E = 0.77eV .

As a consequence, the bandwidth of a very short laser pulse with a pulse duration of

few femtoseconds can exceed this energy gap. As a result, it is likely that a short laser

pulse excites a wavepacket in both electronic states. Here, we choose again the symmetric

torsional ground state as initial state for both cases, case I and case II. The wavepackets
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after excitation are assumed to be

ψ⃗nuc(ϕ, 0) =

 ψ2
nuc(ϕ, 0)

ψ1
nuc(ϕ, 0)

0

 (5.22)

with

ψ2
nuc(ϕ, 0) =

C√
2
µ0,2z ψ0

nuc(ϕ, 0). (5.23)

ψ1
nuc(ϕ, 0) =

C√
2
µ0,1z ψ0

nuc(ϕ, 0). (5.24)

The symmetry of the excited wavefunction depends on the symmetry of the transition

dipole moments µ0,2z and µ0,1z . Table 5.3 shows that µ0,2z transforms according to B2 for

case I and A1 for case II, while µ0,1z is transformed according to B2 for both cases. The

resulting wave functions ψ2
nuc(ϕ, 0) and ψ1

nuc(ϕ, 0) are shown in Fig.5.14(a) and (b) for

cases I and II, respectively. It can be seen that for case I the wavefunction ψ2
nuc(ϕ, 0)

and ψ1
nuc(ϕ, 0) have the same symmetry: they are both anti-symmetric. For case II, the

wavefunction ψ2
nuc(ϕ, 0) is symmetric while ψ1

nuc(ϕ, 0) is anti-symmetric.
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Figure 5.14.: The wavefunction after excitation with an ultra-short laser pulse for cases I

(a) and II(b). The initial wavefunction ψ0
nuc(ϕ, 0) is the symmetric torsional

ground state in both cases.
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The populations of three electronic states after excitation are shown in Fig.5.15 for both

cases. At the beginning, the time-evolution of the populations of both excited states are

equal. Then, after t ≈ 15 fs the decay through the S1/S2 conical intersection leads to

increasing the S1 population (green lines) at the cost of the S2 population (red lines).

As before, the population in the ground state S0 is almost zero, and the wavefunction

oscillates between the excited states S1 and S2. Moreover, differences in excited states

populations between case I (solid lines) and case II (dashed lines) can be observed, and

increasing with time as shown in Fig.5.16. If both excited states are initially populated

(solid lines in Fig.5.16), the difference between case I and case II is even slightly enhanced

for t ≥ 100 fs, compared to the case where only S2 is initially populated (dashed lines in

Fig.5.16). In conclusion, the effect of the symmetry of the NACTs and transition dipole

moments on the radiation-less decay are observed also if both excited electronic states are

populated after photo-excitation.
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Figure 5.15.: (a) Populations of the electronic states S2 (red lines), S1 (green lines) and S0
(blue lines) for case I (solid lines) and for case II (dashed lines). Here, S1 and

S2 are equally populated immediately after excitation. (a’) is magnification.
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Figure 5.16.: Difference between case I and case II in the population of the electronic

states S2 (red lines), S1 (green lines) and S0 (blue lines). The dashed lines

correspond to the excitation of a initially symmetric wavefunction to state

S2. The solid lines correspond to simultaneous excitation of wavefunctions

in S1 and S2.

The effect of the molecular symmetry of the NACTs on the torsional dynamics is also

investigated for the cut of the PES with r ≈ 1.0 Å. The corresponding potentials and

NACTs are shown in Fig.5.2(a) and (a’). The adiabatic population of the two cases

presented in Section 5.2 with different IREPs of the NACTs and transition dipole moments

are shown in Fig.5.17. The adiabatic population of three electronic states S0 (blue line),

S1 (green line) and S2 (red line) are shown in continuous lines for case I and in dashed

lines for case II. Here, we consider again initially symmetric wavefunction and assume

that the wavefunction after excitation is

ψ⃗nuc(ϕ, 0) =

 ψ2
nuc

0

0

 (5.25)

As in all previous simulation, the adiabatic populations for case I and II are the same

during the first ≈ 20 fs. After this, slight differences between case I and case II can be

observed. For this cut of the PES, the differences between the two cases are much smaller

than for the cut with r ≈ 0.8 Å. For r ≈ 1.0 Å, the large NACTs are those between S0
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and S1, i.e. τ
0,1
ϕ . Their symmetry (B1) is the same in case I and case II. The terms τ1,2ϕ

have different symmetry (A2 in case I and B1 in case II). They are much smaller for the

cut r ≈ 1.0 Å than for the cut r ≈ 0.8 Å (see Figs.5.1 and 5.2). Therefore, it is reasonable

that the difference in the radiation-less decay between case I and case II are much smaller

for the cut r ≈ 1.0 Å than for r ≈ 0.8 Å.

We have shown that the difference between case I and case II, i.e. the effect of molec-

ular symmetry on the nuclear dynamics is always present, but more or less pronounced

depending on the cut through the PES, which has been chosen for the simulations. An

extension of this work to a more dimensional PES is demanding in order to demonstrate

the total effect of molecular symmetry on radiation-less decay.
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Figure 5.17.: The adiabatic populations for cases I (solid lines) and II (dashed lines) using

the initially symmetric wavefunction. The populations of S2, S1 and S0 are

shown in red, green and blue lines, respectively.

5.6. Interaction with a Laser Field

In the first part of this chapter the components of the transition dipole moments µi,jz are

assumed to be constant in the Franck-Condon region i.e. at ϕ ≈ 0 and ϕ ≈ π. As a

consequence, the movement of the H-atom after excitation with the laser pulse has been

simulated by neglecting the ϕ-dependences of the dipole and transition dipole moments.
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In this part of the study, the photo-induced dynamics of syn- and anti-C5H4NH , i.e.

cis-trans isomerization about the C=N bond are investigated by taking into account that

the µi,jz and µi,iz depend strongly on the torsion angle ϕ. Moreover, the interaction with a

laser pulse is taken into account explicitly. The torsion of the H-atom around the CN-axis

is studied during and after excitation with a single laser pulse by numerically solving the

TDSE, i.e. Eq. (5.12). In general, the interaction of the molecule with a z-polarized

electric field in the adiabatic representation is given by Eq.(5.16) (see also Section 2.6).

Here, the molecule is assumed to be oriented along the z-axis [137] and the laser field is

z-polarized. For a three-state system,

Hint = −E(t)

 µ2,2z µ2,1z µ2,0z

µ1,2z µ1,1z µ1,0z

µ0,2z µ0,1z µ0,0z

 (5.26)

where the laser pulse is given by

E(t) = E0 cos(ωt)f(t) (5.27)

with the amplitude E0, the central frequency ω and the envelope (shape function) given

by

f(t) =

{
sin2(πttp ) for 0 ≤ t ≤ tp

0 elsewhere.
(5.28)

Here, tp denotes the pulse duration.

As described in Section 5.5, the TDSE is solved in the diabatic representation, i.e.

i~ ∂
∂t
ψ⃗ d
nuc(ϕ, t) =

[
Hd +Hd

int(t)

]
ψ⃗ d
nuc(ϕ, t) (5.29)

where Hd is given in Eq.(5.19).

The diabatic representation of the interaction Hamiltonian is

Hd
int = −E(t)

 µ2,2,dz µ2,1,dz µ2,0,dz

µ1,2,dz µ1,1,dz µ1,0,dz

µ0,2,dz µ0,1,dz µ0,0,dz

 = −E(t)µd
z (5.30)

with

µd
z = A†µzA (5.31)

where A is the transformation matrix defined in Eq.(4.49).



112

Chapter 5. Molecular Symmetry Effects and Non-adiabatic Nuclear

Dynamics: Simulation of Photo-Induced Torsion of C5H4NH

The wavepacket dynamics is simulated with the split operator method in the diabatic

basis implemented in program package wavepacket [134]. The spatial grid used in the

simulation is △ϕ= 0.0123 radiants which correspond to 2024 grid points in the domain

−π/2 ≤ ϕ ≤ 3π/2. The time steps for the split operator are △t= 0.024 fs. The results

are then transformed back to the adiabatic picture.

5.7. Dipole Moments and Transition Dipole Moments

In Section 5.3 the symmetry of the transition dipole moments has been determined. The

z-components of the dipole moments and transition dipole moments have been calculated

by ab initio method using CAS(10,9)/cc-pVDZ level of theory, the CASSCF methodology

a implemented in the MOLPRO [32]. The dipole moments for the cuts with r ≈ 1.0 Å

and r ≈ 0.8 Å are shown in Fig.5.18(a) and (b), respectively. All dipole and transition

dipole moments presented in this chapter are calculated in the domain 0 ≤ ϕ ≤ 2π. As

mentioned in Section 5.3, all dipole moments must have A1-symmetry.
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Figure 5.18.: The dipole moments µi,iz (a) for r ≈ 0.8 Å (b) for r ≈ 1.0 Å as a function

of ϕ. Here, µ0,0z is shown in blue lines, µ1,1z in green lines and µ2,2z in red

lines.

Figure 5.19(a) and (a’) shows the transition dipole moments for the cut with r≈ 0.8 Å.

Note that the dots indicates the values that have been calculated quantum chemically. The
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transition dipole moments components for case I transform as Γ(µ0,1z ) = B2, Γ(µ
0,2
z ) = B2

and Γ(µ1,2z ) = A1, while in case II they transform as Γ(µ0,1z ) = B2, Γ(µ
0,2
z ) = A1 and

Γ(µ1,2z ) = B2. Figure 5.19 (a) and (a’) show that for r ≈ 0.8 Å the ab initio calculations

of the transition dipole moments are compatible with case I as well as with case II. In case

I, the sign pattern for Γ(µ0,2z )=B2 implies that µ0,2z has a node at ϕ = ±π/2. For r ≈ 0.8

Å this is in accordance with the data shown in Fig.5.19(a). However, for r ≈ 1.0 Å,

|µ0,2z (ϕ = ±π/2)| = 0.685, see Fig.5.19(b) and (b’). A node at ϕ = ±π/2 is therefore in

contradiction with the quantum chemistry results. Apparently, case I is ruled out - this

is in contradiction to the results for the NACTs which support case I as shown in Section

5.3. In case II, however, Γ(µ0,2z )=A1 which does not require a node at ϕ = ±π/2, see
Fig.5.19(b’). One should remember, however, that case II is not supported by the results

for the NACTs, see Section 5.3. The other transition dipole moments are in accordance

with both cases. We shall discuss this discrepancy in Appendix B.
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Figure 5.19.: The transition dipole moments µi,jz . Panels (a) and (a’) show case I and case

II for r ≈ 0.8 Å. Panels (b) and (b’) show case I and case II for r ≈ 1.0 Å.

Here, µ0,1z is plotted in blue lines, µ0,2z in green lines and µ1,2z in red lines.
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The transition dipole moments and dipole moments component must be transformed to

the diabatic basis, i.e. µd
z = AµzA

†. The diabatic transition dipole moments for r≈ 0.8

Å for case I and case II are depicted in Fig.5.20 (a) and (a’). Panels (b) and (b’) show

the diabatic dipole moments for both cases for the same cut. The diabatic transition

dipole moments for the cut with r ≈ 1.0 Å for case I and case II are depicted in Fig.5.21

(a) and (a’), respectively. Figure 5.21 (b) shows the dipole moments in diabatic basis for

case I, while Panel (b’) represent the diabatic dipole function for case II. In particular for

the transition dipole moments, large differences between cases I and II can be noticed for

both r≈ 0.8 Å and r≈ 1.0 Å.

Note also that the transformation to the diabatic representation does not preserve the

IREPs of the adiabatic dipole and transition dipole functions. This effect of symmetry

breaking already been observed for the diabatic potential matrix (see Section 5.2) and

will be discussed in Section 5.10.
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Figure 5.20.: Diabatic transition dipole moments µi,j,dz for the cut with r≈ 0.8 Å. Panel

(a) shows case I and (a’) shows case II. The µ0,1,dz is shown in blue lines,

µ0,2,dz in green lines and µ1,2,dz in red lines. Panels (b) and (b’) show the

diabatic dipole moments µi,i,dz for cases I and II, respectively. Here µ0,0,dz is

depicted in blue lines, µ1,1,dz in green lines and µ2,2,dz in red lines.



5.8. Effect of Laser Pulse Parameters on Excitation 115

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

a a'

b b'

case I case II
di

ab
at

ic
 tr

an
si

tio
n 

di
po

le
 m

om
en

ts
 / 

D
di

ab
at

ic
  d

ip
ol

e 
m

om
en

ts
 / 

D

torsion angle / torsion angle / π π

Figure 5.21.: Diabatic transition dipole moments µi,j,dz for the cut with r≈ 1.0 Å. Panel

(a) shows case I and (a’) shows case II. The µ0,1,dz is shown in blue lines,

µ0,2,dz in green lines and µ1,2,dz in red lines. Panels (b) and (b’) show the

diabatic dipole moments µi,i,dz for case I and case II, respectively. Here

µ0,0,dz is depicted in blue lines, µ1,1,dz in green lines and µ2,2,dz in red lines.

5.8. Effect of Laser Pulse Parameters on Excitation

The torsion of the H-atom around the CN-bond is investigated after excitation with the

short laser pulse which is defined in Eqs. (5.27) and (5.28). As a first step, the laser pulse

parameters have to be chosen, such that a considerable amount of population is transferred

to the excited electronics states after the end of the pulse. As a consequence, simulations

with different laser pulse parameters are carried out. Here a wavefunction localized in the

left potential well, i.e. a superposition of the symmetric and anti-symmetric eigenstates

depicted in Fig.5.5 is used as initial wavefunction. Fig.5.22 shows the adiabatic population

for the cut with s⃗ = {r ≈ 1.0 Å, ϕ} for case I using different pulse parameters. Figure 5.22

(a), (b) and (c) show the adiabatic population using pulses with large integrated intensity,
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i.e. large E0 and long pulse duration. The results show strong oscillation in adiabatic

population during the pulse and sudden change (exchange) of the population in S1 and

S2. By turning the frequency from ~ω= 3.4989 eV to ~ω= 3.4274 eV, the oscillation effect

can be reduced but is still presents. A smooth transition of the population from ground

state to the excited states can be obtained by using weaker and shorter pulse, as shown

in Fig.5.22 (d), (e) and (f). Here, the smooth transfer from S0 to S1 during the pulse

duration and the increases of the population in S2 due to the S1/S2 CIs after the pulse

can also be observed. The sudden change between the population in S1 and S2 during

pulse can still be seen in panels (d) and (e). It disappears as the frequency decreases

(panel f).

Therefore, the laser pulse parameters shown in Fig.5.22(f) are chosen for the simulations

with r ≈ 1.0 Å: the frequency ~ω = 3.4274 eV , pulse duration tp = 10 fs and amplitude

E0 = 0.5144×1010 V/m. The laser pulse amplitude is chosen such that the corresponding

intensity I ≈ 7× 1012 W
cm2 is less than Keldysh ionization limit, i.e.

I = εcE2
0 ≤ 1013

W

cm2
(5.32)
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Figure 5.22.: Adiabatic population of S0 (blue lines), S1 (green lines) and S2 (red lines)

for different laser pulse parameters for the cut with r≈ 1.0 Å.
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Also for the second example, i.e. for s⃗ = {r ≈ 0.8 Å, ϕ}, simulations have been done

for different laser pulse parameters in order to determine the useful laser parameters,

the two examples are shown in Fig.5.23. We found that the laser pulse with frequency

~ω = 4.159 eV , pulse duration tp = 10 fs and amplitude E0 = 0.643 × 1010 V/m which

corresponds to I ≈ 11×1012 W
cm2 are suitable to reach at least 5-10% population in the two

excited states. Here the frequency is chosen such that the population is excited basically

only in S2 during the pulse. The state S1 become populated due to decay through the

S1/S2 CIs.
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Figure 5.23.: Adiabatic population of S0 (blue lines), S1 (green lines) and S2 (red lines)

for different laser pulse parameters for the cut with r≈ 0.8 Å.

5.9. Effects of the IREPs of the NACTs, Dipole and

Transition Dipole Moments in Laser Pulse Induced

Radiation-less Decay

Here, we investigate the effect of the IREPs of the NACTs, dipole and transition dipole

moments and of the initial wavefunctions on the radiation-less decay after excitation with

a laser pulse with parameters defined in Section 5.8. We first consider the cut with

r≈0.8 Å. Again we compare case I and case II from Section 5.2 to observe the symmetry

effects. Figure 5.24(a) shows the adiabatic population for both cases, case I depicted in

solid lines and case II shown in dashed lines. The initial state is the symmetric torsional

eigenstate of V0 (see Fig.5.4). The adiabatic population shows that the laser pulse excites
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approximately 15% of the wavepacket to the second excited state. Then, after a while

5% of population decays from S2 to S1. The differences between the two cases are small

because the amount of population excited from the ground state S0 into the second excited

states S2 is small, so the effect of the symmetry on the remaining population decay is small.

It is seen mainly in the populations of the two excited states, amplified in Fig.5.24(a’).

In Fig.5.24(b) the adiabatic populations of the two cases are shown for the initially anti-

symmetric wavefunction. Here, the symmetry of the NACTs affects the radiation-less

decay slightly stronger than for the initially symmetry wavefunction. In particular, at t≈
60 fs, the S1-state is almost empty in case II (green dashed line in Fig.5.24(b) and (b’))

while its population is approximately 3% populated in case I. At t≈105 fs, the population

in state S1 and S2 are approximately 5% and 12%, receptively for case I, while in case II

approximately 0% populated in S1 and 16% populated in state S2.
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Figure 5.24.: Comparison of the adiabatic population for case I (solid lines) and case

II (dashed lines) using (a) the initially symmetric wavefunction, and (b)

the initially anti-symmetric wavefunction, (a’) and (b’) are magnifications.

The population dynamics is induced by a laser pulse with intensity I ≈
11 × 1012 W

cm2 , duration tp= 10 fs and frequency ~ω= 4.159 eV. Here, the

population of S0 is shown in blue lines, of S1 in green lines and of S2 in red

lines for the cut with r≈ 0.8 Å.
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Simulations for photo-excitation and subsequent radiation-less decay for the cut with

r ≈ 1.0 Å are shown in Fig.5.25. In panels (a) and (b) the adiabatic populations for

the different states S0 (blue line), S1(green lines) S2 (red lines) for case I (solid lines)

and case II (dashed lines) are depicted for the initially symmetric and anti-symmetric

wavefunctions, respectively. During the laser pulse interaction, nearly 30% of the adiabatic

population is excited to the first excited state S1 in both cases. Moreover, approximately

2% is populated in the second electronic state S2. At t ≈ 40 fs the two excited electronic

states, i.e. S1 and S2, are equally populated in both cases and the differences between

the two cases are very small. The population of the ground state S0 is almost identical in

both cases. The difference in the population of S2 increases with time up to △P 2 ≈ 6%

at t≈ 98 fs, where △P 2 = P 2(caseI)− P 2(caseII) with P 2 defined in Eq.(5.20).

In conclusion, differences in the radiation-less decay between the two cases with different

symmetry can be observed also if the interaction with a laser pulse and the ϕ-dependent of

the transition dipole moments are taken into account explicitly. However, in particular for

the cut with r≈ 0.8 Å, the effect is much smaller than in the simulations using the δ-pulse

excitation (see Section 5.5.3). The reason is that the laser pulse parameters used here lead

only to small population transfer to the excited states. With laser pulses optimized for

better population transfer to S2, larger symmetry effects, compared to the ones observed

in Section 5.5.3, are expected.
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Figure 5.25.: Comparison of the adiabatic population for case I (solid lines) and case

II (dashed lines) using (a) the initially symmetric wavefunction, and (b)

the initially anti-symmetric wavefunction, (a’) and (b’) are magnifications.

The population dynamics is induced by a laser pulse with intensity I ≈
7 × 1012 W

cm2 , duration tp= 10 fs and frequency ~ω= 3.4274 eV. Here, the

population of S0 is shown in blue lines, of S1 in green lines and of S2 in red

lines for the cut with r≈ 1.0 Å.

5.10. Radiation-less Decay in Diabatic and Adiabatic

Representation

In this section, we compare the wavepacket dynamics in the adiabatic and diabatic rep-

resentation. Figure 5.1 (c) and Fig.5.2(c) show that the symmetry of the potentials is

not preserved after performing the transformation to the diabatic representation. In

particular, Wii(ϕ = π) ̸= Wii(ϕ = 0), even if the torsion angles ϕ = 0 and ϕ = π de-
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scribe equivalent configurations of the system. The same can be seen for the dipole and

transition dipole moments shown in Section 5.7. In the adiabatic representation, they

transform according to the IREPs of the MS group but in the diabatic representation,

they do not. Since all simulation are performed in the diabatic representation, the ques-

tion arises whether a diabatic representation, which does not possess the symmetry of the

system, can be used to obtain physical meaningful results.

To investigate this, we consider initial wavefunctions which are localized, in adiabatic

representation, either in the left or in the right potential well, i.e. they are positive or

negative linear combinations of the symmetric and anti-symmetric torsional eigenstates,

respectively. Wavefunctions localized in the left and right potential well are physically

indistinguishable. However, they ”see” different diabatic potentials (see Fig.5.1 (c) and

Fig.5.2(c)). The initial states in the adiabatic representation are shown in Fig.5.26, to-

gether with the corresponding diabatic functions. If the adiabatic wavefunction is localized

in the left well, i.e. syn-form of C5H4NH, then ψ
0
nuc ≈ ψ0,d

nuc with small contribution of the

ψ1,d
nuc and ψ

2,d
nuc. If the wavefunction is localized in the right well, i.e. anti-form of C5H4NH,

the ψ0
nuc ≈ ψ2,d

nuc with small contribution of ψ0,d
nuc and ψ

1,d
nuc. This comes from the fact that

V0 ≈ W00 for ϕ = 0 and V0 ≈ W22 for ϕ = π.

In the following, the nuclear TDSE is solved numerically in diabatic representation for

both cases. The simulations are performed with 2024 grid points in the domain −π/2 ≤
ϕ ≤ 3π/2 using the split operator method as implemented in the program package

Wavepacket [134]. The parameters of the laser pulses are defined in Section 5.8.
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Figure 5.26.: Adiabatic initial wavefunction ψ0
nuc(t = 0) localized in the left(a) and right

(b) well of the potential for the cut with r≈ 1.0 Å. The corresponding

diabatic initial wavefunctions are shown in panels (c) and (d) with ψ0,d
nuc in

blue colours, ψ1,d
nuc in green colours and ψ2,d

nuc in red colours.
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Figure 5.27 shows the population dynamics of the three electronic states during and after

the laser pulse in the diabatic (a) and in the adiabatic (a’) representation for a wavepacket

which is initially localized on the left (solid lines) and on the right (dashed lines) adiabatic

potentials for the cut with r≈ 0.8 Å . The overall dynamics is similar to the cases described

before, and therefore not discussed in detail. It can be seen in Fig.5.27(a) that in the

diabatic picture, the role of P 0,d and P 2,d is exchange for the left and right initial states.

This comes from the fact that W00 and W22 cross at ϕ = ±π/2. Moreover, the diabatic

populations show slight differences between P 0,d for the left case (solid blue line) and

P 2,d for right case (dashed red line). Also the figure shows small differences between P 2,d

for left (solid red line) and P 0,d for the right well potential (dashed blue line). These

differences occur due to the small asymmetry of diabatic potentials which can be seen in

Fig.5.1(c).

Transforming the result back to the adiabatic picture shows that the populations for the

wavepacket localized on the left and right potential well are identical, see Fig.5.27(b).

This is consistent with the fact that both situations are indistinguishable.
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Figure 5.27.: Panels (a) and (a’) show the diabatic and adiabatic populations for the cut

with r≈ 0.8 Å, respectively. The wavepacket initially localized on the left

adiabatic potential well is shown in solid lines and the one localized on the

right in dashed lines. Here, the population of S0 is depicted in blue lines, S1
in green lines and S2 in red lines. The laser pulse parameters are defined in

Section 5.8.
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Figure 5.2(c) shows the asymmetry of the diabatic potentials for r≈ 1.0 Å. This asym-

metry is larger than for r≈ 0.8 Å. This is reflected in the diabatic populations shown in

Fig.5.28(a). The diabatic populations of the syn- and anti-forms differ already at t=0,

where P 0,d ≈ 1, while the value of P 2,d is only approximately 0.86. The populations of

S1 in both cases are almost identical, this due to the fact that W11 is almost symmetric,

as shown in Fig.5.2. The diabatic populations show large differences between P 0,d for

the syn-form and P 2,d for the anti-form, and vice versa, because W00 and W22 are not

symmetric. Nevertheless, the adiabatic populations of syn- and anti-form are identical,

as shown in Fig.5.28(a’).

In conclusion, the asymmetry of the diabatic potential leads to differences between the

wavepacket dynamics of the syn- and anti-form of C5H4NH in the diabatic representation.

Nevertheless, after back-transformation from the diabatic to the adiabatic picture, the

time-dependent populations are the same for both indistinguishable cases. The diabatic

picture is a mathematical tool for numerical propagation, while the adiabatic representa-

tion provide physical meaningful results.
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Figure 5.28.: Panels (a) and (a’) show the diabatic and adiabatic populations for the cut

with r≈ 1.0 Å, respectively. The wavepacket initially localized on the left

potential well is shown in solid lines and the one localized on the right in

dashed lines. Here, the population of S0 is depicted in blue lines, S1 in green

lines and S2 in red lines. The laser pulse parameters are defined in Section

5.8.
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5.11. Conclusion

In this chapter the effect of the IREPs of the NACTs and transition dipole moments on

the photo-induced nuclear dynamics has been investigated. Molecular symmetry affects

nuclear dynamics whenever different electronic states are coupled. The coupling can

be either internal via the NACTs or due to an external field via the transition dipole

moments. To demonstrate the effect of molecular symmetry, the photo-excitation and

subsequent nuclear dynamics in three coupled states of the model system C5H4NH have

been considered. The radiation-less decay has been simulated for two cases in which

the NACTs and transition dipole moments have the same absolute values, and the only

difference is their IREPs. In both cases, the quantization rules for the NACTs and the

symmetry rules derived in Chapter 4 are obeyed. The time-dependent populations of the

electronic states show that the IREPs have significant effects on the photo-induced nuclear

dynamics. Also, the calculated angular expectation values which describe the dispersion

of the torsional wavefunction support this finding. The quantum chemistry methods

usually provide only the absolute values of quantities like the NACTs and transition dipole

moments. In this investigation, the importance of the IREPs of these quantities for nuclear

dynamics calculation has been demonstrated. Also the results show that the radiation-less

decay to the electronic ground states is strongly influenced by the symmetry of the initial

nuclear state. Since the symmetry of the initial torsional wavefunction is determined

by the nuclear spin of the molecule via the anti-symmetry principle, C5H4NH is also

a promising candidate for the investigation of nuclear spin selective nuclear dynamics

[50, 136].

The results discussed above have been obtained by quantum dynamics simulations where

δ-pulse excitation is considered as well as for excitations by laser pulses with finite du-

rations. Taking into account the interaction between the molecule and the electric field

explicitly also requires quantum chemical calculations of the dipole and transition dipole

moments. It was shown in this Chapter and discussed further in Appendix B, that some

of the quantum chemical results for the transition dipole moments are in contradiction to

the assignment of the IREPs from Chapter 4. This disagreement has to still to be solved.

Furthermore, the photo-induced dynamics of the syn- and anti-forms of C5H4NH have

been investigated in this Chapter. The two forms are indistinguishable and must show

the same photochemistry. In the diabatic picture, due to the asymmetry of the diabatic

potentials, syn- and anti-forms of C5H4NH show different radiation-less decay. How-

ever, in the adiabatic picture, the time-dependent populations of the electronic states

are identical for both forms, as they should. We therefore emphasize that the diabatic

picture should be viewed only as a mathematical tool for numerical propagation while the

adiabatic picture will provide physical meaningful results.





6. Summary

In this study, I address the following questions: Does the molecular symmetry imposes

constraints on conical intersections and non-adiabatic coupling terms (NACTs) with re-

spect to symmetry-adapted coordinates? Does the corresponding irreducible represen-

tations (IREPs) of the NACTs influence photochemical processes related to the conical

intersections? To tackle these problems, three fields of research are combined: quan-

tum chemistry, theory of molecular symmetry, and molecular dynamics. This provides

better understanding of the role of conical intersections and the related non-adiabatic

coupling terms on the dynamics of transitions between different potential energy surfaces

in molecules.

For these investigation, the cis-trans isomerization of the model system C5H4NH by tor-

sion of the H-atom around the CN axis is proposed (Fig.4.1). The conical intersections

of C5H4NH have been determined by Prof. Zilberg with help of the Longuet-Higgins sign

change theorem. The resulting stationary structures have been assigned according to the

IREPs of the local molecule point group [71].

This work provides an extension of these symmetry assignments, from the IREPs for local

molecular point groups to the global molecular symmetry (MS) group. This opens the door

to investigations of molecular properties beyond Born-Oppenheimer in global molecular

domains, e.g. mediated by large amplitude motions such as torsion. We discovered

several important properties of the CIs and the related NACTs with respect to molecular

symmetry-adapted coordinates. For example, if the quantum chemistry calculations of the

adiabatic potential energy surfaces have localized one CI between two electronic states,

then one can apply the symmetry operations of the MS group in order to generate a

complete set of MS-adapted CIs. These global properties can not be derived by pure

quantum chemistry, they are a result of its combination with global MS groups.

One of the goals of this study is the determination the IREPs of the NACTs. For this

purpose, the PESs and NACTs have been calculated by using an ab initio method of

quantum chemistry (CASSCF with cc-pVDZ(10,9)), see Section 4.3 and 4.4. Close to a

conical intersection between two electronic states, the corresponding NACT is very large

and it decreases rapidly to approximately zero where the gap between the potentials

increases. In order to determine the IREPs of NACTs, we derived two theorems (4.14)
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and (4.17). These relate the IREPs of different NACTs to each other, e.g. theorem

(4.14) implies that one can assign the IREPs of all the NACTs with respect to symmetry-

adapted coordinates from the IREPs of a single NACTs for the same electronic states i

and j, while theorem (4.17) imposes a condition on the IREPs of the NACTs between

different electronic states. These two theorems in combination with the quantization rules

(4.22), pole property (4.24) and switching property (4.26) were applied to determine the

IREPs of the NACTs. By assigning the IREPs of NCATs, we discovered several ”global”

properties, such as the pattern of the sign of the peak values of the NACTs close to the

set of MS-adapted CIs, and the nodal patterns of the NACTs, as shown in Section 4.4.

In Section 4.5, we calculated the matrices for adiabatic-to-diabatic transformation (ADT),

based on the MS-adapted NACTs for molecular torsion. In the limit of a torsion by 2π,

these matrices approaches the so-called topological matrices D which have to satisfy a

quantization rule, i.e. they must be diagonal, with diagonal elements equal to 1 or -1

where the number of -1’s must be even [3]. The fulfilment of the quantization rules can

be viewed as a test for self-consistency to confirm the results for all the NACTs and the

CIs of the three electronic states S0, S1 and S2 of C5H4NH.

In Chapter 5, we addressed the second question proposed in the beginning of this study,

i.e. the IREPs of the NACTs influence photochemical processes related to the conical

intersections? We investigate the effect of the IREPs of the NACTs and transition dipole

moments on nuclear dynamics in the framework of quantum dynamical simulations using

the split operator method implemented in program package ”wavepacket” [134]. The

photo-excitation with subsequent nuclear dynamics on three coupled electronic state of

C5H4NH serve as model. To achieve this goal, we proposed different scenarios with same

absolute values of the NACTs and transition dipole moments but with different sign

depending on the IREPs, see Section 5.2. The scenarios fulfil the quantization rule and

other symmetry properties. In the first part of this chapter, we assume that the transition

dipole moments are constant in the Frank-Condon region (Condon approximation), but

the IREPs of the transition dipole moments are taken into account, see Section 5.5. These

the simulation are carried out by considering vertical excitation with a δ-pulse. We show

that the radiation-less decay to the electronic ground state is strongly influenced by the

IREPs of the initial nuclear state. Since the IREPs of the initial torsional wavefunction is

determined via the anti-symmetry principle by the nuclear spin of the molecule [50, 136],

it must be either symmetric or anti-symmetric. The calculated adiabatic populations of

three coupled states and probability densities show differences in the radiation-less decay

between symmetric and anti-symmetric initial wavefunction, the effects of nuclear spins

on photo-induced nuclear dynamics. Furthermore, in Section 5.5 we investigate the effect

of the IREPs of the NACTs, dipole and transition dipole moments on radiation-less decay.

The photo-induced dynamics show significant differences between the two scenarios, which

can be observed in the time-dependent population of the electronic states, probability
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densities, and in the angular expectation values which describe the dispersion of the

torsional wavefunctions. The results show the importance of the molecular symmetry for

a correct description of the nuclear dynamics.

In the second part of chapter 5, the photo-induced torsional dynamics of C5H4NH is

investigated by taking into account the interaction between the molecule and the electric

field explicitly, also considering that the dipole and transition dipole moments depend

strongly on the torsion angle, beyond the condon approximation. The two scenarios which

have been proposed in the first part show differences in the radiation-less decay due to

symmetry effects. It is shown that the effect of IREPs of the NACTs, dipole and transition

dipole moments on radiation-less decay can also be observed also if the interaction with

a laser pulse and the torsional dependence of the transition dipole moments are taken

into account. Here, we note a contradiction between the quantum chemical results and

the symmetry assignment presented in Chapter 4. In the Appendix, we discuss a possible

solution which has to be in the future investigated.

Furthermore, the photo-induced dynamics of the syn- to anti-form of C5H4NH is also in-

vestigated. The two forms are indistinguishable and must show the same photochemistry.

In the diabatic picture, due to the asymmetry of the diabatic potentials, the syn- and

anti-forms of C5H4NH show different radiation-less decays. However, in the adiabatic pic-

ture, the time-dependent populations of the electronic states are identical for both forms,

as they should. We therefore emphasize that the diabatic picture should be viewed only

as a mathematical tool for numerical propagation while the adiabatic picture will provide

the physical meaningful results.

In this study, we considered a model with one nuclear degree of freedom for a proof

of principle that the IREPs of the NACTs, dipole and transition dipole moments affect

non-adiabatic nuclear dynamics. In future studies, more realistic models including several

nuclear degrees of freedom will have to be considered in order to investigate how the effect

of molecular symmetry can be revealed in experiments. Since the IREPs of the initial

torsional wavefunction is determined by the nuclear spin of the molecule via the anti-

symmetry principle [50, 136], C5H4NH is also a promising candidate for the investigation

of nuclear spin selective nuclear dynamics.





A. Appendix A

The z-components of the transition dipole moments between electronic states i and j where

i̸=j, is calculated via

µi,jz = ⟨ψi
el(ϕ) | µ̂z | ψ

j
el(ϕ)⟩. (A.1)

The transition dipole moments µi,jz well as the NACTs of C5H4NH must transform ac-

cording to the IREPs of C2v(M). In particular, we have shown in Section 5.3 that

Γ(µi,jz ) = Γ(τ i,jϕ )× A2 (A.2)

The resulting IREPs of the transition dipole moments are summarized in Tabel 5.1 for

the two cases, i.e. case I and case II, discussed in Chapter 5.

As we have seen in Fig. 5.19, the quantum chemical data for the transition dipole moments

µ0,2z for r≈ 1.0 Å seems to be in contradiction to the IREPs required in case I. Therefore,

the transition dipole moments are calculated for additional values of r. Fig.A.1 shows µi,jz
for r≈ 0.8 Å (a and a’), r≈ 0.9 Å (b and b’), r≈ 1.0 Å (c and c’), r≈ 1.1 Å (d and d’), r≈
1.2 Å (e and e’) for case I (left column) and case II (right column).

For case I, the transition dipole moments for all cases except µ0,2z for r≈ 1.0 Å (green

curve in Fig.A.1(c)) are in accordance with Eq.(A.2). In particular, µ0,2z for r≈ 1.2 Å

(green curve in Fig.A.1(e)) changes smoothly from positive to negative values around

ϕ = π/2. Since µi,jz (ϕ) must have the same IREPs for all values of r, this suggest that

µi,jz (ϕ) for r≈1.0 Å is a limiting case where the smooth transition which is observed for

r≈ 1.2Å becomes a sudden jump. A similar argument can be applied also to case II. Here,

all functions µi,jz (ϕ) are in accordance with Eq.(A.2) except µ1,2z for r≈ 1.2 Å (red lines

in Fig.A.1(e’)). Here, the µ1,2z is supposed to change its sign at ϕ = ±π/2, which is not

supported by the quantum chemical data. However, a smooth transition from negative

to positive values can be observed for µ1,2z (ϕ) for r≈ 1.0 Å (Fig. A.1(c’), red line). Since

µ1,2z must have the same symmetry for all r, this might became a sudden jump at r≈ 1.2

Å.

Concluding, it seems that the quantum chemical calculation of the transition dipole mo-

ments lead to a contradiction to the symmetry assignment from Chapter 4. The transition

from a smooth sign change to a sudden jump is a possible explanation which has to be
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explored by further investigation.
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Figure A.1.: The transition dipole moments µi,iz for different values of r, i.e. r≈0.8Å (a,

a’) r≈0.9Å (b, b’) r≈1.0Å (c, c’) r≈1.1Å (d, d’) r≈1.2 Å (e, e’). The two

cases discussed in Chapter 5 are shown, i.e. case I (left column) and case II

(right column). The transition dipole moments µ0,1z , µ0,2z and µ1,2z are shown

in blue, green and red lines, respectively.
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[29] Köppel, H., Faraday. Discuss. (2004), 127, 35.

[30] Hofmann, A., de Vivie-Riedle, R., J. Chem. Phys. (2000), 112, 5054; Chem. Phys.

Lett. (2001), 34, 299.

[31] de Vivie-Riedle, R., Hofmann, A., Domcke, W., Yarkony, D.R., Köppel, H., Eds.
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S., Köppel, H., J. Chem. Phys. (2008), 128, 124305; Gomez-Carrasco, S., Aquado,

A., Paniaqua, M., Roncero, O., J. Chem. Phys. (2006), 125, 104105.

[118] Hu, C., Hirai, H., Sugino, O., J. Chem. Phys. (2008), 128, 144111; Hu, C., Hirai,

H., Sugino, O., J. Chem. Phys. (2007), 127, 064103.

[119] Gadea, X., Pellisier, M., J. Chem. Phys. (1990), 93, 545; Romero, T.; Aguilar,

A., Gedea, X., J. Chem. Phys. (1999), 110, 6219; Mozhayskiv, V.A., Babikov, D.,

Krylov, A.I., J. Chem. Phys. (2006), 124, 224309.

[120] Abrahamsson, E., Groenenboom, G.C., Krems, R.V., J. Chem. Phys. (2007), 126,
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