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Abstract

The present thesis deals with the investigation of geomaterials and processes
on a molecular scale. Several application examples show how molecular sim-
ulation can augment and enhance our understanding of processes of the deep
earth’s interior. All examples describe parts of the processes of mineral-melt
interactions in the mantle that comprise element mobilisation and redistri-
bution. The first chapter provides a general introduction into the topic and
how the individual chapters fit into the scope of the thesis. The second chap-
ter thoroughly introduces the applied methods, namely molecular dynamics
simulations and their theoretical framework. Chapter 3 discusses a combined
simulation and experimental approach to investigate the structure of Y- and
La-bearing aluminosilicate melts and glasses. Newly developed classical in-
teraction potentials and first-principles methods are employed to investigate
the local environment of Y and La depending on melt composition. Next to
the insight gained into the structure of such complex melts, the benefits and
drawbacks of the different simulation approaches are discussed. Chapter 4
also uses classical and first-principles simulations to develop a new tool for
the prediction of trace element partition coefficients between silicate melts. A
clear focus of this study lies on unravelling the influence of melt composition
and structure on the partitioning behaviour of selected trace elements. Again,
the findings are compared to experimental partitioning studies. The chapter
shows that it is principally possible to predict element distributions between
two given phases directly from molecular dynamics simulations. Chapter 5
investigates element transport properties in forsterite grain boundaries. Here,
the focus lies on the influence of grain boundary structure on diffusion coeffi-
cients in aggregates typical for the upper mantle. The chapter concludes that
there is a direct correlation between grain boundary excess volume and diffu-
sion coefficient as well as a strong anisotropy in diffusion pathways, depending
on the type of boundary. Chapter 6 summarises the findings of this thesis
and discusses possible future developments and improvements to the applied
methods.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Untersuchung von Geomaterialien
und Prozessen auf der atomaren Skala. In drei Fallbeispielen wird gezeigt,
wie atomistische Simulationen unser Verstandnis fiir Prozesse der tiefen Erde
erweitern konnen. Im ersten Kapitel erfolgt eine allgemeine Einleitung in die
Thematik. Ausfiihrliche Einleitungen in die einzelnen Teilgebiete finden sich
in den jeweiligen Kapiteln. Das zweite Kapitel fithrt umfassend in die ange-
wandten Methoden ein, namentlich Molekulardynamik-Simulationen sowie die
Theoriegebaude, die solchen Simulationen zugrunde liegen. Kapitel 3 befasst
sich mit der Entwicklung klassischer Wechselwirkungspotentiale und deren An-
wendung zur Strukturaufklarung komplexer, Y- und La-haltiger, silikatischer
Schmelzen. Zur Bewertung werden experimentell bestimmte Strukturfaktoren
der untersuchten Schmelzen herangezogen, dabei werden die Vor- und Nachteile
der verschiedenen Simulationsmethoden diskutiert. Kapitel 4 nutzt eben-
falls diese klassischen Potentiale sowie quantenmechanische Simulationen fiir
die Entwicklung neuer Methoden zur Vorhersage von Verteilungskoeffizienten
verschiedener Spurenelemente zwischen silikatischen Schmelzen. Gleichzeitig
wird dabei auf die strukturellen Eigenschaften der einzelnen Schmelzen und
deren Auswirkung auf den Verteilungskoeffizient eingegangen. Kapitel 5 be-
fasst sich mit Diffusionsprozessen an Korngrenzen und welche Rolle die Korn-
grenzstruktur bei solchen Prozessen spielt. In einem abschliefenden Kapitel
werden die Erkenntnisse der Arbeit zusammengefasst und Mdoglichkeiten zur
Weiterentwicklung und Verbesserung der prasentierten Methoden diskutiert.
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Chapter 1

Introduction

Our knowledge of the deep Earth’s interior traditionally stems from two ma-
jor sources. One is the interpretation of geophysical measurements, mostly
of seismic wave velocities induced by earthquakes. It allows to infer physi-
cal properties of the material the wave propagates through and has lead to
the established 'layered’ model of the earth. The other source of information
is the characterisation of natural rock samples that originate from the deep
earth and are now exposed at the surface. Alternatively, geochemical labo-
ratory experiments emulate conditions of the deep earth on a miniature scale
in order to understand chemical and physical properties (phase reactions and
stability, elastic properties, thermodynamic properties) of geologically relevant
materials. Such experiments have often provided an explanation (e.g. in form
of phase transitions) for deep earth phenomena observed by geophysics. To
better understand the complex processes of the deep earth, it is mandatory
to extensively study the individual subsystems involved. In the past years,
a particular focus has been on the structure and properties of silicate melts
(e.g. Mysen and Richet| 2005). As opposed to the solid mineral phases, reliable
structure models for melts are still lacking and interpretation of experiments is
far from straight forward, especially under the extreme pressure and tempera-
ture conditions of deep mantle environments. The use of computer simulations
to investigate geoscientifically relevant materials and processes on all scales is
a third approach that has established itself in the past decades. In particu-
lar on the scale of geomaterials, numerical simulations of minerals, melts and
aqueous fluids can provide an additional perspective, namely a molecular scale
view, onto a given geoscientific problem. It has so far been difficult to observe
processes on the atomic scale, let alone directly investigate their influence on
a macroscopic property (e.g. the heat capacity of a melt or diffusion coeffi-
cients of a mineral). With the steady increase of computing power over the
last decades, it has become affordable to investigate evermore larger and com-



Chapter 1. Introduction

plex systems to resemble real experiments. Computer simulations, especially
those based on density functional theory (DFT, see Chap. , also called ’first-
principles’ simulations) have the unique advantage that they empower us to
calculate a thermodynamic property of interest at any given (extreme) con-
dition while simultaneously provide insight into the molecular structure of a
material. Ideally, such simulations not only deliver an explanation for exper-
imentally observed phenomena but may make predictions for conditions that
experiments can not reach. For these reasons, the annual number of publica-
tions in geoscience that involve computer simulations has steadily increased
over the past years.

In this context, the present thesis has three distinct goals: (i) the development
and application of methods to investigate silicatic systems, both ordered and
unordered, (ii) development of structural models of silicate melts, -glasses and
crystal defects and (iii) using these models to predict physical and chemical
properties of geomaterials. At first, new types of classical interaction potentials
are developed (see Sec. , one type by the author and one by co-workers.
One of these is also formally implement into a molecular dynamics code frame-
work (CP2K) by the author. In chapter , these potentials are tested regarding
how well they perform to simulate complex aluminosilicate melts and glasses
by investigating the structural environment of selected trace elements depend-
ing on melt composition. The results are benchmarked by comparing them
to experimental studies as well as first-principles simulations. Subsequently,
application examples of these models are discussed. Chapter 4| presents a new
approach to predict trace element partitioning coefficients in silicate systems
while simultaneously elucidating the structural driving factors that govern this
partitioning. All simulations as well as data analysis and presentation have
been conducted by the author. Chapter [5|investigates element transport prop-
erties in forsterite grain boundaries. The goal here is to elucidate how grain
boundary structure hinders or enhances self diffusion in these grain boundaries
and thus potentially influences element transport through a typical mantle ag-
gregate. Here, another aim is to make the transition between discrete and
continuous scales, showing that self diffusion and element redistribution de-
pend strongly on grain boundary structure. The study is based on initial
grain boundary structures developed by a co-worker. The simulations, data
analysis and presentation have all been conducted by the author. Ultimately,
all these studies describe parts of the processes of mineral-melt interactions in
the mantle that comprise element mobilisation and redistribution.



Chapter 2

Computational methods

2.1 The molecular dynamics method

All studies in this thesis have in common that they employ the same method to
simulate the behaviour of an arbitrary set of atoms over time: The molecular
dynamics method (MD, Marx and Hutter, 2012)). All atoms in a systems
interact with each other and the energy of these interactions is described by
a potential. At any temperature above 0 K, atoms move with a mean kinetic
energy (Ej;,) of

mng@T (2.1)

where kp is the Boltzmann constant and 7" the temperature. Their interactions
impose forces (F) on the atoms which relate to the potential (U) as

F=-VU (2.2)

where V is a differential operator (Nabla). With these forces, the new velocity
is found by integrating Newtons equations of motion

F=m-a (2.3)

where m is the atomic mass and a its acceleration. In molecular dynamics
simulations, equation is integrated numerically at each time step, and a
new set of velocities and positions is assigned to each atom. The evolution of
atomic velocities and positions is tracked in an atomic trajectory, which can
subsequently be used to calculate average statistical properties of the system.
To properly reflect the dynamics of such an atomic trajectory, the simulation
step often has to be very small, usually 1 fs (107'° s). In order to avoid surface
effects when an atom reaches the boundary of the simulation cell, periodic
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boundary conditions are applied in all simulations in this thesis. Essentially,
an exact copy of the cell is repeated infinitely in all directions to the effect
that atoms that cross a cell boundary are simply reintroduced at the opposite
site (see Fig. [2.1)).

Statistically, a system is described by a so called ensemble, which is defined
by a set of observables that are in statistical equilibrium. There are several
statistical ensembles that can be used in molecular simulations, depending on
the property of interest (McQuarrie, 2000). The microcanonical ensemble (also
called NVE ensemble) assumes that the system is isolated and not effected by
any time dependent external forces. Thus, the simulation probes the system
at constant number of particles (), volume (V') and energy (£). However,
since most laboratory experiments do not control the total energy of a system
but rather the temperature, the most intuitive extension of the microcanoni-
cal ensemble is the canonical ensemble (NVT). Here, not the energy but the
absolute temperature (7') is fixed during the simulation. Note however that
the temperature, in contrast to N and V, is an intensive parameter of the
system (i.e. independent of system size) with the kinetic energy of the par-
ticles as its extensive counterpart. NVT ensembles are realised by bringing
the system in contact with a heat bath (thermostat) that is large compared to
the system and assuming that no other external force interacts with it. Ex-
amples of such thermostats are the Nosé-Hoover thermostat (Nosé, 1984) or
the canonical sampling through velocity rescaling (CSVR, Bussi et al, 2007)
thermostat. Both correct deviations of the actual temperature by rescaling
the atomic velocities by a certain factor, moving the systems dynamics closer
to the desired temperature. Similarly, barostats algorithms may control the
pressure (P) in NPE or NPT ensembles by periodically rescaling the atomic
positions to result in the desired pressure.

However at the heart of every MD simulation stands the calculation of the to-
tal energy of the simulated system, necessary to derive the acting forces (Eq.
. This is the computationally expensive part of such types of simulation,
usually implemented using one of two approaches: the first-principles or ab ini-
tio approach is based on quantum mechanics and essentially parameter free,
while classical MD relies on parametrised potentials and classical mechanics.
Both methods are described in the following.
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Figure 2.1: Sketch illustrating the principle of periodic boundary conditions
in two dimension. The central simulation cell (bold dashed line) is repeated
infinitely in each dimension (thin solid lines). If an atom is moved towards the
outside of the initial simulation box, its periodic image is reintroduced at the
opposite site.
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2.2 First-principles simulations and density
functional theory

Computer simulations of atomic systems that treat atomic interactions quan-
tum mechanically are commonly referred to as first-principles or ab initio simu-
lations. For the purposes of this thesis, the fundamental equation to be treated
is the Schrodinger equation for a non-relativistic, non-spin-polarized system.
As a first simplification, we treat electrons and atomic nuclei separately. This
means nuclei are considered only in form of a potential acting on the electrons
(the Born-Oppenheimer approximation) and all of the following considerations
only depend on the electronic coordinates. For a single electron with coordi-
nates r in an external potential ve.(r), the time independent Schrodinger’s
equation is given by

. h*v?
HY(r) = [— 5

+ Um(r)] U(r) = EV(r) (2.4)
Here, H is called the systems Hamiltonian, U(r) its time independent wave
function, m the mass and E the systems total energy. h is the Planck constant
and V? the Laplace operator. If more than one electron is involved (which is

the case in any system of interest in this thesis), one needs to solve a many-
body problem. For N electrons, Eq. is modified to

[i (_ h;ZQ + vemt(ri)> +3 U, ry)

i<j

U= EV (2.5)

where U(r;, r;) is the electron-electron interaction, for a Coulomb system given

by

62

U(r;,rj) = (2.6)

|r; — ;]
with e as the elementary charge. v..¢(r;) contains the static potential from all
electron-nuclei interactions of electron 7 and a constant term of nuclear-nuclear
interactions. There are many methods to solve the many-body Schrodinger’s
equation such as Green’s functions (Economou, 2006]) or so called configura-
tion interaction (CI) approaches (Sherrill and Schaefer I11., [1999)), however the
computational power needed for systems containing more than a few electrons
rapidly becomes unaffordable.

This is where density functional theory (DFT) offers an alternative by ef-
ficiently mapping the many-body problem back to the single-body problem
of Eq. 2.4 One of the many properties that can be calculated by solving
Schrodinger’s equation is the particle density n(r) for N particles

6



2.2 First-principles simulations and density functional theory

n(r) = N/d3r2 . /d3rN\Il*(r, ri...ry)¥(r,ry...ry) (2.7)

which, for an electronic system, is essentially the probability to find an electron
at a specific position (Parr and Yang, [1989)). The essence of density functional
theory is the Hohenberg-Kohn theorem (Hohenberg and Kohn| [1964) that
states that Eq. is invertible for a given ground state density ng(r). This
means that from the ground-state density ng(r) one can infer the ground-state
wave function Wo(r). In other words Wy is a functional of the density ny (a
functional F[f(z)] is a mapping from a function f(x) to a number F). As a
consequence, any ground state property (or observable) of the system has to
be a functional of ny as well, and so is the energy E. Moreover, Hohenberg and
Kohn! (1964)) could prove that ny always minimises the energy to the ground
state energy Ej so that

Eo = E[no] < E[] (2.8)

where n' is any electronic density other than the ground state density (Dreizler
and Gross, [1990)).

In this manner it is possible to map the problem of finding the energy depend-
ing on 3N variables to a problem of finding the minimum of the functional
E[n(r)], by inserting trial densities n(r) that only depend on three space vari-
ables. The only caveat remaining is that the actual form of E[n(r)] is not
explicitly known. To circumvent this, Kohn and Sham (1965) suggested to
split the functional into a sum of known terms and an exchange-correlation
term that would have to be approximated.

Bln)] = T + [ e+ G [[ S 4 B 29

where 75 is the kinetic energy functional of non-interacting electrons, expressed
in so called Kohn-Sham orbitals. The second term contains electron-nuclei in-
teractions and any additional external potentials while the third term (the
Hartree-potential) describes the Coulomb interactions of electrons. All fur-
ther quantum-mechanical complications of electron-electron interactions are
now 'hidden’ in the exchange correlation energy functional E,.[n(r)] and for
this term, a variety of approximations have been proposed (Demichelis et al,
2010). The simplest (yet rather effective) of these is the local density approxi-
mation (LDA) where locally, the functional E,.[n(r)] is replaced by a partially
parametrised function of the density. Other approximations are the gener-
alised gradient approximation (GGA, e.g. |Perdew et al, 1992, |1996) or hybrid

7



Chapter 2. Computational methods

functionals such as B3LYP (Becke, three-parameter, Lee-Yang-Parr, Lee et al,
1988; Becke, 1993). Currently, GGA is the most commonly used approxima-
tion in standard DFT calculations but by no means always the best. The
choice of an exchange correlation approximation depends strongly on the sys-
tem and properties of interest and has to be considered carefully in each case.
To further simplify the calculation, usually only valence electrons are treated
explicitly. In this case v.,; contains the core electron contributions as well, in
form of effective core potentials or so called pseudopotentials. The choice of
pseudopotentials and exchange correlation functionals employed in the appli-
cations below is discussed in the individual chapters.

In this thesis, we apply two types of first-principles MD. The Born-Oppenheimer
type (BOMD) is based on the time independent Schrédinger equation (Eq.
and the Born-Oppenheimer approximation described at the beginning of this
chapter. It separates electronic and nuclear motion due to their difference in
mass, assuming that fast electrons will quickly adjust to new positions of nu-
clei. The electronic ground state is calculated separately for each time step
during the MD. The second type, Car—Parrinello molecular dynamics (CPMD)
introduces additional degrees of freedom for electrons, thereby coupling the
equations of motion for both nuclei and electrons (Car and Parrinello| 1985).
This has the advantage that the electronic ground state is only converged once,
allowing for often faster dynamic calculations compared BOMD. The energy
of the (fictitious) electron dynamics then fluctuates around the energy of an
equivalent BOMD. However, because CPMD attributes a very small (fictitious)
mass to the electrons, integrating the equations of motion typically requires
shorter time steps (0.1 fs) compared to BOMD (1-10 fs).

The last practical issue concerning DFT is the choice of basis sets to represent
the Kohn-Sham orbitals (Eq. . For DFT calculations in periodic boundary
conditions (which is the case in this thesis), plane waves have been shown to
be the especially suitable (Ashcroft and Mermin, |1976; |Gillan et al, 2006). For
computational purposes, these plane waves are expanded in reciprocal space
and a cutoff energy defines the extend of this expansion. The higher the cutoff,
the higher the theoretical accuracy of the wave functions representation, the
higher the computational load. To find a good compromise between efficiency
and accuracy in terms of plane wave cutoff, usually convergence studies are
done depending on the property of interest. E.g. if one is interested in the
inner energy of a system up to a certain numerical accuracy, one would sys-
tematically increase the plane wave cutoff until the energy remains constant,
up to the desired accuracy.

Despite all approximations and assumption discussed so far, DFT is currently
the most powerful tool available to accurately simulate materials and their
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properties, including many applications relevant in geoscience (e.g. determin-
ing lattice constants, finding phase transitions or calculating vibrational prop-
erties). However the computational effort limits the first-principles approach
for MD calculations to systems containing up to a few hundred atoms and
picoseconds of simulation time. For example, the computational effort for a
standard Kohn-Sham based DFT simulation scales with at least M?, where
M is the number of basis functions. As a comparison, non DFT based first-
principles methods usually even scale with up to M* — M7. Thus, if one is
interested in the long term dynamics of a systems or properties on a nanometre
scale (e.g. the structure of a grain boundary or the intermediate-range struc-
ture of polyhedral chains in silicate melts) one often has to rely on a classical
description of interatomic forces.

2.3 Classical interaction potentials

While first-principles calculations focus on electronic structure to calculate the
state of a system, classical simulations consider atoms (and ions) as particles
that directly interact through a potential ('), which in the sum, determines
the systems energy. Interactions are modelled by (often analytical) functions
that depend on the particle positions. The parameters of such models are
optimised either to fit experimental data or higher theoretical methods (e.g.
first-principles simulations). In this thesis, all systems of interest are ionic
systems. A basic pair-potential form for such systems is the Born-Mayer form

Cci

.. qiqj .. ijoij
VBM<7,2]) — TT]_’_AW@*B rd (Tij>6

(2.10)

where 7 is the distance between two particles of species 7 and j, ¢ is the (par-
tial) charge, A, B and C' are model parameters. The first term of Eq. is
the Coulomb interaction, the second term acts repulsive at very short range,
ensuring that two atoms do not enter states of overlapping atomic radii. The
last term is a dispersion term that acts attractive. Figure shows such a
potential and the contribution of individual terms. On closer look it becomes
clear that the repulsive and attractive term quickly decay to zero, while the
electrostatic term has non zero contributions even at long range. For this rea-
son, short- and long range interactions are commonly distinguished in such
models. Short range interactions by definition consider only the immediate
surrounding of a particle. A usually spherical cutoff determines the bound-
ary beyond which all additional (ideally minimal) contributions are neglected.
This is done for two reasons: a) the number of pair interactions increases with

9
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—— afttractive
—— Coulomb
—— repulsive

— total

°

distance r (A)

Figure 2.2: Plot of the total potential and individual contributions of a Born-
Mayer type potential for Si-O (van Beest et al, |1990). Both the repulsive
and attractive contributions quickly decay to zero (short range interactions),
while the electrostatic (Coulomb) interaction still shows contributions at long
range. In equilibrium, the average distance between the two ions would be the
minimum of the total interaction potential (around 1.7 A).

10
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N? (N = number of particles) with distance, increasing the computational ef-
fort substantially while actual potential contributions are near zero and b) the
application of periodic boundary conditions (Fig. would imply that an
atom interacts with itself. Long range interactions on the other hand take into
account contributions of every atom in the cell. This will also raise problems in
simulations that apply periodic boundary conditions (i.e. that formally involve
an infinite number of atoms). There are several schemes to circumvent this,
one of which is the Ewald summation method (also applied in first-principles
calculations). This scheme splits a long range interaction into two terms, one
that is quickly decaying and treated in real space, and one that is slowly de-
caying and treated on a grid in reciprocal space.

These pair wise additive potentials are usually parametrised to reproduce a cer-
tain property of a material faithfully. Conversely, they often fail to transfer to
conditions that deviate to far from their training set. Moreover, as the explicit
treatment of electrons is abandoned, such potentials fail to reproduce non-
central forces that can be essential to describe e.g. elastic properties correctly
(e.g. Price et al, |1987)). This means that in an ideal case these models need
to account not only for the classical electrostatic interaction but also quan-
tum electronical effects as well, such as van der Waals repulsion and attraction
as well as polarisation effects (Stone, 2008). One model that introduces the
latter is the polarisable ion model (PIM, Wilson and Madden) (1993} [Salanne
et al, 2012b). In Chap. |3 we use such a model (dipolar polarisable ion model,
DIPPIM), which is essentially an extension of Eq. in the form of

colournb
repulswe

de‘ppim ij Z q qj +r2: A —a¥irid + ZBU *b”r”
7

1<j z<] 1<j

_ wa ZJ )6 +Vpol( w)

z<]

(2.11)

_,  polarization

Vv
dispersive

Again, A, a, B, b and C are adjustable parameters. In this model, ¢‘ and ¢’ are
formal charges. The dispersion interactions include Tang-Toennies damping
functions f¢(r"/) (Tang and Toennies, 1984) which yield corrections to the
asymptotic 1/(r%)% behaviour at short distances and are defined as

(] —b  pid (bZi]zsp Z]>k
FE(9) =1 — e~V ZT (2.12)

k=0

11
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where bzsp is yet another parameter of the model. Finally, the last term on
the right side of Eq. takes into account the polarisation of the ions and
contains Coulombic charge-dipole and dipole-dipole interactions as well as a
self-energy term describing the energy cost to polarise an ion:

Vel = 3 (a5 (r7) — g S5 ()] 14D

1<J,x

— Z @ QT(Q)—FZM
i 5L g i 20;

i<j,o,

(2.13)

Here, 1 is the Cartesian component of the electric dipole moment of ion 7 in
direction . The interactions between ionic dipoles and charges ¢; are modified
at short distances by damping functions fli)j (r7) which account for additional
dipoles induced by short-range interactions (Wilson and Madden) [1993). They
have the same form as in Eq. , but now contain the parameter bg instead

of by, We also use the short-hand notation Tgﬁl) = VaVp---1/rY to denote
the multipole interaction tensors, where the superscript gives the order of the
derivative (Stone, 1996).

All models described so far treat particles as closed shell species or hard spheres
(rigid ion models). For anions such as O%~, this is possible because the con-
fining potential in a specific phase stabilises the anion, i.e. the potential is
tailored for a specific anion shape (Harding and Pyper, [1995) However the
geometry of the oxygen anion in particular strongly depends on its local envi-
ronment and thus, if a model is to be transferable between different phases and
conditions, many-body effects which may reshape the ion can not be neglected,
especially in ionic systems such as oxides and silicates (Salanne et al, |2012a).
The potential mainly utilised in this thesis (quadrupolar aspherical ion model,
QUAIM, Aguado et al, [2003; [Jahn and Madden| [2007; [Salanne et al, [2012a)) is
a further extension of the DIPPIM potential that aims to compensate for these
issues and chooses a parametrisation to reproduce experimental data over a
wide range of pressures and temperatures. The repulsive part of Eq. is
modified to account for shape deformations of oxygen anions, while maintain-
ing a rigid ion model for cations. It also extends the multipole expansion up

12



2.3 Classical interaction potentials

to electronic quadrupoles. Here, the short range repulsive term has the form

1€0,jEcations

i i g _,00.,.ij
Czjecr]+§ AOOea 7"_|_

i,j€0
STIDEH + ) 4 (S 1) +
i€O
(e”1" P — 1)), (2.14)
where N 3 , , .
P =1 — 5ot — S((Xl)yé _ Sfj@?’izaﬁv (2.15)

and summation of repeated indices is implied. do? characterises the deviation
of the radius of oxide anion 4 from its default value, v, and &/ 4 account for the
dipolar respectively quadrupolar shape distortions. The last terms represent
the energy penalty for deforming an anion with 3, ¢ and 7 as effective force
constants. Additionally, the dispersion and polarisation terms of Eq. are
extended to account for quadrupolar polarisation effects (C, by and cq, see
below) but maintain the same general form (see |Aguado et al, 2003; Madden
et al, 2006; Jahn and Madden) 2007, for more details). Even utilising a com-
paratively complex model such as QUAIM, classical force fields still enable the
simulation of systems containing several thousand atoms on up to nanosecond
time scales. For the present thesis the QUAIM potential was implemented into
the CP2K software package (Hutter et al, [2014)) that supports first-principles
as well as classical force field calculations. Details of the implementation are
given in the appendix.

The model parameters used in this thesis have been originally derived from
force-, dipole- and stress-matching with respect to density functional theory
(DFT) for the System CaO-MgO-Al,03-SiOy (CMAS) by [Jahn and Madden
(2007)). For this work the model has been extended by adding interaction pa-
rameters for La, Y and Na while keeping all established parameters for other
ions. Methodological details concerning the parametrisation can be found in
Salanne et al (2012a), [Madden et al (2006) and in the appendix. As a ref-
erence for the fitting procedure for the La parameters, five configurations of
LasAlgSij9Os6 melt were chosen on which we performed static DFT calcula-
tions. A similar procedure has been followed for Y and Na, only extended by
several additional structure types and compositions (e.g. melts and solids of
NayO, Y503 and Y3Al;012), to ensure the transferability of the potential to
other applications. All parameters used in this study are listed in Table [2.1]
parameters for the DIPPIM model parametrised by |Haigis et al (2013) can be
found in the appendix.
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Chapter 2. Computational methods

2.4 Putting MD to practice

After the theoretical treatment of the molecular dynamics method, the ques-
tions remains how to put it to practical use. A variety of codes have been
developed for both first-principles MD (CPMD, CP2K, VASP, ABINIT) as
well as classical force field calculations (LAMPS, CP2K, CHARMM). A typi-
cal simulation cell contains up to several thousand atoms in a classical-, and
several hundred in a first-principles calculation. To generate an initial cell
one provides a list of individual atoms that comprises atom types and posi-
tions. Depending on the system (e.g. a crystal or a fluid) the positions can
either be taken from experimental data (e.g. crystallographic information) or
randomly generated with some educated constraints (e.g. minimal distances
between two atoms). In the latter case, the initial configuration is most likely
far from equilibrium (or in fact resembles anything occurring in nature) and
the atomic positions have to be relaxed according to their interaction poten-
tials before the system can be studied. This can be achieved by minimising
the interatomic forces. The size of the simulation box depends on the desired
density, which can either be derived from experiments or by relaxing the cell
parameters in a constant pressure simulation (NPT'). Typical simulation times
are in the order of nanoseconds for simple classical force fields and picoseconds
for first-principles simulations.

From the MD trajectories one can calculate various properties that can be com-
pared to laboratory experiments, such as lattice constants, elastic constants,
temperature factors, structure factors and other thermodynamic properties
(Frenkel and Smit} [2002)). A fundamental structural parameter is the radial
distribution function (RDF). RDFs represent the likelihood to find a specific
pair of atoms at a distance r, normalised to the mean atomic number density.
For individual atom types ¢ and j the partial RDF is defined as

. N;

(3

1 N,
95(") = LN <Z

a=1 b=1

<.

o(r — (ry — rb))> (2.16)

here, N is the total number of atoms, py the atomic number density, ¢; is the
concentration and N; number of atom type i. r, and r, are atomic position
vectors of atoms a and b, r is a distance vector with length r. ¢ is the Kronecker
delta. From the RDF one can infer not only the average bond distance of any
specific element pair but also average coordination numbers nf by integrating
over the first peak of g;;(r) via

ng:élwpocj/ | gi;(r)r3dr (2.17)
0
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2.4 Putting MD to practice

Conventionally, the integration is done up to the first minimum of g;;(r). The
radial distribution function is also related to many properties such as the (x-ray
and neutron) structure factor (see Chap. [3.4.4)), the pressure or the compress-
ibility.

Another property that can readily be extracted from MD trajectories is the
mean squared displacement (MSD), which in turn relates to quantities such as
the diffusion coefficient or the temperature factor. The MSD is a measure of
the displacement of a particle over time, with respect to a reference point at
time to

MSD(t) = <(r(t Ft) — r(to))2> (2.18)

where r(t) is the position vector of a particle at time ¢, the angular brackets
indicate averaging over time. Actual diffusion coefficients (D) can then be
derived via Einstein’s relation
. MSD
D= lim o (2.19)
where dim is the dimensionality of the system.
Another property of interest, in particular when it comes to chemical reactions,
is the change in Helmholtz free energy. The free energy of a systems state can
not directly be calculated from MD simulations. There are however methods
to derive free energy differences between to states A and B, one of which
is thermodynamic integration (Frenkel and Smit|, 2002)). If it is possible to
calculate the potential energy (by classical or first-principles simulations) of
the two states, it is also possible to define a new intermediate potential U after

UN) = Us + MUp — Uy) (2.20)

where A takes values between 0 (U = Uy) and 1 (U = Ug). The Helmholtz
free energy (F) difference between A and B can then be written as the integral
over the time averaged differences between U, and Upg with respect to A

1 6U)\ 1
Fy— Fy = / <W> dr = / (Us — Ua)rd (2.21)
0 by 0

Here, the angular brackets represent the averaging over time. The thermo-
dynamic path taken during the integration can either be a real chemical- or
an alchemical process (e.g. Kirkwood, [1935). In Chap. 4| we utilise such an
alchemical process to transmute a trace element into a major element in order
to predict element partition coefficients.
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Chapter 2. Computational methods

Table 2.1: QUAIM parameters in atomic units (see |Jahn and Madden), 2007,
for the columns O-O to Si-O, this work for the columns La-O, Y-O and Na-
O). Interactions not listed or left blank here, e.g., cation-cation short-range
repulsion, are taken to be absent in the model.

0-0 Ca-O | Mg-O | AI-O | Si-O | La-O Y-O Na-O

A9 | 1068.0 | 40.058 | 41.439 | 18.149 | 43.277 | 99.958 | 99.518 | 19.152
a | 2.6658 | 1.5035 | 1.6588 | 1.4101 | 1.5418 | 1.608 1.795 | 1.5000

B 50626. | 59375. | 51319. | 43962. | 107 | 626229. | 40930.
b 3.5024 | 3.9114 | 3.8406 | 3.9812 | 4.476 | 3.855 | 3.794
Cii 6283.5 | 6283.5 | 6283.5 | 6283.5 | 6283.5 | 6283.5 | 6283.5
¢ 4.2435 | 4.2435 | 4.2435 | 4.2435 | 4.2435 | 4.2435 | 4.2435
b} 1.8298 | 2.2148 | 2.2886 | 2.1250 | 2.1915 | 1.8660 | 1.6760
cp 2.3592 | 2.8280 | 2.3836 | 1.5933 | 3.4636 | 1.3725 | 2.2540
bg 1.0711 | 1.9300 | 2.1318 | 1.9566 | 3.1336 | 2.2000 | 1.0000
0 1.0001 | 1.3317 | 1.2508 | 1.0592 | 3.5000 | 1.0000 | 1.4830
v, 3.4997 2.0651
o 1.0037 1.0003
v 1.0947 1.2422
cg 1.0000 2.0666

Cé{ 44.372 | 2.1793 | 2.1793 | 2.1793 | 2.1793 | 2.1793 | 2.1793 | 2.1793
C'é] 853.29 | 25.305 | 25.305 | 25.305 | 25.305 | 25.305 | 25.305 | 25.305
1.4385 | 2.2057 | 2.2057 | 2.2057 | 2.2057 | 2.2057 | 2.2057 | 2.2057

8.7671 | 3.5000 3.0021
11.5124 | 4.9789 2.4016

1.2325
0.89219
4.3646

disp

«

C

D | 0.49566
B

¢

Ui
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Chapter 3

The structure of Y- and
La-bearing aluminosilicate
glasses and melts

This chapter is based on the following publication:

Wagner, J., Haigis, V., Leydier, M., Bytchkov, V. C., Fisher, H. E., Sadiki,
N., Zanghi, D., Hennet, L. Jahn, S. (2016)

The structure of Y- and La-bearing aluminosilicate glasses and melts: a com-
bined molecular dynamics and diffraction study

Chemical Geology (http://dx.doi.org/10.1016/j.chemgeo.2016.12.036)

Individual Contributions:

The following chapter is based on preliminary results published in the PhD the-
sis of [Haigis| (2013). In the present thesis the study was significantly extended
by developing a new interaction potential and detailed comparison between
the different models and experimental results. Passages in italics are directly
adopted or partly modified from the thesis of [Haigis (2013).

J. Wagner planned and performed research, parametrised the QUAIM poten-
tials, performed QUAIM and first-principles simulations, analysed the data,
participated in writing the paper.

V. Haigis planned and performed the research, parametrised the DIPPIM
potentials, performed DIPPIM and first-principles simulations, analysed the
data, participated in writing the paper.

V. C. Bytchkov, H. E. Fisher, N. Sadiki, D. Zanghi and L. Hennet provided
experimental neutron and x-ray diffraction data.

S. Jahn planned and supervised the research, participated in writing the paper.
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Chapter 3. The structure of Y- and La-aluminosilicate glasses and melts

3.1 Introduction

Alkali and alkaline earth bearing (alumino)silicate glasses and melts have been
studied extensively, due to their broad range of technological applications and
their importance in geoscience. Hence, their structure and properties are rel-
atively well understood (Stebbins et al, |1995; Mysen and Richet, |2005). On
the other hand, aluminosilicates containing rare earth elements (REE) are less
well studied but have recently attracted considerable interest owing to their re-
markable properties and their use in various applications. They exhibit high
glass transition temperatures, hardness and refractive indices as well as mod-
erate thermal expansion coefficients (Shelby and Kohli, |1990; \Iftekhar et al,
. REE-bearing aluminosilicate glasses have been proposed for optical de-
vices (Kohli and Shelby, |1991; |Tanabe, 1999). Since rare-earth elements rep-
resent analogues for actinides, these glasses have also been studied for appli-
cations in nuclear waste storage, and high corrosion resistance in the presence
of aqueous fluids was found (Bois et al, |2002).

REFE-bearing aluminosilicate glasses have been investigated by a range of ex-
perimental techniques, including nuclear magnetic resonance (NMR)
land Stebbind, [1998; |Clayden et al, [1999; Marchi et al, |2005; |[Florian et al,
2007; |Iftekhar et al, |2009, |2011), infrared spectroscopy (Clayden et al, |1999;
Marchi et al, |2005) as well as neutron and z-ray diffraction (Wilding et al,
2002; |Pozdnyakova et al, [2008; |Simon et al, |2015). These techniques provide
valuable insight into the local atomic structure of glasses such as coordination
environments of the probed elements, glass network structures and vibrational
properties. Often, the interpretation of experimental data relies on more or
less heuristic assumptions about the atomic structure of the probed material.
For instance, |Iftekhar et al (2009) fitted a structural model to the measured
NMR peak shifts and were able to extract information about the glass network
connectivity from *°Si signals alone. Another ezample is the interpretation of
z-ray and neutron diffraction data: a common approach to obtain bond lengths
and coordination numbers is to fit Gaussian peaks to the Fourier-transformed
structure factor, i.e. to implicitly assume a specific structural model for the
quantitative analysis of experimental data (Wilding et al, |2002; |Pozdnyakova
2005

Molecular dynamics (MD) simulations are a particularly powerful and pre-
dictive method to generate three-dimensional structural models for disordered
systems (Allen and Tildesley, |1987) and therefore yield information which is
not directly accessible experimentally. To date, there are only a few classical
MD studies on REE-bearing aluminosilicate glasses and melts: [Du| (2009) in-
vestigated low-silica (<40 mol%) yttrium aluminosilicates, and |Iftekhar et aa
performed MD simulations of Y- and Lu-bearing glasses, with compo-
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3.1 Introduction

sitions containing less than 50 mol% SiOs. |Haigis et al (2015) used classical
MD simulations to investigate structure of Y in (alumino)silicate melts, with
different degree of network polymerization. Recently, |Jaworski et al (2012)
and |Okhotnikov et al (2015) published results from classical MD simulations
on aluminosilicate glasses also containing La.

The simulation of melts and glasses however also poses a fundamental challenge
to the MD method: all predictions are dependent on the chosen interaction
potentials and their applicability for a given set of conditions has to be tested
carefully. Moreover, the MD method allows to simulate the motion of the in-
dividual atoms in the system over a certain time, and macroscopic quantities
are then obtained by averaging over these atomic trajectories. The statisti-
cal results are meaningful only to the extent that the phase space available to
the system s sufficiently sampled during the simulation, i.e. that all relevant
atomic configurations are visited during the MD run. It can be challenging to
ensure that a system has reached equilibrium, especially in chemically complex
systems such aluminosilicates. Particularly in glasses, structural relazation is
so slow that equilibrium certainly cannot be reached by atomistic simulations,
which cover time spans of some tens of nanoseconds at best. Therefore, a sim-
ulated glass-structures will be trapped in one specific configuration and, within
the simulation time, will not overcome the energy barriers which separate it
from the remaining phase space. To address these issues, we used two comple-
mentary simulation approaches.

Ab initio or first-principles MD is based on fundamental laws of nature (quan-
tum mechanics) in the form of density functional theory (DFT Hohenberg and
Kohnl|, |1964; | Kohn and Shaml|, | 1965) and yields a parameter-free description of
arbitrary systems of atoms. Although some approximations have to be made for
practical purposes, it is the most reliable method currently available and highly
predictive in many cases. These qualities, however, come at the expense of high
computational costs, which limits simulation times to some tens of picoseconds
and system sizes to a few hundred atoms at most. For this study, we tackle
the problem of insufficient sampling of glass configurations in ab initio MD
simulations by raising the temperature, i.e. by simulating melts as analogues
for glasses. The assumption of this approach is that melt structures represent
a reasonable approximation to glass structures. To assess this, the effect of
temperature will be investigated.

The ab initio simulations not only provide accurate structural information on
melts but also serve as a benchmark for classical MD simulations, which con-
stitute the second approach to modelling melt and glass structures. In the
latter case, atomic interactions are described by a classical potential. Classical
simulations are much less demanding in terms of computation time, but their
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Chapter 3. The structure of Y- and La-aluminosilicate glasses and melts

accuracy is not warranted and has to be tested carefully. Their computational
efficiency allows simulated quenching of the melts to glasses at much lower
rates than can be afforded with ab initio techniques (though still much faster
than in experiments). The resulting glass structures can then be validated, e.g.
by comparison to results from neutron and x-ray diffraction experiments. The
potentials for REE-bearing aluminosilicates used here are an extension of al-
ready established and well tested sets of advanced polarisable ion potentials
(Jahn and Madden| [2007; Haigis et al, |[2013)). It is desirable to further develop
such accurate and transferable classical potentials, as they are a key to inves-
tigate complex geological systems such as mantle melts and solid solutions of
mineral phases and the behaviour of trace elements therein.

Here, we present the results of a combined MD and neutron/z-ray diffraction
study on yttrium- and lanthanum-bearing aluminosilicate melts and glasses,
REFE;03-Al O5-Si0y (REE =Y, La), with high silica content (76 mol% SiO,).
We utilize and compare more refined simulation methods than in cited previous
work — new polarisable classical interatomic potentials and ab tnitio molecu-
lar dynamics — and systematically analyse the effects of interaction potential,
temperature and quench rate on melt and glass structures. Keeping the mo-
lar fraction of SiOy fized, the REE/Al ratio was varied between 0.09 and 0.5.
We investigated the atomic-scale changes in the structure in response to 1) ex-
changing Y by La, 2) varying the REE content, i.e. the REE/Al ratio, of the
system and 3) increasing the complexity of the classical interaction potential.
A particular focus lies on the coordination environment of Y and La, as these
are difficult to probe by the otherwise rather powerful NMR technique (Dupree
et al, | 1989; |Schaller and Stebbins, |1998) and diffraction experiments (Leydier,
2010). Furthermore, we discuss the structural role of bridging oxygen in the
aluminosilicate network and the status of the Al avoidance rule (Loewenstein,
195/)) in disordered phases.

3.2 Simulation procedure

3.2.1 First-principles molecular dynamics for melts

We performed first-principles, Car-Parrinello molecular dynamics simulations
using the CPMD code (Car and Parrinello, |1985; \Marz and Hutter, |2000) of
REFE-bearing aluminosilicate melts of four different compositions, REEAl 1S9 Ose
and REE4AlgSiigOs, where REE stands for either Y or La. Each simulation
cell contained 174 atoms and was repeated periodically in space. Since these
melts are considered here, in an approximate way, as an analogue for glasses,
we chose the dimensions of the simulation cells such as to obtain the exper-
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3.2 Simulation procedure

imentally determined density of the respective glass at room temperature, i.e.
2.91 g/cm?, 2.97 g/cm?, 2.9/ g/cm? and 3.09 g/cm?, respectively (Leydier,
2010).

Interatomic forces were determined within the framework of DFT, and the
exchange-correlation functional was evaluated in the local density approzima-
tion (LDA). The interaction between ionic cores and valence electrons was de-
scribed by Troullier-Martins pseudopotentials (Troullier and Martins, |1991).
For Y, the semi-core 4s and 4p electrons were treated explicitly as valence elec-
trons, additionally to the 4d and 5s orbitals. Similarly, for La, the semi-core 5s
and 5p electrons were treated as valence electrons, additionally to the 5d and 6s
orbitals. This allows for electric polarisability of the Y** and La** ionic cores.
The cutoff for the expansion of the electronic wavefunctions into plane waves
was 90 Ry, which was found sufficient to give converged results for the average
melt structure. The reciprocal space of the simulation cell was sampled at the
Gamma point only, which was sufficient to converge the interatomic forces.
The four simulation cells were pre-equilibrated at 3000 K for 50 ps with a
classical MD simulation (see section and further equilibrated for 5 ps
using DF'T. Data were collected from the following production runs of 10 ps to
15 ps duration. For the Car-Parrinello MD, the fictitious mass of the electronic
degrees of freedom was 400 a.u., and the equations of motion were solved with
a time step of 0.1 fs. The temperature of 3000 K and the kinetic energy of the
fictitious degrees of freedom were controlled by Nosé-Hoover thermostat (Nosé,
1984; Hooverl, |1985).

3.2.2 Classical molecular dynamics for melts and glasses

To evaluate the benefits and drawbacks of classical interaction potentials we
use two types of these potentials with different complexity for the simulation
of REE-bearing aluminosilicate melts and glasses. In both cases, interactions
between atoms are described by a polarisable ion model (Wilson and Madden,
1993). The first type of potential uses polarization up to a dipolar level and
rigid, spherical ions (dipolar polarisable ion model, DIPPIM, see Chap.
Eqgs. to . It was parametrised for La-free compositions in a previous
study (Haigis et al, |2013) and is extended here to include La. This modelling
approach already adds true many-body effects to a simple pair potential through
the inclusion of electronic polarization of oxygen, yttrium and lanthanum ions,
determined self-consistently at each time step. This improvement with respect
to a pure pair potential has been shown to be crucial for an adequate description
of ozxides (Rowley et al, |1998). The second potential type includes polariza-
tion up to a quadrupolar level and treats oxygens as aspherical and deformable
ions (quadrupolar aspherical ion model, QUAIM, see Chap. , Eq. de-
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pending on the anions local environment (Madden et al, 2006), determined
self-consistently. Y- and La- free QUAIM-potentials were parametrised and
successfully applied in previous studies, investigating a range of materials rel-
evant in geoscience (Jahn and Madden|, 2007). Details of the DIPPIM and
QUAIM parametrisation and potential parameters can be found in Chap.
and the appendix.

One aim of the classical MD simulations is to generate structural models for
the four REE-bearing aluminosilicate glasses instead of melts, which can then
be validated by comparison to diffraction experiments. In order account for
the problem of insufficient phase-space sampling, we first performed ab initio
high-temperature simulations of melts of the four compositions, which display
sufficiently fast dynamics to explore the entire phase space. Then 100 config-
urations were picked from each melt trajectory and used as starting configu-
rations for subsequent quenching to room temperature. For each composition,
we thus obtained a large set of different glass structures which were used for
structural analysis.

Starting from the final atomic configurations of the four simulation cells from
the ab initio simulations (each containing 174 atoms), the cells were further
equilibrated using classical MD for 10 ps at 3000 K, with a time step of 1
fs. The temperature was controlled by means of a Nosé-Hoover thermostat
(Nosé, 1984); |Hoover, 1985). Equilibration was followed by production runs
of 50 ps duration with melts at 3000 K, from which we picked 100 starting
configurations for the quench runs. During each of the latter, temperature was
lowered by 100 K every 2 ps, down to 300 K, which corresponds to a quench
rate of 5-10'3 K/s. Analysis was based on the last 1 ps of each quench run,
and for each composition, an average over all the resulting glass structures is
taken.

We also checked that the results of the analysis are not affected by the finite size
of the simulation cell: for the compositions LasAlySiigOss and Y, AlgSigOse,
we simulated a glass using a simulation cell of eight times the original volume,
and no significant changes were observed in the parameters discussed in this
study, i.e. in the interatomic distances, coordination numbers, widths of coor-
dination shells and overall structure factors. To check the influence of quench
rate we additionally quenched one system using 10 times slower quench rates,
also yielding no significant changes in the glass structure. However, we delib-
erately do not discuss even larger-scale network structures of the glasses (e.q.,
rings formed by tetrahedrally coordinated species), because these features are
expected to be more heavily influenced by the periodic boundary conditions used
here, and probably also by the rather high quench rate (Drewitt et al, 2012).
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3.3 Experimental procedure

3.3.1 Sample preparation

All glasses were synthesized by mixing commercially available oxides LayOg
(99.9% - Sigma-Aldrich), Y203 (99.9% - Sigma-Aldrich), Al,O3 (99.9% - Pechiney)
and SiOs (99.5% - Prolabo). The powders were weighed and mixed together
directly except LasOs which was first annealed in an alumina crucible during
2 hours at 1100°C to remove the anionic impurities (CO3~, HO™) and H,O,
then mixed with the other components and finally, heat-treated a second time.
All mixtures were then melted in air at about 2000 °C during approximately 2
minutes on a water-cooled copper plate installed in a vertical axis laboratory
solar furnace which deliver a power of 2 kW with an average solar flux of 900 -
1000 W/m?2. The temperature and melting time were chosen to ensure a good
chemical homogeneity of the glasses as well as to prevent any modification of
composition. The samples were cooled at a cooling rate of 200°C/s, giving
transparent quasi-spherical glass droplets between 4 and 6 mm in diameter.
The glass compositions were measured by SEM-EDX analysis confirming the
general formula for these glasses: REE,;Al(12_4)5i19056 where REE corresponds
to Y or La.

3.3.2 Neutron diffraction

The neutron diffraction measurements were carried out on the D4C diffrac-
tometer (Fischer et al, 2002) at the Institut Laue Langevin (ILL) in Grenoble
(France). In order to reduce the background, the samples were placed on a
sample holder made with a thin vanadium foil and measurements were per-
formed under vacuum. The empty holder was also measured for making the
background subtraction. The neutron wavelength used was 0.4991 A, giving a
scattering vector range of 0.3-23.5 A='. The theoretical background used for
the data analysis is fully described in Fischer et al/ (2006). In a neutron diffrac-
tion experiment from a n-component material, the mean differential scattering
cross section per atom can be written as:

% [Z_g(@] = [gj cab;] (S(Q) - 1)+§a:cab‘;§ (3.1)

where ¢, and b, are respectively the atomic concentration and the coherent
scattering length of species a present in the sample. The b, values have been
compiled by [Sears| (1992)). S(Q) is the total structure factor and is a weighted
sum of the different partial S,(Q) for atomic species a and f as described
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in equation The principle for extracting the scattering cross section from
the scattered intensity from the sample is to subtract the scattering from the
entire sample environment and then normalize to a standard reference which is
usually a vanadium sample. This procedure was performed using the program
CORRECT (Wannberg et al, [1999) which corrects the data for attenuation,
background, multiple scattering and inelasticity effects. S(Q) is then calcu-

lated using Eq. 3.1}

3.3.3 X-ray diffraction

High energy x-ray diffraction measurements were made at the beamline ID11
at the European Synchrotron Radiation Facility (ESRF') in Grenoble (France).
The incoming beam energy was 103.76 keV, corresponding to a wavelength of
0.1195 A. Two-dimensional diffraction patterns were measured using a fast
readout low noise (FReLoN) charge-coupled device detector manufactured by
the ESRF (Labiche et al, [2007). In order to increase the accessible () range
the scattered beam was centred at the corner of the detector. As the highest
resolution is achieved at larger sample to detector distances whereas shorter
distances provide a higher scattering angle coverage, diffraction measurements
were perfomed at two separate sample to detector distances of D1 = 394.344
and D2 = 173.147 mm. The diffraction data were corrected for dark current
noise, geometrical effects and incident beam polarization and reduced to one-
dimensional patterns using the program FIT2D (Hammersley et al, |1996]). The
individual diffraction patterns were normalized to the incident beam monitor
and an average taken for the intensities measured at each sample to detector
distance. The high-Q) data taken at D2 was merged with the data taken at
D1 giving a usable Q range of 0.3-20 A~! (High-@ limitation due to problems
with the detector at large angle). Following the procedure described by [Hennet
et all (2002), the data were corrected for background, multiple and compton
scattering and for attenuation. The structure factor is then calculated using
Eq. where b, is repaced by the x-ray atomic scattering factor f,.

3.4 Results

3.4.1 Ab initio MD of melts at 3000 K

From the trajectories of the ab initio MD simulations at 3000 K for each compo-
sition, the coordination environment of the cations has been extracted. Fig.
and Fig. show the radial distribution functions gxo(r) (X = Y/La, Al
Si, O) for the Y-bearing and the La-bearing melts, respectively. The average
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coordination number of a cation X is calculated as the average number of oxy-
gen ions around the cation within a cutoff radius X0, which is given by the
first minimum of the respective radial distribution function gxo(r) for the pair
X —0. The minimum has been determined by a polynomial fit to the minimum
region and depends (weakly) on composition. This dependence results from the
change in shape of the first coordination shell which accompanies variations in
composition. In Table[3.1] we list the results characterizing the first coordina-
tion shell of the different cations. The average cation-oxygen bond length dxo
15 calculated as the average distance between a cation X and oxygen for pairs
closer than rXO. We also determined the first maximum dxo of the function
r?gxo(r), i.e. the most probable X — O bond length, using a polynomial fit to
the mazxzimum region. This maximum does not coincide with the average bond
length in general, and the difference between the two quantities is a measure
for the radial asymmetry of the first coordination shell. Finally, the standard
deviation o of the distribution of cation-oxygen bond lengths was determined,

giving a measure for the width of the coordination shell.

Table 3.1: Ab initio MD results for the first coordination shell around cations
in melts at 3000 K: cutoff radius rey for cation-oxygen pairs, average coor-
dination number CN, average bond length d, most probable bond length d and
standard deviation o of cation-oxygen bond lengths (a measure for the width
of the coordination shell). Table from Haigis| (2013).
cation re (A) CN d(A) d(A) o (A)
YAl;1Si19Os5¢ melt
Si 2.32 41 1.69 1.63 0.151
Al 2.61 4.7 193 1.78 0.249

Y 3.25 79 253 226 0.359
Y4A188119056 melt

Si 2.31 41 1.69 1.63 0.150

Al 2.57 45 191 1.78 0.232

Y 3.22 7.1 250 225 0.348
LaA111 8119056 melt

Si 2.36 42 170 163 0.161

Al 2.60 4.7 193 1.78 0.243

La 3.41 82 272 245 0.376
La4A188119056 melt

Si 2.38 41 169 1.63 0.153

Al 2.55 43 189 177 0.223

La 3.44 79 271 243 0.388

25



Chapter 3. The structure of Y- and La-aluminosilicate glasses and melts

10 I | I I | I | I
g | YAl Si O, melt 1
6 - —
: o ab initio MD (LDA)
B 1 — — classical MD (QUAIM) 7
4 — classical MD (DIPPIM) _]

1 Y,AlSi, O, melt

radial distribution functions g(r)

o

distance (A)

Figure 3.1: Radial distribution functions g(r) for O-O and cation-O pairs in
YAL;;Si19056 melt (upper panel) and Y,AlgSi;9Os6 melt (lower panel), at 3000
K. Circles: ab initio MD, full lines: classical MD DIPPIM, dashed: classical

MD QUAIM (see section [3.4.2)).
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Figure 3.2: Radial distribution functions g(r) for O-O and cation-O pairs
in LaAl;;Si;9O56 melt (upper panel) and LayAlgSij9Os¢ melt (lower panel),
at 3000 K. Circles: ab initio MD, full lines: classical MD DIPPIM, dashed:
classical MD QUAIM (see section [3.4.2)).
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As a result, it is found that the coordination shells of the different cations
exhibit different sensitivities to changes in melt composition: the first-shell en-
vironment of Si is virtually the same for all melts, with a coordination number
around 4.1, a Si-O average bond length around 1.69 A and a most probable bond
length of 1.63 A. On the other hand, the coordination of Al shows a slight, but
systematic variation with melt composition: for a given REE (Y or La), the
coordination of Al by oxygen decreases for increasing REE content, and so does
the average Al-O bond length. Moreover, the Al coordination number is smaller
in the La-rich melt than in the corresponding Y-rich melt. Finally, also the
coordination environments of Y and La are clearly sensitive to compositional
changes. Coordination numbers decrease with increasing REFE content, and
for Y, this change is accompanied by a shortening of the bonds to the nearest
OTYGEN, 10NS.

The average coordination numbers listed in Table are the mean of a range
of coordination numbers occuring in the melt structure. The distribution of
different coordination environments of Y and La for given melt compositions
is shown in Fig.[3.3. The coordination numbers span a wide range, with signif-
icant contributions coming from 5- to 10-fold coordination of the REE cation
by oxygen. With increasing REE content, the distributions shift to lower co-
ordination numbers. A similar plot for the coordination of Al in the different
melts is shown in Fig. [3.4. Most Al atoms are 4-, 5- or 6-fold coordinated by
oxygen, and two trends in the coordination distribution are observed: first, the
distribution shifts to lower coordination numbers for increasing REE content,
and second, the distribution is shifted to lower numbers if Y is replaced by La,
especially for the REFE-rich compositions.

The medium range order of silicate melts and glasses is commonly discussed in
terms of the tetrahedral network formed by fourfold coordinated Si and Al, and
its perturbation by network modifiers (Mysen and Richet, |2005). In the anal-
ysis of our first-principles MD data, we follow this line, putting an emphasis
on the various oxygen species which link the building blocks of the structure.
Tetrahedrally, i.e. J-fold coordinated Si and Al are counted as network form-
ers (T), and oxygen is considered bridging (BO) if it links exactly two such
tetrahedra. A terminal oxygen, which is bonded to only one T species, is re-
ferred to as non-bridging (NBO). Note that according to this terminology, an
oxygen atom linking, for instance, a tetrahedrally coordinated Si and a fivefold
coordinated Al atom is counted as non-bridging. The ratio NBO/T is a mea-
sure for the depolymerization of the melt or glass network. Finally, an oxygen
atom which belongs simultaneously to three coordination tetrahedra around T
1s termed an oxygen tricluster. Note that there are oxygen atoms which do
not fall into any of the mentioned categories, e.qg. oxygen bonded to two five-
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Figure 3.3: Ab initio MD: distribution of coordination numbers of Y and La as
a function of melt composition, with low (black) and high (red) REE content.
Figure from |Haigis| (2013).
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Figure 3.4: Ab initio MD: distribution of coordination numbers of Al as a

function of melt composition. Figure from (2013).
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fold coordinated Al atoms. The results of this analysis are listed in table [3.3.
Whereas Si occurs predominantly as tetrahedrally coordinated network former
T, less than half of Al is in T configuration in the REE-poor melts. NBO/T
values are larger than 1 for all compositions, which indicates a substantial de-
polymerization of the network. Small amounts of oxygen triclusters (< 5%)
are observed throughout.

Table 3.2: Parameters describing melt network structure derived from ab initio
MD: the fractions [Siry]/[Si] and [Alv]/[Al] of fourfold coordinated Si and
Al, respectively, determine the abundance of tetrahedrally coordinated species,
and NBO/T is the ratio of non-bridging oxygen to tetrahedrally coordinated
species. The fraction of bridging oxygen linking T and T', with respect to the
total number of bridging ozygen, is denoted by xpo(T-O-T"), the BO fractions
expected for a random distribution by z%84(T-O-T'), as well as amount of
ozygen triclusters [Oy;]/[O]. Table from |Haigis (2013).

YAIH 8119056 Y4A188119056 LaAlH Si19056 La4A188119056

[Sizv]/[Si] 0.851 0.879 0.817 0.877
[Al;y]/[A]] 0.377 0.517 0.404 0.600
NBO/T 1.145 1.123 1.179 1.028
rp0(Si-0-Si)  0.633 0.617 0.598 0.551
Tpo(Si-0-Al)  0.326 0.345 0.351 0.423
rpo(A-O-Al)  0.041 0.038 0.052 0.025
2E2d(Si-0-Si) 0.630 0.638 0.600 0.599
r20d(Si-0-Al)  0.333 0.326 0.355 0.355
z0d (A1-O-Al)  0.038 0.036 0.045 0.046
[Oi]/[O] 0.022 0.024 0.024 0.046

3.4.2 Classical MD of melts at 3000 K
The reliability of the two classical interaction potentials (DIPPIM and QUAIM)

can be assessed by comparison of its predictions either to ab initio results or
to experimental data. Here, we first check melt structures derived from classi-
cal MD at 3000 K against the ones obtained from Car-Parrinello simulations
(see section [3.4.1). A comparison with diffraction data will be made in sec-
tion [3.4.4 The radial distribution functions for X-O pairs (X = Y/La, Al,
Si, O) are plotted along with the DFT results in Figs. and . When

comparing the two classical potentials types, peak positions are reasonably well
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reproduced while peak heights are systematically underestimated (DIPPIM) re-
spectively overestimated (QUAIM) compared to first-principles data. In Ta-
ble[3.3, we list structural parameters of the four melts as obtained from classi-
cal MD for both potential types, which can be compared to the ab initio results
in Table[3.1. In the DIPPIM case, Al coordinations are systematically overes-
timated while the QUAIM potential underestimates especially La coordination
numbers. Moreover, the DIPPIM potential predicts a strong variation of the
most probable La-O distance with changing melt composition (decrease over
0.1 A), not observed to such extent in the ab initio simulations.

Table 3.3: Classical MD (% for DIPPIM, % for QUAIM) results for the first
coordination shell around cations in melts at 3000 K: cutoff radius 7., for
cation-oxygen pairs, average coordination number CN, average bond length d,
most probable bond length d and standard deviation ¢ of cation-oxygen bond
lengths (a measure for the width of the coordination shell).
cation ~ CNdilew  gdilaw (R)  gdilew (R) o (A)
YAl;1Si19O56 melt
Si 43140 1.72]1.64 1.63|1.59 0.197
Al 51 |4.3(1) 2.00]1.85 1.80]1.75 0.294
Y 75 7.2(2) 257|240 231222 0.351
Y 4 AlgSij9Os6 melt
Si 42140 171|164 1.63|1.59 0.188
Al 49|4.2(1) 197|185 1.79]1.76 0.284
Y 7.316.9(1) 2.55]238 229|221 0.357
LaA1118i19056 melt
Si 43140 1.72]1.64 1.63|1.59 0.191
Al 52|43(1) 2.01]185 1.79|1.76 0.308
La 7.5]71(2) 267|256 246|232 0.353
La4AISSi19056 melt
Si 42140 170|164 1.63]159 0.177
Al 4841 196|1.84 1.78|1.75 0.285
La 7.0]6.7(1) 265|255 235|230 0.367

3.4.3 Diffraction experiments on glasses

Figures [3.5/and [3.6]show the measured as well as simulated (see below) neutron
and x-ray structure factors Sy(Q) and Sx(Q). Neutron scattering data show
rather similar features for all measured compositions and REE concentrations.
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X-ray structure factors on the other hand show significant differences with
varying REE concentration, such as a splitting and flattening of the main peak
around 4 A. For Y,AlgSi19Osg, the corresponding pair distribution functions
calculated from these structure factors is shown in Fig. [3.7]
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Figure 3.5: Neutron (upper panel) and x-ray (lower panel) structure factors
S(Q) of YAl;1Si19056 (left) and Y4AlgSigOs¢ (right) glass. Red circles: ex-
periment, black and green lines: MD simulation.

3.4.4 Classical MD of glasses

We turn now to the simulated glass structures obtained from multiple quenches
of melt structures to 300 K. In order to compare simulation results to ex-
periments, it is necessary to convert the structural information contained in
the classical MD trajectories to experimentally observable quantities, i.e. to
neutron and z-ray (static) structure factors Sy(Q) and Sx(Q), respectively.
These can be written as a weighted sum of Faber-Ziman partial structure fac-
tors Sap(Q), each corresponding to a pair of elements o, 8 € {REE, Al, Si,
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Figure 3.6: Neutron (upper panel) and x-ray (lower panel) structure factors
S(Q) of LaAly;Si190s56 (left) and LayAlgSijgOse (right) glass. Red circles: ex-

periment, black and green lines: MD simulation.
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O} (Faber and Ziman, |1965):

SIQ) ~ 1=y Y acs b Q@S 1) (32
(24 Caba) o,

where Q) is the magnitude of the scattering vector Q, c, denotes the concen-
tration of element o and b, its neutron or x-ray scattering length. The latter
is QQ-dependent. Scattering lengths are tabulated in|Sears (1992) and|lbers and
Hamilton) (1974). The partial structure factors are the Fourier transforms of
the partial radial distribution functions gag(r), which in turn are obtained from
the MD simulations:

5us(Q) — 1= 110 / dr (gas(r) — 1) exp(—iQ - 7) (3.3)

with the atomic number density ng of the glass. The partial radial distribution
functions for all glass compositions, obtained from classical MD simulations,
have been converted to neutron and x-ray structure factors by use of eq.
and eq. and the structure factors are compared to the experimental ones
in Figs. and|[3.0.
Conversely, x-ray or neutron weighted radial distribution functions ¢(r) can be
calculated from the corresponding structure factors by inverse Fourier trans-
formation given in eq.

o) = 1= 5o [ QIS(@) - sin(@)iQ (3.4

2m2rng

Fig. shows the weighted radial distribution functions for the composition
Y4 AlgSi19Os56 derived from both experiment and classical MD simulation.

To conclude the results section, we give the parameters describing the first co-
ordination shell around cations in the glasses for all four compositions in Ta-
ble[3.4 Also listed are coordination numbers and bond lengths extracted from
the neutron diffraction experiments by fitting Gaussian peaks to the Fourier-
transformed structure factor (Leydier, |2010). This procedure yields coordina-
tion numbers for Si and Al to within 0.5 only. Coordination numbers of Y
and La could not be obtained from the diffraction experiments because the first
peaks in the respective partial radial distribution functions were superposed by
others and could not be unambiguously resolved.

3.5 Discussion

3.5.1 Melt structures: Ab initio vs. classical MD

The quality of the structure models for the melts and glasses obtained from
classical MD simulations is assessed by comparison to ab initio-derived melt
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Figure 3.7: Calculated versus experimental total radial distribution function
in Y;AlgSi190s6 glass. Orange triangles: experimental data (neutron scatter-
ing); red circles: experimental data (x-ray scattering), green lines: QUAIM,
black lines: DIPPIM. Indicated are the peak positions of the partial ion pair
contributions (for QUAIM only). Note how several DIPPIM peaks are shifted
to higher distances while QUAIM shifts to lower distances compared to exper-
imental findings. Neutron data are shifted by 3 along the y-axis for visibility.
For a detailed discussion of regions >3A see Fig
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Table 3.4: Classical MD (% for DIPPIM, 9 for QUAIM) and neutron diffrac-
tion results for the first coordination shell around cations in glasses: cutoff
radius 7.y for cation-oxygen pairs, average coordination numbers CN, exper-
imental CN®*P average bond length d, most probable bond length d, peak
of rgap(r) derived from experiments d*® and standard deviation o of cation-
oxygen bond lengths.
cation ~ CNdilew  ONew  gdilaw (R)  gdilaw (R)  do0 (A) o (A)
YAl1Si19056 glass
Si 42140 4.0(5) 1.68|1.60 1.64]1.61 1.62(3) 0.109
Al 52142 43(5) 194|180 1.81]1.76 1.80(3) 0.210
Y 7.6 | 7.1(1) - 2511231 235228 230(3) 0.256
Y4 AlgSiigOs6 glass
Si 42140 4.1(5) 1.67|1.60 1.64]1.60 1.62(3) 0.104
Al 50141 4.1(5) 192|179 1.80]1.78 1.81(3) 0.219
Y 7.316.7(1) - 2.50 | 2.29 2.33]225 2.32(3) 0.272
LaA1118119056 glass
Si 42141 4.0(5) 167|165 1.63]1.61 1.62(3) 0.101
Al 5.114.4(1) 4.3(5) 1.93|1.90 1.81|1.80 1.81(3) 0.205
La 7.9 7.5(2) - 2.65 | 2.60 2.46|2.40 2.51(3) 0.309
La4A188119056 glass
Si 41140 4.2(5) 1.66|1.60 1.64]|1.60 1.62(3) 0.095
Al 48|41 41(5) 1.89|1.78 1.79]1.78 1.82(3) 0.180
La  7.3]6.2(1) - 262|237 242|244 2.51(3) 0.309

structures and to experimental diffraction data for the glasses. Figs. and
demonstrate an overall reasonable agreement between classical and DF'T
simulations for the partial radial distribution functions in the four investigated
melts. In the case of the DIPPIM potential, peaks corresponding to the first
coordination shells of oxygen around Si and Al come out somewhat lower in
the classical MD for all compositions, and they extend to a larger distance
(more so for Al-O than for Si-O). For the LayAlgSingOs¢ melt, the classically
simulated La-O peak falls off faster on the large-distance side than the one ob-
tained from the ab initio simulation. In the QUAIM case, peaks in the partial
radial distribution functions are systematically higher and narrower, reflecting
a slightly too strong cation-oxygen bonding. These differences lead to some
variation in the structural parameters describing the first coordination shells
around cations, listed in Table (ab initio) and Table (classical): DIP-

PIM coordination numbers for Si are overestimated by the classical simulations
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by up to 0.2, and Al coordination numbers by up to 0.5. QUAIM on the other
hand underestimates Si coordination numbers by up to 0.2 and Al up to 0.3.
Both potential types underestimate La coordination in LasAlgSi;9Os¢ melt by
0.9 with respect to the ab initio result. On the other hand, average cation-
oxygen bond lengths in melts agree well between all three simulation methods,
the largest deviation being 0.08 A for Al-O bonds in LaAly1St19Os6 melt (DIP-
PIM potential).

Note, moreover, that both classical and ab initio simulations yield the same
trends for structural variations in response to compositional changes: REE
and Al coordination numbers decrease with increasing REE content. For the
DIPPIM case of Al, this decrease is even quantitatively the same as in ab
initio results, while the effect is less pronounced for the QUAIM potential.
Finally, we point out that the coordination numbers of REE predicted by the
DIPPIM and ab initio methods are considerably larger than those reported
in previous simulation studies (Du, 2009; [Iftekhar et al, [2012; |Okhotnikov
et al, |2013). For example, |Okhotnikov et al (2013) found Y coordination
numbers below 6.6 and La coordination numbers of approximately 6.4, using
a non-polarizable interatomic potential, but also different glass compositions.
QUAIM predictions in this study tend to be somewhat lower than the ab initio
MD data but still higher than the previous simulation studies.

3.5.2 Glass structures: Diffraction vs. classical MD

As another test of the classical interaction potentials, we compare neutron and
x-ray structure factors derived from simulated glass structures to experimental
data in Figs. and [3.6. The simulated and the experimental neutron struc-
ture factors are found in good agreement in terms of peak positions, and in
most cases also with regard to peak intensities (upper panels). The aspheri-
cal ion model (QUAIM) potential reproduces peak positions and intensities
more accurately in most cases, especially in the higher @ regions (7 - 25 A‘l).
The overall agreement of the z-ray structure factors (lower panels) is reasonable
for the REE-poor compositions, but less satisfactory for Y4 AlSigOsg (Fig.
right panels) and LayAlsSiyg Oss (Fig. right panels). Here, both QUAIM
and DIPPIM potentials show differences to experimental findings that require
further inspection.

The discrepancy between experiment and simulation in glasses as well as the
contribution of the utilized potential can be further elucidated by analyzing the
weighted radial distribution functions derived directly from the corresponding
structure factors. Figure 3.7 shows the calculated versus measured total radial
distribution function of Y4AlgSi;9Os¢ glass. For QUAIM, especially in the x-
ray case, an underestimation of bond lengths becomes clear when comparing
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peak positions of Y-O or Si-Al which are shifted to lower distances (green line,
Fig. 3.7). DIPPIM on the other hand systematically overestimates bonds
involving Al, as indicated by the shift of peaks to higher distances (black line,
Fig. [3.7). This also leads to the observed overestimation of Al coordination
number in DIPPIM simulations. These shifted peaks directly translate to
differences in the calculated structure factors. The reason why the discrepancy
between simulation and experiment are more profound in the x-ray compared to
the neutron experiments is that Y and La have a large z-ray scattering length
b(Q), due to their large number of electrons. Therefore, correlations involving
Y and La make a larger contribution to the total z-ray structure factor while
the neutron structure factor tends to represent the overall oxygen structure of
a compositions and is less influenced by larger cations.

Differences in glass structure predicted by QUAIM and DIPPIM are illustrated
in Fig. , showing a detailed view of the region >3 A of the x-ray weighted
radial distribution functions (upper panel). When comparing the contributions
of cation - cation pairs of the two potentials (lower panel) it appears that in
the DIPPIM case, the first peaks of the Al-Y and Si-Y correlations are shifted
compared to Si-Al and Si-Si (orange and maroon vs. violet and brown lines). In
the total g(r) this leads to a peak at about 3.23 Angstrom, which is significantly
larger than the peak at 3.1 Angstrom in the experimental g(r). On the other
hand, there are two distinct features to observe in the QUAIM case. First,
the four main peaks (Si-Al, Si-Si, Si-Y, Al-Y) overlap more closely around 3
A and second, ALY as well as Si-Y develop a second peak at about 3.5 A.
While QUAIM underestimates cation distances in the 3 A region, these split
peaks coincide well with the experimental double peak feature between 3.5
and 4.5 A which is entirely absent in the DIPPIM case. The Y-Y contribution
also shows this double peak feature only in the QUAIM case (blue lines).
Visual inspection of the MD trajectories suggests that in the glass structure as
predicted by QUAIM, Y-O polyhedra are mainly connected to Al-O octahedra
via shared corners and edges. In the DIPPIM case, on the other hand, only
edge sharing dominates the Y-O / Al-O polyhedral connection. Calculated Al-
O-Y bond angle distributions also confirm these observations. In the QUAIM
case, Al-O-Y bond angles peak at about 90° (edge sharing) and 125° (corner
sharing), while in the DIPPIM case, there is only one peak around 100° (edge
sharing). Similar distributions can be found for Y-O-Y bond angles, explaining
the double peak feature observed in experiments. The La bearing glasses also
behave similarly, however much less pronounced.

From the preceding discussion, we conclude that the classical interaction poten-
tials yield melt and glass structures with the following caveats: the coordination
numbers of Al seem too large by up to 0.5 in the DIPPIM case, and those of La
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Figure 3.8: Detailed view of the partial (lower two panels) and total (upper
panel) radial distribution functions of Y4AlgSij9Os¢ glass. Red circles: ex-
perimental data (x-ray scattering), solid lines: simulated data (QUAIM and
DIPPIM). Note that in the QUAIM case, all contributions involving Y are
split up into two peaks corresponding well to the double peak feature of the
measured data. These features are entirely absent in the DIPPIM case.
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seem to be on the low side for both potential types. MD derived coordination
numbers of Y between 6-7 are in good agreement with coordination numbers
that have been calculated directly from the experimental structure factors pre-
sented in this study. Simon et al (2013)) also derive coordination numbers be-
tween 6-7 from EXFAS studies of Y bearing silicate melts. However, there are
some substantial differences between QUAIM and DIPPIM potentials when
comparing structural features beyond the nearest-neighbor range (correlations
between network formers and REE cations and how they interconnect). Only
the QUAIM potential seems to describe correctly the connectivity of Al-O and
Y /La-O polyhedra. If the connectivity was only dominated by edge sharing
polyhedra as described by the DIPPIM potential, the total g(r) would look
different.

3.5.3 Melt vs. glass and simulated quenching

We next discuss structural similarities and differences between melts and glasses
of the same composition. The Al coordination numbers found in the ab initio
and classical MD simulations of REFE-bearing aluminosilicate melts are sig-
nificantly larger than the ones extracted from the diffraction experiments (Ta-
ble and from experiments using NMR or infrared spectroscopy on glasses of
similar compositions (Schaller and Stebbins, |1998; Marchi et al, |2005; Florian
et al, |2007; \Iftekhar et al, 2011). In these studies, AlOy was always found to
be the most abundant Al species by far, although noticeable amounts of 5- and
6-fold coordination were detected. This raises the question whether the simu-
lation results are inaccurate or whether the discrepancies reflect real structural
differences between melts at 3000 K and glasses at room temperature.

The effect of temperature on structure has been investigated experimentally:
Florian et al (2007) performed in-situ > Al NMR measurements on melt sam-
ples with compositions very similar to ours and found that fivefold coordinated
Al is favored at high temperatures, without quantifying the extent to which this
happens. An increase of the Al coordination number with temperature was even
observed in nominally fully polymerized glasses, where AlOy could theoretically
be fully charge-balanced by modifier cations: by extrapolation to high temper-
atures of NMR data obtained on CaAlySiyOs glasses, quenched with varying
rates and hence representing varying fictive temperatures, Stebbins et al (2008)
predicted that at 2800 K, up to 39% of Al should be fivefold coordinated. In a
temperature-dependent NMR study on calcium aluminate liquid, |Massiot et al
(1995) observed an increase of the average Al coordination number above the
glass transition temperature by 0.2 per 1000 K. In a neutron diffraction study
also on calcium aluminate, (Drewitt et al,|2012) report a significant decrease of
Al coordination and other structural rearrangements upon vitrification. These
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experimental findings lead us to the conclusion that the large Al coordination
numbers found in our ab initio simulations of melts do not indicate a defi-
ciency of the method but are due to the high temperature (3000 K) of the
modeled systems. In the DIPPIM MD simulations of melts, the even higher
Al coordination numbers are explained by the combined effect of high temper-
atures and the tendency of the interaction potential to over-coordinate Al (see
section [3.5.1)).

If the large Al coordination numbers in the simulated melts are explained by
the high temperature, so why are they still so large in the simulated glasses
(table ? The model glasses in this study have been generated by cooling
from high-temperature melts (see section , with a quench rate of 5 - 1013
K/s. This exceeds experimental quench rates, which are typically below 10° K /s
(see e.g. |Stebbins et al, |2008), by many orders of magnitude. Since the fictive
temperature, at which the melt structure is frozen into the glass, increases
with increasing quench rate (Mysen and Richet, 2005, Chap. 1), the preceding
arqgument for high Al coordination applies as well to rapidly quenched glasses.
To assess the influence of the quench rate, we also generated a glass structure
of composition YAl15%90s¢ with a 10 times slower simulated quench. For
DIPPIM and QUAIM, no significant changes in the structural parameters were
observed with respect to the quickly cooled glass. However, this slower quench
18 still much faster than in experiments, and we suppose that lower rates are
required to produce structural changes in the resulting glass.

3.5.4 Relation between cation coordination and field
strength

We suggest to rationalize the observed changes in cation coordination as a
function of glass composition (classical MD simulations) in terms of cation
field strength (CFS), which gives a simple measure of a cation’s ability to force
the surrounding oxygen anions into an energetically favorable configuration.
It is defined as CFS = q/r*, with nominal ionic charge q and ionic radius r.
The ionic radii were taken from Shannon (1976), assuming 4-fold coordinated
Si, 5-fold coordinated Al and 7- or 8-fold coordinated Y and La, depending on
composition (see table|3.4)).

The increasing variability of cation coordination as a function of glass compo-
sition, in the order Si, Al, Y, La, reflects their decreasing CFS. The fact that
the Si coordination is virtually independent of composition can be explained by
its large CFS: in the competition for oxygen bonding among the cations, the
St 1ons’ preference for tetrahedral coordination is satisfied foremost, be it at
the expense of more unfavorable coordination environments of the the other
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cations. The distribution of oxzygen between the coordination shells around Al
and REFE cations is determined by the “reaction”

AlO, + REEO,, = AlO,.;; + REEO,,_, (3.5)

between coordination polyhedra in the glass. Y has a larger field strength
than La and therefore requires a more compact coordination shell with less
but shorter and stronger bonds to surrounding oxygen atoms. Thus, the equi-
librium wn FEq. 1s shifted more to the right for the Y-bearing glasses, as
compared to the La-bearing compositions, which explains the higher Al coor-
dination numbers in the former. This trend in Al coordination number has
also been observed in a number of experimental studies (Schaller and Stebbins,
1998; |Marchi et al, |2005; |Florian et al, |2007; Iftekhar et al, |2011)).

Also the changes in Al coordination as a function of REE content (for a given
REE) can be rationalized in terms of field strength effects: in the REE-rich
compositions, the environment of Al is richer in lower-field-strength Y or La
and contains less higher-field-strength Si and Al than in the REE-poor glasses,
so that Al readily forms a tighter coordination shell in the REE-rich glasses.
Furthermore, the low-REE glasses are peraluminous, [Al,Os]/[REE,Os] > 3,
and full charge compensation for fourfold coordinated Al is not possible. This
also forces Al into higher coordination in these glasses. The same dependence
of Al coordination numbers on REE content is also confirmed experimentally
by |Schaller and Stebbins (1998) and Florian et al (2007). The latter investi-
gated glass compositions very similar to ours, and they found that the average
Al coordination number drops from 4.3 in the Y-poor to 4.1 in the Y-rich glass,
which is the same change by 0.2 as found with classical MD simulations. The
decreasing REE coordination with increasing REFE content can be explained in
the same way. It is consistent with the findings in|Haigis et al (2015), where the
Y coordination number in Ca-bearing aluminosilicate melts was shown to de-
crease with increasing Ca content, since Ca shows a lower cation field strength
than Si and Al.

Not only the coordination numbers of cations can be linked to the field strength,
but also the width of the coordination shell formed by oxygen around the cations.
Whereas high field strength cations are expected to form a tight coordination
shell with well defined bond lengths, less powerful cations are anticipated to
be forced into more disordered environments with a wider range of nearest-
neighbor distances. This behaviour is confirmed by the simulation results shown
n Fig. where the standard deviation of cation-oxygen bond lengths (a mea-
sure for the width of the coordination shell) is plotted against the inverse cation
field strength. For all four compositions, a (non-linear) correlation is clearly
visible. Moreover, the oxygen shell around Si and Al in the La-bearing glasses

43



Chapter 3. The structure of Y- and La-aluminosilicate glasses and melts

T T T T | T

<

2 03+ 8] —
e

=3 La

c

k) _ i
©

c

o

9 0.2 - -
©

c

O . 1
©

> .

S 01X . o—oYAI11S!19056 |
o Si[ ] E'—E'Y4A|88'1_9056

g i LaAl, Si ;O |
o AALa,AlSi O

w O 1 | 1 | 1 | 1 | 1

0 0.1 0.2 0.3 0.4 0.5

1/CFS (A%/e)

Figure 3.9: Classical MD on glasses: width of the oxygen coordination shell
around cations, given as the standard deviation of the distribution of cation-
oxygen bond lengths, as a function of inverse cation field strength. The coor-
dination numbers used for the calculation of the field srength are indicated as
superscripts. Lines are a guide to the eye. Figure from |Haigis (2013).
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is found to be narrower, i.e. less perturbed, than in the Y-based compositions.
This further corroborates the interpretation of coordination environments in
terms of a competition for oxygen bonding between cations of different field
strengths.

Coordination shells of cations and their evolution upon compositional changes
have been discussed here in terms of the glass structures obtained from classical
MD simulations, but the same trends are also observed in the ab initio MD
simulations of melts (Table . Therefore, the results appear to be robust
with respect to the simulation method and seem to hold for both melts and
glasses.

3.5.5 Medium-range order: Al/Si ordering

To conclude this section, the distribution of bridging oxygen among the various
pairs of tetrahedral species is discussed. |Iftekhar et al (2009) investigated this
distribution by means of ?*Si NMR experiments on La-bearing aluminosilicate
glasses, which were, however, considerably richer in La than our compositions.
Their results are based on fitting several distribution models to the data and
suggest a nearly random distribution of BO between tetrahedrally coordinated
Si and Al. But given the uncertainty of their assumptions and structural mod-
els, they caution against over-interpreting this conclusion. Qur ab initio MD
simulations of aluminosilicate melts containing Y and La are a unique op-
portunity to complement the experimental data and to address this question
quantitatively and without further assumptions.

In aluminosilicate minerals, the distribution of tetrahedrally coordinated Si and
Al in the crystal structure is subject to the Al avoidance or Loewenstein rule
which states that due to their excess megative charge, pairs of Al tetrahedra
linked by BO are strongly unfavored, and instead alternation of Si and Al
tetrahedra occurs in the crystal structure (Loewenstein), |1954). Since silicate
melts and glasses are composed of the same tetrahedral building blocks, it may
be conjectured that they also obey this ordering principle. We tested if the
rule applies to the amorphous phases studied here by checking the distribution
of bridging oxygen, T-O-T, among the motifs Si-O-Si, Si-O-Al and Al-O-Al.
It is instructive to compare the BO distribution actually found in the melt
to the random distribution, which would be expected simply on the basis of
the abundances of tetrahedral St and Al, in the absence of any ordering rule.
This random distribution is found as follows: if there are Nrp tetrahedrally
coordidated species of type T and Np+ of type T' (T,T' € {Si,Al}) in the
simulation cell, then the number pr.o+ of possible pairs of tetrahedra T, T" linked
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by bridiging oxygen s
1
prr = §NT(NT’ — Or77) (3.6)

where opr is 1 for T = T', i.e. for like pairs (Si-O-Si or Al-O-Al), and
0 otherwise. The factor 1/2 corrects for double counting of pairs, and the
number of unlike pairs (Si-O-Al) is understood to be the sum pgi a1 + Darsi =

2psi a1 = NgiNai. For a random distribution, the fraction of BO linking T and
T" would then be

(2 = b7 )prT
21 PTT

(T -0 - T = (3.7)

The results concerning the BO statistics are given in table|5.2.

In all four compositions studied here, the molar ratio [Al]/[Si] is considerably
less than 1, so that strict avoidance of Al-centered tetrahedra linked by BO could
formally be achieved (Loewenstein, 1954)). However, the results presented in
table indicate that in all compositions except for the La-rich melt, the BO
partitioning between Si and Al is close to random. Only in LayAlgSiigOse,
the AIM-BO-AIY motif is less frequent than expected for a random distribu-
tion, in favor of an elevated amount of Si¥-BO-AlY, but still a significant
degree of randommess is observed. A priori, this structural disorder in simu-
lated REE-bearing aluminosilicates may be an effect of the high temperature,
which favors configurations of higher entropy. Recently, Jaworski et al (2012)
and |Okhotnikov et al (2015) reported an essentially random Al/Si distribution
i La-bearing aluminosilicate glasses which were considerably richer in La than
the compositions studied here. They performed classical MD simulations with
a simple pair potential. From our ab initio simulations in conjunction with
the experimental data of Iftekhar et al (2009) and the results of |Jaworski et al
(2012) and|Okhotnikov et al (2015), we conclude that the Al avoidance rule is
not obeyed in the melts studied here and that it probably does not (or at least
not strictly) apply to the glasses either.

This may be attributed to the greater structural flexibility of amorphous struc-
tures as compared to crystalline phases, which allows excess charges on BO be-
tween Al-centered tetrahedra to be compensated more easily. On the other hand,
in aluminosilicate glasses containing divalent network modifiers, Al avoidance
was found to be realized to a large extent, although not strictly (Lee and Steb-
bind, |2006). This indicates that also the higher charge and field strength of
trivalent 'Y and La have a share in the Al/Si disorder found in our study,
by facilitating charge compensation of otherwise unfavorable structural motifs.
This suggests that the traditional picture of glasses, derived from alkali- and
alkaline earth-bearing aluminosilicates, should be used carefully when applied to
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REE-bearing glasses, since trivalent elements may behave differently in terms
of network modification and charge balancing.

3.6 Conclusions

The atomic-scale structure of four Y- and La-bearing aluminosilicate glasses
and melts with high SiOy content (76 mol%) was investigated by ab initio and
classical MD simulations as well as neutron and x-ray diffraction experiments.
By combining information from all four approaches, we described the coordina-
tion environments of the cations and found robust evidence for structural trends
as a function of composition: coordination numbers of REE cations decrease
with increasing REE content, and so do Al coordination numbers. Moreover,
Al was found to be in a higher coordination state in Y-rich than in La-rich
composition. These trends can consistently be explained by the various cation
field strengths: they impose a hierarchy on the melts and glasses as to which
cation’s coordination requirements are satisfied preferentially, at the expense of
the others’ bonding requirements. Furthermore, the Al avoidance rule obeyed
in aluminosilicate minerals was found to be almost completely invalidated in
REE-bearing aluminosilicate melts.

Ab initio and DIPPIM simulations consistently yield a coordination number of
Y in REE-bearing aluminosilicate melts and rapidly quenched glasses between
7 and 8, depending on composition. This is larger than the values found for the
QUAIM case (around 7) and in other classical MD studies on glasses, which
lie below 7 (Du, |2009) or even below 6 (Iftekhar et al,|2012). La coordination
numbers in aluminosilicate melts containing REE were determined by means of
ab initio simulations, yielding values close to 8. The new classical interaction
potentials for La have shown to produce reasonable melt and glass structures
but to form a slightly too tight coordination shell around La, especially in
La-rich compositions, which leads to underestimated coordination numbers
especially in the QUAIM case, similar to results for REE bearing melts of
Okhotnikov et all (2013)). Furthermore, we find that some features of the
experimental structure factors can potentially be explained by a mixture of
corner and edge sharing Al-O/Y-O polyhedra with a predominance of edge
sharing. The two classical potentials diverge in their prediction of this feature,
the QUAIM potential being much closer to experimental observations.
Calculated structure factors, especially neutron scattering factors agree well
with experimental findings, emphasizing that regardless of uncertainties in a
particular coordination environment, the overall structure of melts and glasses
is predicted rather well. Three major effects may cause the shortcomings in
x-ray structure factors: 1) effects (over- or underestimation) of the utilized
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potential on nearest and next-nearest neighbour environments, 2) alteration
of peaks due to the Fourier transformations effects when calculating structure
factors and 3) effects of fast quench rates (too little time to rearrange cations,
prevention of clustering of REE in glasses etc). At least the latter could be
ruled out by directly comparing experimental and simulated structure factors
for melts. For future classical MD studies, an improved description of La might
be achieved by using more training structures (La-bearing crystals and more
glasses) for the parametrisation of the classical potential. Most shortcomings of
the classical approach seem to be emphasized when REE content is increased.
The overall accurate description of the REE behaviour in melts and the fact
that both elements usually occur as trace elements in geologically relevant
systems encourages future use of the presented potentials (e.g. to calculate
trace element distributions or the structure of REE in natural melts).
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Chapter 4. Trace element partitioning between silicate melts

4.1 Introduction

The use of trace elements as tracers of magmatic processes in the Earth’s in-
terior is a standard tool on the geochemist’s workbench and as such, these
elements have received much attention throughout the last decades
schmidt), [1937; Ringwood, 1966 [Blundy and Wood, 2003} Shaw, 2006)). The
distribution of an element between phases involved in a geochemical reaction
is conventionally quantified with the partition coefficient D. D is defined as the
concentration ratio of element X between two phases o and [ (e.g. a mineral
and a melt) (Beattie et al, [1993):
a/B _ [Xa]

Dy = 5 (4.1)

Knowledge of these partition coefficients is essential for quantitative modelling
of mineral-melt reactions and the corresponding experimental studies are nu-
merous (e.g. Green, 1994} [Stalder et al, 1998 Klein et al, |2000; (Corgne and)
'Wood, 2002} [Pertermann et al, [2004; [Sun and Liang| 2011} Beyer et al, [2013)).
D values are not constants but may strongly depend on pressure, temperature
and compositions of both mineral and melt. The most widely used model to
predict mineral-melt partition coefficients is based on the lattice strain the-
ory (Blundy and Wood, 1994). The model predicts partition coefficients by
evaluating the mismatch in atomic radius and charge when a trace element
is substituted for a major element in a regular crystal lattice. It has been
applied and adjusted successfully in many studies (Wood and Blundy, [1997;
van Westrenen et al, [2001; [van Westrenen and Draper, 2007; [Sun and Liang,
2011; |Corgne et al, 2012; |Sun and Liang), 2013; Davis et al, [2013).

By definition, the lattice strain model is focused on crystal structure and treats
a potential influence of the corresponding melt indirectly. There is some de-
bate about what control melt structure exerts on partitioning and many recent
studies address this issue with conclusions varying from insignificant influence
to several orders of magnitude difference in D values (Kohn and Schofield,
1994; [O’Neill and Eggins|, 2002; Mysen|, 2004; [Prowatke and Klemme, 2005}
Schmidt et al, [2006; [Huang et al, 2006; Evans et all [2008; |Girnis et al, 2013)).
Results of such studies are even harder to interpret as, in contrast to crys-
tals, the structure of most melts and the local environment of trace elements
therein is usually not well constrained. One way to circumvent this issue is to
investigate element partitioning using computer simulations. Molecular simu-
lations in particular offer a unique insight into structural properties of melts
and crystals alike, while simultaneously provide access to many of their physic-
ochemical and thermodynamic properties. Up till now most simulation studies
have investigated element partitioning by statically calculating defect- and so-
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lution energies in crystals and relating these properties to lattice strain theory
(Purton et al, {1997, 2000; van Westrenen et al, [2000; |Allan et al, 2003)). On the
other hand, studies explicitly focusing on melt properties are rare. |Haigis et al
(2013)) explored an approach based on classical molecular dynamics (MD) to
directly calculate trace element partitioning between a melt pair in the CaO-
Al,O3-SiO5 system. The authors used a thermodynamic integration method
(Frenkel and Smit), 2002) to obtain the free energy difference of an element ex-
change reaction between the two melts, which directly relates to partitioning.
In this contribution we aim to further investigate the potential of this method
by calculating trace element partition coefficients for several experimentally
well known systems. The goals of this study are (a) to predict partition co-
efficients from first-principles and classical model systems where experimental
data are available and (b) to elucidate the effect of melt structure on the pre-
dicted partitioning behaviour. The first goal also serves as a benchmark of
this method’s capability to explore systems where experimental data may be
lacking. We use molecular dynamics simulations in conjunction with ther-
modynamic integration (Marx and Hutter, 2012)) to simulate partitioning of
minor elements between several silicate melts. We explicitly focus on the ef-
fect of melt composition because the element exchange with a crystal usually
involves coupled substitutions. Taking these into account would further com-
plicate the thermodynamic integration approach we aim to test and needs to
be discussed in future simulations involving this method. Therefore, our model
systems are a gabbroic and granitic melt, similar in composition to coexisting
melts investigated by Schmidt et all (2006]), as well as a Ti bearing silicate
melt pair, resembling melts studied by Prowatke and Klemme| (2005). Note
that we by no means suggest that the two Ti-bearing melts are coexisting in
nature. We rather evaluate the effect of melt composition on mineral-melt par-
titioning by assuming a virtually unchanged crystal as opposed to a changing
corresponding melt (see original experimental study, Prowatke and Klemme,
2005, for details). We chose to investigate the trace elements Y, La and As for
two reasons. Firstly, experimental data for these elements are readily avail-
able for the investigate melt systems and secondly, all three elements have
the same formal charge (**) but varying ionic radii (Y 1.04 A, La 1.17 A, As
0.58 A, |[Shannon, [1976)), making it possible to use the same substitution for
AI*T during thermodynamic integration (see below). The atomic interactions
are either described by first-principles methods or classical force fields to com-
pare their suitability for the thermodynamic integration approach. Also, the
first-principles simulations may be used as reference points for end members
of classical integrations (see Section [£.2.2)).

First-principles MD is based on quantum mechanics, usually in the form of
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density functional theory (DFT, Hohenberg and Kohn, [1964; [Kohn and Sham,
1965)) and provides an essentially parameter-free description of the total energy
of any given set of atoms. In many cases it has been shown to be highly accu-
rate and predictive, also in investigating the structure and properties of melts
over a range of pressures and temperatures (Alfe et al, 2002; de Koker et al,
2013; Munoz Ramo and Stixrude| [2014). However, first-principles methods are
limited by their comparatively high computational cost, typically up to about
a hundred atoms for MD simulations of complex silicate melts. Classical simu-
lations, on the other hand, rely on force fields to describe atomic interactions.
This makes the simulation of significantly larger systems and longer simulation
times computationally affordable and thus enables the study of processes such
as diffusion or the structure of melts and fluids beyond nearest neighbour dis-
tances. However, classical force fields can only be as accurate as the training
set used for its parametrisation. Here, we use an advanced ionic interaction
potential that has been successfully applied to simulate oxides and silicate
crystals, melts and glasses (e.g. |Jahn and Madden, 2007; |Adjaoud et al, 2011;
Finkelstein et al, 2014).

4.2 Simulation Procedure

4.2.1 Molecular dynamics simulations and compositions

We performed both first-principles and classical MD simulations of four silicate
melts at room pressure. The composition of the first melt pair was inspired by
experiments of [Schmidt et all (2006) and resembles a granite and a gabbroic
melt. The second melt pair are two Ti-bearing silicate melt (asi200 and asi280),
resembling melts of titanite-melt partitioning experiments by Prowatke and
Klemme (2005). The two melts vary mainly in their Al and Na contents.
The simulation cells contained between 100 and 107 atoms. For the classical
MD simulations we also used 2x2x2 supercells with 824 and 856 atoms to test
for finite size effects. An overview over compositions and densities of all in-
vestigated systems is given in Table All first-principles simulations are
Born-Oppenheimer-type simulations, performed using the QUICKSTEP mod-
ule (VandeVondele et al, 2005)) of the CP2K software package (Hutter et al,
2014). We used the Perdew-Burke-Ernzerhof exchange correlation functional
(Perdew et al,|1996) and Goedecker-Teter-Hutter (Goedecker et al,1996)) norm-
conserving pseudopotentials. As basis sets we employed double-zeta valence
plus polarisation basis sets (VandeVondele and Hutter, 2007). A planewave
cutoff of 160 Ry was chosen as a compromise between accuracy and efficiency.
For classical simulations, we used the FIST module of CP2K with an imple-
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mentation of the utilised interaction potential by the authors. The classical in-
teraction potentials were initially parametrised for the CaO-MgO-Al;O3-Si04
system by reference to first-principles electronic structure calculations (Jahn
and Madden, 2007). In addition to charge-charge (Coulomb) interactions and
dispersion, this model includes true many-body effects by accounting for po-
larisation effects (electronic multipoles up to quadrupoles) as well as aspherical
shape deformation of anions, depending on their local environment (Madden
et al, [2006)). Multipoles and shape deformations are computed self-consistently
at each simulation step. For this study, we extended the original set with in-
teraction potentials for Y, La and Na (see Sec. Tab. [2.1)). Details about
the parametrisation procedure can be found in the appendix.

As a precursor for production runs, we equilibrated two versions of each com-
position: one free of trace elements and one containing one or two atoms of
Y, La, or As. Those serve as end-member reference for the thermodynamic in-
tegration (see below). These initial configurations were derived by generating
random atom positions, taking into account typical, minimal bond distances.
Densities were derived for 0 GPa and 3000 K from classical constant pressure
(P) and temperature (7T') simulations with equilibration times of at least 20 ps
(NPT ensemble, N: constant number of particles). P and T are controlled by
canonical sampling through rescaling (CSVR, [Bussi et al, 2007) thermostat
and barostat. Densities where subsequently fixed for the reference configura-
tions. These cells have been further equilibrated at constant volume (V') for
at least 20 ps (NVT ensemble) and subsequently used as basis for the ther-
modynamic integration. All simulations are performed with 1 fs time steps.
Periodic boundary conditions are applied at all times.

4.2.2 Thermodynamic integration

Thermodynamic integration is a means to extract free energies from MD sim-
ulations (Frenkel and Smit|, [2002). The change in free energy of a reaction is
obtained by integrating changes in total energy over a reaction path. In an
MD simulation framework, one possible reaction path is an alchemical trans-
mutation in which the identity of an atom is gradually changed (e.g. Al is
transmuted into Y). In this study, an exemplary reaction would be the ex-
change of Al and Y between a gabbro and granite melt:

YA AR = ALY, YT (4.2)

gabbro granite gabbro granite

This reaction is split into two separate sub-reactions, each comprising one
alchemical transmutation:

Y3+ = A l3+
gabbro gabbro (43)

Y3+ — Al3+

granite granite
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Table 4.1: Composition of all investigated systems (sim) and their experimen-
tal reference (ref). All compositional data are given atoms per eight oxygens.
N and N*"P°" are the total number atoms per simulation cell. The density p
(g/cm?) is given at 3000 K, derived from classical MD simulations. The line
NBO/T lists the degree of depolymerisation calculated from reference com-
positions and simulations. The explicit chemical formulas for all simulated
systems is given in the appendix.

granitic gabbroic asi200 asi280
sim  refl | sim  ref' | sim  ref? | sim  ref?
N 103 - 107 - 104 - 100 -
Nsuper 84 - 856 - T
Si* 3.25  3.320 | 2.29 2.236 | 2.45 2.46 | 2.32 2.27

Al(+Fe)* | 0.5 0.433 ] 0.38 0.254 | 0.26 0.23 | 0.77 0.84
(Mg+Ca)* | 0.375 0.442 | 2.79 2.594 | 0.77 0.79 | 0.65 0.71
(Na+K)* | 0.75 0.435]0.13 0.128 | 1.29 1.21 | 0.52 0.43
Ti* - - - - 0.65 0.67 | 0.65 0.64

NBO/T 027 025220 225 |0.77 0.76|0.28 0.27
P3000K 226 - 243 - 222 - 230 -

*per 8 oxygens; Schmidt et al (2006)); 2Prowatke and Klemme, (2005))
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The progress along the reaction path for each transmutation is measured by
a transmutation parameter A, taking values from 0 to 1. The transmuted
element is 100% Y?* for A\ equals 0 and 100% AI3* once A equals 1. During
each step of the transmutation, forces f and energies V' are computed for each
end-member configuration (one containing Y*, one Al1*"). The resulting force
fmiz during a transmutation is calculated as a linear combination of the two
end-members as:

The final change in Helmholtz free energy AF' for one of the transmutations
in Eq. is given by the integral over the average energy difference between
the two end-members:

1 GV)\ 1
AF = [ (22N ax= [ (Vi — 13)2dA (4.5)
0 a>\ A 0

Vai—Vy is evaluated at each MD step, the angular brackets indicate the average
over time. In this study, we used three intermediate values for A (0.25, 0.5,
0.75) in addition to the end-members. The total change in free energy AG*™
of Eq. is then obtained as:

AG™ = AF) 4 — AF) 4L (4.6)
assuming that AG ~ AF for P = 1 bar.

In order to ensure path independence, every transmutation is conducted for-
wards and backwards, using the output configuration of the forward reaction as
input for the back-reaction. Production runs of these thermodynamic integra-
tions were performed at constant volume and temperature (NVT) at 2500 K
(classical) and 3000 K (first-principles), also using a CSVR thermostat. Each
integration step was run for at least 100 ps in the classical- and at least 20 ps in
the first-principles based simulations. Because of the computational demand,
simulation times are much shorter in the first-principles case. Aiming to com-
pensate for this and achieve equilibrium more quickly in each transmutation
step, the integration temperature is higher in the first-principles simulation.

4.2.3 Structural analysis

To gain further insight into structural controls of the partitioning behaviour
we analyse the radial distribution functions (RDF) for each individual system
and integration step. RDF's represent the likelihood to find a specific pair of
atoms at a distance r, normalised to the mean atomic number density. For
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individual atom types ¢ and j the partial RDF is defined as:

J

9i5(r) = %ﬁ <iz5(r — (ra — Pb))> (4.7)

a=1 b=1

In Eq. .7 N is the total number of atoms, py the atomic number density,
¢; is the concentration and N; number of atom type i. r, and r, are atomic
position vectors of atoms a and b, r is a distance vector with length r. ¢
is the Kronecker delta. Peak positions in g¢;;(r) represent the most probable
bond distance in the corresponding coordination shell. From Eq. we may
derive the average coordination of atom type i by j by integrating g;;(r) to
its first minimum. Comparing RDF's derived from first-principles and classical
simulations also gives us a tendency of the accuracy of the structure predicted
by our classical potentials.

To describe medium range order in melts, it is common practice to analyse
the interplay of network formers such as Si, Al and Ti and network modifiers
(larger cations such as Ca and Mg, Mysen, 2004). This is done by analysing the
the interlinkage of oxygen atoms between those species. Oxygen atoms that
link two 4-fold (tetrahedron) coordinated network formers (T) are considered
to be bridging oxygen (BO). A terminal oxygen, bonded to only one network
former is considered non-bridging (NBO). The ratio NBO/T acts as a measure
of depolymerisation of the melt.

4.3 Results

4.3.1 Melt structure

We derive structural information from the MD trajectories of all investigated
melts by calculating partial radial distribution functions (Eq. . The first-
principles and classical MD results for granitic and gabbroic melt containing
Y are given in Fig. [£.1] First-principles results for the Ti-bearing melts asi200
and asi280 are given in the appendix. From the partial RDF's, we also calcu-
late the average coordination numbers and bond distance, which represent a
mean through all occurring configurations of a specific element pair through-
out the melt and over time (Tab. . TNote that, while peak positions
agree well, peak maximum and shape of the partial RDFs predicted by clas-
sical simulations are systematically narrower and higher than corresponding
first-principles simulations. This is because oxygen bonds are generally pre-
dicted to be slightly stronger than calculated by first-principles, which is a
known caveat of the utilised potential type (e.g. |Adjaoud et al, [2008). In
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general, gabbroic and granitic melts show rather similar partial RDFs. The
average oxygen-oxygen distances is shifted to higher distances and its distribu-
tion is broader (peak width) in the gabbro. Differences become clearer when
looking at average coordination numbers. When comparing classical and first-
principles simulations for these melts, the latter predict slightly higher average
coordination numbers for all cations except Y, where both predict similar val-
ues. However, in both cases, the major elements Al, Ca and Na systematically
show slightly higher average coordination numbers in the gabbro. The trace
elements Y, La and As as well reach higher coordination numbers in gabbro
(Y ~7, La ~6, As ~4) as compared to granite. The Ti-bearing melts asi200
and asi280 on the other hand are very similar in their structure. There are
only slight deviations in coordination numbers for both melts. Ti reaches co-
ordination numbers of up to 4.5, Y and Ca are 6 fold coordinated. We also
calculated the average NBO/T of all investigated melts (see Tab. [4.1).

4.3.2 Thermodynamic integration

For each of the four melts, we performed thermodynamic integrations by trans-
muting one Al atom into one of the three trace element atoms Y, La or As, with
a total of five integration steps (A €0, 0.25, 0.5, 0.75, 1.0]). As an example, Fig
[4.2] shows the time averaged differences in total energy < Vy, — V3 > for dif-
ferent lambdas of the gabbro and the granite melts. Each curve represents one
transmutation as described in Eq. and integrating over a single curve yields
the corresponding change in free energy of the transmutation reaction. The
individual transmutation steps should plot on a monotonous curve between the
end member configurations. Based on the energy fluctuations during MD sim-
ulations at constant lambda, we estimate the maximum statistical error of the
individual energy differences to about 30 kJ/mol. The difference between the
integrations for subreactions (i.e. the area between the two curves) gives the
change in Gibbs free energy AG,,.. Integrating over a 4th order fit (see Fig.
of the data gives similar results as integrating over a linear extrapolation.
From AG,... the equilibrium constant K can be derived via

AClexc )
RT

where T is the temperature and R the universal gas constant. The resulting
equilibrium constants K.,. are given in Tab. (third column). To illustrate
the structural response to the thermodynamic integration within the melt,
we also plot the partial RDF of the transmuted atom for each intermediate
step in the inset in Fig. [1.2] Between the two end-members representing the
ordinary partial RDF of Al and Y, there is a linear transition of the RDF (and

Kepe = exp(— (4.8)
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Figure 4.1: Partial radial distribution functions of the granitic (top) and gab-
broic (bottom) melts doped with one Y each. First-principles results are shown
as dotted lines, results from classical simulations as solid lines. Note that while
peak positions agree rather well, the classical interaction potential systemati-
cally predicts higher and narrower peaks (i.e. on average tighter cation-oxygen
bonds).
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Table 4.2: Average oxygen coordination number CN, average bond length d
and its standard deviation o (width of the coordination shell) of major cations
and trace elements in all investigated melts. Presented are classical (QUAIM)
and first-principles (DFT) simulations
cation | CN d (A) o (A)|CN d(A) o (A)
granitic (QUAIM) | gabbroic (QUAIM)
Si 40 163 011 |40 163 0.12
Al |40 181 014 |43 18 0.17
Ca |56 259 036 |70 260 0.34
Na |54 267 038 |67 262 0.38
Mg 54 222 030
Y 59 231 024 |69 236 025
La |51 231 028 |64 248 0.30
granitic (DFT) gabbroic (DFT)
Si 40 170 0.14 |41 174 0.27
Al |41 190 016 |45 199 0.31
Ca |60 264 038 |76 261 045
Na |58 27 039 |75 271 046
Mg 55 237 0.46
Y 56 242 039 | 6.8 245 040
As |34 199 026 |38 209 0.38
asi200 (DFT) asi280 (DFT)
Si 40 170 014 |40 171 0.14
Al |41 188 020 |41 1.8 0.20
Ti 45 197 025 |45 198 0.25
Ca |62 264 039 |62 267 0.39
Y 58 245 031 |59 244 0.32
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Chapter 4. Trace element partitioning between silicate melts

with it, coordination environment) via an intermediate, theoretical element.
The results of the classical simulations for various starting configurations of
gabbro and granite agree well, as they all predict equilibrium constants of ~4
for 2500 K, no matter if one or two Y are transmuted. Also, there seems
to be no finite size effect at least for these transmutations as similar results
are obtained from large cells containing up to 856 atoms (denoted with *“P¢"
in Tab. . The transmutations based on first-principles however are less
distinct. Two independent transmutations of Y in gabbro and granite both
give equilibrium constants close to 1 for 3000 K. The arsenic transmutation
gives a K. of ~0.3. The exchange of Al and Y between the two Ti-bearing
silicate melts results in an equilibrium constant of ~3.5 for 3000 K, and thus
suggest preferential partitioning of Y into the less polymerized melt (asi200,
see discussion).

4.4 Discussion

4.4.1 Predicting trace element partitioning

The equilibrium constant of the exchange reaction K.,. relates to element
concentrations in the involved phases by taking into account the activity co-
efficients «y (in the case of melts), giving

Al Y
abbro granite Ya 0 Al ranite
K. JaatwroTgranite _ [Yoabtro][Algranite] (4.9)

Vébbrofyﬁlanite [Algabb'ro] D/gTanite]

To our knowledge, there are no experimental data on the activity of the investi-
gated trace elements in silicate melts. For the purpose of this study we assume
that they are similar in both melts involved, and thus cancel out. Further-
more, we assume that the transmuted major element AI** does not partition

significantly between the two, i.e. D%bbm/ gramite s considered to be ~1 (e.g.

Veksler et al, |2006), leaving the right hand side of Eq. reduced to the
original definition of the partition coefficient D (Eq. as

[ngabbro]
[Ytqranite]

This means that we directly approximate the partition coefficient with the
equilibrium constant K,.... To compare our calculations to experimental re-
sults, we scale K., from the temperatures of the thermodynamic integrations
to experimental temperatures, assuming AG does not vary significantly with
temperature. The results are summarised in Table , column 5 (D.g), with

. ygabbro/granite __
Kexc ~ DY -

(4.10)
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Figure 4.2: Thermodynamic integration (based on classical potentials) for the
exchange reactions of Y and Al in a granitic and a gabbroic melt (see Eq. .
Discrete data points represent the average energy difference < Vi, — Vy > for
each value of \. The curves are 4th order interpolations between the data.
The area between the two curves corresponds to the total change in Gibbs free
energy of the exchange reaction, as outlined in Eq. [£.2l The corresponding
equilibrium constant of the reaction is given in the upper left corner. Error bars
are smaller than symbols. Inset: Shown is the shift of the RDF of the affected
atom during transmutation. The first shell structure gradually changes from
that of an Y to that of an AL
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Chapter 4. Trace element partitioning between silicate melts

Table 4.3: Thermodynamic integration results from classical and first-
principles MD. T, is the temperature of the transmutation, AG.,. the calcu-
lated change in free energy and K.,. the corresponding equilibrium constant.
Des is the corresponding estimated (see text) partition coefficient at experi-
mental temperatures (Tt,p). Des, are experimental coefficients derived from
the corresponding literature. In classical simulations, *“P°" denotes that the
transmutation has been done using a 2x2x2 supercell (up to 856 atoms)

melt pair AG ez

classical MD

gab/gra Y 2500 -25.6 3.4(1) 8 9.3(18)* 1450
gab/gra Y*“P¢" 2500 -28.8 4.0(2) 10

gab/gra 2Y 2500 -30.2 42(1) 12

gab/gra 2Y*“P¢" 2500 -31.1 3.3(1) 8

gab/gra La 2500 -23.8 32(2) 7 9.9(19)* 1450

first-principles MD

gab/gra’Y a 3000 -2.8 1.1(1) 1.2 9.3(18)! 1450
gab/gra Y b 3000 3.1 0.9(1) 0.8

gab/gra As 3000 28.8 0.31(2) 0.09 0.086(52)" 1450
asi200/asi280 Y 3000 -31.4 3.5(1) 15 ~50%* 1400

* _ estimate, see text; ISchmidt et al (2006)); 2Prowatke and Klemme] (2005))

experimental references (D,,,) and the corresponding experimental tempera-
ture (1,4p) in columns 6 to 7.

Given all assumptions and methodical uncertainties the classical MD results
for Y and La are in reasonable agreement with experimental data, predicting
not only the right direction of partitioning but also the correct order of mag-
nitude, close the experimental uncertainty. The first-principles simulations on
the other hand show a different picture. Two independent simulations of the
system gabbro - granite containing Y, despite having been integrated from
the same initial configurations as the classical MD, show partition coefficients
close to 1. Transmutation of a system containing As on the other hand shows
both the correct order of magnitude and partitioning behaviour (enrichment in
granite). The simulation of the Ti-bearing silicate melts points in the correct
direction (preference of asi200) but is too low by a factor of 3. Note, how-
ever, that in this case the two melts do not coexist in the experiment and that
our derived D describes the relative change of titanite-melt partitioning as a
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function of melt composition. In this case, also the reference is only a rough
estimate derived from the Y concentration in each melt of the original publi-
cation, assuming that the corresponding crystal does not change between the
different titanite-melt partitioning experiments (see Prowatke and Klemme,
2005, for experimental details). One reason for the large difference in Y parti-
tion coefficients between gabbro and granite melts predicted by first-principles
simulations compared to experiments could be that run durations (20 ps run
duration as compared up to 200 ps in the classical case) are too short to suc-
cessfully sample all configurations in phase space and thus finding substantial
differences in free energy in the two melts. This would also explain why the
predicted D 45 between the two melts is in closer agreement with experiment
than Dy-. Arsenic usually shows coordination numbers close or below 4, which
is similar to those of Al. This means that the structural environment of major
and trace element involved in the transmutation is already rather similar and
thus, the short simulation times suffice to achieve equilibrium. This may not
be the case for Y, where the melt has to accommodate a change in coordination
from 4 (Al) to 6-7 (Y). Moreover, especially in the more polymerised melt this
change of Y coordination is expected to lead to a local rearrangement of the
tetrahedral network structure, which may take longer than the total simula-
tion time of 20 ps (e.g. [Spiekermann et al, 2016)). A possible solution would be
to perform transmutations onto sites that already feature high coordination
numbers (e.g. onto a calcium site), using coupled substitutions (Ca + Si —
Y + Al) to remain charge neutral. In particular in the case of the Ti-bearing
silicate melts, another source of error could be the activity coefficient of Y in
such exotic melt systems, which potentially influence the partitioning by an
order of magnitude.

4.4.2 The role of melt composition and structure

The first parameter we consider when trying to shed light on the structural
influence on partitioning is the degree of depolymerisation (NBO/T). In this
study, both Y and La prefer melts that have a higher degrees of depolymerisa-
tion (the gabbroic and the asi200 melt), an effect observed by experiments as
well as previous simulations (Haigis et al, 2013; |Prowatke and Klemme, 2005}
Schmidt et al, 2006). When calculating a hypothetical exchange between the
two melts with similar NBO/T (asi280 and granite), the corresponding equi-
librium constant is in fact ~1. However, solely relying on NBO/T seems am-
biguous when it comes to partitioning. The two Ti-bearing silicate melts that
should experimentally differ largely regarding their trace element incorpora-
tion (Prowatke and Klemme, 2005]) show a much smaller difference in NBO/T
(~0.7 and ~0.3) as compared to the gabbroic and granitic melts (~2.0 and
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~0.3), yet D-values of the latter are much smaller (up to a D of 10 or 0.1 re-
spectively). To find a more direct link between composition and partitioning,
Haigis et al (2013) argue that Y prefers melts with high amounts of Ca, as
it performs as a 'weak competitor’ for the oxygen needed to create the rather
high coordination shell of Y (and La). This observation holds true in the case
of the silicate melts investigated here as well, where melts with higher amounts
of Ca (and Mg) are preferred by both Y and La. Another general observation
is that both elements show higher coordination numbers in the depolymerised
melt (~7 in gabbro as opposed to 6 in granite). For arsenic, the fractionation
follows the opposite trend (into the polymerised, granitic melt) and conversely,
coordination is lower in granite compared to gabbro. Assuming that Y and La
prefer a coordination close to 7 in silicate melts, we can conclude that these
elements will always partition into the melt that allows them to attain this
environment with the least 'resistance’ possible, i.e. where large cations that
loosely bond oxygen prevail as compared to oxygen tightly bond in Si, Al or Ti
tetrahedra. Thus, in a network dominated by Si and Al polyhedra, ions that
form large coordination shells (6-7, Y3*, La®" or also Cr®") would partition
into the more depolymerised melt in order to satisfy their oxygen demands.
Tons with potential small first shells similar to those of AI’* (3-4, e.g. As*T
or Sb3") will partition into the polymerised melt to be accommodated within
the tetrahedra network. Schmidt et al (2006) argue that, at least for elements
that vary only slightly (up to a D of 10) with melt polymerisation, the overall
effect on mineral-melt partitioning will be negligible and dominated by the
crystal. However, if both effects fall in the same order of magnitude, the melt
effect will have to be considered, especially in systems that are not well con-
straint by experiments yet. In the case of the Ti-baring silicate melt pair,
there seems to be no direct influence of the structure (at least in terms of first
shell environments) onto partitioning. Due to the lack of suitable interaction
potentials we could only investigate these melts using first-principles and thus
rather small simulation cells. The latter may inhibit the formation of a proper
coordination environments for Y. Given that both melts are structural very
similar and that there are no direct experimental data for coexisting melts, the
results have to be considered with care. The two melts differ mainly in their
Al and Na content and thus, the explanation for the experimentally observed
strong melt dependence of the titanite-melt partitioning must lay either in the
‘competitor’ model discussed above and/or in the chemistry of the crystal as
well.
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4.5 Conclusions

From the previous discussion we may draw the following conclusions:

(1) it is possible to employ a thermodynamic integration scheme to predict el-
ement partitioning, given that simulation times are long enough to thoroughly
sample the phase space

(2) the approach seems sensitive enough (even when simulating small systems
sizes) to meaningfully predict partitioning with an order of magnitude accu-
racy

(3) our simulations confirm that elements that require large oxygen coordi-
nation shells preferentially partition into melts with high degrees of depoly-
merisation and thus, comparatively more loosely bond oxygen enabling them
to easily satisfy their oxygen requirements. The opposite effect seems to hold
true for elements with coordination shells similar to those of Si or Al

(4) to further advance the method, future challenges include the determina-
tion of realistic trace element activity coefficients, evaluating the influence of
temperature, pressure as well as finite size and time effects on predicted parti-
tioning coefficients and melt structures, as well as taking into account coupled
substitutions (in particular for the calculation of mineral-melt partitioning)
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forsterite grain boundaries
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Chapter 5. Anisotropy of self-diffusion in forsterite grain boundaries

5.1 Introduction

Grain boundaries (GBs) in oxides and silicates have received increased atten-
tion in the last decades, as they are known to influence many key physical
and chemical properties of rocks (Dohmen and Milke], [2010) such as reaction
kinetics (Keller et al, 2008)), fluid transport (Gardés et al, 2012), chemical al-
teration (Hartmann et al, 2008), electrical conductivity (Pommier et al, [2015)
and solid state diffusion (Marquardt et al, 2011). GBs in the mineral group
olivine, (Mg,Fe),SiO4, have been studied extensively to elucidate their role in
the rheological behaviour of the upper mantle. The ongoing debate whether
dislocation or diffusion creep dominates the plastic deformation of the man-
tle and where transitions between the two may occur (Karato and Wu, |1993;
Hansen et al, [2012; Hirth and Kohlstedt} 2013), has led to extensive research of
the bulk self-diffusion kinetics of olivine (e.g.|Chakraborty et al, 1994, [Dohmen
et al, 2002, 2007; Fei et al, 2012, |2013)) and its polymorphs (Farber et al, |1994;
Shimojuku et al, 2004; Kubo et al, |2004; Shimojuku et al, 2009). However,
in the case of grain boundary self-diffusion rates of olivine, experimental data
are limited. Diffusion measurements in forsterite GBs have been reported by
Farver et al (1994) for magnesium, [Farver and Yund (2000) and Fei et al
(2016)) for silicon, and |Condit et al (1985) for oxygen. Another approach that
has been much less utilized so far is to look at (grain boundary) diffusion
from a molecular simulation perspective. Such simulations enable us not only
to calculate physical and thermodynamic properties of a given system (to-
tal energy, electrical conductivity, chemical diffusion) but simultaneously link
them to structural properties on a molecular scale. Ammann et al (2010) used
static first-principles simulations to calculate bulk diffusion rates in perovskite
and periclase. In such static studies, an atom is moved deliberately from its
equilibrium position. The calculated energetic response can be translated into
diffusion rates. (Ghosh and Karki (2013)) investigated the energetics and struc-
ture of a set of MgySiO, forsterite tilt grain boundaries using similar methods
and infer that, depending on misorientation, areas of low density in these GBs
may serve as fast diffusion pathways. An alternative approach is to perform
molecular dynamics (MD) simulations where atoms may move freely depend-
ing on the potential applied. Subsequently the systems evolution is tracked
over time in order to average over a property of interest. However, simulations
based on first-principles are computationally expensive and typically limited
to the simulation of a few hundred atoms and picoseconds of simulation time.
In the case of GBs, simulation cells need to be sufficiently large to exclude
finite size effects (e.g. interaction of repeated GBs introduced by the periodic
boundary conditions) and to capture the entire repeat unit length along a
GB. To investigate self-diffusion directly by molecular dynamics simulations,

68



5.2 Simulation Procedure

simulation times have to be sufficiently long to generate statistically meaning-
ful displacements of atoms that may be considered as diffusing. One possible
solution to these obstacles is to perform MD simulations based not on first-
principles but on classical interaction potentials. Such simulations have the
advantage that they are computationally much less expensive and thus en-
able the simulation of comparatively large systems (several 1000 atoms) and
long timescales (several nanoseconds). Nevertheless, classical MD still requires
comparatively high temperatures to reach a sufficient degree of atomic mobil-
ity in order to catch diffusive processes at all. In this study, we estimate major
element grain boundary self-diffusion coefficients in a set of Mg,SiO, forsterite
tilt grain boundaries using classical MD simulations. We utilize an advanced
ionic interaction potential that has been successfully applied in the simulation
of many oxides and silicates, including forsterite (e.g.|Jahn and Madden) 2007;
Adjaoud et al, 2012; Finkelstein et al, [2014).

5.2 Simulation Procedure

5.2.1 Grain boundary setup

We constructed several MgySiO, forsterite (space group Pbnm, a = 4.7535
A b=101943 A, c =59807T A a ==~ = 90°) grain boundaries with
misorientation angles varying from 9.58° to 90°. Details about the procedure,
grain boundary energies and structure of all (0kl)/[100] symmetric tilt grain
boundaries are reported in |Adjaoud et all (2012). In short, they are generated
by cutting intact grains at a specific angle and rotating one half of the thus
created bicrystal with respect to the other by 180°, the axis of rotation per-
pendicular to the cutting plane. The thus constructed symmetric tilt grain
boundary is subsequently equilibrated at ambient conditions. Additionally, as
they are among the most abundant GBs in undeformed forsterite aggregates
(Marquardt et al, 2015, a 90° misorientation grain boundary containing 9744
atoms is constructed by bringing in contact two forsterite grains with free
(100) and (010) surfaces. We then systematically shift the two grains with re-
spect to each other along the interface plane. Subsequently the total energy of
each configuration is calculated until a stable structure is found. The new cell
containing the 90° misorientation grain boundary is then annealed at ambient
conditions. The termination of the (100) and (010) surfaces is chosen as to
represent the lowest energy termination according to [Watson et al| (1997)).
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5.2.2 Estimating self-diffusion coefficients from MD sim-
ulations

We use classical MD simulations to study the structure and transport mecha-
nisms of the constructed grain boundaries. First, we equilibrate each system
at ambient pressure and temperatures between 1900-2200 K (NPT ensemble,
constant number of particles N, constant pressure P, constant temperature
T) for at least 2 ps. Given the short timescale available to our simulations,
such comparatively high temperatures are necessary to reach a sufficient de-
gree of atomic mobility. The temperature and pressure are controlled by a
Nosé-Hoover thermostat (Nosé and Klein) [1983)) coupled to a barostat (Mar-
tyna et al, |1994). We subsequently fix the cell volume V' and track the systems
evolution at a given temperature for at least 1000 ps with 1 fs timesteps (NVT
ensemble using a Nosé-Hover thermostat to control the temperature (Nosé,
1984)). System sizes range from 4032 to 9744 atoms, periodic boundary con-
ditions are applied in every simulation. The movement of individual elements
is evaluated by analysing their mean squared displacements (MSD) over the
duration of the simulation. Self-diffusion coefficients can then be estimated
using Einstein’s relation between self-diffusion coefficient and MSD (Allen and
Tildesley), 1987):

t—00 2-dim -t

(5.1)

where D; is the self-diffusion coefficient of element ¢ (Mg, Si, O). () is the
position vector of an individual atom of type i at time ¢ and dim the dimen-
sionality of the system. The numerator at the right hand side of Eq. is the
mean squared displacement, which is averaged over all atoms N; of a specific
element 7 starting with an initial time ¢, (angular brackets). Eq. is defined
for systems where all atoms of a specific element contribute to a homogeneous
self-diffusion coefficient (e.g. a fluid). However, in the case of grain boundaries,
diffusion within the bulk crystal can be several orders of magnitude slower as
compared to the GB (e.g. [Farver and Yund, 2000; |Dohmen and Milke, 2010;
Marquardt et al, 2011). As a consequence, a MSD that averages over all the
atoms of a specific element in these systems also averages over the compara-
tively immobile atoms within the bulk crystal. This leads to a considerable
underestimation of the grain boundary diffusion and it is thus compulsory to
treat the GB and the bulk crystal as two sub-systems (e.g. Fisler and Mackwell,
1994). Therefore, we analyse the distribution of the MSDs of each individual
atom and only consider those that have been displaced more than 7 A? at
a time interval of at least 1000 ps and hence contribute significantly to GB
diffusion. We chose this cutoff in order to make sure that atoms that are con-
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sidered in the calculation have at least moved beyond their nearest neighbour
distance. To gain further insight into the influence of grain boundary geometry
and stability on the self-diffusion coefficient we also calculate the excess free
volume (Vi) of each individual GB as follows:

Vie = Vse
Ve A, (5.2)

where V. and V. are the total volumes of a the grain boundary cell and a
reference single crystal, respectively. Ag, is the area of the grain boundary.

5.2.3 Classical interaction potential

All simulations are performed using a set of classical interaction potentials
for the Calcium-Magnesium-Aluminosilicate (CMAS) system, parametrised by
reference to first-principles electronic structure calculations (Jahn and Mad-
den, 2007). In addition to charge-charge (Coulomb) interactions and disper-
sion, this model includes true many-body effects by accounting for polariza-
tion effects (electronic multipoles up to quadrupoles) as well as aspherical
shape deformation of anions, depending on their local environment (Madden
et al, 2006). Multipoles and shape deformations are computed self-consistently
at each simulation step. Such aspherical ion model (AIM) potentials have
been successfully applied in the simulation of several geomaterials including
forsterite (Jahn and Madden, 2007} |[Jahn and Martonak, [2008; Jahn, 2010; |Ad-
jaoud et al, [2011)), oxide and silicate melts and interfaces (Adjaoud et al, 2008}
Jahn and Madden, 2008; Gurmani et al, 2011) as well as forsterite grain bound-
aries (Adjaoud et al, [2012). All simulations in this contribution are performed
using the CP2K code package (Hutter et al, 2014]) with an implementation of
the AIM potential type made recently by the authors. All potential parameters
are listed in |Jahn and Madden (2007)).

5.3 Results

Grain boundary self-diffusion coefficients for magnesium, silicon and oxygen
for the respective temperatures are given in Table [5.1] In the case of silicon
and occasionally oxygen, self-diffusion rates are very slow and only few atoms
move beyond the MSD cutoff (see above) within the simulation timeframe.
This makes it impossible to extract meaningful self-diffusion coefficients and
the respective entries in the dataset are thus left blank. Experimental data
for the temperature range of our simulations are not available. However, Figs.
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Figure 5.1: MD simulation results and experimental data for magnesium self-
diffusion coefficients (§ = 1nm). Error bars are smaller than symbols. The
dashed line is a linear extrapolation of data by Farver et al (1994)).
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Figure 5.2: MD simulation results and experimental data for silicon self-
diffusion coefficients (6 = 1nm). Error bars are smaller than symbols. The
dashed lines are linear extrapolations of data by [Farver and Yund (2000) and
Fei et al (2016)).
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Figure 5.3: MD simulation results and experimental data for oxygen self-
diffusion coefficients (§ = 1nm). Error bars are smaller than symbols.
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5.3 Results

Table 5.1: MD simulation results for all investigated grain boundaries com-
prising Mg, Si and O self-diffusion coefficients derived from their MSDs after
1000 ps run duration (6 = 1nm). Additionally, the free excess volume for every
configuration is given (see text). Gaps in the dataset occur when diffusion was
to slow to be statistically captured by the MSD method.

. dDG? 5DG;’ dDGP Ve
GB angle (°) T (K) (10—19%%/8) (10—19%3/8) (10_197?13/5) (AZS/AQ)
9.58 2200 8.34 - - 0.66
11.17 2200 1.03 - 2.61 0.72
16.69 2200  9.93 5.77 2.14 0.80
32.7 2200  9.98 - - 0.94
2100  4.82 - 1.02 1.00
1900  2.23 - 1.08 0.92
60.8* 2200  3.42 - - 0.34
60.8 2200 4.14 - 1.30 0.55
2100  2.90 - 1.04 0.51
1900 1.34 - 0.44 0.52
90.0 2200 329 7.75 7.11 1.30
2100  25.5 3.31 4.97 1.20
2000 13.6 1.64 3.09 1.19
1900  83.0 - 3.23 1.18

*asymmetrical
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Chapter 5. Anisotropy of self-diffusion in forsterite grain boundaries

b.1] 5.2 and [5.3] compare our results to linear extrapolations of various experi-
mental studies in lower temperature regimes. Grain boundary excess volumes

calculated according to Eqf5.2] are also given in Table [5.1]

5.4 Discussion

5.4.1 Self-diffusion coefficients

Overall, data derived directly from our MD simulations fit well to the extrap-
olations of lower temperature experimental data. In the case of Mg it appears
that the change of Dﬁz with temperature flattens out in the high temperature
field. This may be explained by the fact that for such high temperatures, ap-
proaching the melting point of forsterite, activation energy for the breaking of
bonds is lowered to a minimum and diffusivity ultimately levels out to a rate
of an equivalent silicate melt, which is in the order of magnitude of 10718 m3/s
for Mg (Gurmani et al, 2011; Adjaoud et al, |2011)). In the case of Si, the few
data that can be extracted from our simulations plot on the linear regression
of the dataset of Farver and Yund (2000)) but diverge from an extrapolation of
data recently published by [Fei et al (2016)) by two orders of magnitude. Oxy-
gen self-diffusion rates predicted by our simulations diverge by several orders
of magnitude from experimental data. However, oxygen experimental data
themselves are in rather big disagreement, ranging from 1071¢ - 1072* m3 /s for
temperatures between 1200 - 1500 K. The large discrepancies may be due to
the various methodologies employed in the experiments, comprising isotopic
tracers (Condit et al, [1985)), rim growth measurements (Fisler and Mackwell,
1994) and indicator mineral reactions (Watson, 1986). The low self-diffusion
rates predicted by our simulations may be due to the used AIM potential,
which is known to generally predict too strong oxygen bonds, thus reducing
oxygen mobility (Adjaoud et al, 2011)).

5.4.2 Grain boundary transport mechanisms and vol-
ume dependence

To visualise the molecular scale transport mechanism in different GB types,
Figs. and show exemplary snapshots of the MD trajectories for a low
angle (9.58°) and a high angle grain boundary (60.8°). The upper panels (A)
in both figures show the overall displacement of individual atoms at the last
snapshot of the the respective simulation. Low angle GBs in general can be
described as an array of aligned partial dislocations and stacking faults (e.g.
lkuhara et al, 2003, in alumina). In Fig. it is readily visible that diffusion
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Figure 5.4: A: Snapshot of the trajectory of a low angle grain boundary (9.58°
misorientation) with individual atoms coloured according to their overall dis-
placement with respect to the first step of the run. The black dashed lines
indicate the misorientation angle. The panels B and C show exemplary trajec-
tories of Mg atoms propagating through the diffusion channel (see text). The
green dashed line indicates the extend of one of these channels. Different tra-
jectory colours are individual atoms. The cell in B is rotated about 2° around
the z-axis. All figures are created using the OVITO software (Stukowski, 2010).
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Figure 5.5: A: Snapshot of the trajectory of a high angle grain boundary
(60.8° misorientation) with individual atoms coloured according to their over-
all displacement with respect to the first step of the run. The black dashed
lines indicate the misorientation angle. The panels B and C show exemplary
trajectories of Mg atoms propagating through the diffusive layer (outlined in
green) of the GB interface (see text). Different trajectory colours are individ-
ual atoms. The cell in B is rotated about 20° around the z-axis. All figures
are created using the OVITO software (Stukowski, 2010)).
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takes place in a confined space around these partial dislocations in the bicrys-
tal lattice (see |Adjaoud et al (2012) for a detailed analysis of the structures
presented). These areas of highest mobility are likely correlated to the spatial
extend of the dislocation cores, have radii of approximately 1.2 - 2 nm and
propagate cylindrical through the grain boundary interface, parallel to the a-
axis of the two forsterite crystals (the x-axis in Fig. [5.4] the dashed green line
outlines such a diffusion channel). When analysing exemplary trajectories of
Mg atoms through these diffusion channels one can observe a typical diffusion
pattern where longer jumps are intermitted by phases of stagnation (e.g. Fig.
lower two panels). However, diffusion paths are not straight along the
length of the channel but may also span its width entirely. High angle grain
boundaries on the other hand show no such diffusion channels (Fig. [5.5)). Here,
the area of highest mobility spans the entire grain boundary interface, about 1
- 2 nm in width. Atoms move more or less randomly in any direction parallel
to the interfacial plane whereas in the low-angle grain boundary, a long-term
transport between two channels within the same GB interface plane (paral-
lel to the y-axis in Fig. should be considered rather slow, thus greatly
limiting diffusion in this direction. These two modes of transport, however,
do not necessarily result in enhanced or reduced overall self-diffusion within
a GB. Instead, it seems that the rate-determining factor is the overall free
excess volume of a grain boundary at any given temperature. Fig. shows
the calculated self-diffusion coefficients as a function of free excess volume for
different temperatures. Both slowest and fastest rates are observed in high-
angle grain boundaries (60.80° and 90° misorientation). On the other hand,
the relation to the grain boundary energy is much less pronounced, as e.g.
the 32.70° GB exhibits the overall lowest GB energy (at ambient conditions)
of the set investigated by |Adjaoud et al (2011). A theoretical relationship
between excess free volume and self-diffusion coefficients has previously been
proposed by (Chuvil’deev| (1996). More generalised, excess free volume as a
measure of 'non-equilibrium state’ of GBs in metals has been suggested to cor-
relate with key physical properties such as sliding, migration and segregation
(Chuvil’deev et al, 2002} [Petegem et al, [2003). Tucker and McDowell (2011))
infer from atomistic simulations that different initial GB configurations retain
their excess free volume differently under stress. This raises the question of
how the self-diffusion coefficients presented here will vary with the respective
GB free volume under pressure (e.g. under mantle conditions). It is likely
that different forsterite GB configurations will react differently to mantle con-
ditions and thus change in their relative contribution to average diffusion in
the polycrystaline bulk rock.
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5.5 Conclusion

From the preceding discussion we may draw the following conclusions:

1. grain boundary diffusivity in olivine is explicitly dependent on the type of
GB, specifically on its excess free volume

2. (self-) diffusion in low angle grain boundaries shows a strong anisotropy
which may be explained by their structure of stacked (partial) dislocations.
On the contrary, the GB diffusion in high angle GB is essentially isotropic in
the GB plane

3. classical MD simulations are a viable tool to study diffusive processes at
within grain boundaries at high temperatures, given that sufficiently long tra-
jectories can be achieved.

Further work should be focused one the effect of pressure on the free volume
and the related self-diffusion in forsterite grain boundaries in order to obtain a
better understanding of GB diffusion in olivine under conditions of the upper
mantle.
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Chapter 6

Conclusions and outlook

Several example applications of molecular simulations in geoscience are dis-
cussed in this thesis. One is the investigation of the rare earth elements (REE)
yttrium and lanthanum in aluminosilicates and how their structural environ-
ment changes with composition. To this end, several Y and La bearing glasses
and melts are investigated using a combined approach of first-principles and
classical molecular dynamics simulations as well as experimental studies. This
study uses classical interaction potentials newly developed by co-workers (DIP-
PIM) and the author (QUAIM) and thus also serves as a benchmark for their
application in the following chapters. In the chapter it is shown that firstly, the
average coordination of REE decreases with increasing concentration and sec-
ondly, the average coordination of Al is higher in Y bearing melts and glasses
as compared to their La counterpart. These findings are generally in fair agree-
ment with experimental neutron- and x-ray diffraction studies conducted on
the same compositions. Moreover, the simulations give insight regarding the
Y-O/Al-O polyhedral structure to explain some features observed in exper-
iments. Several conclusions are drawn from this chapter. One is that the
Al avoidance rule obeyed in aluminosilicate minerals was almost completely
invalidated in REE-bearing aluminosilicate melts. Also it is shown that the
employed simulations methods are principally suited to describe the structures
of such complex silicate melts (coordination environments and especially neu-
tron scattering data), however problems remain regarding the simulation of
glasses. While their general structure can be reasonably reproduced, details of
the structure factors are either over- or underestimated. This is either due to
the very fast quenchrates of the glasses due to limited MD simulations times or
shortcomings in the employed interaction potential. However, these problems
are particularly pronounced in systems containing high amounts of Y and La,
while in nature, these elements usually occur in trace amounts only.

The second study uses, again in conjunction with first-principles simulations,
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the classical QUAIM potentials to explore a new tool to predict trace element
distributions during magmatic processes. Here, a thermodynamic integration
approach is employed to determine the Gibbs free energy change of an ex-
change reaction between two phases. The study shows that it is principally
possible to derive element partition coefficients in this manner, by reproduc-
ing the findings of two independent experimental melt-melt and melt-mineral
partitioning studies. Prerequisites for this method are (a) that the element’s
partition coefficient is large enough (presumably at least in the order of 10)
to be detectable within the statical uncertainties and (b) that the molecular
dynamics simulations are sufficiently long to sample all configurations in phase
space. This study also focuses on the effect of melt composition on the observed
partitioning behaviour. It is concluded that elements requiring large oxygen
coordination shells preferentially partition into melts with high degrees of de-
polymerisation and thus, comparatively more loosely bond oxygen, enabling
them to easily satisfy their oxygen requirements. The opposite effect seems
to hold true for elements with coordination shells similar to those building
tetrahedral units in the melt network (Si or Al). Further work is necessary to
test the pressure and temperature limits of this method. However, it bears the
potential to enable the prediction of partition coefficients in geoscientifically
relevant systems that are not well constraint or not well accessible by experi-
ments (e.g. carbonate melts). Also during this particular study, the QUAIM
potential was implemented into the CP2K software by the author and will be
published in a coming version of the code.

Chapter 5| investigates element transport properties in forsterite grain bound-
aries, elucidating how grain boundary structure hinders or enhances self-diffusion.
This is done by tracing atoms (Si, Mg and O) along grain boundaries with vary-
ing misorientation angle by means of comparatively long classical molecular
dynamics simulations. The atomic trajectories are used to calculate the mean
squared displacements of these atoms and infer their self-diffusion coefficients.
Not only is it possible to reproduce experimentally determined self-diffusion
coefficients in these grain boundaries but also to show that there is a strong
anisotropy in terms of direction of diffusion in low- and high-angle grain bound-
aries. Furthermore, it is shown that the diffusion coefficient directly relates
to a grain boundary’s free excess volume, a relationship that has been the-
oretically predicted but never directly been shown. The study is based on
forsterite grain boundaries provided by a co-worker. All simulations described
in the study, as well as data analysis and evaluation have been conducted by
the author.

Combining the simulation of transport properties in such aggregates as well as
insight into melt-mineral (i.e. element-) exchange reactions with an in-depth
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structural knowledge of the phases involved, clearly bears a lot of opportunity.
Molecular simulations may soon be able investigate systems relevant to earth
science and crossing any of these scales. It is however desirable to further
improve upon the theoretical models used in this thesis. The thermodynamic
integration method for example shows potential, but is computationally rather
expensive and some issues arising in the first-principles simulations need to be
addressed. There are other methods to obtain free energy changes from atom-
istic simulations (e.g. Umbrella sampling or free energy perturbation) which
could be explored for theoretical partitioning studies. The classical interaction
potential still has some caveats that can be addressed, e.g. the over bonding of
cation-oxygen bonds that leads to shifted structure factors. Another improve-
ment would be to extend the potential to include water or other, strongly
polarisable anions such as chlorine in addition to oxygen. Particularly water
poses the problem of finding formalisms to describe dissociation processes and
how to unify interaction potentials in radically different environments (i.e. that
an oxygen my be equally part of a water molecule as well as a SiO, tetrahedra).
First-principles methods on the other hand will undoubtedly advance even fur-
ther in the coming years, as their major drawbacks, namely rather small system
sizes and very short equilibration times are being increasingly compensated by
the constant increase of computing power available. Undoubtedly molecular
simulations will be more and more established as an additional tool to study
the processes of deep earth environments and planetary systems in general.
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Appendix

Fitting classical interaction potentials

Traditionally, classical interaction potentials have been fitted empirically to
reproduce experimental data (Fumi and Tosi, 1964; Tosi and Fumi, 1964;
Lantelme and Turq, 1982)). However, since the advancements in theory and
computational power have made first-principles techniques affordable, a new
tool to develop classical force fields has become available. First-principles
MD is considered to be very accurate but is unfortunately unable to access
time scales needed to predict many material properties. The ultimate aim of
fitting classical force fields to first-principles data is to reproduce the same
inter atomic forces a first-principles simulation would have predicted. If this is
achieved, the entire MD trajectory will mimic that of a first-principles calcu-
lation, yet featuring all advantages of a classical simulation (large system sizes
and long run durations). This so called force-matching approach (Laio et al,
2000) has been applied to generate the classical potentials used in this thesis
(DIPPIM and QUAIM, see Chap. [2.3).

A central goal of the utilised ionic models is to be transferable to a variety of
temperatures, pressures and conditions. We therefore fit the model parameters
to series of configurations (e.g. high and low pressure phases, different configu-
rations of liquids), that ideally should be represented. The first step is to calcu-
late from first-principles the forces, stress tensor and multipole moments for all
these individual configurations. The forces and stresses are readily obtained
by finding the ground-state electronic wave function (see Chap. . The
multipole moments can be derived from DFT simulations by calculating max-
imally localized Wannier function (Marzari and Vanderbilt}, |1997; Silvestrelli
and Parrinello, [1999)). The second step is to adjust the model parameters to
optimally reproduce DFT data, beginning with the multipole moments. This
is done by iteratively adjusting model parameters that influence the classical
multipole moments in order to minimise the functions
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where N, and N; are the number of configurations and number of ions of
configuration 7, respectively. p and 6 are the dipole and quadrupole moments,
derived from either first-principles or the classical model (Salanne et al, 2012a)).
All parameters for the multipole moments are subsequently fixed, and forces
and stresses are fitted in a similar fashion
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where F' and o are the forces and stresses tensors of configuration j. The
only interaction that has not been accounted for is the dispersion interaction
(Eq. [2.11)). Dispersion interactions can not be accurately represented by DFT
methods that rely on exchange correlation functionals (Hult et al, [1999) and
thus, they are empirically fixed before the fitting procedure. The parameters
obtained after minimising Egs. and are given in Tab. for the
QUAIM model and Tab. for DIPPIM.

QUAIM implementation in CP2K

The aspherical ion model (AIM) has been implemented into the CP2K molec-
ular simulation software package during the work of this thesis for several
reasons. CP2K is free and open-source and provides an accessible platform for
anyone wanting to use the AIM interaction potentials. It also offers a vari-
ety of features (among which is the thermodynamic integration scheme used
in this thesis) and a well developed first-principles simulation module next
to a variety of additional classical interaction potentials. It shows very good
scalability on modern supercomputing architectures and lastly, CP2K has an
active community and new features are being developed and implemented con-
stantly. The AIM is implemented into the classical mechanics module (FIST)
of CP2K. Figure shows the callgraph of a CP2K run using the new im-
plementation. This example is a molecular dynamics run, so the first routine
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Table 6.1: Interaction parameters, see equations (2.11)), (2.12)) and (2.14),

in atomic units. Interactions not listed or left blank here, e.g., short-range
repulsion for Si-Si, are taken to be absent in the model. Since b # bl for
polarisable ions, both parameters are listed. Parameters courtesy Dr Volker
Haigis.

-3 O0-0 Si-O Al-FO LaO Y-O Lala Y-Y

qi -2 +4 +3 +3 +3

DIPPIM parameters
Ai; 53283 44.624 39.404 49.165 95.048
a;; 3.1526 1.6513 1.6413 1.4658 1.6813

Bij 105

CY  52.461 45.041 23.763 41.213  12.504
by 2.7370 1.0 14995 1.0  0.67066
a;  10.754 7.3962 3.5475

vy 1.6489 1.5573 1.3460 1.5056

v 3.2197 3.3585

to be called is CP2K’s MD module, gs_mol_dyn_low, from which the initial
velocities are set up (velocity_verlet) and the main routine for FIST energy
and forces (fist_calc_energy_force) is called. In its most complex form, the
AIM gives an oxide anion senventeen degrees of freedom to adjust to its local
environment (dipoles, quadrupoles and shape deformations), mimicking the
electronic density distribution of a first-principle calculation. At each time
step, the code searches for the ground state configuration of these degrees of

freedom using a conjugate gradient algorithm (Press et al, 1992; |Shewchuk,
1994) i.e.

ovrep
( o6 ){EM} =0, where {SM} = {50N,Vév,/<évﬁ

8Vp°l)
. =0, where {¢"} = {ul, 05}
( 0 /ey ’

do™N v and Hgﬁ are the ionic shape deformation terms (spherical, dipolar and
quadrupolar, respectively, see Chap. , pl and 955 are the dipole and
quadrupole moments. N are the number of ions of species j. Because the
shape deformations and polarisations are converged independently, the corre-
sponding CP2K calls are split up into a polarisation- (fist_pol_evaluate_cq)
and a deformation branch (aim_energy_cg). Typical convergence criteria are

(6.3)
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are tolerated difference of 10~® in the polarisation and 107! in the defor-
mation minimisations. Because polarisation effects are partially treated in
reciprocal space, the fist_pol_evaluate_cg into a long-range and a short-range
(ewald_multipole_S R) part.
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Figure 6.1: CP2K callgraph showing the subroutines involved in an
QUAIM molecular dynamics simulation.  For the implementation, the
fist_pol_evaluate_cg routine has been modified to include quadrupoles. The
conjugate gradient algorithm minimising the ion deformations has been newly
implemented. The percentages give an estimate of the distribution of the
computational effort. Thus, the computationally most expensive part of this
example is the convergence of the induced multipoles.
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Addendum to Chapter 4

This section contains the radial distribution functions of the asi200 and asi280
melts discussed in chapter [] as well as the absolute compositions of all melts
studied in that chapter. These are also the contents of an electronic supplement
that is submitted together with original publication of chapter [4]
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Figure 6.2: Partial radial distribution functions of the asi200 melt doped with
one Y, derived from first-principles MD at 3000 K and 0 GPa.
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DFT, 3000 K, 0 GPa
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Figure 6.3: Partial radial distribution functions of the asi280 melt doped with
one Y, derived from first-principles MD at 3000 K and 0 GPa.
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melt composition

granite 8126A14_X CagNaﬁO64AX
granite®™ P | SigogAlzs_ xCagyNaygOs10A x
gabbro SijgAls_ xMg1sCayNagOg3A x
gabbro®?*" | SijyqAlys— xMgi44CasaNagOsosAx
asi200 SilgAlg_XTi5 CaﬁNaloOGQAX
asi280 SilgAlﬁ_XTi5Ca5Na4OGQAX

Table 6.2: Chemical composition of all investigated melts. X is either 0, 1 or
2 (only in gabbro and granite). In gabbro and granite, A can be Y, La and
As. In asi200 and asi280, only Y has been investigated.
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