Chapter 9

Outlook

Much good work is lost for the lack of a little more.

Edward H. Harriman

The system has already been extensively evaluated in university settings and,
to a lesser extent, in K-12 schools. For other application scenarios, however, an
evaluation study has not been conducted yet. Also, the impact of the new audio
system on the perceived quality still has to be systematically validated.

As mentioned before, a number of possible future improvements have al-
ready been identified, like a more intelligent page-breaking algorithm in PDF
production and many other useful improvements, for example providing board
backgrounds with lines, grids, and logarithmic chart-paper-style patterns. Be-
yond minor features to be added, research is desirable on the following points.

Methods for Keyboard Input on the Board

The need for using keyboard in the board environment should be completely
eliminated. An obvious solution would be to integrate a general handwriting
recognition feature. However, reaching a satisfying level of recognition reliability
is difficult unless the user is required to learn a special alphabet, like Unistroke.

Integrating a software keyboard is not an adequate option since operation on
an E-Chalk board is still too awkward. Instead, using hierarchical pie menus'
may be a more viable option. See Section 1.4 for a description of employing pie
menus for key input.

Transmitting the Board Pointer

A feature sometimes requested by instructors and learners alike was a pointer
or semi-transparent marker tool for the board. Some instructors use the sys-
tem’s mouse pointer for referencing. While visible in the classroom lecture,
the action is not stored for remote access. However, having to operate with a
mode for pointing would put an extra burden on the instructor. Very likely the

1Pie menu variants implementing hierarchical organization, called marking menus, are
protected by patent [KF98]. They are often used in gesture-based interfaces. The menu is
only displayed for beginning users and kept invisible for expert users, who have already learned
the stroke movements for different options.

163



164 CHAPTER 9. OUTLOOK

teacher would often forget about the tool. The developers of Classroom Pre-
senter reported, for example, that in practice none of their instructors found a
semi-transparent highlighter useful [AAST04].

A better approach is to record the mouse pointer all the time. Displaying it
on the client side would fit into the philosophy of delivering the same information
to the learner in the classroom and to the remote user. It does not require the
lecturer to adapt his or her teaching to the technical requirements of the remote
viewer. Constantly capturing the mouse pointer position results in extra data
to be transmitted, but the data volume in question does not exceed the levels
reached for drawing events. As shown in the bandwidth analysis in Section
4.10.1, the actual data volume is negligible given the event rates delivered by
standard pointing devices.

Chalklet Support

The chalklet concept is a quite recent addition to the E-Chalk system and
therefore the API library for chalklet developers and the underlying chalklet
management are at an early stage of development.

In the future, chalklet code should be restricted using Java security mecha-
nisms like the java.lang.SecurityManager. The execution of chalklets should
be secured by concepts similar to Java Applet execution is in browsers, running
them in a secure “sandbox”. This would protect the main E-Chalk application
against malignant chalklets, for example preventing chalklets from terminating
the whole application by calling System.exit (int). However, some restrictions
posed on Applets like prohibiting file access and very restricted network access
might turn out to be too restrictive for productive chalklet programming. This
will have to be examined in detail.

Changing the uncompressed ASCII board event format to a binary format
with differential encoding would allow to relax the limits of maximum event
rates on chalklets (and macros) without running the risk of exceeding bandwidth
limitations, see Section 4.10.1.

“Functional chalklets” may even be created so as to encompass existing
drawings on the board and then perform particular actions on these drawings
or even on the output of previously executed chalklets.?

To assist in chalklets development, the supporting API should be extended.
Methods are to be provided to conveniently create Stroke objects for basic
geometric shapes (boxes, circles, etc.) and for printing texts, perhaps even in a
handwritten style.?

Ideally, a recognition engine for strokes should become part of the API to
support complex interpretations of stroke input to chalklets. Geometric inter-
pretation of freehand sketching is already an active research area, often in the
context of pen-active whiteboards with office-type applications. For example,
the SATIN [HLOO] Java toolkit is a framework for pen-based applications which
processes both stroke objects and stroke gestures. Example applications built
on top of SATIN are DENIM [LNHLOO0] for building Web pages by sketching,
SketchySPICE HLOO] as a simple-circuit CAD tool and SILK [HLLMO02] for
prototyping user interfaces by sketching.

2This feature was suggested by [Wat04].
3See handwriting synthesis description in Section 6.11.



165

At MIT, another framework for sketch recognition was developed [Sez01,
HDO04], including a description language for drawings called LADDER [HDO03].
Applications realized with the framework include Tahuti [HDO02] for creating
UML diagrams by sketches and ASSIST [ADO01], a sketch-based CAD system.

Another example of a stroke-based interface is Flatland [MIEL99, MIELOQ],
described in Section 1.5.4.

Improvements to Replay

In addition to the standard VCR operations provided for replay, it would be
useful to provide a kind of spatial control for the board stream. A scaled-down
version of the final board content could well be provided. The learner should
then be able to jump to the time offset at which selected board content was
created. This would enable users to navigate in the lecture to a subject without
having to search along the time line.

Small-screen rendering techniques should be applied to enable replay on
platforms that offer only resolutions lower than the one used for the recorded
board, see Section 8.1.3. Possible approaches include automatic scrolling to cur-
rently changed content and fish-eye-view techniques. This would enable replay
on hand-held devices as well as recording with high-resolution hardware.



166 CHAPTER 9. OUTLOOK



