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A Applications:
Expression Analysis Projects

During my work | analyzed five different gene expression projects. In the first project | ana-
lyzed gene expression data of cardiomyopathy samples. The aim was to understand disease
mechanisms better and derive a diagnostic microarray chip that can predict disease subtype.
In the second project, | analyzed gene expression data of atheriosclerosis samples. The aim
was to test the hypothesis that plaque smooth muscle cells have a distinct molecular pheno-
type from intima smooth muscle cells. The results of this project were published in Mulvihill
et al. (2004). In the third project | investigated the pathway of shiA in Shigella flexneri. It is
known that shiA is directly related to the aggressiveness of infectivity. The aim was to find
other genes involved in this pathway. In the fourth project, | analyzed gene expression data
of marfan tissues. The aim was to derive a gene expression signature for marfan in cultured
skin fibroblasts. The results of this study were submitted and are currently under review. In
the fifth project, | analyzed the gene expression data of metastating and non metastating
melanoma tissues. The goal was to find novel disease genes, identify novel subtypes, and
derive a signature for the subtypes. The results of this study were submitted and are cur-
rently under review. Here, | will describe in more detail the cardiomyopathy project and the
melanoma project. | will also point out the potential use of the data for the design of a
diagnostic microarray chip.
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A.1 Cardiomyopathy project

This project was part of the Cardiovascular Disease Network Initiative for NGFN-2 (Na-
tionales Genomforschungsnetz). Participating groups were the Department of Medicine,
University of Heidelberg, Germany (Dr. Boris Ivandic, PD Dr. Dieter Weichenhan), the
Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin
(Prof. Dr. Patricia Ruiz, Thilo Storm), and the Department of Computational Molecu-
lar Biology, Max Planck Institute for Molecular Genetics, Berlin (Dr. Rainer Spang and
Jochen Jéager).

Cardiomyopathy is a medical disorder of the heart muscle leading to heart failure. The
aim of this study was to distinguish between different cardiomyopathy etiologies, espe-
cially hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). HCM
results from an increased size of cardiac muscle cells (myocytes). Initially, the stroke
volume is improved but soon neutralized by increased interstitial fibrosis and stiffness
of the ventricles impairing relaxation during the diastolic phase. DCM results from an
expansion of the ventricles leading initially to an improved pressure-volume relationship.
However, over time, the ventricular blood volume increases and the heart muscle is over-
strained and cannot pump efficiently any longer. This finally leads to heart failure. Both,
hypertrophy and dilation, will eventually lead to irreversible changes of the heart phys-
iology and cause additional myocardial strain. Due to the increased metabolic demands
and impaired relaxation the blood supply to the heart muscle itself is impaired, causing
further degeneration.

The 5-year survival rates of patients with chronic heart failure are comparable to those
of cancer patients reflecting the limitations of our understanding of the causes and mech-
anisms of contractile dysfunction (Stewart et al., 2001). Therefore, early diagnosis and
accurate determination of the exact cardiac disease is essential for a successful treatment.
So far, there have been several gene expression studies in primary cardiomyopathy, either
hypertrophic or dilated, but none with the aim of developing a gene expression based
microarray chip for routine pathological diagnosis (Friddle et al., 2000; Ueno et al., 2003;
Kaynak et al., 2003; Hwang et al., 2002; Barrans et al., 2002).

A.1.1 Project goals

In this project we aimed at the development of a custom microarray, called cardio chip,
for the diagnostic assessment of gene expression in endomyocardial biopsies. So far, only
genome wide gene expression approaches, including 8000-20000 mostly known genes, were
conducted (Ueno et al., 2003; Napoli et al., 2003; Kaynak et al., 2003; Barrans et al.,
2002). Yet, many clones are non-informative for the disease under study because they
are not expressed at all in heart. For routine diagnosis this represents increased costs
for microarray chip production and processing of the data. In a prestudy, we therefore
screened a large non-redundant set of 76031 cDNA clones for informative clones with
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respect to cardiac expression (Grzeskowiak et al., 2003). From the 76031 ¢cDNA clones,
11282 were found likely to be expressed in heart. A first custom research microarray
was built using only these 11282 clones. With this microarray chip, called cardio chip 1
(CC1), 96 biopsies of early-stage heart disease patients were screened. Additionally, the
expression profiles were analyzed with the aim to identify metabolic pathways and signal
transduction to understand the translation of causes into mechanisms of remodeling and
clinical phenotypes.

A.1.2 Methods

First, we describe how the custom array used for screening gene expression in cardiac
tissues was designed. To select genes expressed in any cardiomyopathic or healthy in-
dividual, cDNA clones were identified as follows: Five pools of probes generated from
amplified RNA (aRNA) from patients samples with different cardiomyopathies (9xDCM,
22xDCM, 8xHNOCM, 6xHOCM, 11xRSD) and human heart total RNA pooled samples
were hybridized onto a comprehensive whole genome array. For this, we used the UniGene
RZPD2 (http://www.rzpd.de) set. This library was generated on the basis of the NCBI
UniGene clustering and contained 76,031 ¢cDNA clones, covering approximately 98% of
the entire human genome. ¢cDNA clones producing a ratio of signal to background inten-
sities of >3 for total RNA and >7 for amplified RNA were chosen. A total of 11282 cDNA
clones representing expressed genes in any of the hybridized samples were identified. This
set of cDNA clones, designated CardioChip 1 (CC1), was then re-arrayed at the RZPD
and spotted in duplicates onto Nylon membranes using in-house robots.

For clone based microarrays it was shown that almost a quarter of the clones spotted did
not contain the sequence that was expected. Errors ranged from 20% (Ross et al., 2000)
to 21% (Poe et al., 1991), to 23.5% (Kothapalli et al., 2002). Therefore, for increasing our
clone annotation quality all clones were subject to sequence verification. The bacterial
clones of the CC1 ¢cDNA set were grown overnight for isolation and sequencing. Sequencing
templates were precipitated and sequenced using vector-specific primers and ABI3700
automated sequencing machines. In total 12609 clones were sequenced, some in replicates.
The clones were filtered by a minimum phred value of 10 and short sequences of less
than 70bp after vector clipping were discarded. In the end we obtained good quality
sequences for 10676 of the 11282 cDNA clones. All these clones were clustered together
with TIGR contigs and the resulting clusters were compared to UniGene (Version 092003),
Swissprot (Version 092003), and Ensemble (Version 16.33). 7718 clones could hereby be
characterized into 5732 clusters. Some of the clones could not be assigned to gene clusters
because of different read length, 5’ versus 3’ sequencing, or contamination.

The CC1 cDNA arrays were subsequently used for analysis of gene expression in individual
endomyocardial biopsies. Endomyocardial biopsies were routinely obtained to establish
a diagnosis in patients with reduced left ventricular function in the absence of coronary
artery disease (prior exclusion by selective coronary angiography) or in patients suffering
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from vasculitis or rheumatoid arthritis, in whom myocardial affection had to be excluded.
Biopsies were collected during heart catheterization after written informed consent was
obtained in accordance with the medical and ethical guidelines of the Internal Review
Board of the University of Liibeck. Endomyocardial samples (1-5 mm?) were taken mostly
from the septum wall of the right ventricle, snap frozen, and stored in liquid nitrogen until
extraction of RNA. Human heart total RNA from Clontech and myocardial samples from
non-transplanted donor hearts were used as controls.

In total we collected 69 biopsies of early-stage heart disease: 34 dilated cardiomyopathies
(DCM), 15 hypertrophic cardiomyopathies (HCM), 6 heart transplants (HTX), one is-
chemic cardiomyopathy (ICM), two pulmonary myocarditis (PMK), 10 rheumatic sys-
temic diseases (RSD) and one viral cardiomyopathy (VCM). Additionally 27 controls
from healthy donor hearts were collected. From these 96 samples total RNA was iso-
lated employing a standard Trizol (Invitrogen) method and subjected to two rounds of in
vitro amplification using a modified version of the T7-based protocol (Eberwine (1996),
MegaScript, Ambion). The concentration and integrity of the aRNA from each biopsy
was measured using a 2100 Bioanalyzer (Agilent Technologies).

For hybridizations, 100 ng of aRNA or 1 ug of total RNA were used per cDNA array. Total
RNA was poly dT-primed. The aRNAs were primed using random hexamers followed by
reverse transcription in the presence of 33P-dCTP to produce radioactively labeled cDNA
probes. Probes were purified using Sephadex columns, denatured and added to denatured
salmon sperm and human placenta DNA as blocking reagents. This mixture was added
to 10 ml hybridization buffer (1M NaCl, 1% SDS, 0.1xSSC) for overnight hybridization
at 65°C. After three rounds of washing (0.1% SDS, 0.1X SSC) for 20 min at 65°C, nylon
membranes were exposed overnight to Fuji BAS screens. Hybridization signal intensities
were read as TIFF image files using a Fuji BAS 1800 reader. Image processing was done
using AIDA, a software packages offering automatic spot detection after manual alignment
of a grid to the spot images of the membranes. The resulting raw expression data was
finally background corrected and normalized using VSN (Huber et al., 2002).

A.1.3 Results

First, we used the twilight package (Scheid and Spang, 2005) to identify differential genes
between the different disease entities. Between DCM and HCM, RSE and HCM, and RSE
and DCM no differential genes were found at a FDR of 0.05 (Fig. A.1). However, between
controls versus cardiomyopathies (DCM and HCM together), 2365 differential genes were
identified. Between controls and DCM 2508 differential genes and between controls and
HCM 929 differential genes were identified at a FDR of 0.05.

Additionally, we assessed the diagnostic microarray chip potential by running the MCRes-
timate procedure with linear SVMs that were trained in a balanced fashion. For each group
we determined the best classification parameters in a complete cross validation scenario
including gene selection using t-statistics. This provided us with the optimal number of
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Figure A.1: Plot of observed t-statistics versus t-statistics of randomly permuted class labels.
dotted line show the 95% confidence interval calculated from permutations.
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genes that were used in gene selection for the classifier in addition to the classification

accuracy.

Predictive performances are generally contrasted with prevalence. The prevalence is the

number of samples in the larger of the two group divided by the total number of samples.

Thus, it is the fraction of correct classifications when assigning all samples to the bigger

group.

For discriminating DCM from HCM the
best classification accuracy was 55%
(with a prevalence of 68%) using 10
genes. For discriminating DCM from
controls the best classification accuracy
was 97% (with a prevalence of 53%) us-
ing 20 genes. For discriminating HCM
from controls the best classification ac-
curacy was 98% (with a prevalence of
64%) using 5 genes. For discriminat-
ing both DCM and HCM from controls
the best classification accuracy was 95%
(with a prevalence of 64%) using 5 genes.
Therefore, we conclude that a diagnos-
tic microarray chip design for differen-
tiating between the different cardiomy-
opathies is not possible with the probes
screened.
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A.1 Cardiomyopathy project

However, it is possible to design a diag-
nostic microarray chip for discriminating
between healthy patients and those suf-
fering from an early-stage cardiomyopa-
thy, which is relevant for routine clini-
cal diagnosis. From our cross validation
analysis we know that the optimal num-
ber of genes for classification is around
5-35. When using EMPD to assess how
many patients should be screened to
have no more than 5% loss in accuracy,
we found that 5-10 patients per group
are enough for deriving a marker panel
(Fig. A.2).
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Figure A.3: Cross validation results of predictive
performance of the same diagnostic signature used
with balanced and standard normalization methods
(ka =5, kn, =5).

We finally assessed the normalization behavior of such a diagnostic microarray chip for car-

diac diseases with 5 genes. Using standard normalization methods the accuracy dropped

to 90 % but was recovered by using balanced normalization to 95% (Fig. A.3).

The number of differential genes between normal and cardiomyopathies is unexpectedly

high. This can, however, reflect different covariates not related to etiology. Controls

were heart transplants of healthy donors, while cardiomyopathy samples came from alive

patients who already took medication. The potential of the diagnostic microarray chip

has to be verified in a larger prospective or retrospective trial.
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A.2 Melanoma project

This project was joint work from the Institute of Immunology, University of Rostock, Ro-
stock, Germany; the Department of Dermatology and Venereology, University of Rostock,
Rostock (Dr. Manfred Kunz); and the Department of Computational Molecular Biology,
Max Planck Institute for Molecular Genetics, Berlin, Germany (Dr. Rainer Spang and
Jochen Jéager). It was funded by the Deutsche Krebshilfe, grant number 70-2819, and by
NGFN (National Genome Research Network) grant number 031U209.

Melanoma is a skin cancer disease with a present lifetime risk of >1% in the caucasian
population. The underlying factors for the development and progression of melanoma are
largely unknown. Though, the central event in melanoma progression is distant metas-
tasis. At this late stage of tumor progression only few therapeutic options exist with
little impact on the patients overall prognosis. So far, the most important factor for the
prognosis of the melanoma patient is vertical tumor thickness (Breslow, 1970). E.g. the
average survival rate after ten years of a patient diagnosed with a 4mm thick melanoma
is 40%. However, not only primary tumor thickness is of prognostic impact but in par-
ticular the transition from primary tumor to metastasis. Gene expression studies offer
new insight into the underlying mechanisms and can lead to novel diagnostic tools. Clark
et al. (2000) and Haqq et al. (2005) conducted gene expression profiles of metastatic
and non-metastatic melanoma cell lines and identified progression factors arguing for a

discriminative gene expression signature in primary tumors.

A.2.1 Project goal

In order to better understand the process of melanoma progression and metastasis, genome-
wide gene expression profiling was performed. The goal was to find novel disease genes,
identify novel subtypes, and investigate if clinical factors are correlated with gene expres-

sion patterns.

A.2.2 Methods

Tissue specimen of 19 primary melanomas and 22 cutaneous melanoma metastases were
derived from 41 different patients. The biopsies were obtained after surgical excision of
tumors. Diagnosis was made by routine histopathology. The vertical tumor thickness of
primary melanomas ranged from 0.38 mm to 6.00 mm according to Breslow, including one
in situ melanoma. Primary tumors consisted of different melanoma subtypes: superficial
spreading melanomas (SSM, n=13), nodular melanomas (NM, n=5), and acrolentiginous
melanomas (ALM, n=1). The metastatic lesions analyzed in this study were cutaneous
or subcutaneous metastases. Biopsies were taken after tumors were surgically removed
and immediately snap frozen in liquid nitrogen. Biopsies were preserved at -80°C until
use for further analysis. The presented study was approved by the local ethic committee
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of the University of Rostock and informed consent for microarray analyses of tumors was

obtained from all patients.

We analyzed the tumor cell-specific gene expression of 22,283 probe sets using Affymet-
rix HG-U133a oligonucleotide microarrays. For this purpose tumor cells were excised
from melanoma tissues by laser-capture microdissection in order to focus on melanoma
cell-specific gene expression. The total RNA was extracted from tumor tissues using com-
mercially available systems (RNeasy kit, Qiagen, Hilden, Germany). RNA concentrations
were determined photometrically at 260 nm and RNA probes were labeled according to the
suppliers instructions (Affymetrix, Santa Clara, CA, USA). 1 pug of total RNA was used
for labeling. Hybridization and washing of gene chips were carried out according to the
suppliers instructions. A laser scanner (Gene ArrayTM Scanner from Hewlett-Packard)
was used for reading out the microarrays.

For data preprocessing, we performed background correction, normalization on probe
level, and probe set summarization. The background correction was done similarly to
Microarray Suite 5.0 (Affymetrix, 2001) but negative values were not truncated. Probe
level normalization was done using the variance stabilization method by Huber et al.
(2002). Finally, probe set summarization was performed using a median polish fit of an
additive model (Irizarry et al., 2003a).

In order to find genes with statistical significant differences in gene expression between dif-
ferent clinical phenotypes, genes were ranked according to the regularized t-score (Tusher
et al., 2001). False discovery rates (Storey, 2003) for the lists of top ranking genes were
calculated based on 10,000 random permutations of the class labels. Differences in gene
expression were regarded as significant when the false discovery rate (FDR) of the result-
ing lists did not exceed 0.05. Using the R Software for Statistical Computing (Ihaka and
Gentleman, 1996) and the Bioconductor package GOstats every gene list was further ex-
amined for significant overrepresentation of biological processes and pathways defined by
Gene Ontology (GO) categories. In order to derive diagnostic signatures, SVMs combined
with a regularized t-score based feature selection filter were used. For compensating un-
balanced group sizes we adjusted the class weights within the SVM according to the group
sizes. Predictive performance was assessed using the MCRestimate package (Ruschhaupt
et al., 2004). Using MCRestimate the optimal number of genes and the optimal parameter
setting of the SVM were determined in a nested cross validation setting. Cross validation
was repeated 10 times with a 10-fold outer and 10-fold inner loop. We also implemented
an in silico panel diagnosis that shows the patient-specific confidence of molecular diag-
nosis. This was achieved by running cross validation 1000 times with different random
assignments to the 10-fold cross validation bins of patients and recording how often the
SVM misclassified each sample. The SVM was trained using a linear kernel and feature
selection of the best 100 genes.
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A.2.3 Results

Overall 389 probe sets (representing 311 genes) were identified that showed significant
differential expression between primary melanoma and melanoma metastases. A set of 57
probe sets (representing 47 genes) showed up-regulation in metastases and is of particular
interest as tumor progression factor candidates. Significantly over-represented GO cat-
egories in the list of 311 genes were: cellular proliferation, cell cycle regulation, cell-cell
contact, and cell-extracellular matrix interaction. The list contained several prominent
genes including mitosin, CDC6, CDC28 (CDK1), septin 6, kinesin, osteopontin, and fi-
bronectin. Further analysis showed that also subtypes of primary melanomas displayed
characteristic gene expression patterns as did thin tumors (< 1.0 mm Breslow thickness)
compared with thick tumors (> 2.0 mm Breslow thickness). Moreover, a predictive diag-
nostic model (support vector machine) for discriminating primary tumors and metastases
was trained and a performance of more than 85% correct classifications was reached in
cross validations. Currently, the results are submitted and under review.

It is still a matter of debate whether classification of primary melanomas into different
sub-types, i.e. SSM, NM, ALM, or lentigo-maligna melanomas (LM), is more than a
mere phenotypical classification. Thus, our next analysis addressed the question, whether
melanoma sub-types may be differentiated by gene expression patterns. When comparing
gene expression profiles of SSM and NM, a series of 67 probe sets (60 genes) was identified
with a FDR < 0.05. This further supports the notion that there is indeed a clinical and
molecular difference between both melanoma sub-types, and argues against the suggestion
that the higher tumor thicknesses observed in NM may be the major factor that causes
differences. The one ALM sample showed a gene pattern resembling that of metastases
and NM which was verified by SVM classification (Fig. A.4). Further analyses showed that
NM alone can not be differentiated from metastases based on gene expression patterns,
which was expected based on the above mentioned findings indicating that three out of
five NM showed gene patterns similar to that of metastases. In contrast, SSM can clearly
be differentiated from metastases based on gene expression patterns. Functionally, SSM
showed enhanced expression of genes involved in cell-cell contact and cell communication.
The reduced expression of molecules involved in cell-cell contact observed in NM may be
due to the fact that these tumors start vertical invasive growth, associated with loss of
cell-cell contacts, immediately after malignant transformation.

The most important prognostic factor for malignant melanoma is the vertical tumor thick-
ness. In order to address the question whether tumor thickness of primary tumors is
represented by a particular gene expression pattern, thin primary tumors (< 1.0 mm
Breslow thickness) were compared with thick primary tumors (> 2.0 mm Breslow thick-
ness). When comparing both groups a list of 240 probe sets (representing 199 genes) was
identified that showed differential expression with an estimated FDR of 0.05. Interestingly,
45 of the 60 differentially expressed genes (75%) in SSM versus NM overlapped with these
199 genes. Even more important, 116 of 199 (58%) of the list of differentially expressed
genes overlapped with the list of differential genes of primary melanomas and metastases.
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Figure A.4: Class prediction of primary melanomas and metastases using support vector machine
analysis. Depicted are the percentage of misclassification for each tumor sample (primary melanoma
or metastasis) when repeating 1.000 random 10-fold CV with a linear kernel SVM. The plot is sorted
by misclassification rate and first shows all metastasis samples and then all melanoma samples. Light
gray bars represent correct classification, dark Gray bars misclassification. Positive values indicate how
often a sample was classified as melanoma and negative values how often it was classified as metastasis.

These findings argue for a progressive development of a metastatic signature in primary
tumors coinciding with increasing tumor thickness. Moreover, tumors thicker than 2 mm
showed gene expression patterns with a significant overlap to that of metastases, which
supports the concept of tumor thickness as a major prognostic factor.

We next addressed the question whether gene expression profiles may accurately predict
the tumor stage (primary melanoma or metastasis) of new unknown samples and cal-
culated the estimated prediction accuracy. For this purpose, support vector machines
(SVM) were applied. In an unbiased validation, using nested cross validation, our pre-
dictor reached an accuracy of 85% correct classifications (with a prevalence of 54 %).
Classifiers of this accuracy can be designed with as little as 30 genes. In our in silico
panel diagnosis (see Method section) mainly NM were misclassified and most of them
were misclassified in all runs (Fig. A.4). The misclassified samples were NM1, NM2,
NM3, Metal and Metal8. For a couple of patients (namely: Meta2, Metal9, ALM1
and SSM13) the SVM-diagnosis results were ambiguous between different cross validation
runs, indicating that for these patients the expression profiles do not contain sufficient
information to decide whether patients had primary tumors or metastases. The accuracy
for distinguishing SSM and NM was 89% (with a prevalence of 72%) using 15 genes. The
accuracy for distinguishing SSM and Meta was 91% (with a prevalence of 63%) using 50
genes. NM cannot be distinguished from Meta with an accuracy higher than prevalence.

These analyses showed that by use of a supervised classification method a high level of

prediction accuracy for tumor stages may be achieved, which further argues for particular
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biological stages represented by different melanoma subtypes or primary melanomas and
metastases. SVM analyses using gene expression profiles can be used to differentiate
between primary tumors and cutaneous metastases in the rare cases, when clinical and

histopathological findings may not allow this differentiation.

In summary, based on gene expression profiles identified in our study, different sub-types
of melanomas can be distinguished. This differentiation was further supported by the
fact that gene expression profiles of SSM can be clearly differentiated from metastases,
which was not possible for NM. Interestingly, two SSM with tumor thicknesses comparable
to that of the NM showed gene pattern of SSM and not of NM. This argues against a
differentiation between both sub-types merely based on different tumor thicknesses. These
findings are in accordance with epidemiological data summarized in a recent publication on
prognostic factors of melanoma, demonstrating that risk profiles of both tumor subtypes
remain different even after correction for tumor thickness (Lomuto et al., 2004). Using
unsupervised and supervised methods for gene expression analysis in our study three NM
showed gene patterns similar to metastases. Thus, NM may even be divided into different
sub-types, one more closely related to metastases, and one more closely related to primary
melanomas. At present, it cannot be decided, whether the three NM represent a different
subtype of NM, or are on a further level of continuous de-differentiation. This question
may be resolved by analyses of larger series of NM.

This study was also used to in-

vestigate the potential for design- EMPD trade-off for relative accuracy =0.95
ing a diagnostic microarray chip 100 ‘ ‘
for differentiating metastating

from non-metastating melanoma. > 89|

First, we calculated the optimal &

number of genes needed for clas- % 60f

sification using MCRestimate as §

described above. For discrimi- § 49

nating primary melanoma from ;—/Ts

melanoma metastases the best E 20

classification accuracy was 85%

using 35 genes. Therefore we con- %
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ray chip for early detection of Figure A.5: Relationship between the number of genes
metastating melanomas is possi- in the marker panel and the number of samples examined
in Phase-1 to achieve a relative accuracy of at least 95%
(A(no, mo)/A(N —1,m0) > 95%) when distinguishing metas-
cal routine diagnosis and can im- tating from non-metastating melanomas.

prove melanoma therapy. When

ble. This is relevant for clini-

designing a microarray chip with 35 genes at least 6 samples should be screened in order
to reach 95% relative accuracy of a whole genome assay (Fig. A.5).

We finally assessed the normalization behavior of such a diagnostic microarray chip for
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melanoma diseases with 15 genes. Using standard normalization methods the accuracy

dropped to 77% but can be recovered by using balanced normalization to 80 % (Fig.

A.6).

Taken together, the presented data
demonstrate that melanoma metasta-
sis represents a specific biological stage
of tumor progression with a particu-
lar gene pattern. A majority of up-
regulated genes in metastases fit the cur-
rent pathogenic concepts of tumor pro-
gression and may serve as targets for in-
novative treatment approaches. More-
over, we were able to demonstrate that
melanomas of different thicknesses and
different melanoma sub-types are repre-
sented by particular gene expression pat-
terns. Further studies should be initi-
ated to analyze, whether gene expres-
sion patterns in primary melanomas may

predict the prognosis of patients, and
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Figure A.6: Cross validation results of predictive
performance of the same diagnostic signature used
with balanced and standard normalization methods
(ka =15, kn, = 5).

whether gene expression patterns in metastases may be used for treatment monitoring

and designing a diagnostic microarray chip in clinical trials.
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