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4 Selecting normalization genes for small

diagnostic microarrays

In the last two chapters I showed that a diagnostic chip can be derived in the early onset of a

clinical trial. I also pointed out how to derive a diagnostic signature using gene selection for

SVM classification. Though, in order to make a diagnostic microarray chip work in practice

it has to be normalized. This is needed to bring chips on a comparable scale and account for

experimental artifacts. In this chapter, I show that standard microarray normalization methods

do not work for diagnostic microarrays. I propose two alternative normalization strategies and

evaluate them on simulated and real datasets.

With the concept of diagnostic microarrays new problems arise. A first important step in
microarray analysis is normalization. The overall intensity of microarrays can vary. This
can reflect global differential gene expression, but it is more likely due to experimental
artifacts. Consequently, array-to-array normalization is crucial for microarray analysis
(Yang et al., 2002; Kroll and Wölfl, 2002; Smyth and Speed, 2003).

Standard normalization protocols rely on the assumption that the majority of genes on
the microarray are not differentially expressed between samples (Yang et al., 2002). For
whole genome microarrays this is likely to be true, but on a diagnostic microarray the
genes are selected to be differentially expressed between disease entities. Consequently, for
diagnostic microarrays a fundamental assumption of microarray normalization does not
hold. This has negative effects on the quality of gene expression measurements. Assume
that a diagnostic signature consists of 10 genes, all of them higher expressed in disease
type A than in type B. Since there are also scale differences due to experimental artifacts,
the microarrays need to be normalized. Normalizing them to constant average expression
also eliminates the biological differences between A and B. The dilemma is that global
differences can be either artifacts or the manifestation of molecular difference between the
disease types. Thus, diagnostic microarrays need to be designed in a way that allows for
the discrimination of the two different effects.

One way to address the problem is to include additional genes on the microarray that
are exclusively used for normalization. Typically, one uses housekeeping genes, which are
thought to be expressed at a constant level. However, it has been found that housekeeping
genes are occasionally regulated, too (Foss et al., 1998; Schmittgen and Zakrajsek, 2000;
Neuvians et al., 2005). One solution is to identify non-regulated housekeeping genes from
the set of all housekeeping genes for a given study (Pfaffl et al., 2004). We suggest a data
driven approach to select normalization genes from the pool of all genes on the microarray.
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4.1 Problems of standard normalization methods for diagnostic chips

Not only the diagnostic signature should be derived from the analysis of a whole genome
microarray study but this data is also used for finding normalization genes.

Here, we address the problem of selecting normalization genes from the expression data
itself. We compare two simple strategies in the context of simulation experiments as
well as in real world applications. The first strategy aims to find control genes that are
not influenced by the disease type and can therefore be used for normalization. The
second strategy aims to find genes that complement the discriminatory genes on the
diagnostic microarray in a way such that normalization on all genes together is not any
more influenced by the diseases type. We call this novel concept balanced signatures.

The chapter is organized as follows: First we demonstrate the problems occurring when
standard normalization protocols are used for small diagnostic chips. In section 4.1 we
discuss alternative strategies for normalization gene selection and the concept of balanced
signatures. In section 4.5 we compare the novel methods to a standard normalization in
the setting of a controlled simulation experiment and in section 4.6 on a dataset from a
clinical study on leukemia and on a dataset from a clinical study on lung cancer. We close
with a summary and a discussion of our findings.

4.1 Problems of standard normalization methods for diagnostic

chips

Standard microarray normalization protocols can not directly be applied to diagnostic mi-
croarrays. Ignoring the special character of normalization on diagnostic microarrays leads
to a loss of the biological signal. To illustrate this normalization effect on real data, we
used a publicly available dataset on acute lymphocytic leukemia (ALL) in children (Yeoh
et al., 2002), which we described in detail in chapter 2. We applied a standard normal-
ization protocol where we preprocessed the data using background correction followed by
probeset summarization and finally normalization on the summary values. Background
correction was done using perfect match (PM) probes only, ignoring mismatch (MM)
probes. Probeset summary was done using an additive model fitted by a median polish
procedure. Finally, the data was quantile normalized. We used the RMA package (Irizarry
et al., 2003b) with default parameters to perform all three steps. Note that the probeset
summarization step takes logarithms of the data and hence transforms expression levels
to an additive scale. Here, fold changes of molecule abundance correspond to differences
in the normalized data.

We designed a virtual diagnostic microarray for discriminating between patients displaying
a TEL-AML translocation (group A) and those displaying either a BCR-ABL or a E2A-
PBX1 translocation (group B). To this end, we chose the 10 genes with the highest
expression differences

∆i =
∑
j∈JA

xij

|JA|
−

∑
j∈JB

xij

|JB|
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4 Selecting normalization genes for small diagnostic microarrays

where JA, JB are the set of samples in group A and B, respectively. xij is the normalized
gene expression intensity of gene i in sample j. Then we went back to the non-normalized
raw data of only these 10 genes and discarded all other expression data. Using only the
remaining raw data of the 10 genes we repeated the same normalization steps that were
used for the large Affymetrix microarray. This yielded a virtual diagnostic microarray of
10 genes. Since normalization was not done on an array-by-array, nor on a gene-by-gene
basis, but borrowed information across both genes and microarrays the results of the two
normalizations were different although the underlying raw data was identical.
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Figure 4.1: The global signal normalization effect resulting from standard normalization protocols:

Shown are changes of expression difference, when switching from a whole genome microarray to a small

diagnostic microarray chip. The top genes are those genes with the maximal expression difference

between TEL-AML versus BCR-ABL and E2A-PBX1. Note, that expression differences on log scale

reflect fold changes.

When switching from the whole genome microarray to the small diagnostic array the
expression differences between the two cytogenetically different groups of patients vanished
almost completely. Normalization of the small array has destroyed the original signal that
is needed for diagnosis (Fig. 4.1). We refer to this effect as the global signal normalization
effect. Not only did the expression differences vanish, but the average correlation between
the genes also changed from 0.73 to -0.1.

Algorithms

We showed that standard normalization applied to diagnostic microarrays can substan-
tially skew results and is a problem for diagnosis. In the following section we propose two
different strategies to circumvent these problems. The first strategy aims at finding genes
that can be used solely for normalization. Several methods for finding normalization genes
are suggested and compared. The second strategy aims at finding genes that can be used
for normalization and additionally also for classification.
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4.2 Selection of normalization genes

4.2 Selection of normalization genes

We have argued that a microarray carrying only differentially expressed genes can hardly
be used to distinguish biological effects from experimental artifacts. To overcome the
problem we suggest to include additional normalization genes on a diagnostic microarray
that are then used to adjust for experimental artifacts but leave the biological signal
intact. Like the signature genes, the normalization genes can be selected based on the
data from a genomewide expression study. While signature genes should correlate with
the disease labels of patients, the normalization genes should not.

For the signature genes it is most important that the correlation of expression levels to
the disease labels does not only hold for the training data on which the genes were found
but generalizes to new samples. In the same way the desired properties of normalization
genes also need to generalize to new data. Hence, criteria for normalization need to be
chosen such that they enable both, a good normalization of diagnostic microarrays and
at the same time generalize well to new samples. Note that these two requirements do
not implicate each other.

Let ps be the number of genes that form the diagnostic signature. In experimental settings
ps was in the range of 5-50 genes (Li and Yang, 2002; Bø and Jonassen, 2002; Li, 2005).
Let pn be the number of additional genes used on the microarray for array-to-array nor-
malization. The total number of genes on the diagnostic microarray is thus pd = ps + pn.
Both the signature genes and the normalization genes are selected based on genomewide
microarray data measured with whole genome microarrays holding pl � pd genes. In
this context xij denotes the expression of gene i in patient j. As we aim at diagnostic
differentiation into groups we can assume without loss of generality that the samples fall
into two different disease entities represented by class labels A and B. If there should be
more classes, it is always possible to construct a binary classification tree where the first
group is compared to all others. Then the second group is compared to the rest excluding
the first group and so on.

The open question is how to select normalization genes. We propose two novel, completely
data driven methods for normalization. The first method selects genes solely used for
normalization according to criteria listed below. The second method aims at balancing
the signature and is described in section 4.3.

1. Low variance genes:
Calculate the empirical variance σ2

i of all pl genes and choose the pn genes with the
smallest variance in the data. Use only these genes for array-to-array normalization.
In our preprocessing protocol the background correction and probeset summariza-
tion remain unchanged but only these pn genes are used for the final normalization
step.
In this approach, we aim for the genes with the most constant expression in both
disease populations. Population variances are not known and we select the genes
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4 Selecting normalization genes for small diagnostic microarrays

due to their variances on the expression data of the genomewide study. This idea
is similar to the use of housekeeping genes, whose expression is assumed to hardly
vary between patients. Observed differences in measurements are hence most likely
due to experimental artifacts. However, we do not select housekeeping genes based
on a priori knowledge, but from the data at hand.

2. Small coefficient of variation:
Calculate the empirical variance σ2

i and the empirical mean µi of all pl genes and
choose the pn genes with the smallest coefficient of variation σi

µi
in the data. Use

only these pn genes for array-to-array normalization.
In this approach, we aim for the genes with low variance that additionally have high
intensity. The idea is to exclude low variance genes within the background noise.

3. Small differences of average expression:
Calculate the differences ∆i =

∑
j∈JA

xij/|JA| −
∑

j∈JB
xij/|JB| between the two

groups for all pl genes and choose the pn genes with the smallest absolute ∆i. Use
only these genes for array-to-array normalization.
In this approach we allow the genes to vary between patients but this variability
should not correlate with the disease type. Note that the genes are typically not
constant and therefore not housekeeping genes. Still they allow for normalization
if the property of small expression differences generalizes well to the diagnostic
microarray.

As a control we use randomly sampled genes for normalization. Here of course we have
no problem with generalization. One might expect, that the above methods are more
effective, but this needs to be proven.

For the evaluation of the real datasets we included the normalization results obtained
when using standard housekeeping genes. For this, we used the following 3’ variants
of the housekeeping probesets supplied on Affymetrix GeneChips: beta-actin, GAPDH,
ISGF3, 18S rRNA, transferrin receptor and 28S rRNA.

4.3 Selection of a balanced signatures

This approach does not use different genes for normalization and diagnosis, but tries
to find a set of genes, which serves both tasks at the same time. Starting from a non
balanced set of signature genes, choose pn genes from all pl genes such that the variation
of the average gene expression per microarray is minimized

∑
j∈J

(x·j − x··)
2 → min =⇒

∑
j∈J

∑
i∈Id

xij

|Id|
−

∑
i∈Id

∑
j∈J

xij

|Id| ∗ |J |

2

→ min =⇒
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4.4 Normalization of small diagnostic microarrays

∑
j∈J

∑
i∈Id

xij −
∑
j∈J

xij

|J |

2

→ min

where x·j denotes the average expression of genes on the diagnostic array j, J is the set of
all samples, Id is the set of all genes on the diagnostic microarray, and x·· the average gene
expression over all diagnostic microarrays. This is done using a greedy forward selection,
which is summarized in figure (4.2). In contrast to the methods above, the normalization
is now done using both signature and normalization genes. The strategy here is not to
find genes that are not affected by expression difference between the two disease groups,
but genes that compensate this effect. For example, if the signature genes are all up-
regulated in group A, the goal is to compensate for this effect by choosing genes which
are down regulated. This method does not distinguish between the discriminating genes
and the genes for normalization any more. The normalization genes are now themselves
differentially expressed and can hence be included into the signature.

Greedy forward selection:
Let: J = JA ∪ JB, be all samples in group A and B, |J | is the number of all samples

Il, be the set of all genes on the whole genome microarray
Is, be the set of given genes of the diagnostic signature
In = {}, be the initially empty set of normalization genes

for k = 1..pn (for each normalization gene)
Id = Is ∪ In

for g ∈ Il \ Id (for each gene not yet used on the diagnostic microarray)

calculate vg =
∑

j∈J

(∑
i∈Id∪g

(
xij −

P
j∈J xij

|J |

))2

In = In ∪ argmingvg

Figure 4.2: Pseudo code for greedy forward selection of balancing genes

In the absence of experimental artifacts the summed up expression levels for each sample
should be constant. In this way, these genes allow us to distinguish between differential
expression and experimental artifacts. Similar to the first two methods, there is again a
generalization problem. We balance the signature on the training set. Its normalization
performance for the diagnostic microarray however depends on how well the balance
between up- and down-regulated genes generalizes to new data.

4.4 Normalization of small diagnostic microarrays

Normalization of small diagnostic microarrays was done by subtracting the sample wise
mean of the normalization genes from all genes. Let xij be the expression of gene i

in patient j. Let In be the set of normalization genes, and pn = |In| the number of
normalization genes. For all normalization genes the sample wise mean νj was calculated:
νj =

∑
i∈In

xij

pn
. Normalization was then done by subtracting νj from all genes resulting
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4 Selecting normalization genes for small diagnostic microarrays

in normalized data yij : yij = xij − νj . For the balanced signature In included all genes
and therefore νj = x.j

4.5 Results on simulated data

The two normalization methods for diagnostic microarrays described in the previous sec-
tion need to be evaluated with respect to their power in compensating the global signal
normalization effect and producing diagnostic arrays that distinguish well between two
disease entities. Before we evaluate our methods on real data in the next section we
make use of the more transparent setting of a simulation study, in which the population
differences, the biological variability among individuals and the experimental variability
are modeled independently of each other.

Simulated data was generated according to a multivariate normal distribution, including
strong correlation of genes, a large spectrum of expression intensities and non constant
expression differences between the two groups A and B.

In total we simulated expression values for 3000 genes on 50 microarrays representing
two groups A and B of 25 microarrays each. We first generated the covariance matrix Σ
by randomly drawing from an inverse Wishart distribution with 3150 degrees of freedom
and a 3000x3000 identity matrix as a scale matrix. Then, we generated a vector of 3000
population means for each group µA

i , µB
i by independently drawing from a N(0, 1) normal

distribution. The actual expression data was generated by drawing from a multivariate
normal distribution with covariance matrix Σ and means µA for the first 25 microarrays
and µB for the next 25 microarrays. Finally, this data was perturbed by multiplying with
a random scaling factor and adding a random offset both drawn from a N(0,0.3) normal
distribution. The generation of the data was done twice. Once for a training set and once
for a test set.

In this simulation with three successive randomization generating µA, µB and Σ corre-
sponds to the population properties of the genes. Drawing from a multivariate N(µA,B,Σ)
distribution accounts for biological variability among individuals, while the perturbing
the data accounts for global experimental artifacts. The differences ∆i display the typical
continuous spectrum known from real expression data (figure 4.3).

As we have stressed before, the expression patterns of the normalization genes need to
generalize from the training set to new data in the same way as the signature patterns
do. From the theoretical considerations of the previous section it becomes clear that
small variance genes have the potential to compensate for the global signal normalization
effect. But the genes need to have small variances not only on the training data but
also and more importantly on the data that is generated using the diagnostic array. In
general, the variance will be higher than it is on the training data. The same problem
occurs for genes with small average expression differences and balanced signatures. To
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4.6 Results on a leukemia study
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Figure 4.3: The left plot shows the genewise population differences contrasted with the mean differ-

ences in simulated data. Population differences µA
i − µB

i were set for each gene by randomly drawing

from N(0,1). Simulated differences stem from drawing data from a multivariate distribution with these

given population means. The right plot shows boxplots of all 3000 genes for all 50 samples of the

simulated data.

this end, we simulated a training and a test set with 50 samples. Both sets have the same
underlying gene means and covariance structure. To avoid overfitting, only the training
data was used to select the normalization genes and only the test set was used to evaluate
the normalization strategies. The diagnostic signature consists of ps = 10 genes with the
largest difference of population means. It is unbalanced. For the purpose of normalization
pn = 10 additional genes were picked according to the suggested methods.

Using the standard normalization protocol destroys the signal completely, while using
random normalization genes already recovers the signal partially (left plot in figure 4.4).
However, both versions, data based selection of normalization genes and balanced signa-
tures, recover population differences more accurately and perform similarly to each other
(right plot in figure 4.4).

We repeated the data simulation 30 times and recorded for each simulation the distance
between the real underlying expression differences of the signature genes and the expres-
sion differences obtained by the various normalization methods. This sum of squared
error plot shows that balanced signatures perform slightly better than the other methods
(figure 4.5).

4.6 Results on a leukemia study

We now proceed from a simulation study to applications on real datasets. Of course, in
real datasets we do not know how many genes are deregulated and how many are nec-
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Figure 4.4: Effects of different normalization methods for diagnostic microarrays evaluated on simu-

lated data. ”+” depicts expression differences in the test data of the signature genes after normalization

with all 3000 genes. This, we would like to recover with normalization methods for diagnostic microar-

rays, too.”o” corresponds to using the standard protocol on the diagnostic microarray. Here, all the

signal is lost. ”r” corresponds to a normalization of the diagnostic microarray with 10 random genes.

It already recovers the signal partially. The right plot is a closeup of the left plot, showing additionally

the performance of the proposed normalization schemes. ”+” and ”r” are the same as in the left plot.

Additionally, normalization using lowest variance ”v”, smallest difference ”d”, smallest coefficient of

variation ”c” and balanced signatures ”b” are shown. For better visibility the symbols ”b” and ”d” are

slightly moved to the side so that they do not overlap.
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malization methods and the standard protocol averaged over 30 runs of the simulated data. ”small CV”

depicts the normalization method using smallest coefficient of variations and ”small effect” depicts the

normalization method using small differences of average expression.
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4.6 Results on a leukemia study

essary for achieving optimal classification accuracy. Therefore, we ran the MCRestimate
package (Ruschhaupt et al., 2004), that uses a nested cross validation loop to avoid biased
estimators of classification performance. Our own results analyzing various datasets with
MCRestimate showed that most datasets can be classified optimally with a 2-50 genes and
only very few need more than 50. This is in concordance with findings from other authors
(Li and Yang, 2002; Bø and Jonassen, 2002; Li, 2005). When applying it to the leukemia
study (Yeoh et al., 2002), described in section 4.1, we found that in this case ps = 5 genes
reached the optimal classification accuracy of 99%. Thus, we selected ps = 5 signature
genes with the highest absolute equal variance t-score. In addition, pn = 5 normalization
genes were determined according to the criteria from the previous sections. For simplicity,
the number pn of additional genes for normalization was set to ps. In preliminary studies
this provided good results but further research on determining the optimal ps and pn

simultaneously is needed.

The second dataset we analyzed was a study on 86 primary lung adenocarcinoma and
10 normal lung tissues (Beer et al., 2002). Here, we aimed for a classification of normal
versus carcinoma. MCRestimate achieved 100% accuracy using 3 genes. Thus, we selected
ps = pn = 3 for this dataset.

We randomly split the whole datasets equally into a training and test set. For the training
set we applied the gold standard normalization using all genes of the whole genome mi-
croarray. Then, we proceeded in the same way as described in the previous sections. Both,
signature and normalization genes were derived using only the training data. For each
sample in the test set a virtual diagnostic microarray was constructed using only the raw
data of the signature and the normalization genes. This virtual diagnostic microarray was
normalized using the methods described in section 4.2 and 4.3, resulting in seven different
test datasets: standard protocol, Affymetrix housekeeping genes, random normalization
genes, low variances, small coefficient of variation, small differences and balanced signa-
tures. On the such normalized test set we evaluated the normalization methods with
respect to the diagnostic performance of a support vector machine using cross validation.
For this, we used the SVM from the package e1071 in R (Ihaka and Gentleman, 1996)
with a linear kernel and default parameters. The dataset was randomly split in equally
sized training and test sets. This was repeated 100 times and the evaluation steps were
rerun for every data partitioning (figure 4.6).

The standard protocol reduces the classification accuracy substantially, while both nor-
malization gene selection and balanced signatures yield satisfying results. Affymetrix
housekeeping genes for normalization work well on the leukemia dataset, but fail on the
lung dataset. Balanced signatures provide the best results in both datasets.

For the leukemia dataset classification accuracy was significantly better for all our meth-
ods as compared to the standard protocol (p < 10−15). ”Balanced normalization” outper-
formed all other normalizations (p < 10−8), too. Standard normalization was also clearly
inferior in the lung dataset (p < 10−14). When further testing ”balanced normalization”
against other normalizations p-values were below 0.001 for all but ”small effect normal-
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Figure 4.6: Cross validation results of predictive performance of the same diagnostic signature used

with different normalization strategies for diagnostic microarrays. The left plot shows classification

accuracies for distinguishing TEL-AML1 from other groups in leukemia (ps = pn = 5). The right plot

shows classification accuracies for distinguishing normal from adenocarcinomas in lung (ps = pn = 3).

ization” and ”random normalization”, where significance was not reached (p = 0.13 and
p = 0.15 respectively).

4.7 Discussion

In this chapter I addressed the problem of normalizing diagnostic microarrays. I showed
that using a standard normalization protocol from large microarrays has fatal effects.
They are most pronounced when the diagnostic signature is unbalanced, containing more
up- than down-regulated genes or vice versa. However, in most microarray datasets there
are more significantly up- than down-regulated genes or vice versa, emphasizing the need
for new normalization strategies. Here, I introduced two strategies to overcome this
problem: data driven normalization gene selection and balanced signatures. Both gave
better results for diagnostic microarrays than the standard normalization protocol. Using
Affymetrix housekeeping genes performs well in the analyzed leukemia dataset but does
not work for the lung dataset, indicating that the genes are actively regulated in these
tissues.

As standard normalization protocol I have chosen the RMA procedure. Of course it is not
the only protocol in use. However, the global signal normalization effect is generic and
not restricted to this protocol. Any normalization which assumes unchanged expression
for the majority of genes on the microarray is expected to suffer from the same problem.
An advantage of both methods is that the normalization genes can be selected with no
additional experimental cost and little computational effort.

Hua et al. stressed that optimal feature size depends strongly on the classifier and feature-
label distribution and that a choice of optimal feature size can greatly improve accuracy of
the classification (Hua et al., 2005). Hence, for assessing how many genes should be used
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4.7 Discussion

for a diagnostic microarray I used a nested cross validation for SVMs (Ruschhaupt et al.,
2004). By this, I determined the number of genes making up the diagnostic signature
(ps) and set it to the number of genes needed for achieving the optimal classification
accuracy.

In conclusion, balanced signatures perform well with respect to recovering the real under-
lying signal as well as for classification. This was verified on a simulated test dataset as
well as on two real microarray datasets.
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