
Part III

The WIQA Framework

91

92

The WIQA - Information Quality Assessment Framework is a set of soft-
ware components for filtering information using different quality-based infor-
mation filtering policies. The WIQA framework can be employed by appli-
cations which process information of uncertain quality and want to enable
users to filter information using different policies. The framework has been
designed to fulfill the following requirements:

Flexible Representation of Quality-Related Meta-Information. As
we have seen in Chapter 3, information quality assessment relies on
a wide range of different quality indicators. Which quality indicators
are relevant depends on the application domain and the quality
dimensions to be assessed. Important quality indicators in the context
of web-based information systems are provenance information, ratings,
and background information about information providers. The WIQA
framework uses Named Graphs as a flexible data model for representing
information together with quality related meta-information.

Support for Information Filtering Policies. The relevance of different
quality dimensions and the metrics used to assess these dimensions de-
pend on the application domain, the quality indicators available, the
task at hand, and the subjective preferences of the information con-
sumer. Therefore, information consumers use a wide range of different
policies for determining whether to accept or reject information. The
WIQA framework allows various policies to be employed for filtering
information. Policies are expressed using a declarative policy language
and can combine context-, content-, and rating-based quality assess-
ment metrics.

Explaining Filtering Decisions. The accuracy of assessment results is of-
ten uncertain due to the limited availability of quality indicators and
the often uncertain quality of the quality indicators themselves. There-
fore, the final subjective decision of an information consumer, whether
to trust or distrust assessment results, depends on his understanding of
the quality indicators and the assessment metrics that have been used
in the assessment process. In order to support information consumers
in their trust decision, the WIQA framework can generate detailed ex-
planations about filtering decisions.

Figure 8.1 gives an overview about the components of the WIQA frame-
work and illustrates how applications interact with the framework. The
WIQA framework consists of the NG4J - Named Graphs API for Jena and
the WIQA - Filtering and Explanation Engine.

93

Filter
information

Add and remove Retrieve explanations
about filtering

decisions
information

NG4J - Named Graphs
API for Jena

WIQA - Filtering and
Explanation Engine

Application

WIQA Framework

Figure 8.1: Overview of the WIQA framework.

NG4J - Named Graphs API for Jena is a software toolkit for creating,
manipulating, persisting, and exchanging sets of named graphs. Graph sets
can be stored in memory or in a relational database. The API provides
parsers and serializers for the TriX, TriG, and RDF/XML syntaxes and allows
graph sets to be signed using the Semantic Web Publishing Vocabulary. The
WIQA framework uses NG4J to store information together with quality-
related meta-information.

The WIQA - Filtering and Explanation Engine determines the subset of
the triples contained in a set of named graphs that match a given filtering
policy. Filtering policies are expressed using the WIQA-PL policy language.
Applications present a set of named graphs and a WIQA-PL policy to the
WIQA - Filtering and Explanation Engine. Based on the policy, the engine
generates a view on the graph set containing all triples that fulfill the policy.
This set of accepted triples is returned to the application. Figure 8.2 illus-
trates the process of promoting triples from the set of named graphs into the
set of accepted triples.

Set of Named
Graphs

WIQA Filtering
Engine

Set of Accepted
Triples

WIQA-PL Policy

Figure 8.2: Overview of the filtering process.

94

The WIQA - Filtering and Explanation Engine can generate explanations
about filtering decisions. An application can present an accepted triple to the
engine which returns an explanation why the triple satisfies the given policy.
The engine can generate two types of explanations: Textual explanations
and RDF explanations. Textual explanations can be displayed directly to
the end-user. RDF explanations may be used by the application for further
processing.

The following chapters describe the WIQA framework in detail:

Chapter 9: Expressing Information Filtering Policies. Within the
WIQA framework, information filtering policies are expressed using
the WIQA-PL policy language. This chapter introduces the WIQA-PL
language constructs and explains how the language is used to express
filtering policies.

Chapter 10: Explaining Assessment Results. This chapter describes
the capabilities of the WIQA framework to explain filtering decisions.

Chapter 11: Implementation. This chapter describes the implementa-
tion of the WIQA framework and explains how applications interact
with the framework.

Chapter 12: The WIQA Browser is an example application that uses
the WIQA framework. The browser demonstrates how information
quality filtering capabilities can be integrated into a standard Web
browser. The browser enables users to extract RDF data from Web
pages. The extracted data is stored together with provenance informa-
tion in a local repository. The content of the local repository can be
filtered using WIQA-PL policies. The user may retrieve explanations
why displayed information satisfies the selected policy.

Chapter 13: Related Work. This chapter compares the WIQA Frame-
work with related approaches.

Chapter 9

Expressing Information Filtering
Policies

In general, a policy can be seen as a set of declarative rules which governs the
behavior of an information system [CLW02, FWS05]. Instead of hard-coding
system behavior at design time, policies allow to dynamically alter system
behavior at run-time. Policy-based approaches to system management have
been applied in various application domains such as network management,
authentication, access control, privacy, digital rights management, and qual-
ity of service assurance [FWS05, Pie04]. Policies are usually expressed using
a declarative policy language. Examples of standardized policy languages
are the eXtensible Access Control Markup Language (XACML) [Mos05], an
OASIS standard for defining access control policies, and the Platform for
Privacy Preferences (P3P) [Mar02], a W3C standard for expressing privacy
policies.

WIQA information filtering policies define which information is filtered
positive by the WIQA filtering engine. WIQA policies are expressed using the
WIQA-PL policy language. This chapter introduces the WIQA-PL language
constructs and explains how the language is used to express filtering policies.

9.1 Basic Grammar

Figure 9.1 shows the Extended Backus-Naur Form (EBNF) [ISO96] definition
for the basic grammar of the WIQA-PL policy language. The complete
WIQA-PL grammar is given in appendix C.

Policies can be grouped into policy suites. A policy suite consists of a
block of namespace prefix declarations and a set of policies. The namespace
prefixes may be used later in PATTERN clauses to abbreviate URI references

95

CHAPTER 9. EXPRESSING POLICIES 96

1. PolicySuite ::= PrefixDeclaration*
2. Policy+
3. PrefixDeclaration ::= ’PREFIX’ PrefixID Uriref
4. Policy ::= PolicyName
5. PolicyDescription?
6. PolicyPattern
7. RDFExplanationClause
8. PolicyName ::= ’NAME’ Literal
9. PolicyDescription ::= ’DESCRIPTION’ Literal
10. PolicyPattern ::= ’PATTERN’ PatternSet

Figure 9.1: EBNF grammar for the basic structure of a WIQA policy suite.

using the QName abbreviation mechanism [BHL06]. The PREFIX keyword
associates a prefix label with a URI. A QName is mapped into an URI
reference by concatenating its local part to the URI corresponding to its
prefix.

1. PatternSet ::= ’{’ ExplanationClause?
2. GraphPattern*
3. FilterClause* ’}’
4. FilterClause ::= ’FILTER’ FilterExpression ’.’
5. ExplanationClause ::= ’EXPL’ ExplanationTemplates ’.’
7. GraphPattern ::= GraphName ’{’
8. ExplanationClause?
9. TriplePattern+
10. FilterClause* ’}’
11. GraphName ::= ’GRAPH’ VariableOrUriOrANY
12. TriplePattern ::= URIOrBnodeOrVariableOrReference
13. URIOrVariableOrReference
14. URIOrBnodeOrLiteralOrVariableOrReference ’.’
15. VariableOrUriOrANY ::= Variable | URI | ’ANY’
16. URIOrBnodeOrVariableOrReference
17. ::= URI | Bnode | Variable | Reference
18. URIOrVariableOrReference
19. ::= URI | Variable | Reference
20. URIOrBnodeOrLiteralOrVariableOrReference
21. ::= URI | Bnode | Literal | Variable |
22. Reference
23. Variable ::= ’?’ String
24. Reference ::= ’?GRAPH’ | ’?SUBJ’ |’?PRED’ | ’?OBJ’

Figure 9.2: EBNF grammar of the PATTERN clause.

Each policy consists of a NAME, a DESCRIPTION, and a PATTERN
clause. The NAME clause specifies a display name for the policy. The

CHAPTER 9. EXPRESSING POLICIES 97

DESCRIPTION clause specifies a description for the policy that contains
details about the quality indicators and assessment metrics that are used by
the policy. The PATTERN clause specifies a set of conditions that triples
have to satisfy in order to be filtered positive. The grammar of the PATTERN
clause is shown in Figure 9.2. The grammar is based on the grammar of the
SPARQL query language [PS05] in order to make it easier for people who
already know SPARQL to learn WIQA-PL. A PATTERN clause may contain:

Graph Patterns which refer to the triples of the graph set to be filtered
using a set of special, referring variables. The WIQA filtering engine
matches the graph patterns against the set of named graphs to be fil-
tered. The set of accepted triples is constructed from the matching re-
sults afterward. Chapter 9.2 describes how graph patterns are matched
against graph sets. Chapter 9.3 describes how referring variables are
used to link graph patters to the triples to be filtered, and how the set
of accepted triples is constructed from the matching solutions.

Filter Clauses may be used to further restrict matching solutions. Filter
clauses contain boolean-valued expressions consisting of variables, RDF
terms, comparison operators, and function calls. Multiple expressions
may be combined using logical operators. Chapter 9.5 explains filter
clauses in detail.

Functions Calls. Quality-based information filtering policies may involve
complex rating algorithms and statistical calculations. The WIQA fil-
tering engine provides an extension mechanism for including arbitrary,
application domain specific assessment functions into policies. Chap-
ter 9.6 explains how function calls are used within filter clauses and
describes the extension functions that have been implemented for the
WIQA framework so far.

Explanation Clauses. Graph patterns may contain explanation clauses
which define explanation templates. The templates consist of text
fragments and variables. When a user requests an explanation why
a triple satisfies a given policy, these templates are instantiated with
variable bindings from the matching solutions. Chapter 10 describes
the generation of explanations.

9.2 Graph Pattern Matching

A graph pattern consists of a graph name pattern and a set of triple patterns.
The graph name pattern may either consist of a URI reference, a variable, or

CHAPTER 9. EXPRESSING POLICIES 98

the keyword ANY. The graph name pattern ANY matches all graph names.
Triple patterns consist of a subject, a predicate, and an object. The subject
of a triple pattern may contain a URI, a bNode, or a variable. The predicate
of a triple pattern has to be URI. The object of a triple pattern may contain
a URI, a bNode, a literal, or a variable.

The variables contained in graph patterns are bound to RDF terms by
matching the graph patterns against a set of named graphs. Let NG be a
set of named graphs and GP a set of graph patterns. Let V be the set of
all variables contained in GP , let RT be the set of all RDF terms contained
in NG, and let GN be the set of all graph name URIs in NG. A matching
solution s assigns an RDF term from RT to each variable in V . GP matches
NG with the matching solution s if each variable in GP may be substituted
with its value from s and if the keyword ANY may be substituted with a
graph name from GN so that each graph pattern in GP is equal to or is a
subgraph of a graph in NG.

Matching a set of graph patterns against a set of named graphs results
in a solution set as multiple solutions may satisfy the condition above. This
set is empty if no solution fulfills the condition above.

Figure 9.3 shows an example graph pattern. The WIQA-PL syntax for
graph patterns requires each pattern to be introduced with the keyword
GRAPH. The set of triple patterns is enclosed with curly brackets. Variable
names are prefixed with a question mark. The graph pattern shown in Figure
9.3 consists of a graph name pattern and one triple pattern. The graph name
pattern requires the matching graph to be named fd:BackgroundInformation.
The triple pattern matches all triples with the predicate foaf:name. The sub-
jects and objects of these triples are bound to the variables ?var1 and ?var2.
Matching the graph pattern against the example graph set from Chapter 7.2
results in the solution set shown in Table 9.1.

1. GRAPH fd:BackgroundInformation
2. { ?var1 foaf:name ?var2 . }

Figure 9.3: Graph pattern 1.

Figure 9.4 shows another example graph pattern. The graph pattern
consist of the graph name pattern ANY and two triple patterns. The graph
pattern matches all graphs, independent of their graph name, that contain a
triple having a foaf:name predicate and a triple having a fin:country predicate
and an iso:DE object. Both triple patterns contain the variable ?var1 as
subject. Therefore pairs of matching triples have to share the same subject.

CHAPTER 9. EXPRESSING POLICIES 99

?var1 ?var2
1. <mailto:peterSmith@deutsche-bank.de> "Peter Smith" dtype:string

2. <urn:x-DUNS:332907323> "Deutsche Bank" dtype:string

3. <mailto:reynolds@ft.com> "John Reynolds" dtype:string

4. <urn:x-DUNS:42307553> "Financial Times" dtype:string

5. <mailto:mark@scott.com> "Mark Scott" dtype:string

Table 9.1: Solution set from matching graph pattern 1 against the example
graph set.

Matching the graph pattern against the example graph set from Chapter 7.2
results in the solution set shown in Table 9.2.

1. GRAPH ANY
2. { ?var1 foaf:name ?var2 .
3. ?var1 fin:country iso:DE . }

Figure 9.4: Graph pattern 2.

?var1 ?var2
1. <mailto:peterSmith@deutsche-bank.de> "Peter Smith" xsd:string

2. <urn:x-DUNS:332907323> "Deutsche Bank" xsd:string

Table 9.2: Solution set from matching graph pattern 2 against the example
graph set.

Figure 9.5 shows a graph pattern set consisting of two graph patterns.
The pattern set demonstrates how the condition, that information should
originate from John Reynolds, is expressed by combining two graph pat-
terns. The first graph pattern consists only of variables and therefore matches
every triple. The second graph pattern matches only triples in the graph
fd:GraphFromAggregator that use the Semantic Web Publishing Vocabulary to
describe the origin of the graphs that have been asserted by Dave Reynolds.
The names of these graphs are bound to the variable ?graph. When both pat-
terns are matched simultaneously against a set of named graphs, the second
pattern works like an additional filter for the first pattern: The second pat-
tern binds the names of all graphs that have been asserted by John Reynolds
to the variable ?graph. With this constraint for the variable ?graph, the first
pattern matches only triples within graphs from John Reynolds and the sub-
jects, predicates, and objects of these triples are bound to the variables ?var1,

CHAPTER 9. EXPRESSING POLICIES 100

?var2, and ?var3. Matching both graph patterns together against the exam-
ple graph set from Chapter 7.2 results in the solution set shown in Table
9.3.

1. GRAPH ?graph
2. { ?var1 ?var2 ?var3 . }
3.
4. GRAPH fd:GraphFromAggregator
5. { ?graph swp:assertedBy ?warrant .
6. ?warrant swp:authority <mailto:reynolds@ft.com> . }

Figure 9.5: Graph pattern set.

Variable Solution 1 Solution 2
?var1 <urn:x-DUNS:316067164> <urn:x-DUNS:047897855>

?var2 fin:news fin:news

?var3 "Siemens AG ..."@EN "Intel has ..."@EN

?graph fd:GraphFromJohnReynolds fd:GraphFromJohnReynolds

?warrant fd:JrWarrant fd:JrWarrant

Table 9.3: Solution set from matching the graph pattern set from Figure 9.5
against the example graph set.

9.3 Accepting Triples

The WIQA-PL policy language uses graph patterns to represent conditions
that triples have to satisfy in order to be filtered positive. When a policy is
applied, the WIQA filtering engine checks for each triple in the graph set to
be filtered whether it satisfies the conditions given in the pattern clause of
the current policy. The triples that satisfy the conditions are included into
the set of accepted triples.

Conditions are expressed as graph patterns which refer to the triples in
the graph set to be filtered using a set of special variables. These referring
variables connect the graph patterns in the pattern clause with the triples in
the graph set to be filtered. The referring variables are shown in Table 9.4.
If the variable ?SUBJ is used in any graph pattern, then only triples with a
subject that equals a binding of the variable ?SUBJ are accepted. If the vari-
able ?PRED is used in any pattern, then only triples are filtered positive which
have a predicate matching a binding of the variable ?PRED. If the variable ?OBJ

CHAPTER 9. EXPRESSING POLICIES 101

Variable Description
?SUBJ Reference to subject of a triple.
?PRED Reference to predicate of a triple.
?OBJ Reference to object of a triple.

?GRAPH Reference to the graph containing a triple.

Table 9.4: WIQA-PL referring variables.

is used, then only triples are filtered positive with an object matching a ?OBJ

value. If the variable ?GRAPH is used in any pattern, then only those triples
are accepted that occur in a graph that is named with an URI reference that
equals a binding of the variable ?GRAPH. If multiple referring variables are used
within the same pattern clause then triples are accepted only if they match
values of all referring variables and these values occur in a single matching
solution.

When a policy is applied against a graph set, the WIQA engine generates
the set of accepted triples by conducting the following steps:

1. The filtering engine adds the graph pattern GRAPH ?GRAPH { ?SUBJ,

?PRED, ?OBJ } to the set of graph patterns given by the pattern clause
of the policy. In the following, this graph pattern will be called root
pattern.

2. The engine matches the extended pattern set against the graph set to
be filtered. This results into a solution set.

3. The engine generates an accepted triple from each distinct set of values
of the variables ?SUBJ, ?PRED and ?OBJ in the solution set.

Figure 9.6 shows the WIQA-PL representation of the policy “Accept only
information which has been asserted by German analysts”. Lines 1-5 define
the namespace prefixes which are used in the pattern clause later. Line 7 and
8 specify the policy name and policy description. The pattern clause restricts
information to originate from German analysts. It consists of two graph
patterns. The first graph pattern requires provenance information about
graphs to be contained in the graph fd:GraphFromAggregator. It contains two
triple patterns which require provenance information to be expressed using
the SWP properties swp:assertedBy and swp:authority. The first pattern binds
the names of asserted graphs to the referring variable ?GRAPH. The second
pattern binds URIs that identify authorities to the variable ?authority. The
second triple pattern is connected with the first one by sharing the variable
?warrant.

CHAPTER 9. EXPRESSING POLICIES 102

1. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2. @prefix swp: <http://www.w3.org/2004/03/trix/swp-2/> .
3. @prefix iso: <http://www.daml.org/2001/09/countries/iso-3166-ont#> .
4. @prefix fin: <http://www.fu-berlin/suhl/bizer/2006/FinVoc/> .
5. @prefix fd: <http://www.fu-berlin/suhl/bizer/exampleDataset#> .
6.
7. NAME "Information from German analysts"
8. DESCRIPTION "Use only information which has been asserted by
9. German analysts."
10. PATTERN
11. {
12. GRAPH fd:GraphFromAggregator
13. { ?GRAPH swp:assertedBy ?warrant .
14. ?warrant swp:authority ?authority . }
15.
16. GRAPH fd:BackgroundInformation
17. { ?authority rdf:type fin:Analyst .
18. ?authority fin:country iso:DE . }
19. }

Figure 9.6: WIQA-PL policy: Use only information which has been asserted
by German analysts.

The second graph pattern requires authorities to be an instance of
the class fin:Analyst and to have a fin:country property with the value
iso:DE. The triples that describe authorities have to occur in the graph
fd:BackgroundInformation.

When the policy is applied against the example graph set from Section
7.2, the second graph pattern matchs the analyst Peter Smith and the vari-
able ?authority is bound to <mailto:peterSmith@deutsche-bank.de>. With this
binding of the variable ?authority, the first graph pattern matches the graph
fd:GraphFromAggregator and binds the value fd:GraphFromPeterSmith to the re-
ferring variable ?GRAPH. With this binding of the variable ?GRAPH, the WIQA
engine filters all triples that are contained in fd:GraphFromPeterSmith positive.
The engine would therefore return the set of accepted triples shown in Figure
9.7 to the application.

9.4 Context Variables

Filtering policies may rely on information about the application context in
which they are applied. Subjective policies might, for instance, require in-
formation about the user who applies them; time-dependent policies might

CHAPTER 9. EXPRESSING POLICIES 103

1. <urn:x-ISIN:DE0007236101> fin:positiveAnalystReport "As Siemens
2. agrees partnership with Novell unit SUSE ..."@EN .
3. <urn:x-ISIN:US4581401001> fin:negativeAnalystReport "Chiphersteller
4. Intel will nach Firmenangaben mit milliardenschweren ..."@DE .

Figure 9.7: Accepted triples.

require the current time.
Applications can provide the WIQA engine with information about the

application context by setting context variables at run-time. Context vari-
ables can be used within WIQA-PL policies. The names of context variables
are written in uppercase letters in order to distinguish them from other vari-
ables. Before applying a policy, the WIQA engine substitutes all context
variables within the policy with their values set by the application. As the
variable names ?GRAPH, ?SUBJ, ?PRED, ?OBJ are already reserved for
the referring variables, these names cannot be used for context variables.

1. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2. @prefix swp: <http://www.w3.org/2004/03/trix/swp-2/> .
3. @prefix iso: <http://www.daml.org/2001/09/countries/iso-3166-ont#> .
4. @prefix fin: <http://www.fu-berlin/suhl/bizer/2006/FinVoc/> .
5. @prefix fd: <http://www.fu-berlin/suhl/bizer/exampleDataset#> .
6.
7. NAME "Information from positively rated information providers"
8. DESCRIPTION "Use only information from information providers that
9. I have rated positive."
10. PATTERN
11. {
12. GRAPH fd:GraphFromAggregator
13. { ?GRAPH swp:assertedBy ?warrant .
14. ?warrant swp:authority ?authority . }
15.
16. GRAPH ?myGraph
17. { ?USER fin:positiveRating ?authority . }
18.
19. GRAPH fd:GraphFromAggregator
20. { ?myGraph swp:assertedBy ?warrant2 .
21. ?warrant2 swp:authority ?USER . }
22. }

Figure 9.8: WIQA-PL policy: Use only information from information
providers that I have rated positive.

CHAPTER 9. EXPRESSING POLICIES 104

Figure 9.8 shows the WIQA-PL representation of the policy “Use only
information from information providers that I have rated positive”. In order
to determine which information providers have been rated positive by the
current user, the WIQA engine requires the URI reference identifying the
current user. This URI reference is represented by the context variable ?USER

within the policy.
The PATTERN clause of the policy contains three graph patterns. The

first pattern binds the URI references identifying information providers to the
variable ?authority. The second graph pattern restricts ?authority bindings
to information providers that have been rated positive by the current user.
The names of the graphs that contain the ratings are bound to the variable
?myGraph. The third graph pattern ensures that ratings originate from the
current user by requiring the graph fd:GraphFromAggregator to contain the
statements that ?myGraph was asserted by the current user.

9.5 Filters

FILTER clauses restrict solution sets according to a given expression. They
eliminate any solution from the solution set that, when substituted into the
expression, results in a boolean value of false or produces an error.

Figure 9.9 shows the grammar of the FILTER clause. Filter expressions
may consist of relational, logical, and numeric expressions and may include
function calls:

Relational Expressions compare variables, RDF terms, and numeric ex-
pressions to each other. Relational expressions may use the following
comparison operators: = (equal), != (not equal), > (greater than), <
(less than), >= (greater than or equal to) and <= (less than or equal
to). The evaluation of a relational expressions results either in the
boolean value true or false. WIQA-PL uses the same rules for com-
paring RDF terms as the SPARQL query language. These rules are
defined in section 11.3 of the SPARQL specification [PS05]. An exam-
ple of a relational expression is ?authority = <mailto:chris@bizer.de>,
meaning that the value of the variable ?authority has to be the URI
<mailto:chris@bizer.de>.

Logical Expressions connect multiple expressions using the && (logical
AND) and || (logical OR) operators or negate the result of an expression
using the ! (logical NOT) operator. An example of a logical expres-
sion using the && operator is ?authority != <mailto:chris@bizer.de> &&

?price < 20, meaning that the value of the variable ?authority has to

CHAPTER 9. EXPRESSING POLICIES 105

1. FilterClause ::= ’FILTER’ Expression | FunctionCall
2. Expression ::= ’(’ ConditionalOrExpression ’)’
3. ConditionalOrExpression ::= ConditionalAndExpression (’||’
4. ConditionalAndExpression)*
5. ConditionalAndExpression ::= LogicalValue (’&&’ LogicalValue)*
6. LogicalValue ::= RelationalExpression
7. RelationalExpression ::= NumericExpression (’=’ NumericExpression |
8. ’!=’ NumericExpression |
9. ’<’ NumericExpression |
10. ’>’ NumericExpression |
11. ’<=’ NumericExpression |
12. ’>=’ NumericExpression)?
13. NumericExpression ::= AdditiveExpression
14. AdditiveExpression ::= MultiplicativeExpression (
15. ’+’ MultiplicativeExpression |
16. ’-’ MultiplicativeExpression)*
17. MultiplicativeExpression ::= UnaryExpression (’*’ UnaryExpression |
18. ’/’ UnaryExpression)*
19. UnaryExpression ::= ’!’ PrimaryExpression |
20. ’+’ PrimaryExpression |
21. ’-’ PrimaryExpression |
22. PrimaryExpression
23. PrimaryExpression ::= Expression | FunctionCall | URIref |
24. RDFLiteral | NumericLiteral | BooleanLiteral
25. | BlankNode | Variable

Figure 9.9: Grammar of the FILTER clause.

be different from the URI <mailto:chis@bizer.de> and the value of the
variable ?price has to be smaller than 20.

Numeric Expressions conduct calculations. Numeric expressions may use
the + (add), - (substract), * (multiply), and / (divide) operators.
WIQA-PL uses the same functions for evaluating numeric expressions
as the SPARQL query language. These functions are defined in section
11.3 of the SPARQL specification [PS05]. An example of a relational ex-
pression that includes a numeric expression is ?priceYen < ?priceDollar

* 112.

Figure 9.10 shows the WIQA-PL policy “Accept only information that has
been asserted after January 1st, 2006 by analysts who achieved a StarMine
score above 80”. The policy uses two filter clauses: The filter clause in line
10 restricts bindings of the variable ?date to values that are greater than
2006-01-01. The FILTER clause in line 19 restricts bindings of the variable
?benchmark to integer values greater than 80.

CHAPTER 9. EXPRESSING POLICIES 106

1. NAME "New information from highly rated analysts"
2. DESCRIPTION "Accept only information that has been asserted
3. after January 1st, 2006 by analysts who achieved
4. a StarMine score above 80."
5. PATTERN
6. {
7. GRAPH fd:GraphFromAggregator
8. { ?GRAPH swp:assertedBy ?warrant .
9. ?warrant swp:authority ?authority .
10. ?warrant dc:date ?date .
11. FILTER (?date > "2006-01-01"^^xsd:date) . }
12.
13. GRAPH fd:BackgroundInformation
14. { ?authority rdf:type fin:Analyst .
15. ?authority fin:benchmark ?benchmark .
16. FILTER (?benchmark > "80"^^xsd:integer) . }
17. }

Figure 9.10: WIQA-PL policy: Accept only information that has been as-
serted after January 1st, 2006 by analysts who achieved a StarMine score
above 80.

9.6 Functions

1. FunctionCall ::= RDFrelatedFunction | CastingOrExtensionFunction
2. CastingOrExtensionFunction ::= URIref ArgList
3. ArgList ::= (’(’ NIL | Expression (’,’ Expression)* ’)’)
4. RDFrelatedFunction ::= ’str’ ’(’ Expression ’)’ |
5. ’lang’ ’(’ Expression ’)’ |
6. ’datatype’ ’(’ Expression ’)’ |
7. ’isUri’ ’(’ Expression ’)’ |
8. ’isBlank’ ’(’ Expression ’)’ |
9. ’isLiteral’ ’(’ Expression ’)’ |
10. ’regex’ ’(’ Expression ’,’ Expression (
11. ’,’ Expression)? ’)’

Figure 9.11: Grammar for WIQA-PL function calls.

Filter expressions may include function calls. A function takes some num-
ber of RDF terms as arguments and returns an RDF term or a boolean value
as result. Figure 9.11 shows the grammar for invoking functions within filter
clauses. There are three types of functions in WIQA-PL:

Basic RDF-Related Functions are used to test RDF-specific properties
of variable bindings. RDF-related functions can, for instance, be used

CHAPTER 9. EXPRESSING POLICIES 107

to check if a variable is bound to a URI reference or to a literal, or
to test if a literal has a specific language tag. WIQA-PL provides the
same RDF-related functions as the SPARQL query language. Table
9.5 contains a short description of each function. The functions are
specified in detail in chapter 11.4 of the SPARQL specification [PS05].
The policy suite that is shown in Figure 9.12 contains two policies that
use RDF-related functions: The policy “Accept only German or English
information” uses the lang() function to check whether the language
tag of RDF literals has the value DE or EN. The policy “Accept only
information from Deutsche Bank” uses the the str() and the regex()

functions to check whether the URI that identifies an authority contains
the domain name deutsche-bank.de.

Constructor Functions are used to cast literals to a specific datatype.
Casting is performed by calling a constructor function for the target
type on an operand of the source type. WIQA-PL provides the same
constructor functions as the SPARQL query language. Table 9.6 gives
an overview of these functions. The functions are defined in detail
in chapter 11.5 of the SPARQL specification [PS05]. Each construc-
tor function can cast only a specific set of datatypes into the target
type. For instance, a xsd:float cannot be casted into a xsd:dateTime.
The datatypes that are allowed for the operand of each constructor
function are also specified in chapter 11.5 of the SPARQL specifi-
cation [PS05]. Calling a constructor function with an operand that
has a disallowed datatype raises an error. Constructor functions are
used within filter clauses to make literals that have different datatypes
comparable. For instance, the filter clause FILTER (xsd:dateTime(?date)

> "2005-11-20T17:22:10"^^xsd:dateTime) uses the constructor function
xsd:dateTime() to cast the value of the variable ?date to the datatype
xsd:dateTime before comparing it to the given value.

Extension Functions. WIQA-PL provides an extension mechanism for in-
voking arbitrary, application domain specific functions. Extension
functions are implemented as plug-ins for the WIQA filtering engine.
An extension function is named by a URI and takes some number of
RDF terms as arguments. The result of an extension function is an
RDF term. Extension functions are called within policies by their URI
followed by a list of arguments. The list of arguments is enclosed with
parentheses and arguments are separated by commas.

As we have seen in Chapter 3, quality-based information filtering poli-
cies rely on a wide range of different, application domain specific assessment

CHAPTER 9. EXPRESSING POLICIES 108

Function Description
isUri() Returns true if the argument is a URI.

Returns false otherwise.
isBlank() Returns true if the argument is a blank node.
isLiteral() Returns true if the argument is a literal.

lang() Returns the language tag of a literal, if it has one.
datatype() Returns the datatype URI of a literal.

str() Returns an string representation of a URI reference.
regex() Invokes the Xpath [CD99] regular expression function

to match a string against a regular expression.

Table 9.5: Basic RDF-related functions.

1. NAME "Only German or English information"
2. DESCRIPTION "Accept only German or English information.
3. The language is determined by testing the RDF language tag."
4. PATTERN
5. { FILTER(lang(?OBJ) = ’DE’ || lang(?OBJ) = ’EN’) . }
6.
7. NAME "Accept only information from Deutsche Bank"
8. DESCRIPTION "Checks if information has been asserted by an
9. authority identified with a email address within
10. the domain ’deutsche-bank.de’."
11. PATTERN {
12. GRAPH ANY {
13. ?GRAPH swp:assertedBy ?warrant .
14. ?warrant swp:assertedBy ?authority .
15. FILTER(regex(str(?authority), ’deutsche-bank\.de’)) . } }

Figure 9.12: WIQA-PL policy suite containing two policies using WIQA-PL
build in functions.

metrics. For instance, rating-based filtering policies use various scoring algo-
rithms to calculate the score for an entity from a network of ratings. Content-
based filtering policies may rely on natural language processing methods to
analyze text or may use various statistical methods to compare a piece of in-
formation with related information. By including domain specific functions,
the WIQA framework can be extended to fit the requirements of different
application domains.

Three example extension functions have been implemented so far: The
More Positive Ratings and the Tidal Trust functions implement different
rating-based scoring algorithms; the wiqa:count function allows the formu-
lation of quantity constraints. The functions are named with URIs in the

CHAPTER 9. EXPRESSING POLICIES 109

Function Description
xsd:boolean() Produces a typed literal with the datatype

xsd:boolean from the operand.
xsd:double() Produces a literal with the datatype xsd:double.
xsd:float() Produces a literal with the datatype xsd:float.

xsd:decimal() Produces a literal with the datatype xsd:decimal.
xsd:integer() Produces a literal with the datatype xsd:integer.

xsd:dateTime() Produces a literal with the datatype xsd:dateTime.
xsd:string() Produces a literal with the datatype xsd:string.

Table 9.6: Constructor functions.

namespace http://www.wiwiss.fu-berlin.de/suhl/bizer/WIQA/, which is abbre-
viated using the wiqa: prefix. The extension functions will be described in
the following sections.

9.6.1 More Positive Ratings Function

The More Positve Ratings extension function implements a simple rating-
based scoring algorithm. The function counts all positive and negative rat-
ings for a resource within the graph set to be filtered. It returns true, if
the resource received more positive than negative ratings, and returns false
otherwise.

The function assumes that ratings are expressed using the terms
fin:positiveRating and fin:negativeRating from the financial vocabulary in-
troduced in Section 7.2. The function has one operand that determines the
resource for which the ratings are counted.

Figure 9.13 shows the WIQA-PL policy “Only accept information from in-
formation providers who have received more positive than negative ratings”.
The filter clause in line 8 uses the wiqa:MorePositiveRatings function to check
whether an ?authority has received more positive than negative ratings.

An advantage of the wiqa:MorePositiveRatings() function is that the eval-
uation process is easy to understand for the information consumer. A disad-
vantage of the function is that it is very susceptible to ballot stuffing and bad
mouthing attacks (see Section 3.1.3), as it takes all ratings into account and
does not differentiate between ratings from trustworthy and less trustworthy
raters.

CHAPTER 9. EXPRESSING POLICIES 110

1. NAME "More positive Ratings"
2. DESCRIPTION "Only accept information from information providers who
3. have received more positive than negative ratings."
4. PATTERN
5. { GRAPH fd:GraphFromAggregator
6. { ?GRAPH swp:assertedBy ?warrant .
7. ?warrant swp:authority ?authority .
8. FILTER wiqa:MorePositiveRatings(?authority) . }
9. }

Figure 9.13: WIQA-PL policy: Only accept information from information
providers who have received more positive than negative ratings.

9.6.2 Tidal Trust Function

The Tidal Trust extension function implements a more complex rating-based
scoring algorithm. The Tidal Trust algorithm was developed by Jennifer
Golbeck at the University of Maryland [Jen05]. The algorithm takes only
ratings from information providers into account who are on the information
consumer’s web-of-trust. Ratings from other information providers are ig-
nored. The ratings are weighted with the degree of trust the information
consumer has in the information provider. The Tidal Trust algorithm is
therefore more robust against ballot stuffing and bad mouthing attacks than
the algorithm described in the last section. By weighting the ratings, the al-
gorithm can take the personal bias of the information consumer into account
and is therefore suitable for situations where ratings are subjective [GM06].

The algorithm operates on a network of ratings in which each node has
rated several other nodes. The meaning of the ratings may differ between
application scenarios. Within the financial information integration scenario
from Chapter 7, a rating may, for instance, represent an investor’s opinion
about the quality of discussion forum postings from another investor. Figure
9.14 shows an example rating network. The nodes represent information
providers, the edges represent ratings on a scale from 1 (low quality) to 10
(high quality).

The Tidal Trust algorithm determines the rating of a node in the network
(called sink) from the perspective of another node (called source). If the
rating network contains a direct rating by the source for the sink, then the
algorithm returns this rating as result. If the network does not contain
such a rating, the algorithm infers an approximated rating from the paths
connecting the two nodes.

The inference is based on two assumptions: It is expected that people
who the user rates highly will tend to agree with the user more about the

CHAPTER 9. EXPRESSING POLICIES 111

N6

N7

N5

N3

N2

N1 N9

9

6

7

9

6

8
5

9

6

N4

N8
5

5

9

7

Figure 9.14: Example rating network.

rating of others than people whom the user gives a low rating. Second, the
accuracy of inferred ratings is expected to decrease with length of the paths
that connect two individuals. These assumptions are motivated in [GM06]
with the experience from several real-world rating networks.

Based on these assumptions, the Tidal Trust algorithm infers a missing
rating by conducting the following steps:

1. It searches for all minimum length paths in the network that connect
the source with the sink. The length of a path is understood as the
number of edges that form a path. Let’s assume, for example, that
node N1 wants to infer a rating for node N9 from the example network
shown in Figure 9.14. There are four minimal length paths from N1
to N9: The first path connects the source with the sink over the nodes
N2 and N5; the second path over the nodes N3 and N5; the third path
over the nodes N3 and N6 and the forth path over nodes N3 and N7.

2. The algorithm determines the strength of each path. The strength of
a path equals the lowest rating on the path. Within our example, the
strength of paths 1-3 is 6, the strength of the fourth path is 5.

3. Afterwards, the algorithm establishes the threshold max. This thresh-
old is used to determine which ratings are taken into account in the
final calculation. The threshold max is set to the maximum strength
of all minimal length paths leading to the sink. Within our example,
max has the value 6.

4. With the max value established, each node on a path which does not
have a rating for the sink can calculate the rating as the weighted
average of the ratings for the sink from its successors using the formula
shown in Figure 9.15. tij stands for the rating of a node i for node j.
The function suc(i) returns all nodes that are successors of node i. The
formula takes only ratings from nodes into account which are rated at or

CHAPTER 9. EXPRESSING POLICIES 112

tis =

∑
j ∈ suc(i) | tij ≥ max

tij tjs∑
j ∈ suc(i) | tij ≥ max

tij

Figure 9.15: Formula for inferring the rating for a sink node s from the
perspective of a source node i.

above the max threshold by their predecessor. Each rating is weighted
by the rating a successor received from its predecessor. Within our
example network, nodes N5, N6 and N7 already have ratings for the
sink N9. Node N3 infers its rating for the sink from the ratings of nodes
N5 and N6. It does not take the rating from node N7 into account as
its rating for node N7 is below the max threshold of 6. Formula 9.15
results in the value 7.8 for the ratings of N5 and N6 and the ratings
of N3 for both nodes. Node N2 infers the rating 6 from the rating of
node N3. The source node N1 infers a rating of 6.72 for the sink from
the ratings of nodes N2 and N3.

The WIQA implementation of the Tidal Trust algorithm assumes that
ratings are represented using the FOAF Trust Module [Jen05]. Ratings have
to be contained in the graph set to be filtered. The extension function has
two arguments: The first argument identifies the source node; the second
argument identifies the sink node. Figure 9.16 shows a WIQA-PL policy
that uses the Tidal Trust extension function. The policy accepts information
only from information providers who have a Tidal Trust rating that is greater
than 5.

1. NAME "TidalTrust rating above 5"
2. DESCRIPTION "Only accept information from information providers with
3. a Tidal Trust rating above 5."
4. PATTERN
5. { GRAPH fd:GraphFromAggregator
6. { ?GRAPH swp:assertedBy ?warrant .
7. ?warrant swp:authority ?authority .
8. FILTER (wiqa:TidalTrust(?USER, ?authority) > 5) }
9. }

Figure 9.16: WIQA-PL policy: Only accept information that originates from
information providers with TidalTrust rating above 5.

CHAPTER 9. EXPRESSING POLICIES 113

9.6.3 Count Function

Filtering policies may rely on quantity constraints. For example, a policy
might require information to be asserted by a number of independent infor-
mation sources. Other policies might require information sources to have
received a certain number of positive ratings; or might accept information
only from information providers that are believed to be experts on a specific
topic because they have worked for a certain number of projects involving
that topic.

The WIQA extension function wiqa:count() is used to express quantity
constraints within WIQA policies. wiqa:count() takes one variable as operand
and returns the number of different RDF terms that are bound to this variable
within a group of matching solutions. The grouping is defined by the position
of the filter clause containing the wiqa:count() function in the pattern clause.
The filter clause can either be included into a graph pattern or it can be
positioned after the graph patterns.

If the filter clause is positioned after the graph patterns, then the solution
set is grouped by the variables ?SUBJ, ?PRED, and ?OBJ. A group of solutions
is formed by all solutions within the solution set that assign the same values
to these variables.

1. NAME "Asserted by two different analysts"
2. DESCRIPTION "Only accept information that has been asserted by
3. at least two different analysts."
4. PATTERNS
5. {
6. GRAPH ANY { ?GRAPH swp:assertedBy ?warrant .
7. ?warrant swp:authority ?authority . }
8.
9. GRAPH ANY { ?authority rdf:type fin:Analyst . }
10.
11. FILTER (wiqa:count(?authority) >= 2) .
12. }

Figure 9.17: WIQA-PL policy: Only accept information that has been as-
serted by at least two different analysts.

Figure 9.17 shows the policy “Only accept information that has been
asserted by at least two different analysts”. The pattern clause of the policy
consists of two graph patterns that are followed by a filter clause using the
wiqa:count() function (line 11).

Figure 9.18 shows an example graph set consisting of three graphs.
ex:Graph3 contains provenance information about ex:Graph1 and ex:Graph2

CHAPTER 9. EXPRESSING POLICIES 114

ex:Rater1

ex:Warrant1

ex:Graph1

ex:Authority1

swp:assertedBy

rdfs:label
ex:Graph1

rdf:type
fin:Analyst

ex:Rater2 ex:Rater3 ex:Rater4

ex:Authority2

ex:Warrant2 ex:Warrant3

ex:Graph2

fin:Analyst

swp:assertedBy
swp:assertedBy

swp:authority swp:authority

fin:positiveRating
fin:positiveRating

rdf:type

fin:positiveRating
fin:positive
Rating

fin:positive
Rating

swp:authority

ex:Graph3

<urn:DUNS:047897855> "Intel, Inc"

ex:Graph2
rdfs:label

"Siemens AG" <urn:DUNS:316067164>

Figure 9.18: Example graph set.

and background information about the authorities that have asserted the
graphs: ex:Authority1 has asserted ex:Graph1 and ex:Graph2. ex:Authority1

is a fin:Analyst and has received three positive ratings. ex:Authority2 has
asserted ex:Graph2. ex:Authority2 is also a fin:Analyst but has received only
two positive ratings.

When the policy is applied against the example graph set, the WIQA
filtering engine conducts the following steps:

1. The filtering engine adds the root pattern GRAPH ?GRAPH { ?SUBJ, ?PRED,

?OBJ . } to the set of graph patterns given by the pattern clause.
Matching all three patterns against the example graph set results in
the solution set shown in Table 9.7.

2. As the filter clause, that contains the wiqa:count() function, is posi-
tioned after the graph patterns, the solution set is grouped by the
variables ?SUBJ, ?PRED and ?OBJ. This results in two groups: The first
group contains solution 1; the second group contains solution 2 and 3,
as these solutions assign the same values to all three variables.

3. The operand of the wiqa:count() function is the variable ?authority.
The function therefore counts the number of different values of this

CHAPTER 9. EXPRESSING POLICIES 115

variable in each group. It returns the value 1 for solutions in the first
group, and the value 2 for solutions in the second group.

4. The filter clause requires solutions to have a wiqa:count() result greater
or equal to 2. Solution 1 is therefore removed from the solution set and
the accepted triple <urn:x-DUNS:316067164> rdfs:label "Siemens AG" is
constructed from the remaining second solution set.

Variable Solution 1 Solution 2 Solution 3
?SUBJ <urn:x-DUNS: <urn:x-DUNS: <urn:x-DUNS:

047897855> 16067164> 316067164>

?PRED rdfs:label rdfs:label rdfs:label

?OBJ "Intel, Inc" "Siemens AG" "Siemens AG"

?GRAPH ex:Graph1 ex:Graph2 ex:Graph2

?warrant ex:Warrant1 ex:Warrant2 ex:Warrant3

?authority ex:Authority1 ex:Authority1 ex:Authority2

Table 9.7: Solution set from matching all three patterns against the example
graph set.

The wiqa:count() function may also be used within graph patterns. Figure
9.19 shows the policy “Only accept information that has been asserted by
analysts who have received at least 3 positive ratings”. The policy consists
of three graph patterns. The third graph pattern contains the filter clause
FILTER (wiqa:count(?rater) > 2) (line 11).

1. NAME "Asserted by analysts with at least 3 positive ratings."
2. DESCRIPTION "Only accept information that has been asserted by
3. analysts who have received at least 3 positive ratings."
4. PATTERNS {
5. GRAPH ANY { ?GRAPH swp:assertedBy ?warrant .
6. ?warrant swp:authority ?authority . }
7.
8. GRAPH ANY { ?authority rdf:type fin:Analyst . }
9.
10. GRAPH ANY { ?rater fin:positiveRating ?authority .
11. FILTER (wiqa:count(?rater) > 2) . }
12. }

Figure 9.19: WIQA-PL policy: Only accept information that has been as-
serted by analysts who have received at least 3 positive ratings.

CHAPTER 9. EXPRESSING POLICIES 116

The graph patterns in the pattern clause are connected to the root pattern
by the referring variables ?GRAPH, ?SUBJ, ?PRED, or ?OBJ. The graph patterns
may also share variables between each other. All variables that occur in more
than on graph pattern are called shared variables. The first graph pattern
(line 5-6) in Figure 9.19 refers to the root pattern by using the variable ?GRAPH.
All three graph patterns share the variable ?authority.

Graph patterns form a pattern tree by sharing variables. Figure 9.20
shows the pattern tree for the policy shown in Figure 9.19.

Root pattern

?GRAPH ?SUBJ ?PRED ?OBJ

Graph pattern 1

ANY ?GRAPH swp:assertedBy ?warrant

?warrant swp:authority ?authority

Graph pattern 2

fin:Analyst rdf:type ?authority ANY

Graph pattern 3 (COUNT pattern)

ANY ?rater fin:positiveRating ?authority

Figure 9.20: Graph pattern tree for the policy: Only accept information that
has been asserted by analysts who have received at least 3 positive ratings.

When the wiqa:count() function is used within a graph pattern, then the
solution set is grouped by the variables ?SUBJ, ?PRED, and ?OBJ and by all
shared variables that lie on the path between the root pattern and the graph
pattern containing the wiqa:count() function.

For our example policy, the shortest path is formed by the variables ?GRAPH
and ?authority. The solution set is therefore grouped by the variables ?SUBJ,
?PRED, ?OBJ, ?GRAPH, and ?authority.

Applying the example policy against the graph set shown in Figure 9.18
leads to a solution grouping that consists of three groups: The first group
contains all solutions resulting from the triple in ex:Graph1, its assertion by
ex:Authority1 and the three ratings of ex:Authority1. The second group
contains all solutions resulting from the triple in ex:Graph2, its assertion
by ex:Authority1 and the three ratings of ex:Authority1. The third group
contains all solutions resulting from the triple in ex:Graph2, its assertion by
ex:Authority2 and the two ratings of ex:Authority2.

CHAPTER 9. EXPRESSING POLICIES 117

The function call wiqa:count(?rater) returns the number of different val-
ues of the variable ?rater within the group to which a solution belongs. The
number is required to be greater than two by the filter clause. ex:Authority2

was rated by two raters only, therefore all solutions from the third group are
removed from the solution set. As ex:Authority1 was rated by three different
raters, the solutions from the first and second group remain in the solutions
set, which finally leads to the acceptance of all triples from ex:Graph1 and
ex:Graph2.

9.7 Summary

This section introduced the WIQA-PL Policy Language and explained how
the language is used to express different filtering policies. Within WIQA-
PL, filtering policies are expressed as a set of conditions that a piece of
information has to satisfy in order to be filtered positive. The language
assumes that information is represented as a set of named graphs. Conditions
are expressed as graph patterns which refer to the triples to be filtered using
a set of referring variables. Graph patterns may contain filter clauses, which
further restrict pattern matches. Filter clauses may consist of relational,
logical, and numeric expressions and may include function calls. WIQA-PL
policies can invoke application domain specific assessment metrics through
an extension function mechanism.

The design of the language was lead by the following goals:

Flexibility. As we have seen in Chapter 3, quality-based information filter-
ing policies combine a wide range of different context-, content-, and
rating-based assessment metrics. A language for expressing policies
should therefore provide a high degree of flexibility. WIQA-PL tries to
achieve this flexibility by relying on constructs from RDF query lan-
guages, such as graph patterns and filters, which have already proven
their general applicability.

Extensibility. Information quality assessment often requires domain-
specific metrics. In order to be applicable across different domains, an
information quality assessment framework should be extensible with
domain-specific metrics. WIQA-PL provides this extensibility through
its extension function mechanism.

Standard Conformance. Whenever possible, newly introduced languages
should be based on well-known concepts. WIQA-PL adopts the con-
cepts of graph patterns and filters and the syntax for representing them

CHAPTER 9. EXPRESSING POLICIES 118

from SPARQL, the standard query language for RDF. This may make it
easier for users who are already familiar with SPARQL to learn WIQA-
PL.

