
Chapter 5

Named Graphs

The practical problems with RDF reification raise the question whether a
pure triple data model is adequate for applications which need to represent
meta-information about RDF data or if a variation of the RDF data model
would be more suitable.

This chapter proposes the Named Graphs data model, a simple extension
of the RDF data model, which allows a more efficient representation of meta-
information about RDF data.

The ideas presented in this chapter are the result of joint work with
Jeremy Carroll (Hewlett Packard Labs, United Kingdom), Patrick Stickler
(Nokia, Finland), and Pat Hayes (Institute for Human and Machine Cogni-
tion, United States). The discussions that lead to the development of the
Named Graphs data model took place between January and April 2004 and
are archived on the W3C www-archive mailing list1. The results of our joint
work have been published in [CBHS05a].

The Named Graphs data model is designed to fulfill the following core
requirements:

Representation of Meta-Information. The model should allow a more
efficient representation of meta-information than the RDF reification
mechanism.

Unique Identification of RDF Data. The model should provide a mech-
anism for the globally unique identification of RDF data, so that dif-
ferent information providers can express meta-information about the
same RDF data.

Backward Compatibility. In order to provide as much backward compat-
ibility with existing RDF data and deployed applications as possible,

1http://lists.w3.org/Archives/Public/www-archive/ (retrieved 09/25/2006)

62

CHAPTER 5. NAMED GRAPHS 63

the design should keep close to the RDF recommendations.

Exchange of Meta-Information. The model should be accompanied with
syntaxes for publishing and exchanging information together with
meta-information.

5.1 The Named Graphs Data Model

The Named Graphs data model is a simple variation of the RDF data model.
The basic idea of the model is to introduce a graph naming mechanism, which
allows RDF triples to talk about RDF graphs. A named graph is an entity
which consists of an RDF graph and a name in the form of a URI reference.
Two named graphs which have different names but share the same RDF
graph are seen as two separate entities. Two named graphs which have
different RDF graphs have to be named with different URI references.

The RDF data model represents information as a single node-and-edge
labeled graph. Within the Named Graphs data model, information is repre-
sented as a set of named graphs.

A set of named graphs is a set {(u1, G1), (u2, G2), ...(un, Gn)}
where each Gi is an RDF graph, and each ui is a URI reference.
All ui are distinct.

In order to enforce the blank node scoping rules [Hay04] the global as-
sumption is made that blank nodes cannot be shared between named graphs,
meaning that if ng and ng′ are different named graphs then the sets of blank
nodes which occur in triples in ng and in ng′ are disjoint.

A named graph is an RDF resource and can be described in the usual
open way using RDF statements. RDF statements about a named graph
may occur in the named graph itself or in other graphs. Information which
is stated about a named graph is understood to refer to each statement
within the graph. For instance, the statement that somebody is the creator
of a named graph implies that he is the creator of each statement within
the graph. This interpretation provides a simple, but flexible alternative to
RDF reification, as it enables meta-information to be stated about graphs
containing only a single statement as well as about graphs containing multiple
statements. As graphs are uniquely identified by being named with a URI
reference, it is possible for different information providers to make statements
about a graph.

Figure 5.1 shows a graphical representation of a graph set consisting of
two named graphs. Graph http://www.bizer.de/Graph235 contains informa-
tion about Document1325. Graph http://www.bizer.de/Graph365 describes the

CHAPTER 5. NAMED GRAPHS 64

provenance of graph http://www.bizer.de/Graph235. The graphset represents
the same information as the reification example in Figure 4.9.

http://www.bizer.de/i

http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

http://www.bizer.de/Graph365

“2006-02-03“
^^http://www.w3.org/2001/XMLSchema#Date

http://www.bizer.de/Graph235

http://www.bizer.de/Document1325 http://www.bizer.de/i

mailto:chris@bizer.de

“Named Graphs“
^^http://www.w3.org/2001/XMLSchema#String

http://purl.org/dc/elements/1.1/title

http://purl.org/dc/elements/1.1/creator

http://xmlns.com/foaf/0.1/mbox

http://www.bizer.de/Graph235

Figure 5.1: Graph set consisting of two named graphs.

5.2 Related Work

There has been an intensive discussion in the RDF community about RDF
reification and several authors have proposed alternative approaches. The
following sections compare the different proposals with the Named Graphs
data model.

5.2.1 Quads

A quad is an RDF triple plus a further forth element. Several authors have
proposed to use quads instead of RDF reification [Int06a, Bec03b, Dum03,
MK03, TW05]. The different proposals vary widely in the semantics of the
fourth element using it as statement ID, model ID, or generally to refer to the
“context” of a statement. The proposals can be grouped into two categories
depending on whether other quads are allowed to refer to the fourth element
or not.

CHAPTER 5. NAMED GRAPHS 65

The approach to use quads without allowing them to refer to each other,
is taken by Dave Beckett’s Redland Application Framework [Bec03b]. Within
this framework, all RDF triples belong to a single graph, but may be anno-
tated with an additional context ID. This context ID may be a URI refer-
ence, a blank node, or a literal. As not all triples need to have a context
ID, this leads to a model where some triples are contextualized while oth-
ers are not. The context ID may be used in operations which change the
graph, for instance delete all triples from a certain context, or as additional
parameter in queries against the graph. A second tool-set from this category
is Carsten Tolle’s RDF-Source related Storage System[TW05], which stores
the retrieval URL of the document from which a triple originates together
with each triple. Both authors argue that quads should not refer to the
fourth element because this would change the way information is represented
in RDF and is not compatible with the RDF specifications. Therefore, the
forth element should only be used for local operations within RDF tool-sets.

Robert MacGregor and In-Young Ko argue that quads should be allowed
to refer to other quads [MK03]. They use the forth element to refer to the
context of a statement. For them “a context consists of a set of facts (here,
RDF triples) and a description of an environment within which these triples
are believed to be true” [MK03]. As some quads may point to triples which
are not context dependent, they propose to put a null value into the context
position for these quads.

An example of a tool-set that implements quads which are allowed to refer
to each other is Intellidimension RDF Gateway [Int06a]. Within this toolset,
the forth element has to be an URI reference and is interpreted as “context”
identifier. Contexts are used within the tool-set itself for representing access
control restrictions.

The Named Graphs data model is very similar to the variation of quads
used by Intellidimension RDF Gateway. What differentiates both approaches
is the handling of blank nodes. RDF Gateway allows blank nodes to be shared
between quads that belong to different contexts, while Named Graphs forbid
blank nodes to be shared between graphs. Therefore, a set of Named Graphs
can be decomposed losslessly into a set of separate RDF graphs, while a set
of RDF Gateway quads cannot.

5.2.2 N3 Formula

A second variation of the RDF data model which may be used to represent
meta-information about RDF data is N3 [BL98]. N3 has been developed by
Tim Berners-Lee as a language for expressing data and rules. N3 extends
RDF with features such as variables, universal and existential quantification.

CHAPTER 5. NAMED GRAPHS 66

N3 allows triples to be grouped to sets by using formulas. A formula may be
used within triples like normal nodes. Blank nodes are not shared between
formulas. Formulas can be seen as subgraphs within an outer graph formed
by the N3 document. Formulas may be used within other formulas, allowing
infinite subgraph chains.

Within the N3 syntax, formulas are enclosed with curly brackets. Figure
5.2 shows an example N3 document containing a formula in lines 5 and 6.
This formula is used in line 6 as subject of a statement, saying that Richard
is the author of the statements within the formula.

1. @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2. @prefix dc: <http://purl.org/dc/elements/1.1/> .
3. @prefix ex: <http://example.org/> .
4.
5. { ex:Chris foaf:mbox <mailto:chris@bizer.de> .
6. ex:document1243 dc:creator ex:Chris } dc:creator ex:Richard .

Figure 5.2: N3 formula example.

Allowing subgraph chains may be a useful feature for representing rules.
For use cases where applications only require to represent and exchange meta-
information about RDF data, it seems to be an unnecessarily far step away
from the RDF specifications.

5.2.3 RDF Dataset

The Named Graphs data model has been adopted by the W3C Data Access
Working Group with a slight modification as the data model underlying the
SPARQL query language [PS05]. The SPARQL specification defines RDF
datasets as:

An RDF dataset is a set = {G, (u1, G1), (u2, G2), ...(un, Gn)}
where G and each Gi are graphs, and each ui is a URI. All ui are
distinct.

G is called the default graph. (ui, Gi) are named graphs.

The main difference to the Named Graphs data model is the addition
of the unnamed default graph. The default graph provides backward com-
patibility with RDF without named graphs, and allows the named graphs
functionality of SPARQL to be optional. Thus, the SPARQL query lan-
guage can be used by applications which require graph naming as well as by
applications which do not require this feature.

CHAPTER 5. NAMED GRAPHS 67

The addition of the default graph to a collection of named graphs may
have the side effect of reintroducing some of the difficulties that named graphs
address. For example, merging both default graphs and named graphs from
different repositories, while maintaining provenance information, may prove
difficult. Further problems arise when serializations of RDF datasets are pub-
lished on the Web using syntaxes like TriX or TriG which serialize multiple
graphs into a single document (see Section 5.3). What does the document
URL refer to if such a document contains an unnamed default graph? The
document, the RDF dataset, or the default graph? As this question is unan-
swered, it is recommended to name all graphs before publishing them on the
Web.

5.3 Syntaxes for Named Graphs

In order to exchange sets of named graphs between applications and to pub-
lish Named Graphs on the Web, serialization syntaxes are needed. A serial-
ization syntax for named graphs has to exhibit the name, the graph, and the
association between them. This chapter introduces two syntaxes which allow
sets of named graphs to be serialized into single documents: TriX based on
XML; and TriG as a compact plain text format based on Turtle.

5.3.1 The TriX Syntax

The RDF/XML syntax [Bec04b] provides various abbreviations which
neither completely hide the underlying RDF, nor do they make it
clear. The abbreviations make it impossible to describe RDF/XML
with XML Schema [TBMM04] and make generic XML tools such as
XPath [CD99], XSLT [Cla99], and XQuery [BCF+05] hard to use together
with RDF/XML [CS04a, Bec04a].

TriX [CS04a] is an alternative XML-based syntax for RDF. TriX ad-
dresses the shortcomings of the RDF/XML syntax by having a basic syntax
that corresponds closely to the RDF data model. In addition, TriX provides
for naming graphs and for serializing several graphs in a single document.

The Trix syntax is described by the XML document type definition shown
in Figure 5.3. The core of TriX is the triple element, which contains three
children, the subject, predicate, and object of a triple. Each of these children
is either a uri element, an id element, a plainLiteral, or a typedLiteral ele-
ment, depending on whether the corresponding node in the graph is an RDF
URI reference, a blank node, or a literal (plain or typed). The element con-
tent contains the label of the node (or the blank node identifier). Whitespace

CHAPTER 5. NAMED GRAPHS 68

<!-- TriX: RDF Triples in XML -->
<!ELEMENT trix (graph*)>
<!ATTLIST trix xmlns CDATA #FIXED

"http://www.w3.org/2004/03/trix/trix-1/">
<!ELEMENT graph (uri?, triple*)>
<!ELEMENT triple ((id|uri|plainLiteral|typedLiteral),

uri,
(id|uri|plainLiteral|typedLiteral))>

<!ELEMENT id (#PCDATA)>
<!ELEMENT uri (#PCDATA)>
<!ELEMENT plainLiteral (#PCDATA)>
<!ATTLIST plainLiteral xml:lang CDATA #IMPLIED>
<!ELEMENT typedLiteral (#PCDATA)>
<!ATTLIST typedLiteral datatype CDATA #REQUIRED>

Figure 5.3: TriX document type definition, taken from [CS04a].

normalization is applied to uri and id element content. typedLiteral elements
require a datatype attribute. plainLiteral elements can be modified by an
xml:lang attribute. xml:lang is prohibited elsewhere in the document (for
example, it is not permitted on the root element).

A graph element starts with an optional uri child element which names
the graph, and then has any number of triple elements as children. The
root element of the document is a trix element, which has zero or more graph

elements as its children.
Figure 5.4 shows a TriX document containing two named graphs; the

second graph describes the first.

5.3.2 The TriG Syntax

TriG [Biz05] is a plain-text syntax which provides for serializing several
named graphs into a single document. TriG is a variation of the Tur-
tle [Bec04c] syntax. TriG extends Turtle by introducing curly brackets to
group triples into multiple graphs, and to precede each by the name of that
graph. The complete EBNF grammar of TriG syntax is given in appendix
B.

The TriG document shown in Figure 5.5 contains two graphs. The first
graph (line 6-11) contains information about Chris and Document1325. Line
6 specifies that the graph is named ex:Graph1. The graph refers to itself as
the graph name URI ex:Graph1 is used within the statements in lines 11 and
12.

CHAPTER 5. NAMED GRAPHS 69

<trix xmlns="http://www.w3.org/2004/03/trix/trix-1/">
<graph>
<uri>http://example.org/graph4</uri>
<triple>
<uri>http://example.org/aBook</uri>
<uri>http://purl.org/dc/elements/1.1/title</uri>
<typedLiteral datatype=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral">
<ex:title xmlns:ex="http://example.org/">
A Good Book
</ex:title>

</typedLiteral>
</triple>
<triple>
<uri>http://example.org/aBook</uri>
<uri>http://www.w3.org/2000/01/rdf-schema#comment</uri>
<plainLiteral
xml:lang="en">This is a really good book!</plainLiteral>

</triple>
</graph>
<graph>
<uri>http://example.org/graph5</uri>
<triple>
<uri>http://example.org/graph4</uri>
<uri>http://example.org/source</uri>
<uri>http://example.org/book-description.rdf</uri>
</triple>
</graph>

</trix>

Figure 5.4: Example of a TriX document, taken from [CS04a].

5.4 Query Languages for Named Graphs

There are two query languages for the Named Graphs data model:
TriQL [Biz04a] and RDFQ [Sti04]. Both languages extend the idea of match-
ing triple patterns against a single graph to matching graph patterns against
a set of named graphs. A graph pattern consists of an optional graph name
and a set of triple patterns. The graph name as well as the components of
the triple patterns may be variables or RDF nodes. If the graph name is
omitted then a graph pattern matches all graph names.

TriQL [Biz04a] is based on RDQL [Sea04]. Figure 5.6 shows an
TriQL query which selects people together with their email address
and homepage. The query takes only information that is authored by
<http://www.richardcyganiak.de/me> into account. Line 2-3 contain a graph

CHAPTER 5. NAMED GRAPHS 70

1. @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2. @prefix dc: <http://purl.org/dc/elements/1.1/> .
3. @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4. @prefic ex: <http://www.bizer.de/ExampleDocument/> .
5.
6. ex:Graph1 {
7. <http://www.bizer.de/i> foaf:mbox <mailto:chris@bizer.de> .
8. <http://www.bizer.de/Document1325>
9. dc:title "Named Graphs"^^xsd:String ;
10. dc:creator <http://www.bizer.de/i> .
11. ex:Graph1 dc:creator <http://www.bizer.de/i> .
12. ex:Graph1 dc:date "2005-03-03"^^xsd:date . }
13.
14. ex:Graph2 {
15. <http://www.bizer.de/i> foaf:name "Chris Bizer";
16. foaf:homepage <http://www.bizer.de> .
17. ex:Graph2 dc:creator <http://www.richardcyganiak.de/me> ;
18. ex:Graph2 dc:date "2004-03-03"^^xsd:date . }

Figure 5.5: Example of a TriG document.

pattern, which matches named graphs that contain a foaf:mbox and a
foaf:homepage statement about the same ?person. The names of matching
graphs are bound to the variable ?graph. ?graph is constrained by the second
graph pattern in line 4 to graphs which are authored by Richard. The in-
formation that Richard authored a graph may occur in any named graph, as
the second graph pattern does not constrain graph names.

1. SELECT ?person ?email ?homepage
2. WHERE ?graph (?person foaf:mbox ?email .
3. ?person foaf:homepage ?homepage)
4. (?graph dc:creator <http://www.richardcyganiak.de/me>)
5. USING foaf FOR <http://xmlns.com/foaf/0.1/>
6. dc FOR <http://purl.org/dc/elements/1.1/>

Figure 5.6: TriQL query against a set of named graphs.

The TriQL query language was evaluated [Fuk04] by the W3C Data Ac-
cess Working Group and TriQL’s graph pattern matching mechanism has
been adopted by the SPARQL query language [PS05]. Within SPARQL, the
keyword GRAPH is used to restrict a graph pattern to match specific named
graphs. Figure 5.7 shows the reformulation of the TriQL query from Figure
5.6 as a SPARQL query. In line 5, the variable ?graph is bound to the names
of all graphs that contain information about email addresses and homepages.

CHAPTER 5. NAMED GRAPHS 71

The second pattern in lines 8 and 9 constrains ?graph to graphs that are au-
thored by Richard.

TriQL and RDFQ predate SPARQL and it can be expected that the
SPARQL standard will supersede both languages.

1. PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2. PREFIX dc: <http://purl.org/dc/elements/1.1/>
3. SELECT ?person ?email ?homepage
4. WHERE {
5. GRAPH ?graph
6. { ?person foaf:mbox ?email .
7. ?person foaf:homepage ?homepage }
8. GRAPH ?anyGraph
9. { ?graph dc:creator <http://www.richardcyganiak.de/me> }
10. }

Figure 5.7: SPARQL query against an RDF dataset.

