3. Experimenteller Teil

3.1. Arbeitsmethoden und Geräte

Alle Reaktionen wurden in sorgfältig ausgeheizten Apparaturen unter Argon oder im Vakuum durchgeführt. TeF₄, TeCl₄ und TeBr₄ wurden in einem automatischen Handschuhkasten gehandhabt.

Die Reaktionen wurden in Duran-Schlenkkolben oder in Duran-Glasrohren mit Innendurchmesser von 5 mm (1,5 mm Wandstärke) durchgeführt.

Im Fall, wenn das Produkt mit Glas reagiert, wurden die Reaktionen in Tetrafluorethylen-Perfluor-Methylvinylether (MFA)- Schläuchen der Firma IFK-ISOFLUOR Kunststoffverarbeitungs GmbH, Neuss, durchgeführt. Es wurden Schläuche von 6,5 mm Innendurchmesser (1,3 mm Wandstärke) verwendet. Die Schläuche wurden an einem Ende abgeschmolzen und mit dem anderen Ende durch ein Ventil der Fa. Hoke an eine Vakuumapparatur angeschlossen.

Flüchtige Lösungsmittel wurden nach Literaturvorschrift ^[59] sorgfältig getrocknet und an einer Vakuumapparatur einkondensiert.

Kommerziell erhältliches $(CH_3)_3SiCN$ und $(CH_3)_3SiCl$ wurden an einer Drehbandkolonne destilliert. Weitere käuflich erworbene Reagenzien wurden ohne Reinigung eingesetzt. TeF₄ wurde nach der von Seppelt et al.^[60] beschriebenen Reaktion aus TeO₂ und SF₄ hergestellt.

NMR-spektroskopische Messungen erfolgten an einem JEOL-Lambda-400-Multikern-NMR- Spektrometer. Die chemischen Verschiebungen beziehen sich bei den ¹²⁵Te-NMR-Messungen auf Dimethyltellurid. ¹H- und ¹³C-NMR-Spektren wurden intern auf das jeweilige Lösungsmittel referenziert. ¹⁹F-NMR-Spektren wurden auf Trichlorfluormethan als externen Standard referenziert. Deuterierte Lösungsmittel wurden bei der Firma euriso-top gekauft.

Die Raman- Spektren wurden an einem FT-Raman-Spektrometer der Firma Bruker, Typ RFS 100 mit Tiefkühleinrichtung aufgenommen. Die Anregung erfolgte mit einem Nd-YAG- Laser der Wellenlänge 1064 nm und Leistungen von 10-550 mW.

Röntgenstrukturanalysen wurden an einem BRUKER-AXS, SMART CCD Diffraktometer durchgeführt. Es wurde Mo- K_{α} -Strahlung verwendet.

Die Kristalle wurden zusammen mit etwas Mutterlauge mit einer Pipette, beziehungsweise mit einem Spatel auf ein Filterpapier übertragen, das sich im Stickstoffkaltgasstrom einer in der Literatur ^[61] beschriebenen Apparatur befindet. Unter dem Mikroskop wurden geeignete Einkristalle ausgewählt, mit Siliconfett auf einem Glasfaden befestigt und ohne Unterbrechung der Kühlung in den Kaltgasstrom eines Diffraktometers überführt. Die Lösungen und Verfeinerungen der Strukturen wurden mit den SHELX-97^[62] Programmen durchgeführt.

3.2. Ausgangssubstanzen

SF ₄	Air products, ABCR
TeO ₂	Acros
(CH₃)₃SiCN	Acros
TeCl ₄	Acros
TeBr ₄	Alfa Aesar
(CH ₃) ₃ SiCl	Acros

3.3. Synthesen und Spektroskopische Daten

3.3.1. [Te(CN)₃(μ-CN)·(CH₃CN)₂]_n

Synthese

Zu 0.2 g (1 mmol) TeF₄ in einem 50 mL Schlenkkolben werden 5 mL Acetonitril kondensiert und das TeF₄ durch Erwärmen auf Raumtemperatur gelöst. Zu 0.45 g (4.5 mmol) (CH₃)₃SiCN in einem 50 mL Schlenkkolben werden 4 mL Acetonitril kondensiert. Nach Erwärmen auf Raumtemperatur werden beide Lösungen erneut auf -35°C gekühlt. Nach Belüften mit Argon wird die TeF₄-Lösung durch einen Teflonschlauch zur (CH₃)₃SiCN-Lösung gegeben. Die Reaktionslösung wird langsam auf – 6°C erwärmt. Die farblose klare Reaktionslösung wird im Kältebad in einen Tiefkühlschrank (-30 °C) gestellt. Über Nacht kristallisiert [Te(CN)₃(μ -CN)·(CH₃CN)₂]_n in Form farbloser, blättchenförmiger Kristalle.

Raman–Spektrum

(-80°C, fest, cm⁻¹): $\tilde{\nu} = 211$, 265, 290, 332, 359, 383, 391 (Schulter), 406 (Schulter), 418, 618, 918 (Schulter), 926, 1370, 1413, 1451, 2144, 2155, 2186, 2192, 2252, 2267, 2292 (Schulter), 2297, 2905, 2940, 2970, 3000.

3.3.2. [Te(CN)₃(μ-CN)·(thf)₃]_n

Synthese

Zu 0.1 g (0.5 mmol) TeF₄ in einem 50 mL Schlenkkolben werden 15 mL THF kondensiert und das TeF₄ durch Erwärmen auf Raumtemperatur gelöst. Zu 0.25 g (2.5 mmol) (CH₃)₃SiCN in einem 100 mL Schlenkkolben werden 20 mL THF kondensiert, das (CH₃)₃SiCN bei Raumtemperatur gelöst und die Mischung auf -68°C gekühlt. Nach Belüften mit Argon wird die auf -40°C gekühlte TeF₄-Lösung über einen Teflonschlauch innerhalb von 5 min unter Rühren zugegeben. Die

Reaktionsmischung wird langsam auf –6°C erwärmt (30 min zwischen -10 und -6°C). Ein Großteil des Lösungsmittels und $(CH_3)_3SiF$ (¹⁹F-NMR, Dezett bei -157.0 ppm) wurde bei -68°C abgepumpt. Nach erneutem Erwärmen auf -8°C wurde der Kolben mit dem Kältebad in eine Tiefkühltruhe (-84°C) gestellt. Über Nacht kristallisiert [Te(CN)₃(µ-CN)·(thf)₃]_n in Form nadelförmiger, farbloser Kristalle.

Raman-Spektrum

(-80°C, fest, cm⁻¹): $\tilde{\nu} = 193$ (Schulter), 221, 276, 289, 311, 342, 376, 400, 423, 617, 640, 838, 865 (Schulter), 887, 919, 1032, 1171, 1233, 1247, 1343, 1368, 1447, 1461, 1488, 2153, 2178, 2185, 2877, 2889, 2898, 2944 (Schulter), 2972.

(25°C, Lösung, cm⁻¹): \rightleftharpoons 278, 352, 427, 617, 905, 1028, 1069, 1179, 1226, 1335, 1364, 1449, 1487, 2119 (Schulter), 2144, 2155 (Schulter), 2183, 2575, 2658, 2717, 2874, 2915 (Schulter) 2940, 2961.

3.3.3. [Te(CN)₃(μ-CN)·diglym]_n

Synthese

In eine spezielle Apparatur, bestehend aus zwei Glasrohren (5 mm Innendurchmesser), die über ein Glas-Verbindungsstück mit Teflonhahn verbunden sind, werden in eines dieser Rohre zu 0.05 g (0.25 mmol) TeF₄ bei Raumtemperatur im Argonstrom 0.4 mL Diethylenglykoldimethylether (mit einer 1 mL PE-Spritze) zugegeben und das TeF₄ wird gelöst. Zu der auf -196°C abgekühlten TeF₄-Lösung werden an der Vakuumapparatur 0.15 g (1.5 mmol) (CH₃)₃SiCN kondensiert. Wird das abgeschmolzene Rohr bei Raumtemperatur geschüttelt, fallen farblose, feine Kristalle von polymerem Tellurteracyanid-Diethylenglykoldimethylether-Solvat aus.

Raman-Spektrum

 $(25^{\circ}C, \text{ fest, cm}^{-1})$: $\tilde{\nu} = 216, 246, 282, 351, 377$ (Schulter), 418, 471, 617, 804, 827, 848, 1013, 1026, 1038, 1131, 1244, 1282, 1305, 1450, 1468, 2144, 2155, 2177,

2738, 2776, 2825, 2860 (Schulter), 2883, 2901, 2924, 2944, 2980 (Schulter), 3008 (Schulter).

3.3.4 Te(CN)₄·(diglym)₂

Die überstehende Lösung, aus der die Kristalle von $[Te(CN)_3(\mu-CN)\cdot(diglym)]_{\infty}$ ausgefallen sind (siehe 3.4.3.), wird zum größten Teil in das zweite Rohr abdekantiert. Das Rohr wird abgeschmolzen und einige Wochen lang bei -54°C stehen gelassen. Dabei kristallisiert das Monomer von Te(CN)₄·(diglym)₂ aus.

Raman-Spektrum

(-50°C, fest, cm⁻¹): $\tilde{\nu} = 209, 250, 291, 323$ (Schulter), 330, 339 (Schulter), 355, 397 (Schulter), 419, 486 (Schulter), 495, 510 (Schulter), 524, 577, 618, 691, 806, 830 (Schulter), 848, 911, 970, 1028, 1073, 1119, 1136, 1159, 1193, 1242, 1282, 1299 (Schulter), 1316 (Schulter), 1375, 1448, 1473, 2080, 2152, 2170, 2185, 2700, 2741, 2781, 2826, 2890, 2942, 2982 (Schulter).

 $(25^{\circ}C, Lösung, cm^{-1})$: $\tilde{\nu} = 203, 242, 252, 290, 309, 320, 419, 523, 617, 646, 804, 851, 929, 968, 1027, 1129, 1201, 1243, 1286, 1449, 1471, 2144 (Schulter), 2152, 2160, 2184, 2702, 2743, 2781 (Schulter), 2823, 2892, 2944, 2982 (Schulter).$

3.3.5. Te(CN)₄·(dme)₂

Synthese

Zu 0.1 g (0.5 mmol) TeF₄ in einem MFA – Reaktionsrohr (6.5 mm Innendurchmesser) werden 1.5 mL Ethylenglykoldimethylether kondensiert und das TeF₄ wird durch Erwärmen auf Raumtemperatur gelöst. Zu der auf –196°C abgekühlten TeF₄-Lösung werden 0.3 g (3 mmol) (CH₃)₃SiCN kondensiert. Das Rohr wird abgeschmolzen, kurz bei Raumtemperatur geschüttelt und in einen Tiefkühlschrank (-30°C) gestellt. Über Nacht kristallisiert Te(CN)₄.(dme)₂ in Form farbloser, blättchenförmiger Kristalle.

Raman-Spektrum

 $(-80^{\circ}\text{C}, \text{ fest, cm}^{-1})$: $\tilde{\nu} = 252, 272, 335, 355, 379, 412, 432, 470, 816, 848, 970, 1005, 1124, 1156, 1253, 1437, 1453, 2137, 2150, 2177, 2187, 2799, 2825, 2844, 2891, 2919, 2941, 2967, 3019, 3033$

(25°C, Lösung, cm⁻¹): $\tilde{\nu}$ = 205, 218, 340, 424, 596, 617, 820, 849, 985, 1025, 1134, 1415, 1451, 1473, 2147, 2182, 2719, 2786, 2818, 2840, 2899, 2944, 2982

NMR-Spektrum von Te(¹³CN)₄

¹³C-NMR (DME/d₈-THF (5:1), -60°C, 100.4 MHz): δ = 119.1 ppm, Singulett, ¹J(¹³C-¹²⁵Te) = 455 Hz;

¹³C-NMR (DME/d₈-THF (5:1), 0°C, 100.4 MHz): δ = 118.5 ppm, Singulett, ¹J(¹³C-¹²⁵Te) = 453 Hz;

¹²⁵Te-NMR (DME/d₈-THF (5:1), -100°C, 126.2 MHz): δ = 20.8 ppm, Quintett, ¹J(¹²⁵Te-¹³C) = 465 Hz;

¹²⁵Te-NMR (DME/d₈-THF (5:1), -10°C, 126.2 MHz): δ = 36.3 ppm, Quintett, ¹J(¹²⁵Te-¹³C) = 455 Hz.

3.3.6. Te(CN)₄·18-Krone-6·CH₃CN

Synthese

In eine spezielle Apparatur, bestehend aus zwei Glasrohren (5 mm Innendurchmesser), die über ein Glas-Verbindungsstück mit Teflonhahn verbunden sind, werden in eines dieser Rohre zu 0.04 g (0.2 mmol) TeF₄ 0.7 mL Acetonitril kondensiert und das TeF₄ wird durch Erwärmen auf Raumtemperatur gelöst. Zu der auf -196°C abgekühlten TeF₄-Lösung werden 0.09 g (0.9 mmol) (CH₃)₃SiCN kondensiert. Die Reaktionsmischung wird langsam auf –6°C erwärmt und wieder auf -30°C gekühlt. In das zweite Rohr werden zu 0.04 g (0.18 mmol) 18-Krone-6 0,7 mL Acetonitril kondensiert, das 18-Krone-6 wird gelöst und zu der auf -30°C gekühlte Te(CN)₄-Lösung gegeben. Der entstehende weiße Niederschlag wird von der Lösung abgetrennt und die Lösung wird langsam auf -30°C gekühlt.

Raman-Spektrum

 $(25^{\circ}\text{C}, \text{Lösung, cm}^{-1})$: $\tilde{\nu} = 124, 152, 218, 247, 277, 310, 327, 379, 419, 472, 617, 795, 858, 919, 1038, 1287, 1373, 1455, 1478, 2149, 2180, 2252, 2293, 2735, 2883, 2911, 2942, 3003.$

3.3.7. Te(CN)₂F₂·(dme)₂

Synthese

Zu 0.1 g (0.5 mmol) TeF₄ in einem MFA – Reaktionsrohr (6.5 mm Innendurchmesser) werden 0.7 mL Ethylenglykoldimethylether kondensiert und das TeF₄ wird durch Erwärmen auf Raumtemperatur gelöst. Zu der auf –196°C abgekühlten TeF₄-Lösung werden 0.1g (1 mmol) (CH₃)₃SiCN kondensiert. Das Rohr wird abgeschmolzen, kurz bei Raumtemperatur geschüttelt und bei -35 °C kaltgestellt. Über Nacht kristallisiert Te(CN)₂F₂·(dme)₂ in Form farbloser, blättchenförmiger Kristalle.

Raman-Spektrum

(-80°C, fest, cm⁻¹): $\tilde{\nu} = 164$, 181, 216, 349, 371, 410, 418, 523, 540 (Schulter), 838, 858, 1013, 1024, 1069, 1094, 1121, 1161, 1240, 1276, 1410, 1440, 1452, 1471, 2081, 2186, 2718, 2791 (Schulter), 2807, 2827, 2847, 2868, 2891, 2909 (Schulter), 2930, 2947 (Schulter), 2962, 3023, 3036.

NMR-Spektrum von Te(¹³CN)₂F₂

¹⁹F-NMR (DME/d₈-THF (7:1), -60°C, 376.0 MHz): δ = -77.6ppm, Triplett, ²J(¹⁹F-¹³C) = 31Hz;

¹³C-NMR (DME/d₈-THF (7:1), 20°C, 100.4 MHz): δ = 120.8ppm, Triplett, ²J(¹³C-¹⁹F) = 29 Hz; ¹³C-NMR (DME/d₈-THF (7:1), -70°C, 100.4 MHz): δ = 121.7 ppm, Triplett, ²J(¹³C-¹⁹F) = 31 Hz;

¹²⁵Te-NMR (DME/d₈-THF (7:1), -70°C, 126.2 MHz): δ = 803.5 ppm, Triplett von Triplett, ¹J(¹²⁵Te-¹³C_{eq}) = 744 Hz, ¹J(¹²⁵Te-¹⁹F) = 48 Hz.

3.3.8. Te(CN)₂Cl₂·Te(CN)Cl₃·(dme)₄

Synthese

Zu 0.27 g (1 mmol) TeCl₄ in einem Duran-Glasrohr (5 mm Innendurchmesser) werden 0.7 mL Ethylenglykoldimethylether kondensiert und das TeCl₄ wird durch Erwärmen auf Raumtemperatur gelöst. Zu der auf -196°C abgekühlten TeCl₄-Lösung werden 0.2 g (2 mmol) (CH₃)₃SiCN kondensiert. Das Rohr wird abgeschmolzen, kurz bei Raumtemperatur geschüttelt und langsam auf -54°C abgekühlt, wobei gelbe Kristalle entstehen.

NMR-Spektrum von Te(¹³CN)₂Cl₂

¹³C-NMR (DME/d₈-THF (7:1), 20°C, 100.4 MHz): δ = 110.1ppm, Singulett; ¹³C-NMR (DME/d₈-THF (7:1), -70°C, 100.4 MHz): δ = 111.4 ppm, Singulett; ¹²⁵Te-NMR (DME/d₈-THF (7:1), -70°C, 126.2 MHz): δ = 524.6, Triplett, ¹J(¹²⁵Te-¹³C) = 723 Hz.

3.3.9. [Te(CN)₂O·(dme)₂]₂

Synthese

Zu 0.1 g (0.5 mmol) TeF₄ in einem 50 mL Schlenkkolben werden 2.5 mL Ethylenglykoldimethylether kondensiert und das TeF₄ durch Erwärmen auf Raumtemperatur gelöst. Zu 0.2 g (2 mmol) $(CH_3)_3SiCN$ in einem 100 mL Zweihals-Schlenkkolben werden 2.5 mL Ethylenglykoldimethylether kondensiert. Nach Erwärmen auf Raumtemperatur werden beide Lösungen erneut auf -50°C abgekühlt. Nach Belüften mit Argon wird die TeF₄-Lösung durch einen Teflonschlauch zur $(CH_3)_3SiCN$ -Lösung gegeben. Die Reaktionslösung wird

langsam auf – 18°C erwärmt, wobei farblose Kristalle entstehen. Die Kristalle werden gelöst und die farblose klare Reaktionslösung wird im Kältebad in einen Tiefkühlschrank (-30°C) gestellt. Über Nacht kristallisiert $[Te(CN)_2O\cdot(dme)_2]_2$ in Form farbloser, blättchenförmiger Kristalle.

Raman-Spektrum

(-80°C, fest, cm⁻¹): $\tilde{\nu} = 194$, 223, 262, 292, 311, 333, 368, 386, 400, 521, 678, 846 (Schulter), 859, 1020, 1078, 1129, 1293, 1443, 1457 (Schulter), 1477, 2149, 2166, 2731, 2814, 2827, 2849, 2891, 2921, 2947, 3010

3.3.10. Te(CN)₂·(CH₃)₃SiCl

Synthese

Zu 0.13 g (0.5 mmol) TeCl₄ in einem Duran-Glasrohr (5 mm Innendurchmesser) werden 0.2 mL Acetonitril kondensiert und das TeCl₄ wird durch Erwärmen auf Raumtemperatur gelöst. Zu der auf -196°C abgekühlten TeCl₄-Lösung werden 0.11 g (1.1 mmol) (CH₃)₃SiCN kondensiert. Das Rohr wird abgeschmolzen, bei Raumtemperatur geschüttelt (etwa 5 Minuten) und langsam auf -30°C abgekühlt, wobei gelbe Kristalle entstehen.

Raman-Spektrum

(-80°C, fest, cm⁻¹): $\tilde{\nu}$ = 157, 170, 260 (Schulter), 273, 349 (Schulter), 367, 384, 406, 461, 637, 762, 921, 1360, 1375, 2176, 2205, 2254, 2287, 2708, 2736, 2902, 2933, 2967, 3000.

(-80°C, Mutterlauge, cm⁻¹): $\tilde{\nu} = 185, 242, 278, 354$ (Schulter), 378, 387, 407, 432, 463, 637, 701, 719, 763, 919, 1372, 1415, 1448, 2163 (Schulter), 2174, 2191, 2204, 2252, 2291, 2730, 2903, 2940, 2971, 3000.

3.3.11. TeF₄·(dme)₂

Synthese

Die Kristalle von TeF₄·(dme)₂ werden in einem abgeschmolzenen Duran-Glasrohr (5 mm Innendurchmesser) durch langsames Abkühlen einer Lösung von 0.1 g (0.5 mmol) TeF₄ in 0.6 mL Ethylenglykoldimethylether auf -57°C erhalten.

3.3.12. TeF₄·dioxan

Synthese

Zu 0.1 g (0.5 mmol) TeF₄ in einem 50mL Schlenkolben werden 10.5 mL 1,4-Dioxan kondensiert und das TeF₄ wird unter Erwärmen gelöst. Die Lösung wird soweit eingeengt (um 9 mL 1,4-Dioxan), bis sich feine Kristalle abscheiden. Die Kristalle werden anschließend aus der Lösung umkristallisiert.

Raman-Spektrum

(25°C, fest, cm⁻¹): $\tilde{\nu}$ = 308, 334, 344, 454, 485 (Schulter), 496, 624, 639, 827, 849, 1014, 1087, 1124, 1218, 1307, 1446, 1464, 2875, 2936, 2979, 2997

3.3.13. [TeF₄·(C₂H₅)₂O]_n

Synthese

Die Kristalle von $[TeF_4 \cdot (C_2H_5)_2O]_n$ werden in einem 50 mL Schlenkkolben durch langsames Abkühlen einer Lösung von 0.1 g (0.5 mmol) TeF₄ in 3.5 mL Diethylether auf -84°C erhalten.

3.3.14. [TeF₄·toluol]_n

Synthese

Die Kristalle von $[TeF_4$ -toluol]_n werden in einem 50 mL Schlenkkolben durch langsames Abkühlen einer Lösung von 0.1 g (0.5 mmol) TeF₄ in 1.5 mL Toluol auf -84°C erhalten.

NMR-Spektrum

¹⁹F-NMR (d₈-THF, -30°C, 376.0 MHz): δ = -26.4 ppm;

¹²⁵Te-NMR (d₈-THF, 25°C, 126.2 MHz): δ = 1297.3 ppm.

3.3.15. TeCl₄·(CH₃CN)₂

Synthese

Die Kristalle von TeCl₄·(CH₃CN)₂ werden in einem abgeschmolzenen Duran-Glasrohr (5mm Innendurchmesser) durch langsames Abkühlen einer Lösung von 0.2 g (0.7 mmol) TeCl₄ in 0.5 mL Acetonitril erhalten.

Raman-Spektrum

(-80°C, fest, cm⁻¹): $\tilde{\nu} = 157$, 170, 262 (Schulter), 273, 350 (Schulter), 363 (Schulter), 367, 384, 390 (Schulter), 760, 774, 921, 1027, 1360, 1374, 1399, 1419, 1430, 1452, 2248 (Schulter), 2254, 2287, 2733, 2933, 3000.

(25°C, Lösung, cm⁻¹): $\tilde{\nu} = 277$, 354 (Schulter), 371, 919, 1372, 1446, 2203, 2251, 2292, 2728, 2839, 2877, 2940, 3003.

3.3.16. TeCl₄.(dme)₂

Synthese

Die Kristalle von TeCl₄·(dme)₂ werden in einem abgeschmolzenen Duran-Glasrohr (5 mm Innendurchmesser) durch langsames Abkühlen einer Lösung von 0.27 g (1mmol) TeCl₄ in 0.4 mL Ethylenglykoldimethylether auf -54°C erhalten.

Raman-Spektrum

(-80°C, fest, cm⁻¹): $\tilde{\nu} = 148$, 171, 270, 338, 357, 368 (Schulter), 803, 838, 853, 961, 1011, 1027, 1069, 1127, 1140 (Schulter), 1162, 1247, 1287, 1366, 1430 (Schulter), 1441, 1449 (Schulter), 1463, 1470, 1480, 2720, 2786 (Schulter), 2817, 2835, 2847, 2868 (Schulter), 2888, 2909, 2941, 2979, 2995

 $(25^{\circ}C, Lösung, cm^{-1})$: $\tilde{\nu} = 143, 163, 274, 344$ (Schulter), 363, 807, 847, 1449, 1471, 2720, 2781 (Schulter), 2819, 2836, 2891, 2921 (Schulter), 2939, 2982

3.3.17. TeCl₄·dioxan

Synthese

Zu 0.13 g TeCl₄ (0.5 mmol) in einem Duran-Glasrohr (3 mm Innendurchmesser) werden 2.3 mL 1,4-Dioxan kondensiert und das TeCl₄ wird unter Erwärmen gelöst. Die Lösung wird soweit eingeengt (um 1.7 mL 1,4-Dioxan), bis sich feine Kristalle abscheiden. Die Kristalle werden anschließend aus der Lösung umkristallisiert.

Raman-Spektrum

 $(25^{\circ}C, \text{ fest, cm}^{-1}): \tilde{v} = 149, 162, 270, 359, 418, 463, 485, 818, 834, 849, 1010, 1075, 1123, 1219, 1308, 1396, 1442, 1456, 2668, 2727, 2784, 2862, 2892, 2922, 2969 (Schulter), 2987$

 $(25^{\circ}C, Lösung, cm^{-1})$: $\tilde{\nu} = 144, 161, 275, 348$ (Schulter), 366, 422, 434, 486, 823 (Schulter), 834, 853 (Schulter), 1014, 1046, 1109, 1127, 1216, 1304, 1334, 1374, 1395, 1442, 1458, 2663, 2718, 2745, 2775, 2854, 2887, 2910 (Schulter), 2966

3.3.18. [H(OC₄H₁₀)₂]·[Te₃Cl₁₃]

Synthese

Wird das TeCl₄ in 50 mL Schlenkkolben aus Toluol auskristallisiert so entsteht eine unerwartete Verbindung von $[H(OC_4H_{10})_2] \cdot [Te_3Cl_{13}]$. Es lässt sich mit Verunreinigungen von Diethylether und partielle Hydrolyse erklären.

3.3.19. TeBr₄-dioxan

Synthese

Zu 0.11 g (0.25 mmol) TeBr₄ in einem 50 mL Schlenkkolben werden 2.8 mL 1,4-Dioxan kondensiert und das TeBr₄ wird unter Erwärmen gelöst. Die Lösung wird soweit eingeengt, bis sich feine Kristalle abscheiden. Die Kristalle werden anschließend aus der Lösung umkristallisiert.

NMR-Spektrum

¹²⁵Te-NMR (d₈-Dioxan, 25°C, 126.2 MHz): δ = 2089.1 ppm

3.3.20. [H₃O(dioxan)₃]·[Te₃Br₁₃]

Synthese

Werden die Kristalle von TeBr₄-dioxan zusammen mit überstehender Lösung in einem offenen Reaktionskolben über Nacht bei Raumtemperatur stehengelassen, so kommt es zu teilweiser Hydrolyse und die Verbindung [H₃O(dioxan)₃][Te₃Br₁₃] entsteht.

3.4. ¹³C-NMR Input Parameter für die Simulation in gNMR^[17]

Die ¹³C-NMR-Spektren wurden für Te(¹³CN)₃F und Te(¹³CN)₃Cl simuliert. Für die Eigenlinienbreite wurde ein Wert von 1.2 Hz für Te(¹³CN)₃F angenommen. Dieser Wert wurde für die Halbwertsbreite des Ethylenglykoldimethylether-Signals gemessen. Für Te(¹³CN)₃CI wurde für die Eigenlinienbreite ein Wert von 0 angenommen, da in diesem Fall der intramolekulare Austausch nicht eingefroren wurde und das Quadrupolmoment des Chlors die Linie zusätzlich verbreitert (deshalb konnten nur relative Geschwindigkeitskonstanten bestimmt werden). Die der Proben wurden Konzentrationen aus dem Tellurspektrum von gemischtsubstituierten Verbindungen des Tellurs (IV) anhand von Integralen bestimmt. In berechneten Spektren wurden die Stickstoffatome sowie das Telluratom ausgelassen. Die chemische Verschiebung der Verbindungen wurde abhängig von der Temperatur variiert, um sie den gemessenen Werten anzupassen. In dem Temperaturbereich von 223 K - 233 K wurde das Signal von Te(¹³CN)₃Cl geglättet.

3.4.1 Te(¹³CN)₃F

Die Konzentration der Probe: 0.05 M. ${}^{2}J({}^{13}C_{ax}{}^{-19}F) = 149 \text{ Hz}, {}^{2}J({}^{13}C_{\ddot{a}q}{}^{-19}F) = 39 \text{ Hz},$ ${}^{2}J({}^{13}C_{ax}{}^{-13}C_{\ddot{a}q}) = 8 \text{ Hz}.$

Temperatur [K] / chemische Verschiebung [ppm]: 233/112.9, 125.0; 243/112.8, 124.9; 253/112.7, 124.8; 263/112.5, 124.7; 273/112.3, 124.5; 283/112.3, 124.5.

3.4.2. Te(¹³CN)₃Cl

Die Konzentration der Probe: 0.01 M. ${}^{2}J({}^{13}C_{ax}-{}^{13}C_{\ddot{a}g}) = 5$ Hz.

Temperatur [K] / chemische Verschiebung [ppm]: 203/108.5, 121.2; 208/108.4, 121.1; 213/108.4, 121.1; 223/108.3, 121.0; 233/108.1, 121.0.