Halogen- und Pseudohalogen-Verbindungen des Tellurs

INAUGURAL-DISSERTATION

zur Erlangung der Doktorwürde des Fachbereiches Biologie, Chemie, Pharmazie der Freien Universität Berlin

> vorgelegt von Małgorzata Szwak aus Poznań

> > Berlin 2006

Die vorliegende Arbeit wurde von November 2003 bis Dezember 2006 am Institut für Chemie und Biochemie, Anorganische Chemie, der Freien Universität Berlin im Arbeitskreis von Prof. Dr. D. Lentz angefertigt.

> Erstgutachter: Prof. Dr. D. Lentz Zweitgutachter: Prof. Dr. K. Seppelt

Tag der Disputation: 26.01.2007

Veröffentlichung:

D. Lentz, M. Szwak, Angew. Chem. **2005**, *117*, 5207 – 5211; Angew. Chem. Int. Ed. **2005**, *44*, 5079 – 5082.

Vorträge:

D. Lentz, M. Szwak, *Synthesis and Structure Determination of Tellurium (IV) Compounds*, 18th International Symposium on Fluorine Chemistry, Bremen **2006**.

D. Lentz, M. Szwak, *Synthese und Strukturelle Charakterisierung von Tellur (IV) Verbindungen*, 12. Deutscher Fluortag, Schmitten-Dorfweil (Taunus), **2006**.

Posterbeiträge:

D. Lentz, M. Szwak, *Solvate des Tellurtetracyanids*, Tag der Chemie, Freie Universität Berlin, **2005**.

D. Lentz, M. Szwak, *Synthesis and Structure Determination of Tellurium (IV) Cyanide Solvates,* 1st European Chemistry Congress, Budapest, **2006**.

Danksagung:

Mein besonderer Dank gilt Herrn Prof. Dr. D. Lentz für die Aufnahme in seinen Arbeitskreis, für Themenstellung und hervorragende Betreuung, sowie für die Beschaffung der finanziellen Mittel. Des Weiteren bedanke ich mich für die fruchtbaren Diskussionen, die wesentlich zum Gelingen dieser Arbeit beigetragen haben.

Herrn Prof. Dr. K. Seppelt für die freundliche Übernahme des Zweitgutachtens.

Bei allen Arbeitsgruppenmitgliedern bedanke ich für die gute Zusammenarbeit, Hilfsbereitschaft und das angenehme Arbeitsklima, vor allem bei M. Mujkic, F. Akkerman, R. Kickbusch und Ch. Ehm.

Weiterhin möchte ich allen Mitgliedern der Arbeitsgruppen von Prof. Dr. H. Hartl, Prof. Dr. S. Schlecht und Dr. J. Spandl für die gemeinschaftlichen Arbeitsgruppenseminare danken.

Frau Ι. Brüdgam ich für die Durchführung Einkristalldanke der Röntgenstrukuranalysen R. Kalinowski für die Rechnung und des Ramanspektrums von Te(CN)₄·(dme)₂.

Ein Dank geht auch an Forschungspraktikantin B. Müller für die Synthese von vier hier beschriebenen Verbindungen (TeCl₄·dioxan, TeBr₄·dioxan, $[H(OC_4H_{10})_2]\cdot[Te_3Cl_{13}], [H_3O(dioxan)_3]\cdot[Te_3Br_{13}]).$

Den Serviceabteilungen und Werkstätten des Instituts für Chemie danke ich für ihre Hilfsbereitschaft.

Schließlich danke ich ganz herzlich meinem Mann Tomasz, meinen Eltern Mariola und Leoncjusz und meinen Geschwistern Jolanta und Rafał für die liebevolle Unterstützung.

Abkürzungen:

Abb.	Abbildung
äq.	äquatorial
ax.	axial
CN	cyano
Diglym	Diethylenglykoldimethylether
DME	Ethylenglykoldimethylether
MFA	Tetrafluorethylen-Perfluor-Methylvinylether
NMR	Nuclear Magnetic Resonance, Kernresonanzspektroskopie
OL	Sauerstoffatome des Lösungsmittels
OK	Sauerstoffatome von 18-Krone-6
Ψ	pseudo
Tab.	Tabelle
THF	Tetrahydrofuran

Inhaltsverzeichnis:

1.	Einleitung	1
2.	Allgemeiner Teil	3
2.1.	Polymere Solvate des Tellurtetracyanids	3
2.1.1.	$[Te(CN)_3(\mu-CN)\cdot(CH_3CN)_2]_n$	3
2.1.2.	[Te(CN)₃(μ-CN)·(thf)₃]n	6
2.1.3.	[Te(CN)₃(µ-CN)·diglym]n	8
2.2.	Monomere Solvate des Tellurtetracyanids	11
2.2.1.	Te(CN) ₄ ·(diglym) ₂	11
2.2.2.	Te(CN)₄·(dme)₂	13
2.2.3.	Te(CN) ₄ ·18-Krone-6·CH ₃ CN	17
2.3.	Vergleich der Kristallstrukturen von kettenförmigen mit den	
	monomeren Tellurtetracyanid-Solvaten	19
2.3.1.	Vergleich der Ramanspektren von kettenförmigen mit den	
	monomeren Tellurtetracyanid-Solvaten	21
2.4.	Tellur(IV)dicyanidhalogenide	26
2.4.1.	$Te(CN)_2F_2\cdot(dme)_2$	32
2.4.2.	Te(CN) ₂ Cl ₂ ·Te(CN)Cl ₃ ·(dme) ₄	36
2.5.	Die kinetische Auswertung von ¹³ C-NMR-Spektren von	
	Te(¹³ CN) ₃ F und Te(¹³ CN) ₃ Cl	37
2.6.	[Te(CN) ₂ O·(dme) ₂] ₂	45
2.7.	Te(CN) ₂ ·(CH ₃) ₃ SiCl	47
2.8.	Tellurtetrafluorid-Solvate	49
2.8.1.	TeF ₄ ·(dme) ₂	51
2.8.2.	TeF₄·dioxan	53
2.8.3.	$[TeF_4 \cdot (C_2H_5)_2O]_n$	54
2.8.4.	[TeF₄·toluol] _n	55
2.9.	Tellurtetrachlorid-Solvate	57
2.9.1.	TeCl ₄ ·(CH ₃ CN) ₂	58

2.9.2.	TeCl ₄ ·(dme) ₂	60
2.9.3.	TeCl₄·dioxan	61
2.9.4.	$[H(OC_4H_{10})_2] \cdot [Te_3CI_{13}]$	62
2.10.	Tellutetrabromidsolvate	64
2.10.1.	TeBr ₄ ·dioxan	64
2.10.2.	[H ₃ O(dioxan) ₃]·[Te ₃ Br ₁₃]	66

3.	Experimenteller Teil	67
3.1.	Arbeitsmethoden und Geräte	67
3.2.	Ausgangssubstanzen	69
3.3.	Synthesen und Spektroskopische Daten	70
3.3.1.	[Te(CN) ₃ (μ-CN)·(CH ₃ CN) ₂] _n	70
3.3.2.	[Te(CN)₃(μ-CN)·(thf)₃]n	70
3.3.3.	[Te(CN)₃(μ-CN)·diglym] _n	71
3.3.4.	Te(CN)₄·(diglym)₂	72
3.3.5.	Te(CN) ₄ ·(dme) ₂	72
3.3.6.	Te(CN) ₄ ·18-Krone-6·CH ₃ CN	73
3.3.7.	Te(CN) ₂ F ₂ ·(dme) ₂	74
3.3.8.	Te(CN) ₂ Cl ₂ ·Te(CN)Cl ₃ ·(dme) ₄	75
3.3.9.	[Te(CN) ₂ O·(dme) ₂] ₂	75
3.3.10.	Te(CN) ₂ ·(CH ₃) ₃ SiCl	76
3.3.11.	TeF ₄ ·(dme) ₂	77
3.3.12.	TeF₄·dioxan	77
3.3.13.	$[TeF_4 \cdot (C_2H_5)_2O]_n$	77
3.3.14.	[TeF₄·toluol] _n	78
3.3.15.	TeCl ₄ ·(CH ₃ CN) ₂	78
3.3.16.	TeCl₄·(dme)₂	79
3.3.17.	TeCl₄·dioxan	79

3.3.18.	$[H(OC_4H_{10})_2] \cdot [Te_3CI_{13}]$	80	
3.3.19.	TeBr₄·dioxan	80	
3.3.20.	[H ₃ O(dioxan) ₃]·[Te ₃ Br ₁₃]	80	
3.4. 3.4.1	¹³ C-NMR Input Parameter für die Simulation in gNMR ^[38] Te(¹³ CN) ₃ F	81 81	
3.4.2.	Te(' ³ CN) ₃ Cl	81	
4. Zus	sammenfassung	82	
5. Sur	nmary	84	
6.	Kristallographischer Anhang	86	
6.1.	Kristall- und Strukturdaten	86	
6.1.1.	$[Te(CN)_3(\mu-CN)\cdot(CH_3CN)_2]_n$	86	
6.1.2.	[Te(CN)₃(μ-CN)·(thf)₃] _n	88	
6.1.3.	[Te(CN)₃(μ-CN)·diglym] _n	91	
6.1.4.	Te(CN)₄·(diglym)₂	94	
6.1.5.	Te(CN)₄·(dme)₂	98	
6.1.6.	Te(CN) ₄ ·18-Krone-6·CH ₃ CN	102	
6.1.7.	Te(CN) ₂ F ₂ ·(dme) ₂	107	
6.1.8.	$Te(CN)_2Cl_2 \cdot Te(CN)Cl_3 \cdot (dme)_4$	109	
6.1.9.	[Te(CN) ₂ O·(dme) ₂] ₂	114	
6.1.10.	Te(CN) ₂ ·(CH ₃) ₃ SiCl	117	
6.1.11.	TeF ₄ ·(dme) ₂	118	
6.1.12.	TeF₄·dioxan	122	
6.1.13.	$[TeF_4 \cdot (C_2H_5)_2O]_n$	124	
6.1.14.	[TeF₄·toluol] _n	127	
6.1.15.	TeCl ₄ ·(CH ₃ CN) ₂	131	
6.1.16.	TeCl₄·(dme)₂	133	

140
144
146

7.Literaturverzeichnis151

Beigelegt ist eine CD mit cif-files der in der Arbeit vorgestellten Kristallstrukturen.