Aus der Klinik und Poliklinik für Dermatologie des Universitätsklinikums Benjamin Franklin der Freien Universität Berlin

Leiter: Prof. Dr. Prof. h.c. C.E. Orfanos Arbeitsgruppe Prof. Dr. Dr. C.C. Geilen, Dr. J. Eberle

Die Bedeutung von Bcl-2-Proteinen für die Regulation der Apoptose beim malignen Melanom

Inauguraldissertation

zur Erlangung der Doktorwürde der Naturwissenschaften am Fachbereich Biologie, Chemie und Pharmazie der Freien Universität Berlin

vorgelegt von

Amir Masoud Hossini

aus

Teheran / Iran

Berlin 2003

1. Gutachter: Prof. Dr. Dr. Christoph C.Geilen

2. Gutachter: Prof. Dr. Volker A. Erdmann

Tag der Disputation: 07.11.2003

INHALTSVERZEICHNIS

1.	EINLEITUNG	1
1.1.	Das maligne Melanom	1
1.2.	Apoptose, der programmierte Zelltod	2
1.3.	Mechanismen der Apoptose	2
1.4.	Die Kontrolle der Apoptose durch Todesrezeptoren	4
1.5.	Caspasen und ihre Rolle bei der Kontrolle der Apoptose	5
1.6.	AIF und der Caspasen-unabhängige Apoptoseweg	8
1.7.	Die Bcl-2-Genfamilie	9
1.7.1.	Bcl-2 als Onkogen	12
1.7.2.	Die Rolle der Bcl-2-Familie bei der mitochondrial vermittelten Apoptose	12
1.8.	Apoptoseregulation durch Bcl-X	14
1.9.	Fragestellung	16
2.	MATERIAL UND METHODEN	17
2.1.	MATERIAL	17
2.1.1.	Eukaryotische Zellen und Nährlösungen	17
2.1.2.	Enzyme	18
2.1.3.	Antibiotika	19
2.1.4.	Nährmedium für Bakterien	19
2.1.5.	Vektoren und Plasmide	19
2.1.6.	Primer	20
2.1.7.	Längen-Marker	21
2.1.8.	Kits	21
2.1.9.	Material zur Proteinanalytik	22
2.1.10.	Antikörper	22
2.1.11.	Apoptose-Stimulanzien	23
2.1.12.	Lösungen	23

2.1.13.	Chemikalien und Radiochemikalien	24
2.1.14.	Sonstige Materialien	25
2.1.15.	Geräte	26
2.2.	METHODEN	28
2.2.1.	Allgemeine Methoden	28
2.2.1.1.	Sterilisierung von Lösungen und Nährmedien	28
2.2.1.2.	Konzentrationsbestimmung von DNA und RNA	28
2.2.1.3.	Ethanol-Fällung von DNA	28
2.2.1.4.	Agarosegel-Elektrophorese	29
2.2.1.5.	Autoradiographie	29
2.2.2.	DNA-Techniken	29
2.2.2.1.	Klonierungstechniken	29
2.2.2.2.	Tet-On TM -Genexpressionssystem	31
2.2.2.3.	Restriktion	32
2.2.2.4.	Dephosphorylierung	33
2.2.2.5.	Ligation	33
2.2.2.6.	Transformation kompetenter Bakterien-Zellen	34
2.2.2.7.	β-Galaktosidase-Test	35
2.2.2.8.	Plasmid-Minipräparation	36
2.2.2.9.	Plasmid-Midipräparation	36
2.2.2.10.	Isolierung und Reinigung von DNA-Fragmenten	37
2.2.2.11.	Sequenzierung der DNA	38
2.2.3.	RNA-Techniken	39
2.2.3.1.	Isolierung von Gesamt-RNA aus eukaryotischen Zellen	39
2.2.3.2.	Reverse-Transkriptase-PCR (RT-PCR)	40
2.2.3.3.	Northern Blot	42
2.2.4.	Techniken zur Proteinanalytik	47
2.2.4.1.	Herstellung von Zelllysaten	47
2.2.4.2.	Harnstoff-Puffer zum Nachweis von PARP	48

2.2.4.3.	CHAPS-Puffer zum Nachweis von Caspasen	48
2.2.4.4.	Konzentrationsbestimmung von Proteinen	49
2.2.4.5.	Diskontinuierliche SDS-PAGE nach Lämmli	49
2.2.4.6.	Western Blot	51
2.2.5.	Zellbiologische Methoden	53
2.2.5.1.	Allgemeine Methoden der Zellkultur	53
2.2.5.2.	Transfektion eukaryotischer Zellen	53
2.2.5.3.	APAAP-Färbung	55
2.2.5.4.	Quantifizierung der Apoptose (DNA-Fragmentierung)	57
2.2.5.5.	Bestimmung der Caspase-3-Aktivität	59
2.2.5.6.	Zytotoxizitätstest	59
2.2.5.7.	Tierexperimente	61
2.2.6.	Statistische Auswertung der Ergebnisse	61
3.	ERGEBNISSE	62
3.1.	Expressionsanalyse von Mitgliedern der Bcl-2-Familie in Melanom-Zellen	
	und Melanozyten-Kulturen	62
3.1.1.	Expression von Bcl-2 in Melanom-Zelllinien und Melanozyten-Kulturen	62
3.1.2.	Unterschiedlich hohe Bax- und Bcl-2-Expression in Melanom-Zelllinien	63
3.1.3.	Bax/Bcl-2-Expressionsrate in CH-11-sensitiven und nicht sensitiven	
	Melanom-Zellen	64
3.1.4.	Analyse der Bcl- X_L - und Bcl- X_S -Expression in Melanom-Zelllinien und	
	Melanozyten-Kulturen	66
3.2.	Analyse der Expression der bcl-X _L - und bcl-X _S -Gene auf mRNA-Ebene in	
	Melanom-Zelllinien und Melanozyten-Kulturen	66
3.2.1.	Detektion von Bcl- X_L und Bcl- X_S im Northern Blot	66
3.2.2.	Detektion von bel- X_L - und bel- X_S -mRNA mittels RT-PCR	67
3.3.	Überexpression von Bcl-2 in stabil transfizierten Melanom-Zelllinien	68
3.3.1.	Einfluss der Überexpression von Bcl-2 auf die Fas-vermittelte Apoptose in	

	Melanom-Zelllinien	69
3.4.	Klonierung von bcl-X _L - und bcl-X _S -Konstrukten	70
3.4.1.	TOPO-TA-Klonierung von bcl-X _L und bcl-X _S	70
3.4.2.	Subklonierung von bcl- X_L und bcl- X_S in das Plasmid pTRE	72
3.4.3.	Überprüfung der Orientierung der bcl-X _L - und bcl-X _S -Konstrukte mitte	
	Restriktionsanalyse	73
3.4.4.	Transiente Transfektion von Bcl-X _S und Bcl-X _L in Melanom-Zelllinien	74
3.4.5.	Stabile Transfektion der Melanom-Zelllinie SKM13-Tet-On mit bcl-X _L ur	
	$bcl-X_S$	76
3.4.6.	Screening der transfizierten SKM13-Zellklone mittels Northern-Blot	77
3.5.	Protein expression von Bcl- X_L und Bcl- X_S in SKM13-Klonen	77
3.6.	Einfluss der Überexpression von Bcl-X _S und Bcl-X _L auf die basale	
	Apoptoserate	78
3.7.	Apoptose-Kinetik der stabil mit Bcl-X _S transfizierten Zellen nach	
	Doxycyclin-Induktion	80
3.8.	Inhibition von Fas-vermittelter Apoptose durch $Bcl-X_L$ -Überexpression	81
3.9.	Der Mechanismus der Bcl-X _S -vermittelten Apoptose	82
3.9.1.	Lokalisierung des Bcl-X _S Proteins	82
3.9.2.	Geringe Aktivierung der Caspase-8 nach Bcl-X _S -Überexpression	
3.9.3. Verminderung der Cytochrom C-Menge in den Mitochondrien nach Be		
	Überexpression	84
3.9.4.	Freisetzung von AIF nach Bcl-X _S -Überexpression	85
3.9.5.	Nur geringe Aktivierung von Procaspase-3 nach Bcl-X _S -Überexpression	85
3.9.6.	Keine Aktivierung von Caspase-6 und Caspase-7 durch Bcl-X _S -	
	Überexpression	87
3.10.	Identifizierung eines neuen Bcl-2-Familienmitglieds	88
3.11.	Untersuchung zur möglichen therapeutischen Verwendung von Bcl-X _S	
3.11.1.	Kombination der Bcl-X _S -Überexpression mit weiteren Apoptose-Stimuli in	

	Melanom-Zellen	90
3.11.2.	Reduzierte Tumorigenität von Melanom-Zellen nach Bcl-X _S -Induktion in	92
	vivo	
4.	DISKUSSION	94
4.1.	Hohe Bcl-2- und Bcl-X _L -Expression in Melanom-Zelllinien	94
4.1.1.	Bcl-2 wirkt als negativer Apoptoseregulator in Melanom-Zellen	95
4.1.2.	Suppression der Apoptose durch Bcl-X _L in Melanom-Zellen	96
4.1.3.	Bcl-X _S wirkt als positiver Apoptoseregulator in Melanom-Zellen	97
4.2.	Mechanismen der Bcl-X _S -vermittelten Apoptose	98
4.2.1.	Exogen exprimiertes Bcl-X _S ist vorwiegend in den Mitochondrien lokalisiert	99
4.2.2.	Bcl-X _S -Überexpression führt zu Verlust von mitochondrialem Cytochrom C	100
4.2.3.	Die Aktivierung der Caspasen-8 und -3 nach Bel-X _S -Überexpression ist	100
1.2.3.	transient	100
4.2.4.	Bcl-X _S -Überexpression stimuliert AIF-vermittelte Apoptose	101
4.3.	Bcl-X _S wirkt additiv, Bcl-X _L inhibitorisch in Kombinaton mit weiteren	
4.5.	Apoptose-Stimuli	102
	Apoptose-Stilliuli	102
4.3.1.	Bcl-X _S hemmt das Tumorwachstum in vivo	103
4.4.	Identifizierung einer neuen Spleissvariante von bcl-X	103
4.5.	Weiterführende Fragestellungen	104
_		106
5.	ZUSAMMENFASSUNG	106
6.	SUMMARY	107
7.	LITERATURVERZEICHNIS	108

8.	EIGENE VERÖFFENTLICHUNGEN	120
8.1.	Orginalarbeiten	120
8.2.	Kurzveröffentlichungen	120
8.3.	Manuskripte	121
9.	ABKÜRZUNGEN	122
10.	Lebenslauf	125
11.	Danksagung	126
12.	Erklärungen	127