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Chapter 1

Introduction

As a crucial step in the quest of understanding the functioning of the cell on the molec-

ular system level, the genomes of many species, including human, have already been

largely decoded. The knowledge of the list of human genes that has been obtained

by these efforts is essential but insufficient for elucidating cellular processes in health

and disease. It is clear that the separate genes execute their functions through inter-

actions between each other as well as with different other biomolecules. Knowledge of

the complex functional interplay between all biomolecules in the cell promises to take

us a step further toward understanding the molecular mechanisms governing life. This

chapter gives a coarse summary of several types of biomolecular interactions and the

most prevalent ways they are detected, stored, modeled, and utilized for the interpre-

tation of gene expression data. A particular focus is put on current problems in the

field that motivated this thesis.

1.1 Molecular interactions

The interplay between two or more biomolecules that has a specific biological effect is

called an interaction. Interactions, rather than the separate physical entities (genes,

proteins, metabolites, etc.), are the key drivers of biological processes. Deviations from

the normal interaction patterns in the cell can lead to disease, thus it is not surpris-

ing that they constrain genome evolution (56). Interactions are commonly divided into

several classes depending on the type of the interacting molecules, the mechanism, speci-

ficity, duration, and our understanding of their biological effects. Examples for such
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1. INTRODUCTION

interaction classes are gene regulatory interactions, metabolic reactions, signaling reac-

tions, and protein-protein interactions: 1) Gene regulatory interactions are executed by

the products of certain genes called transcription factors that bind specifically to the

DNA at certain regions within or near other genes to enhance or repress their expres-

sion. 2) Metabolic reactions are biochemical reactions that convert metabolites from

one type to another under the catalysis of specific enzymes (mainly proteins or protein

complexes). 3) Signaling reactions are another type of biochemical reactions, typically

involving proteins being modified (e.g. phosphorylated or cleaved) by other physical

entities in order to initiate or transmit a biological signal. 4) Protein-protein inter-

actions are a general class of physical interactions between proteins. They may have

different stability (depending on the biochemical properties of the interactors), e.g. the

formation of protein complexes usually results from protein-protein interactions that

are stable over time, while modification reactions, for example, are administered by

more transient interactions between the modifier and the protein being modified.

A biological pathway can be seen as a compilation of interactions sharing partici-

pants and constrained in space and time, which together concert a biologically relevant

transformation of mass or a conduction of a biological signal. It is a key point that

biological processes are usually composed of many different types of interactions. As an

example, the diagram in Figure 1.1 depicts the Insulin signaling pathway that simul-

taneously involves protein-protein interactions (e.g. between insulin and its receptor

on the cell surface), biochemical reactions (e.g. hydrolysis of GTP by RAS, modu-

lated by GAP), and gene regulatory interactions (e.g. regulation of target genes by the

C-JUN:C-FOS complex).

1.2 Interaction data

1.2.1 Detection and prediction of interactions

Obtaining knowledge of all interactions in the cell promises mechanistic insight into

cellular biology in health and disease as it reveals the molecular circuitry behind bi-

ological processes. This motivates contemporary biologists around the globe to apply

immense efforts in designing and applying various techniques to discover the different

interactions in the cell of human and of other species. Direct gene regulatory inter-

actions, for instance, are commonly predicted by ChIP-chip (21) or ChIP-seq (120) –

2



1.2 Interaction data

Figure 1.1: Insulin signaling pathway. Like all other biological processes, the in-

sulin signaling pathway comprises different types of interactions including protein-protein

interactions, biochemical reactions and gene regulation. Reproduced from BioCarta

(http://www.biocarta.com) and modified.

experimental techniques which involve chromatin immunoprecipitation (ChIP) coupled

to DNA binding site identification through hybridization or sequencing, respectively.

On the other hand, metabolic and signaling reactions are typically detected through

narrow-focused biochemical experiments such as enzyme assays (64), or are deduced

from specific crystallographical measurements (22). Finally, protein-protein interac-

tions are detected mostly with yeast-two-hybrid (Y2H) screening (52), affinity purifica-

tion coupled to mass spectrometry (AP-MS) (1), or protein-fragment complementation

assay (PCA) (59). The advantages and disadvantages of these and of other protein

interaction detection techniques are discussed in (137). In addition to experimental

techniques for the direct detection of interactions, different computational methods

have been developed for the prediction of such. For example, many methods exist

that can predict potential protein-protein interactions based on genomic sequence or

homology data (88, 145, 147).

Interaction data resulting from the application of experimental or computational

methods may have binary or complex nature. Binary interactions have exactly two

3



1. INTRODUCTION

participants, while complex interactions may involve an arbitrary number of physical

entities. For instance, protein-protein interactions detected by Y2H and PCA strictly

involve two participants (which may be identical in the case of self-interactions) because

these methods test pairs of proteins for direct associations. On the other hand, interac-

tions detected with AP-MS are generally complex while the direct physical interactions

between the separate proteins are not revealed by this technique. Biochemical reac-

tion data have a complex nature as well since such interactions may involve multiple

substrates that are converted to multiple products.

1.2.2 Storing and representing interaction data

Interactions that have been detected or predicted are usually assembled in specialized

interaction knowledge bases through literature mining or direct data submissions (41).

Most of these knowledge bases offer public access to their content through querying and

visualization of interactions. Currently, interaction data are scattered among more than

three hundred such databases (11). Due to their specific focus, each of the databases

contains a limited number of interaction types (mostly one to two types). Moreover,

even databases with similar focus on interaction type have limited overlap with each

other. This is mainly because the creators of each database tend to capture interac-

tions from a unique subset of sources (e.g. literature publications) according to their

own curation rules. Thus, in a sense, our knowledge of a specific biological process

is dispersed among many interaction resources, which constrains a system-level view

on that process (35). The same is true from the perspective of a specific gene: The

detected protein-protein interactions of its products are scattered across protein inter-

action databases; data on its enzymatic functions resides in metabolic databases; and

its gene regulatory interactions are assembled in databases on gene regulation. The

complete picture of the gene’s different roles in the cell can be obtained only after in-

tegrating all of these interaction resources. Such a comprehensive picture is crucial for

example in drug development to predict the possible impact from drug target binding

on the human body (35). Unfortunately, the task of interaction data integration is

hindered particularly by the vast heterogeneity of current databases in respect to data

models and data exchange formats: each database has its own way of representing,

storing, and providing access to the interaction data. The problem has been partially

solved by defining standard file formats for representing molecular interactions. The

4



1.2 Interaction data

most widely used formats include BioPAX, PSI-MI and SBML (154). They differ in

the representable types of interactions and the level of detail they can provide for the

individual interactions. For example, PSI-MI is specialized to represent physical inter-

actions, while SBML is designed to describe biochemical reactions and their kinetics.

Probably the most descriptive of these three is BioPAX, which is able to represent a

wide range of interaction types between a variety of physical entity types. Nevertheless,

despite the efforts spent in the development of standard interaction representation for-

mats, the data models of many interaction databases are often incompatible with these

formats. Therefore, many databases have either adopted none of the standard formats,

or the standardized data are often incomplete or inaccurate with respect to the original

database content. This is why database-specific data formats are still primarily used

by interaction resources as the means to distribute their content. The bottom line is

that to integrate data from the existing highly complementary databases in order to

obtain a more complete picture of cellular processes, one still has to deal mainly with

database-specific data formats that are incompatible with each other, or with several

standard formats representing the database content in a possibly imprecise manner.

1.2.3 Noise in interaction data

Interaction data are not only incomplete from the perspective of each individual database,

but they may also be noisy. Above all, existing large-scale protein-protein interaction

data have been shown to contain a considerable portion of false positives (72, 114),

i.e. reported interactions that do not take place in reality. All techniques for detecting

protein interactions generate false positives, for example due to experimental errors or

bias (technical false positives). Adding to this, some of the interactions measured in

vitro do not actually take place in vivo, for example because the proteins are separated

in different cellular compartments (biological false positives) (105). Interactions col-

lected from the literature are additionally prone to curation errors that may also reach

striking magnitudes (41).

The integration of interaction datasets by considering their union increases the cov-

erage of the real interactome (thus decreasing the false negative rate, i.e. the proportion

of missing true interactions), albeit this is often achieved at the expense of a higher

false positive rate (that is, the proportion of spurious interactions) in the integrated

data compared to the separate datasets. The reason is that true interactions, being a

5



1. INTRODUCTION

very small subset of all possible tuples of physical entities, have a much higher prob-

ability to be found simultaneously in two independent interaction datasets than false

interactions. Thus, the number of true interactions saturates much faster in the process

of data integration compared to the number of false positives. As a consequence, false

positive interactions are accumulated at high rates in integrated datasets.

1.2.4 Graphical modeling of interaction data

Interaction data are usually modeled as network graphs or hypergraphs (2, 100). Such

modeling benefits from the existing palette of graph-theoretical methods aiding the

analysis of interaction data.

An interaction graph is a pair G = (V,E) where V is a set of nodes, conventionally

representing physical entities like genes, proteins, complexes, metabolites, etc., and

E is a set of edges (or pairs of nodes), each edge usually representing an interaction

between two nodes. A graph is connected if any pair of its nodes are linked with

each other through a finite path of edges in the graph. Otherwise, the graph consists

of multiple connected components. A graph is directed if its edges have a specified

orientation, i.e. one of the nodes is designated the edge source and the other node

is the edge sink. If edges have no orientation, the graph is called undirected. Binary

protein-protein interaction data (i.e. interactions involving pairs of proteins) are usually

modeled as undirected network graphs because of the symmetrical nature of protein-

protein interactions (Figure 1.2). On the other hand, gene regulatory interaction graphs

are directed because for every interaction, one of the genes is the regulator and the other

is the regulated gene, but generally not the other way around (Figure 1.2). Special

classes of graphs are multigraphs and bipartite graphs. In multigraphs, more than one

edge can connect the same pair of nodes, for example to indicate different types of

relations between these nodes. A bipartite graph G = (V1, V2, E) has two disjoint sets

of nodes denoted V1 and V2, with edges of E connecting nodes from V1 with nodes

from V2 while no edges connect nodes within V1 or within V2. Unlike simple graphs

with uniform nodes, which are able to represent only binary relations, bipartite graphs

can be used to model complex interactions (i.e. interactions with an arbitrary number

of participants). For instance, biochemical reactions are often modeled as directed

bipartite graphs where V1 is the set of physical entities, V2 is the set of reactions, and

directed edges connect reactions with their participants that can be any number (Figure

6



1.2 Interaction data

Figure 1.2: Modeling interaction data as graphs or hypergraphs. Binary interac-

tions like physical interactions between pairs of proteins and gene regulatory interactions

are modeled as undirected and directed graphs, respectively. Complex protein interactions

are often decomposed into binary interactions following the spoke or matrix models, or are

modeled as undirected bipartite graphs or undirected hypergraphs. Biochemical reactions

are modeled as directed bipartite graphs or directed hypergraphs.

1.2). Here, edge orientation conventionally indicates whether an entity is a reaction

substrate or product.

An alternative to bipartite graphs for modeling complex interactions are hyper-

7



1. INTRODUCTION

graphs (100). A hypergraph H = (V,E) consists of a set of nodes V and a set of

hyperedges E. Unlike edges in graphs, which connect exactly two nodes (or one node

with itself in case of self-interactions), hyperedges may connect an arbitrary number of

nodes. Hypergraphs may be directed, in which case a subset of the nodes in each hyper-

edge are designated source nodes and the rest are sink nodes. Directed hypergraphs are

sometimes used for representing metabolic reaction systems (Figure 1.2). Undirected

hypergraphs rather than network graphs are sometimes utilized to model protein in-

teractions detected with AP-MS because the direct pairwise interactions between the

components of the complexes detected by this technique are generally unknown (Figure

1.2). However, because hypergraph operations are often more challenging computa-

tionally, and because graphs are somewhat more intuitive for manual interpretation,

hypergraphs are not as widely used as network graphs for representing biological re-

lations. Accordingly, complex interaction datasets are often transformed into binary

data. For example, a protein complex detected with AP-MS can be represented as

a set of binary interactions between all components (matrix model decomposition).

Alternatively, since AP-MS involves isolation of complexeses formed around a specific

protein called bait, these complexes can be represented as a set of binary interactions

between the bait and the rest of the complex members called preys (spoke model de-

composition) (Figure 1.2). Nevertheless, both strategies for complex decomposition are

inevitably associated with loss of information about the detected complexes; moreover,

they reportedly generate false positive and/or false negative interactions (9).

1.2.5 Structure of interaction networks

Not only the single elements of interaction networks – the separate physical entities

and their interactions – have been studied extensively during the last decade, but so

has been the overall structure of interaction circuits. Seminal studies (many of which

are reviewed in (2, 14)) have shown with graph-theoretical measurements that such

networks, like many other types of real-world networks, are highly structured.

For example, certain local patterns of interconnections between nodes, called net-

work motifs, are found significantly more often in real-world networks than expected

by chance (5, 115). In the biological context, such motifs are suggested to reflect uni-

versal biological functions: For instance, feedback and feed-forward loops abundant in

8



1.2 Interaction data

gene regulatory networks are proposed to act as amplifiers or filters of biological signals

(112, 132).

Many biological networks show characteristic organization not only on the local,

but also on the global level. Among the most extensively studied properties is the

connectivity of network nodes. The connectivity, or degree, of a node is defined as the

number of counterparts it is connected with in the network. For several types of bio-

logical networks, including metabolic (86) and protein-protein (87) interaction circuits,

node degree has been shown to follow a power-law distribution: P (X = k) = k−γ ,

where k denotes the degree and γ is a constant. This means that the vast majority

of nodes in such networks have a small number of interaction partners, while there

are a small number of so-called ‘hubs’ that have many interaction partners. Due to

the absence of a characteristic node degree, or scale, in such networks, they are called

scale-free (13). The emergence of the scale-free property in interaction webs is suggest-

edly associated with the cell’s tolerance to random errors such as gene mutations (3).

Another common property of many biological circuits that arises from their scale-free

nature is the small-world effect (13, 51, 175). It is essentially associated with very short

average numbers of interactions separating pairs of nodes, and could be a factor aiding

fast reactions of the cell to stimuli (14, 51). The small-world property of a network is

often quantified with the average shortest path length, defined as the average number

of edges one has to follow in order to reach one node starting from another. A related

measure is the network diameter, which is defined as the maximum of all shortest paths

between pairs of nodes. A further phenomenon seen in interaction networks is that the

set of direct network neighbors of a node share more interactions between each other

than expected by chance (that is, network neighborhoods of nodes are more densely

connected than expected by chance). It is traditionally quantified with the clustering

coefficient, defined for each node as the fraction of existing links among its network

neighbors from the number of all possible links among them (175). In other words, for

a node with n network neighbors (node degree = n) among which k edges exist, the

clustering coefficient is C = k/
(
n
2

)
= 2k/n(n− 1). A high average clustering coefficient

is an indicator of the network’s modular structure, since interactions form densely con-

nected communities, or modules. Furthermore, it has been shown that modularity in

biological networks is often organized in a hierarchical manner, leading to the concept
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1. INTRODUCTION

of ‘network of networks’ – that is, nodes connect to form modules, modules connect to

form higher-level network structures, and so on (127, 128).

The bottom line from studies analysing global as well as local properties of interac-

tion networks is that the topology of these networks is far from random. Rather, the

high degree of internal order that governs the cell’s molecular organization is consis-

tently reflected in the networks’ architecture (14).

1.3 Interactions and pathways in aid of expression data

analysis

Interaction knowledge can be exploited in many ways and contexts. To give some

examples: First, manual inspection of the circuitry of certain genes can provide clues

about why a biological process develops as it does and how gene disruptions (such as

mutations, or applied drugs) may lead to a certain phenotype. Second, the functions of a

protein can be predicted based on the interaction network neighborhood of that protein

(146). Third, interaction networks are routinely used as the basis of mathematical

models aiming to simulate and predict the systems-level behavior of biological systems

(99). Fourth, large-scale interaction data and manually curated pathway models are

increasingly applied as a basis for interpreting whole-genome expression data.

1.3.1 Whole-genome expression profiling

Gene expression profiling involves techniques that measure the expression levels of

many genes simultaneously. It is often used to assess the gene expression response of a

biological system to external or internal stimuli like environmental factors or disease.

Such stimuli often provoke changes in the expression of many genes, reflected by al-

terations in the according messenger-RNA concentrations, and ultimately by changes

in the concentration of the protein products of those genes in the biological system.

While protein concentrations are relatively difficult to measure on a large scale, the

abundance of tens of thousands of messenger-RNA molecule types can be easily de-

termined simultaneously. This is usually done with hybridization- or sequencing-based

techniques, such as microarrays or RNA-seq (139, 174). An expression profile of a cell

or a tissue obtained by such techniques is a unique snapshot of the expression activity

of thousands of genes. Using statistical tests, expression profiles of an experimental

10



1.3 Interactions and pathways in aid of expression data analysis

condition of interest are typically compared to expression profiles of a control pheno-

type to highlight a list of genes that show significant change of expression between the

two phenotypes (24). For example, if the phenotype of interest is a disease, the genes

that are differentially expressed compared to the control are typically considered to be

related to the disease and could be effective or even causative of it. The list of genes dif-

ferentially expressed in a disease is commonly termed the gene signature of the disease.

Gene expression profiling has an enormous potential in molecular medicine as it can aid

diagnosis by pointing to new, or assessing the expression of known disease biomarkers,

and can help generate hypotheses about potential drug targets and therapies.

1.3.2 Integration of expression data with interaction and pathway

knowledge

A major concern is that gene signatures found by different studies analyzing the same

phenotypic condition are often barely overlapping (47). The lack of agreement may

arise from differences in the experimental techniques and settings used in the accord-

ing studies. Mainly, however, it is attributed to the inherent variability of biological

systems including variations in the genetic background, environmental effects, tissue

heterogeneity, etc. A more concrete hypothesis in the context of disease phenotypes

such as cancer is that changes in the expression of genes causing the disease may be

subtle compared to expression changes of the downstream effectors, which can vary

largely from patient to patient (32, 47, 164). In this context, it is of highest interest

that the coherence across different expression measurements of the same phenotype is

often found to be significantly higher at the level of interaction subnetworks and path-

ways (33, 40, 80). This is primarily because changes in biochemical pathways leading

to certain phenotypic conditions such as disease can often arise from a range of different

alterations in the genes participating in these pathways (65, 118). Beside the better re-

producibility, a further advantage of a pathway-centric perspective on expression data

over the gene-centric one is that pathways provide a better mechanistic insight into

the molecular mechanisms of disease. Last but not least, pathways and sub-networks

may contain genes that play a major role in disease but are not captured through dif-

ferential expression analysis. For example, a gene that is not differentially expressed

but functionally interconnects many counterparts showing differential expression may

11



1. INTRODUCTION

be causative of their dysregulation because mutations of the central gene may be dis-

rupting its regulatory relations with its counterparts. Thus, adding a pathway layer

to expression profiles can aid the discovery of molecular processes leading to complex

diseases and of genes that may cause them.

1.4 Aims and organization of the thesis

A major goal of systems biology is the integration of available biological knowledge

within and between different levels like gene expression, biomolecular interactions, etc.

to obtain a better understanding of cellular processes. This thesis addresses three

connected problems in contemporary systems biology research: 1) Current interaction

knowledge is dispersed across hundreds of heterogeneous, complementary databases,

which hampers a system-level view on biomolecular relationships in the cell; 2) Cur-

rent physical interactome maps (in particular integrated interaction data) contain many

false positives that may lead to the generation of false hypotheses in interaction-based

research; 3) Gene signatures are often insufficient for understanding the causes and

molecular mechanisms of complex diseases, without taking into account the relation-

ships between genes. These key points are addressed in the next three chapters, followed

by a general conclusion.

Interaction data integration. Chapter 2 provides a solution to the problem that

current biomolecular interaction knowledge is scattered in hundreds of heterogeneous

and complementary databases, hampering a system-level view on human cellular biol-

ogy. We have designed and developed ConsensusPathDB (89, 92), an interaction meta-

database aiming to integrate the interactome pieces together into a seamless network

comprising different types of relations between physical entities. ConsensusPathDB

collates multiple functional aspects of human genes like protein interactions, cataly-

sis, signal transduction, and gene regulation, yielding a more complete and less biased

picture of cellular processes than the separate interaction resources. In Chapter 2,

we outline the design and content of the meta-database as well as its web interface

offering many ways to exploit the integrated network, for instance in the context of

gene expression data. The necessity of data integration is demonstrated with several

examples.

12



1.4 Aims and organization of the thesis

Confidence scoring of protein interactions. Chapter 3 tackles the problem

that current protein-protein interaction data often contain considerable amounts of

false positives. We propose a novel, non-parametric interaction confidence assessment

approach called CAPPIC (91). It exploits solely network topology and does not depend

on any reference sets or additional knowledge about the network’s elements. Because

such reference sets and additional information are not always available or may be am-

biguous, they are a limiting factor for other interaction confidence assignment meth-

ods relying on them. We assess the performance of CAPPIC on a comprehensive set

of yeast interaction networks in comparison with other topology-based methods, and

demonstrate that CAPPIC reliably estimates interaction confidence and outperforms

those methods. CAPPIC is used to assign confidence scores to the protein-protein in-

teractions in ConsensusPathDB, which serve for distinguishing a high-quality physical

interaction network.

Disease gene and pathway identification. Chapter 4 addresses the concept of

integrating expression data with interaction or pathway knowledge to derive hypotheses

about the molecular causes and mechanisms of disease. In this context, we propose the

use of unbiased functional gene sets based on neighborhood of genes in the integrated

interaction network. Notably, the underlying network is a result from the combination

of interaction data integration (as per Chapter 2) and interaction confidence-based

filtering (as per Chapter 3). The resulting gene sets can be used complementarily

to curated pathways for pathway-driven expression data interpretation, and overcome

several problems faced by the traditionally used manual pathway definitions. With

two examples we show that the combination of collating heterogeneous interaction

data, interaction de-noising, and integration of interaction and expression data could

be paramount for unveiling genes causative of complex diseases such as cancer.

Further in Chapter 4 we show how integrating metabolomics data with transcrip-

tomics/proteomics data on the level of pathways can help to generate novel hypotheses

about biological processes related to a phenotype (23), and present the first available

computational tool for this purpose (90). Such integration is motivated by the fact that

complex diseases like cancer impact not only gene expression but also other, equally

important aspects of the living cell like metabolism (77). Now that data are being

generated on the large scale at several levels like gene expression, metabolism, and

interaction, the time for large-scale integration of these data has come.

13



1. INTRODUCTION

In summary, the key findings of the thesis are:

• design and development of the recognized interaction meta-database Consensus-

PathDB (89, 92) that collates different types of interactions from currently over

twenty resources into a seamless interaction network of unprecedented coverage;

• development of a novel tool for evidence mining and novelty assessment of protein-

protein interactions (122);

• development of a novel, network topology-based method called CAPPIC for as-

sessing the confidence of binary interactions (91);

• application of the integrated and de-noised human interactome map in a new

approach for the identification of disease-causing genes;

• development of a novel tool for the joint analysis of large-scale transcriptomics

and metabolomics data on the pathway level (23, 90).
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Chapter 2

Toward more complete

interactome maps

Currently, a systems view on molecular biology of the cell is severely hampered by

the way interaction data are handled. The available interaction knowledge is dispersed

across hundreds of databases, each of which has a specific interaction type focus, detail

level, and data model and supports a different subset of the available data exchange

formats. Most databases are focused on a single type of functional relations between

biomolecules, while in reality, biological processes comprise many different types of in-

teractions. Furthermore, even databases specialized on the same interaction types are

often complementary than overlapping (35, 41). We designed and developed an interac-

tion integration database called ConsensusPathDB (89, 92) to address these problems

and close the gap between insular interaction data repositories. ConsensusPathDB

collates the pieces of the human interactome puzzle found in these repositories into

a seamless network to create a more complete snapshot of the interactions that take

place in the cell. With approximately 160,000 unique interactions of different type

obtained by the integration of currently 26 interaction and pathway resources, Consen-

susPathDB represents the most comprehensive human interactome map available. This

chapter deals with the design and content of the ConsensusPathDB meta-database, as

well as its interfaces enabling researchers to exploit the integrated data in different

contexts via the world wide web. While ConsensusPathDB instances exist also for the

model organisms mouse and yeast, only the human instance will be referred to in this

chapter.
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

2.1 Introduction to interaction databases

The Pathguide pathway resource list – a comprehensive catalogue of existing interaction

and pathway repositories (11) – currently lists 325 different interation databases divided

into several categories according to their content type (protein-protein interactions,

metabolic reactions, gene regulation, etc.). Most of them are primary data resources

that collect interactions directly from the literature or through manual data submis-

sions. Since it has been recognized that primary databases are rather complementary

to each other (41), efforts are made to improve the communication between their de-

velopers and unify interaction curation rules and content (117). Furthermore, standard

formats have been defined for interaction data exchange (154). Several meta-databases

have emerged that combine interactions from several primary resources. Examples

include UniHI (28), MiMI (161) and I2D (20). Nevertheless, many of these standard-

ization efforts and meta-databases are still limited to a single interaction type (for the

above examples the focus is at protein-protein interactions). STRING (159) integrates

a number of different functional associations among genes including gene neighborhood

on the DNA, gene fusion, compartment co-occurrence, co-expression, co-analysis in

experiments, co-occurence in databases, co-citation, physical interaction of the prod-

ucts, and interaction homology. These association evidence channels are combined to

a joint interaction score for gene pairs. Pathway Commons (26) is a common query

interface to nine interaction databases that extracts interactions through standard data

formats and provides interaction and pathway search functionalities. To broaden the

magnitude of interaction data integration in terms of the number of different types of

interactions, number of integrated resources, and data integration depth, we created

the meta-database ConsensusPathDB. Currently, it contains data from twenty-six of

the most popular primary resources for direct protein-protein interactions, metabolic

and signaling reactions, and gene regulation (termed source databases; Table 2.1). The

number of integrated databases grows by approximately one new database per release

(Appendix Figure A.1).

Ten of these resources contribute biochemical reactions. Only two of them, Re-

actome (39) and INOH (http://www.inoh.org), contain both signaling and metabolic

reactions. The rest are focused only on metabolism (HumanCyc (131) and the Edin-

burgh Human Metabolic Network Reconstruction - EHMN (108)), or only on signaling
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

(Pathway Interaction Database - PID (138), Signaling Pathway Integrated Knowledge

Engine - SPIKE (121), BioCarta (http://www.biocarta.com/genes/index.asp), Net-

Path (93) and InnateDB (107)). The Kyoto Encyclopedia of Genes and Genomes -

KEGG (95) is a repository for manually drawn pathway diagrams of both signaling

and metabolic pathways; however, computer-readable reaction data is available only

for the metabolic but not for the signaling pathways. Most of these ten databases

are general-purpose repositories, that is, they attempt to chart the molecular reaction

mechanisms of a palette of biological processes. Exceptions are InnateDB, which fo-

cuses on interactions involved in the innate immune response to microbial infection,

and NetPath, which catalogues immune and cancer signaling pathways. Common to

all biochemical reaction databases is that they are subject to manual curation. Some of

the databases (e.g. HumanCyc) have resulted from computational reaction predictions

and are moderately curated, while others (e.g. Reactome, SPIKE, PID) store highly

curated reaction data that are most often manually extracted from the scientific lit-

erature by experts. Furthermore, the different databases provide a different level of

annotation detail of the contained interactions. For instance, compartment annotation

of reactions and information on post-translational modifications of their participants is

available only in Reactome, INOH, PID, BioCarta, and NetPath. In almost all of the

reaction databases mentioned here, the contained reactions are organized into groups

representing biochemical pathways (Table 2.1).

Four of the databases mentioned above contain gene regulatory interactions; these

are SPIKE, PID, BioCarta, and InnateDB. Publicly accessible gene regulatory data

are still relatively sparse for human, thus these databases provide only a small number

(in the order of a few hundred to a few thousand) of gene regulatory relations mined

manually from the scientific literature.

Twelve of the databases integrated in ConsensusPathDB focus only on physical

protein interactions. These include IntAct (7), Database of Interacting Proteins (DIP)

(136), Molecular Interaction Database (MINT) (25), Human Protein Reference Database

(HPRD) (98), Comprehensive Resource of Mammalian protein complexes (CORUM)

(134), Biological General Repository for Interaction Datasets (BioGRID) (149), Mam-

malian Protein-Protein Interaction Database of the Munich Information Center for

Protein Sequences (MIPS-MPPI) (119), Biomolecular Interaction Network Database

(BIND) (83), Pathogen Interaction Gateway (PIG) (46), PhosphoPoint (179), PDZbase
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2.1 Introduction to interaction databases

(16), and MatrixDB (29). Data in most of these repositories are typically collected from

the literature through text mining followed by manual curation to some extent, or are

directly submitted by experimentalists. Some of the databases have a particular focus

on interactions between certain types of proteins or taking place in specific compart-

ments. For example, PhosphoPoint focuses on interactions of human kinases, PDZbase

on interactions involving PDZ domains, and MatrixDB comprises interactions between

extracellular proteins and polysaccharides on the cell surface. Similarly, the Pathogen

Interaction Gateway imports interactions between human and pathogenic proteins from

other databases like IntAct. The rest of the protein-protein interaction repositories

integrated in ConsensusPathDB are general-purpose databases aiming to assemble a

protein interactome map of human as well as of other species. Some of the protein in-

teraction databases (like IntAct, DIP, and MINT) contain interactions involving more

than two proteins (complex interactions), while others (like BioGRID and PIG) contain

only binary interaction data. Some of the databases (e.g. IntAct) provide information

on the modification state of interactors. This feature is particularly important as some

interactions are modification-dependent, that is, they take place only if the proteins

are post-translationally modified (which is often the case with interactions building up

signaling cascades). Apart from the data extracted from the protein interaction-focused

databases, we have explicitly defined protein interactions based on the composition of

protein complexes found in some of the biochemical reaction databases. Furthermore,

many physical interactions are provided by the signaling database SPIKE.

Pathway annotation of the bulk of available protein-protein interactions is still forth-

coming. In contrast, most of the resources for biochemical reactions annotate all or

most of the reactions to biochemical pathways as mentioned above. Several further

pathway resources exist that do not provide information about pathway constitution in

terms of reactions but instead depict pathways in manually drawn diagrams and list the

genes participating in each pathway. Such resources provide valuable information which

can be used in approaches for pathway-level analysis of gene expression data (discussed

in Chapter 4). Such pathway databases integrated in ConsensusPathDB are Pharma-

cogenomics Knowledge Base - PharmGKB (163), Small Molecule Pathway Database -

SMPDB (57), WikiPathways (125), Signalink (102), and the signaling pathway domain

of KEGG.
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

2.2 Data model of ConsensusPathDB and data integra-

tion

2.2.1 Database structure

Developing a meta-database that holds information on interactions of different nature

and annotated in a different level of detail by the source databases required a design

of an adequate database schema. The schema had to be general enough to allow for

representing interactions of different nature, and at the same time specific enough

so that interaction details such as cellular location could be included, if available.

Moreover, the schema design had to consider the fact that interaction datasets are

overlapping to some extent, and had to offer an adequate way to identify overlapping

information and avoid redundancy.

The design of the data repository of ConsensusPathDB follows a bipartite multi-

graph interaction data model (Figure 2.1), which enables it to acommodate molecular

relations with arbitrary cardinality. Its central classes are PhysicalEntity, Interaction

and Edge. Physical entities and interactions are accordingly the two different types

of nodes in the bipartite graph model and are connected by edges denoting the par-

ticipation of entities in interactions. There are currently three types of interactions

represented by three distinct classes that inherit from the general Interaction class:

physicalInteraction, biochemicalReaction (representing both metabolic and signaling

reactions), and geneRegulation. Each physical entity has a type as well, which is either

gene, messenger RNA (mRNA), non-coding RNA (ncRNA), peptide, protein, protein

complex, family (gene or protein family), compound/metabolite, or unknown type.

Physical entities are accommodated in ConsensusPathDB in a basic form – for exam-

ple, physical entities of the type protein do not have post-translational modifications by

themselves. Instead, edges linking physical entites to their interactions are the carriers

of information about the state (such as post-translational modifications or mutations),

the cellular compartment location, as well as stoichiometry information of the interac-

tion participant in the interaction. Each edge records the role of the physical entity

in the interaction (such as product, substrate, enzyme, physical interactor, regulated

gene, enhancer or inhibitor). Physical entities are organized hierarchically (accom-

plished through the relation has component, Figure 2.1), which is necessary for repre-

senting protein complexes and gene families in terms of their composition. Interactions
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2.2 Data model of ConsensusPathDB and data integration

Figure 2.1: Entity-relationship diagram visualizing the structure of the Consen-

susPathDB interaction meta-database. The names of classes (rectangles) which are

members of the generic DBobject (database object) class are capitalized (the correspond-

ing ‘is-a’ relationships are omitted for better visualization). The numbers correspond to

relationship cardinalities. The central classes are Entity (representing physical entities like

genes, proteins, complexes, metabolites, etc.), Interaction (representing interactions), and

Edge (connecting entities with their interactions). The schema follows a bipartite graph

model for representing interactions, to allow representation of biomolecular relationships

of arbitrary cardinality. The cluster,clustS, clustM, clustL, and clustV attributes of Inter-

action serve for indicating which interactions are similar regarding the entity composition

and have matching stoichiometry, modification, location, and mutation patterns of the

entities (see main text).
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

can be organized in pathways (instances of class Pathway which link to Interaction via

has interaction, Figure 2.1). Similarly to physical entities, pathways are organized in a

hierarchical manner (a pathway may consist of sub-pathways: relation has subpathway,

Figure 2.1). Many further relations exist in the database schema for storing additional

data, including kinetics information (including kinetics laws and parameter values),

details on mutations (site and mutation type) or modifications (residue and chemi-

cal group) (Figure 2.1). The relational schema described here was implemented as a

PostgreSQL database system.

2.2.2 Integration of interaction data from multiple sources

The task of interaction data integration is hindered primarily by the heterogeneity re-

garding the data formats of currently available interaction resources. We retrieve the

data from source databases in different ways and formats, ranging from files in stan-

dard interaction exchange formats including BioPAX, PSI-MI, and SBML to database-

specific XML or tab-delimited files, Excel tables, MySQL or PostgreSQL database

dumps, or SOAP web services. Table 2.1 provides information about how interaction

data were retrieved from each source database. We created a separate data adapter for

each database that extracts its content and translates it in compliance with the data

model of ConsensusPathDB. The data are then not simply stored in the repository of

ConsensusPathDB, but also compared to the information already present in it to detect

similarities and consequently avoid redundancy. Simple physical entities are compared

to each other based on identifiers from a unified namespace, called primary identifiers.

These identifiers are UniProt (6) for proteins, Ensembl (53) for genes, and KEGG

(or ChEBI (42), in case that a KEGG identifier is missing) for metabolites, because

these databases annotate very extensively human proteins, genes and metabolites, re-

spectively. We attempt to map all identifiers provided for every entity by the accorging

interaction resources to one or more primary identifiers. For this purpose we created an

identifier cross-map by parsing and extracting acession number mappings from eight

genomic, proteomic, and metabolite databases including UniProt, Ensembl, Entrez

(109), HUGO Gene Nomenclature Committee (HGNC) (142), Human Protein Refer-

ence Database (HPRD), KEGG, ChEBI and Human Metabolome Database (HMDB)

(177). Simple physical entities whose set of primary identifiers match, or complex en-

tities such as protein complexes or families with matching composition, are considered
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2.2 Data model of ConsensusPathDB and data integration

identical and are merged in ConsensusPathDB. Annotation of merged physical enti-

ties such as external identifiers, literature references, and synonyms are stored in a

complementary manner.

Interactions from different sources are also compared to each other. Biochemical

reactions with matching substrates and products, physical interactions with matching

interactors, as well as gene regulatory interactions with matching regulated gene are

considered similar. Notably, similar interactions may differ in the modification state,

location, or stoichiometry of their participants. For example, as mentioned above, the

Reactome database provides information about the modification state and subcellular

location of each interacting entity, whereas KEGG does not. To enable the comparison

of interactions from databases with such differences in the annotation detail, we apply

the following strategy: Each interaction is stored separately in ConsensusPathDB, and

similar interactions (as defined above) are marked as similar. This is accomplished

through equal settings of the ‘cluster’ attribute of the Interaction class (Figure 2.1) for

similar interactions. It should be noted that in this context, the word ‘cluster’ denotes

a group of interactions that have identical composition in terms of substrates and

products (for biochemical reactions), physical interactors (for protein interactions) and

regulated gene (in the case of gene regulatory interactions) and is not to be confused

with graph clusters, for example. Interactions within the same ‘cluster’ are divided

into sub-groups depending on whether their stoichiometry, modification, location, and

mutation information match. This is done through settings of the ‘clustS’, ‘clustM’,

‘clustL’, and ‘clustV’ attributes of Interaction. For example, ‘clustM’ has the same value

for interactions in the same ‘cluster’ that match in the post-translational modification

pattern of their protein participants. The decision, which of the similar interactions

are to be considered identical, depends on the concrete application and is therefore left

to the end-user. If, for example, a network of reactions from ConsensusPathDB is to

be used as the basis for models and computer simulations of a biological process, then

interactions in different compartments should probably be differentiated. If, on the

other hand, the aim is to retrieve all functional relationships of specific biomolecules in

the cell, then compartment information is probably irrelevant.

For each object in ConsensusPathDB (including physical entities, interactions and

pathways), we record its sources and source database identifiers to enable linking to the

original data, as well as all literature references where the object is primarily described.
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

The data integration module of ConsensusPathDB comprises computer programs

that create an empty repository following the described schema, download the latest

versions of all data from the source databases, translate each dataset into a unified for-

mat consistent with ConsensusPathDB’s data model, integrate the data into the data

repository in a non-redundant manner, and perform post-processing on the integrated

data e.g. to calculate overlap statistics. The integration module is executed fully au-

tomatically every three months to ensure the content of our meta-database is always

up-to-date. Appendix Figure A.1 shows a release timeline summarizing the unique in-

teraction count and integration of new source databases in ConsensusPathDB since its

initial publication.

2.3 A global view on the integrated content of Consen-

susPathDB

ConsensusPathDB is the largest interactome map for Homo sapiens. Currently (Release

20), it comprises 51,564 unique physical entities (32,357 proteins or protein families,

10,252 protein complexes, 120 non-coding RNA molecules, 5,040 metabolites, etc.),

157,461 unique interactions (2,270 gene regulatory interactions, 16,721 biochemical re-

actions, and 138,470 complex or binary protein interactions), as well as 3,161 pathways.

Interaction integration enabled the assessment of the overlaps and differences between

the integrated resources for interaction and pathway data, which we detail below.

2.3.1 Complementarity of interaction data resources

The interaction network in the ConsensusPathDB repository has been obtained by col-

lating a total of 317,065 interactions from the source databases. The fact that the

unique interactions in the integrated network are less than half that number indicates

that the databases do overlap to some extent. We have summarized the pairwise

database overlap sizes both in terms of interactions and physical entities in Table 2.2.

The table essentially shows that the databases are complementary to each other and

none of them is completely contained in another. Each database contributes unique

interactions to the integrated network. The non-zero overlaps between biochemical re-

action and protein interaction repositories is due to the fact that we explicitly defined

protein interactions from protein complexes found in the former, as mentioned above.
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

Figure 2.2: Histogram of the number of database sources per interac-

tion in ConsensusPathDB. The vast majority of interactions (69%) are avail-

able in only one of the integrated databases. Only one interaction has 15 sources

(NFKB1 HUMAN – TF65 HUMAN), two interactions have 14 sources (IF4E HUMAN

– 4EBP1 HUMAN and GRB2 HUMAN – SOS1 HUMAN), and four interactions have

13 sources (CCNB1 HUMAN – CDK1 HUMAN, EGF HUMAN – EGFR HUMAN,

CCNE1 HUMAN – CDK2 HUMAN, and SMAD3 HUMAN – SMAD4 HUMAN); all of

these are physical protein interactions.

We further dissected the interactions in the integrated network according to the num-

ber of different source databases per interaction (Figure 2.2). Strikingly, around 69%

of the interactions are contained in a single source database only, while the fraction

of interactions from exactly two or exactly three source databases is 13% and 9%, re-

spectively. Only one interaction (the physical interaction between the 105p and 65p

subunits of Nuclear factor NF-kappa-B: NFKB1 HUMAN and TF65 HUMAN, respec-

tively) is present in 15 source databases, while no interactions are common to more

than 15 databases.

We exemplarily looked at the distribution of protein interactions of one of the best

annotated proteins, the Tumor suppressor protein p53 (P53 HUMAN), which plays a

central role in the cell cycle and whose mutations are often associated with cell cycle
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2.3 A global view on the integrated content of ConsensusPathDB

dysregulation leading to cancer (75). We found 745 unique protein interactions of p53 in

ConsensusPathDB. Four of the most comprehensive protein interaction databases that

we have integrated – IntAct, HPRD, BioGRID and DIP – contained in total 509 of

these interactions, and only 12 interactions were common to all four databases (Figure

2.3). This finding evidences that the separate databases, even if focused on the same

interaction types, are highly complementary in their interaction content.

Figure 2.3: Overlap and complementarity of in-

teractions of p53 in four major protein interaction

databases. Although p53 is one of the most extensively

analyzed proteins, protein-protein interaction databases

contain complementary subsets of its available interac-

tions as shown in this Venn diagram.

In addition to providing a

more comprehensive view on

each physical entity’s inter-

actions of a given type like

in the above example, Con-

sensusPathDB reveals multi-

ple functional relationships be-

tween the entities at the same

time. For instance, we found

that each human gene/protein

represented in our database is

involved in 1.5 distinct types

of interactions (gene regula-

tory interactions, biochemical

reactions, and protein interac-

tions) on average. The number

is relatively high, considering

the uneven numbers of interactions of each type found in in ConsensusPathDB. For

instance, currently there are 61 times more physical protein interactions than gene

regulatory interactions. If only genes/proteins participating in available gene regula-

tory interactions are considered, the average number of different interaction types per

gene/protein is 2.6. With the elucidation of more regulatory and biochemical gene

relationships in human, an ascending tendency of the number of different interaction

types available for every gene in ConsensusPathDB is expected.

Next, we analyzed the degree of coherence and complementarity of the integrated

source databases beyond the interaction level. Several databases are concerned with
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

the higher-level organization of interactions in biological processes and attempt to cre-

ate molecular-level models of such processes. The resulting pathway definitions are

extensively used, for example, in methods for pathway-based expression data analysis

(discussed in Chapter 4). We were interested in the level of similarity between path-

way definitions from different databases. For each pathway from each database, we

compared its composition (in terms of physical entities or interactions) to all pathways

from the rest of the source databases. The similarity of a pair of pathways P and Q

was quantified with the Jaccard index, J(P,Q) = |P ∩Q|/|P ∪Q|, where |P ∩Q| is the

size of the intersection and |P ∪Q| is the size of the union of the two pathways in terms

of entities or interactions. J(P,Q) ranges from 0, if P and Q share no items, to 1, if

they completely match regarding their composition. The maximum reached Jaccard

index value per pathway (i.e. the maximum similarity to any pathway from a different

database) is shown for all pathways in Figure 2.4, A) and B) (for physical entities and

interactions, respectively). It is evident that pathways from every database are mostly

unique in their composition. Since most pathway databases attempt to chart exten-

sively studied biological processes such as Apoptosis, TCA cycle or Glycolysis, we were

interested how well the compositions of such pathways match across the databases.

We exemplarily inspected the composition of the Glycolysis pathway according to four

established metabolic pathway databases (Reactome, KEGG, HumanCyc and INOH).

The pathway was present as “Glycolysis” in Reactome, “Glycolysis and gluconeoge-

nesis” in INOH, “Glycolysis and gluconeogenesis” in KEGG, and “Glycolysis I” in

HumanCyc. We found astonishing differences in the pathway composition across the

four databases (Figure 2.4 C) and D) show their overlaps in terms of physical entities

and interactions, respectively). For example, the INOH Glycolysis and gluconeogen-

esis instance contained 21 reactions involving a total of 45 distinct physical entities,

while the homonymous KEGG instance consisted of 33 reactions and 65 entities. The

overlap between all four databases comprised only 3 reactions or 17 entities (Figure 2.4

C) and D)). Results were similar for the comparably well-studied Apoptosis and TCA

cycle pathways (not shown), indicating that pathway definitions are rather a matter of

subjective judgment as pathway boundaries are generally unclear (169).
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2.3 A global view on the integrated content of ConsensusPathDB

Figure 2.4: Overlap of pathway composition across databases. A and B: His-

tograms of the similarity (maximum Jaccard index) of pathways to counterparts from

other databases in terms of physical entity composition (A) or interaction composition

(B); C and D: comparison of the composition of the Glycolysis pathway in terms of phys-

ical entities C or interactions D across four major pathway databases.

2.3.2 Topological properties of the human protein interaction network

In the previous chapter we mentioned several network metrics that can be applied to

characterize the structure of real-world networks. Such metrics are commonly used

to derive hypotheses about the organization and evolution of functional associations

of biomolecules within the cell, and are often directly related with biological phenom-

ena (14). Because of the compositional differences of current interaction databases,

however, topological analyses hide the risk of bias in the results depending on which

database analyses are based on. We utilized the binary protein-protein interaction net-

work from ConsensusPathDB, as well as the separate contributing source databases, to

spot common as well as specific network structural properties. Interactions with more

29



2. TOWARD MORE COMPLETE INTERACTOME MAPS

than two participants were disregarded in this analysis. We modeled each interaction

dataset as an undirected graph where nodes represented proteins and edges represented

their interactions. The graphs were characterized in terms of the topological measures

introduced in the previous Chapter (Table 2.3). Notably, the networks had different

coverage of the human physical interactome, ranging from around 100 (MatrixDB)

to over 96,000 (ConsensusPathDB) interactions. The average shortest path spanned

around 4 interactions, and the diameter ranged between 8 and 17. This demonstrates

that all networks in the analysis are the small-world, suggesting that the property is

often preserved in samples of the real human physical interactome barely dependent on

their size. On the other hand, the range of the average clustering coefficient across the

analyzed networks was fairly big: For the large-scale dataset from IntAct (IntAct-LS)

it measured only 0.05, which was more than five times smaller than for BIND (clus-

tering coefficient = 0.26). IntAct-LS and BIND seem to represent different subsets of

the interactome that are barely overlapping: Table 2.2 shows that they have only 133

interactions in common. While IntAct-LS consists of the large-scale experimental data

published by Rual et al. (133), Stelzl et al. (152), and Ewing et al. (50), BIND com-

prises mostly small-scale experimental data manually curated from the literature. The

clustering coefficient of the integrated network lied between the two extremes (cluster-

ing coefficient = 0.16). The average node degree ranged from less than 2 (CORUM and

MIPS-MPPI) to 13.3 (ConsensusPathDB) interaction partners per protein. Overall,

the results confirmed that conclusions about the topological properties of the human

interactome may differ according to which database is used as a basis for the analysis.

The distributions of protein degree and clustering coefficient in the integrated hu-

man physical interactome map are shown in Figure 2.5. The evident power-law distri-

bution of protein degree, approximated by P (X = k) ∼ k−1.42 (where k denotes protein

degree) indicates the scale-free nature of the network (13). The power-law scaling of

the clustering coefficient with protein degree obvious in Figure 2.5 is a direct evidence

for a hierarchical organization of modularity in the network (127, 128).

2.4 Interfaces of ConsensusPathDB

To grant researchers around the globe access to the integrated content of Consensus-

PahDB, we have developed a web interface and a specialized plugin for the popular
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

Figure 2.5: Distributions of protein degree and clustering coefficient in the

integrated human physical interactome map. The number of proteins (blue line,

left-hand-side y-axis) and the clustering coefficients of proteins (red line, right-hand-side

y-axis) are plotted against protein degree.

network analysis and visualization software tool Cytoscape (148).

2.4.1 The ConsensusPathDB web interface

The web interface of ConsensusPathDB can be accessed with a contemporary web

browser at http://cpdb.molgen.mpg.de. Its functionality is summarized in Figure 2.6

and is extensively documented in an online manual found on the ConsensusPathDB

home page. The web interface offers possibilities to query the interactions of specific

physical entities or pathways, or search for shortest interaction paths connecting pairs

of biomolecules. Selected interactions can be visualized either in an image-based or a

Java-applet-based visualization framework. Both frameworks represent interactions in

an identical way. Interactions are displayed as directed bipartite multigraphs where

circular nodes represent interactions and rectangular nodes represent physical entities

(Figure 2.6). The color of each node encodes the type of the according interaction

or entity. Entities are linked to their interactions with edges whose line style, arrow

shape and orientation encode the roles of the entities in the interactions. The color
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2.4 Interfaces of ConsensusPathDB

Figure 2.6: Overview of the funtionality of the ConsensusPathDB web inter-

face. By either searching for interactions of specific physical entities or pathways, searching

for shortest interaction paths connecting two physical entities, upload of expression data

for gene set-based analysis, or upload of standard files containing interactions which are

matched to the meta-database, custom interaction networks can be constructed and dis-

played in one of ConsensusPathDB’s visualization environments. Consistent with the data

model of the database, these networks are visualized as bipartite multigraphs where one

class of nodes (shown as rectangles) represent physical entities, and the other class (shown

as circles) represent their interactions. Node color shows the type of the corresponding

physical entity (gene, protein, metabolite, etc.) or interaction (gene regulation, protein

interaction, or biochemical reaction). Edges connect physical entities to their interactions;

edge style denotes the role of the entity (regulated gene, transcription factor, physical

interactor, reaction substrate, etc.) and edge color shows the source of the interaction.

of edges encodes the database source of the interaction. Multiple edges with different

styles denote that an entity has multiple roles in the interaction (e.g. in gene regulatory

self-interactions, the protein product will also serve as a transcription factor in the inter-
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

action). Multiple edges of different color, on the other hand, show that the interaction

is present in multiple source databases. Figure 2.6 shows as an example a connected

interaction network comprising one gene regulatory interaction, three physical interac-

tions, and two biochemical reactions, originating from different source databases. The

depicted interactions involve one gene, several proteins and protein complexes, and one

compound molecule. The visualization frameworks of the ConsensusPathDB web inter-

face allow interactive operations on the displayed networks, such as interaction removal,

node expansion, node location, etc. While the Java-applet-based framework requires a

Java Runtime Environment to be installed on the client computer and has higher pro-

cessor and RAM requirements to the client computer than a simple computer image, it

has several advantages, especially when it comes to visualizing larger networks. Network

nodes (physical entities/interactions) are movable and can be rearranged automatically

using different layout methods. Network viewing is further facilitated through a zoom

function. Most notably, in the Java-applet-based visualization environment, custom

numerical values (e.g. gene/protein expression data) can be overlaid on the displayed

network. The values are shown in a red-green color gradient on the according physical

entity nodes. This feature aims to enable the visual interpretation of numerical data

in the context of interaction sub-networks from ConsensusPathDB such as manually

curated pathways or user-generated sub-networks. Any network displayed in the vi-

sualization frameworks of ConsensusPathDB can be downloaded in BioPAX format or

as a computer image. Moreover, the protein interaction part of the ConsensusPathDB

network is available for download through the web page in PSI-MI and tab-delimited

formats.

Apart from interaction querying and visualization, the web interface offers the

possibility to verify pathway models and extend them in the context of the Consen-

susPathDB content. Users can upload interaction networks in BioPAX, PSI-MI or

SBML formats. Upon upload, the interactions are matched to the content of the meta-

database, and are displayed along with their similar counterparts from the integrated

source databases. This aids the identification of spurious interactions in the uploaded

models, and easily shows evidence for each interaction from the dozens of integrated

databases. The uploaded interactions and entities are enriched with annotation from

the meta-database such as publications, synonym names, and database identifiers. No-

tably, the network can be extended by expanding its physical entities with further
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2.4 Interfaces of ConsensusPathDB

interactions from the integrated repository, and downloaded for use with other soft-

ware.

In the primary focus of the web interface of ConsensusPathDB are tools for interaction-

and pathway-based analysis of transcriptomics or proteomics data. Such data can be

uploaded either as a summary list comprising e.g. differentially expressed genes, or in

the form of numerical values for every measured gene/protein. Over-representation and

enrichment analyses can be carried out with these data based on predefined pathways,

sub-networks, and Gene Ontology (8) categories residing in the meta-database. The

goal of these functionalities is to identify pathways and hot-spots in the integrated net-

work which exhibit a changed activity in the phenotype of interest. Results can help

to unveil the molecular mechanisms leading to these phenotypes and to suggest novel

phenotype-associated genes. The underlying approaches are detailed in Chapter 4.

2.4.2 The ConsensusPathDB plugin for Cytoscape

As mentioned in the previous chapter, protein-protein interactions can already be de-

tected on a large scale, owing to the development of a multitude of biological and

computational techniques for this purpose. After generating a network of detected or

predicted interactions, one usually faces the task to collect evidence for every interaction

from the literature, and to identify interactions that have not been published previously.

This information is useful in order to estimate the performance of the interaction screen,

and to assess the contribution of its results toward the completion of the protein-protein

interaction map of the species under study. To accomplish this task, one typically has

to search the new data against every single protein-protein interaction repository. Even

more tedious is the manual mining for interactions in the scientific literature in order

to collect the publication references and different detection methods for each detected

or predicted interaction. Apart from that, the number of publications reporting an

interaction is an often desired interaction attribute when dealing with protein-protein

interaction networks, since it is a direct evidence for interaction veracity (114). To

aid the process of interaction evidence mining, we have developed a ConsensusPathDB

plugin for Cytoscape (122). Our plugin searches all interactions from a network loaded

in Cytoscape against the interaction space of ConsensusPathDB through dedicated web

services. Interactions that are not present in any of the integrated resources are high-

lighted, since they constitute either novel or false positive interaction predictions, likely
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2. TOWARD MORE COMPLETE INTERACTOME MAPS

Figure 2.7: Overview of the funtionality of the ConsensusPathDB plugin for

Cytoscape. A Menu screen of the plugin; B the ConsensusPathDB custom visual style

where interactions with database evidence are black and weighted by the number of pub-

lications, while novel interactions are shown in green; C newly imported attributes of a

selected interaction are shown in the ‘Interaction details’ tab of Cytoscape’s results panel;

D evidence mining time plot for networks of different size with default parameters (for this

performance assessment, all query interactions were present in ConsensusPathDB such

that the mining process took maximal time). The sizes of the networks predicted using

large-scale interaction screening by Rual et al. (133) [R], Stelzl et al. (152) [S] and Ewing

et al. (50) [E] are marked on the x-axis for a reference.

necessitating confirmation with complementary techniques. For the rest of the inter-

actions, literature evidence (in the form of PubMed identifiers), interaction detection

methods, interaction database references, and pathway co-ocurrence of interactors are

extracted from our meta-database and can be viewed in Cytoscape. From there, these

data can be exported as interaction attribute files. The plugin can be used also to spot

interactions that have been missed in the screen (i.e., false negatives) by applying it

on the complement of the interaction graph (which comprises all possible protein pairs

that are not contained in the network). The ConsensusPathDB plugin-in is available

through Cytoscape’s plugin manager. Its functionality is summarized in Figure 2.7.

2.5 Discussion

Through the collation of dozens of publicly available interaction resources, we have

created ConsensusPathDB: the most comprehensive interactome map available for hu-

man and for the model organisms mouse and yeast. Data integration enabled us to

assess the similarities and differences between the separate resources. We found grave

discrepancies regarding the interaction content of these resources even for well-studied
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proteins and pathways. Our findings strongly advise against limiting to a single pri-

mary dataset in interaction- and pathway-based research, because the outcome of such

analyses would be highly dependent on the particular interaction database employed.

Integrated interaction data should be used instead, as they represent biological reality

in a more comprehensive and unbiased way (35).

The interaction content of ConsensusPathDB can be used in many ways and con-

texts. 1) It offers a basis for analyses of the global and local topological properties

of the human interactome. 2) It provides molecular models of biological processes for

computational simulations. 3) It serves as a centralized repository for curated pathway

models for pathway-driven analyses of expression data. 4) It can be used as a common

interaction query interface for many databases. 5) It easily shows content overlap and

discrepancies across databases, pointing molecular biologists to those best suited for

their specific research, and helping database developers to spot and amend data er-

rors. 6) Since it additionally includes many physical interactions between human and

pathogenic proteins, it can serve as an explanatory basis for infectious diseases. There

are many more application areas of ConsensusPathDB that are not mentioned here.

In Chapter 4 we describe its applications in the context of gene expression data for

identifying causative genes and interaction communities related with complex diseases

such as cancer.

Although ConsensusPathDB contains several major types of direct interactions be-

tween biomolecules, there are further functional relation classes that are not yet inte-

grated. An example are genetic interactions, referring to a phenomenon in which two or

more mutations in different genes have an effect on the phenotype that is different than

expected from the individual mutations (38). With the increasing generation of such

data in human, a natural extension to ConsensusPathDB would be to integrate genetic

interactions into the interactome map. Due to the generic design of the database, such

an extension is in no way challenging. In fact, we have already integrated the DRYGIN

yeast genetic interaction database (101) into the yeast instance of ConsensusPathDB

that will be visible in the next database release.

Notably, all integrated interaction datasets are treated equally in ConsensusPathDB

(that is, they are imported without any filtering), albeit in reality the separate datasets

are of different quality. Due to the considerable manual curation efforts that have been

applied to generate the currently integrated metabolic, signaling, and gene regulatory
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interaction data, these data are much less error-prone than large-scale protein interac-

tion data (72, 105). One way to deal with the high level of false positive protein-protein

interactions is to consider the number of methods each interaction has been detected

with, as suggested by von Mering et al. (114). Because literature evidences for in-

teractions in ConsensusPathDB are assembled from many databases, their number is

certainly a more reliable interaction confidence measure than the according numbers in

the separate databases. However, in the next Chapter we argue that literature evidence

is not an optimal criterion for interaction confidence because interactions with weaker

literature evidence are not necessarily false. As a more elegant solution, we propose a

novel interaction confidence scoring method. With that method we have calculated a

confidence value for each binary protein-protein interaction in ConsensusPathDB. The

resulting confidence scores are provided in the downloadable protein interaction data

and are shown in the interaction visualization frameworks. The confidence score can

be used as a criterion for interaction filtering, or can be treated as interaction weights

by network-based approaches that are designed to deal with weighted network data.
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Chapter 3

Cluster-based assessment of

protein-protein interaction

confidence

Protein-protein interaction data often contain a considerable amount of false positives

originating from experimental or curation errors (41, 72). In this Chapter, we propose

a novel method to assign confidence scores to interactions in a given network (91). Our

method exploits solely the structure of interaction networks to assess the confidence of

their individual interacitons and does not require additional information on the network

elements.

3.1 Introduction to protein-protein interaction confidence

assessment

Accurate physical interaction networks are fundamental to answering questions about

how the biochemical machinery of cells organizes matter, processes information, and

carries out transformations to perform specific functions leading to various phenotypes

(73, 151). Toward this goal, a number of experimental and computational techniques,

some of which were mentioned in Chapter 1, have been devised and applied to map

the interactions of human proteins (50, 79, 133, 152) and those of model organisms

such as yeast (61, 84, 103, 160, 167, 183). Despite their incompleteness (72, 171),

physical interaction networks already serve as a basis for numerous methods aiming to
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elucidate biological processes in health and disease (67, 80, 146). Current interactome

maps are contaminated with false positives that can make up a considerable portion

of the data (41, 43, 85, 114, 171). False positive interactions dim the explanatory light

of interaction networks and also decrease the predictive value of methods using such

data. Even more gravely impacted are integrated networks due to the much higher

probability of overlap for true interactions than false positives from different datasets,

which leads to an accumulation of false interactions in integrated data. It is thus of

primary importance to derive confidence values for individual interactions, which can

serve to refine current interactome maps or can be used as interaction weights.

Von Mering et al. (114) showed that interactions detected with multiple methods are

more likely to be true than those detected with a single method, which is why literature

evidence is an often used criterion for interaction confidence. Nevertheless, interactions

with weaker evidence (e.g. those detected with a single method) found in interaction

databases are not necessarily false: First, protein interaction detection techniques are

barely comparable, and interactions consistently measured with one technique could be

missed by another e.g. because the techniques tend to detect interactions with different

stability. For instance, affinity purification combined with mass spectrometry captures

interactions that are stable over time, while yeast-two-hybrid is able to detect more

transient interactions. Second, the coverage of existing interactome screens is still

limited (72), meaning that not all possible interactions have been tested even for well-

studied organisms, and different large-scale studies usually test different subsets of the

possible interactions. Third, a vast amount of the reported interactions are not even

captured by database curators (35). This is also evidenced by the fact that databases

mining interactions from the literature are mostly complementary (Table 2.2 in Chapter

2), suggesting that database curators tend to cover unique subsets of publications to

extract interactions from. As a consequence, filtering out interactions with a weaker

publication evidence is certainly sub-optimal as it would discard many true interactions

that have been tested rarely, seen rarely by database curators, or are specific to a certain

discovery technique.

Other strategies to validate protein-protein interaction data beside considering the

literature evidence of interactions involve comparison of the interactions with reference

datasets. For example, interactions between proteins that are often found together in
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known protein complexes are more likely to be true. However, knowledge about pro-

tein complexes is still limited. Similarly, interactions between proteins that are known

to participate in the same biological processes are more likely to be true, but unfor-

tunately, pathway annotation is still lacking for many proteins (146). Several further

approaches have been proposed for interaction confidence assessment, many of which

are reviewed in (157) and (31). Most of these methods are meta-approaches that require

the integration of additional data like interaction homology (43), co-expression of genes

encoding interacting proteins (43, 44, 97), or a combination of these and other evidence

features (12, 106, 145). While being certainly useful, such additional data are not al-

ways available, and may introduce additional bias and ambiguity since results depend

on the particular data employed. Other methods do not require additional features and

use network topology alone to predict interaction veracity (30, 66, 104, 135). Network

topology-based methods are the tools of choice for interaction confidence assessment if

other types of data are limited; moreover, topological features can be combined with

other features to achieve better predictions. Topology-based methods are motivated by

the fact that at various levels, the topology of interaction networks encodes biological

properties which are largely independent of the biochemical function of the individual

members of the network (5, 14, 18). Importantly, modularity of interaction networks is

currently the most successful concept for addressing the dynamics of cellular processes

(4, 54, 73).

Goldberg and Roth (66) proposed a network topology-based approach for interac-

tion confidence assessment where the number of common neighbors of a pair of predicted

interaction partners counts in support of the interaction. They defined interaction con-

fidence as the level of enrichment of common network neighbors of interacting proteins.

It is quantified by the hypergeometric distribution p-value given the number of common

neighbors and total network neighbors of both interacting proteins. The underlying

principle of the approach has been established in seminal studies demonstrating that

biological networks are marked with short interaction paths separating random pairs of

proteins in the network (small-world property), and densely connected local neighbor-

hoods (neighborhood cohesiveness property) (153, 175). False positive protein-protein

interactions are expected to violate the network cohesiveness property more frequently

than true interactions. Recently, Kuchaiev et al. (104) proposed a different method

that embeds interaction networks into a low-dimensional Euclidean space based on

41



3. CLUSTER-BASED ASSESSMENT OF PROTEIN-PROTEIN
INTERACTION CONFIDENCE

network metrics (shortest path length) and then calculates confidence of interactions

depending on the Euclidean distance between proteins within that space. The basis of

the approach is the geometric graph model that was proposed to better reflect biological

networks than e.g. the small-world model (74). Although its biological basis remains

elusive, the authors argue that applying the geometric graph model to assess network

distance should be consequently more reliable. Both of these topology-based meth-

ods assign confidence as numerical values to protein-protein interactions in a network

and are additionally able to predict new interaction candidates by assigning confidence

scores to non-interactions. However, both methods have certain shortcomings. The

method by Goldberg and Roth is able to assess the confidence of those interactions

whose participants have common neighbors only. Often, however, interacting proteins

do not share neighbors. The method of Kuchaiev et al. appears limited in that it re-

quires fixing six free parameters. For example, one of them is the prior probability for

interactions. To calculate it, knowledge about the sizes of the proteome and interac-

tome of the species under study is crucial. Unfortunately, even for well-stidied model

organisms such as yeast, these quantities can still only be guessed at (71, 72). The rest

of the parameters are algorithm-specific and barely have any biological motivation.

Here, we propose CAPPIC (cluster-based assessment of protein-protein interaction

confidence) – a novel network topology-based approach that exploits the inherent mod-

ular structure of interactomes for confidence assessment of individual protein-protein

interactions (91). Our method combines the basic principles of the topology-based

methods described above: high neighborhood interconnectedness of a couple of pro-

teins and short distance between them (the features exploited by Goldberg and Roth

and Kuchaiev et al., respectively) are indicators that both proteins participate in the

same module. We apply Markov clustering (45) to the line graph (176) of an interac-

tion network to dissect it into modules of interactions. As demonstrated in (123), this

strategy can generate interaction clusters that significantly overlap with known biolog-

ical pathways. Notably, the interaction clusters overlap in their protein constitution.

This is biologically more meaningful than clustering the proteins into disjoint modules

because pathways and protein machineries are known to overlap (61, 73). The rationale

behind our approach is that proteins that are specific to certain modules are expected

to have more interactions with proteins that are specific to the same modules than with

other proteins (54). Intuitively, we assign low confidence to interactions that disagree
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network property Tarassov-all Tarassov-hq Yu-Ito-Uetz Gavin-Krogan CPDB-yeast Costanzo

method PCA PCA Y2H AP-MS multiple genetic

node count 2238 (2293) 889 (1124) 1647 (2018) 2864 (2964) 6073 (6075) 4278 (4278)

link count 9360 (9646) 2407 (2770) 2518 (2930) 12006 (12068) 74332 (74333) 63927 (63927)

clustering coefficient 0.14 0.24 0.06 0.24 0.19 0.06

links in triangles 5861 (62%) 1761 (73%) 440 (17%) 8701 (72%) 63385 (85%) 47822 (74%)

mean shortest path length 3.7 5.6 5.6 4.3 2.7 2.9

links with ≥ 3 publications 546 (5%) 419 (17%) 782 (31%) 4090 (34%) 6324 (8%) 2546 (3%)∗

Table 3.1: Yeast interactome maps used in this study for method evaluation. Interac-

tion discovery methods: PCA: protein-fragment complementation; Y2H: yeast-two-hybrid;

AP-MS: affinity purification coupled to mass spectrometry. The node and link counts cor-

respond to the largest connected network component which is used for method evaluation;

the according numbers of items in the complete network are given in brackets. The number

of links in triangles corresponds to the number of interactions whose interaction partners

share at least one network neighbor. ∗In the case of the Costanzo network, the number in

the last row corresponds to the number of genetic interactions also reported in (36).

with the modular structure of biological networks and high confidence to those that

comply with it. While the aim of CAPPIC is to detect false positive interactions, an

approach based on the same idea of high link density within network modules has been

proposed for identifying false negative interactions (182).

We applied CAPPIC and the methods by Goldberg and Roth and Kuchaiev et al.

on a comprehensive benchmark of six interaction networks from yeast (Table 3.1) to

assess and compare their performance. The six datasets were: 1) a network published

by Tarassov et al. (160) that was generated using the protein-fragment complementa-

tion assay technology (Tarassov-all); 2) a sub-network of Tarassov-all obtained by the

authors after applying several filtering steps (160) (Tarassov-hq); 3) a combined net-

work of interactions found by yeast-two-hybrid screens (Yu-Ito-Uetz) comprising the

networks published by Yu et al. (183), Ito et al. (84) and Uetz et al. (167) (retrieved

from (183)); 4) a combined network of interactions detected by affinity purification cou-

pled to mass spectrometry (Gavin-Krogan) published by Gavin et al. (61) and Krogan

et al. (103) and downloaded from BioGRID (149); 5) a comprehensive physical inter-

action network from the interaction meta-database ConsensusPathDB, release 6(yeast)

(92) obtained by the integration of multiple publicly accessible interaction repositories

(CPDB-yeast); and 6) a genetic interaction map published by Costanzo et al. (38) ob-

tained at a stringent experimental cutoff (Costanzo). The physical interaction networks

constitute a representative benchmark since they result from different, most prevalent

methods: yeast-two-hybrid, protein-fragment complementation, affinity purification,
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and integration of interaction data from multiple methods. We applied our method

additionally to the genetic interaction map by Costanzo et al. to provide evidence that

it is not limited to physical interactome maps.

3.2 CAPPIC: A novel approach for interaction confidence

assessment

3.2.1 Assessing protein interaction confidence by random walk inter-

action clustering

As mentioned previously, binary physical interaction data are usually modeled as graphs

where nodes represent proteins or genes and edges represent interactions between them.

For assessing the confidence of every interaction in such a network, we apply the fol-

lowing strategy (illustrated in Figure 3.1). First, the interaction graph is transformed

into its line graph (176) where interactions are represented by nodes, and proteins are

represented by links that connect their interactions (step 1 in Figure 3.1). In other

words, while the original interaction graph is a network of proteins connected by their

interactions, its line graph is a network of interactions connected by their shared pro-

teins. Second, we employ Markov clustering – an algorithm for network clustering

through random walk simulation (45) – on the line graph to dissect it into disjoint

clusters of interactions (step 2 in Figure 3.1). In the third and last step of the approach

(step 3 in Figure 3.1), we evaluate the distribution of interactions among the resulting

clusters. It is a key point that interactions of a given protein can be clustered together,

or distributed among multiple clusters. A protein is specific to a cluster if the cluster

is enriched in interactions of that protein. We utilize the cumulative hypergeometric

distribution to assess the enrichment of links of a given protein in a given interaction

cluster. We define the fidelity Fp,c of a protein p to cluster c as the value of the cumu-

lative hypergeometric distribution function (Equation (3.1)) given Lp,c, the number of

interactions of protein p in cluster c; Lp,·, the total number of interactions of p (called

the degree of p); L·,c, the total number of interactions in c; and L·,·, the total number

of interactions in the network:

Fp,c = P (X ≤ Lp,c) =

Lp,c∑
k=0

(Lp,·
k

)(L·,·−Lp,·
L·,c−k

)(L·,·
L·,c

) (3.1)
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Figure 3.1: Outline of our interaction confidence assessment method. In the

input interaction network (upper left picture), proteins are labeled with letters (A, B,

etc.) and interactions between them are represented by edges. In the first step of the

approach, we create the line graph of the given network where nodes represent interactions

(labeled A–C, A–D, etc.) and edges represent shared interaction participants. In the second

step, we use Markov clustering on this line graph to dissect it into interaction clusters.

The clustering granularity is optimized in a previous step of the algorithm. Importantly,

proteins can be part of more than one cluster. The relative number of interactions of a

protein in a cluster determines how specific a protein is to that cluster. In the third step,

we calculate confidence values for every interaction based on how specific both proteins

are to the according clusters. The thickness of interaction links in the lower left picture

corresponds to the calculated interaction confidence values for this example network.

The value of the fidelity Fp,c lies between 0 and 1, with values near or equal to 1 if

a protein p is specific to cluster c, i.e. if it has relatively many links in that cluster.
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For a fixed Lp,c it holds that the smaller the cluster (smaller L·,c), the greater the

fidelity value – meaning that big clusters are less informative. Finally, if all the links of

two proteins lie within a cluster, the fidelity is greater for the protein with the greater

degree.

We define interaction confidence as the product of the fidelity values of both inter-

acting proteins to the cluster c which the interaction has been assigned to:

confidence(lp1,p2) = Fp1,c · Fp2,c (3.2)

Interactions get high confidence values if both proteins are specific to the cluster con-

taining the interaction, and low confidence values when one or both of the proteins are

not specific to the cluster.

3.2.2 Optimal clustering granularity is reliably determined through

partial network rewiring

The interaction confidence scores calculated by CAPPIC are dependent on the granu-

larity of the interaction clustering. It has been shown that modules in many complex

networks, including protein interaction maps, are organized in a hierarchical manner

(127). Accordingly, interaction clustering can yield protein complexes, cellular ma-

chineries (like the spliceosome), pathways, or higher-order biological processes depend-

ing on the clustering granularity. To estimate the granularity for a given network that

will result in the best discrimination between true and false interactions, we first create

an instance of that network where a small part of the interactions are randomly rewired

to produce a set of false interactions. Our experiments have shown that rewiring 3%

of the links is a good choice because this yields a false interaction set of reasonable

size while keeping most of the network structure intact. In the rewiring procedure,

pairs of interactions are selected at random and two of the proteins are swapped (so

that no real interaction is reconstituted), thus generating two false interactions for two

real ones while preserving each protein’s degree. We additionally make sure that the

network stays connected as a single component. Then, we apply our confidence scoring

algorithm to this partially rewired network instance using different inflation values.

The inflation parameter of the Markov clustering algorithm essentially controls clus-

tering granularity (45). For every inflation value, we quantify the significance of the

difference between the confidence score distributions of the rewired and the remaining
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non-rewired links. This is done with the Wilcoxon rank-sum test under the alternative

hypothesis that the confidence scores of the non-rewired links are greater than the con-

fidence scores of the rewired links. The inflation value minimizing the Wilcoxon test

p-value is considered optimal.

The inflation scan is carried out in two steps: a coarse scan with step size of 0.1

within a fixed range I ∈ [1.1, 2.0] is followed by a fine scan with step size of 0.025

around the optimal inflation value ±0.1 resulting from the coarse scan. In general,

the inflation parameter takes values from the interval I ∈ (1.0, 30.0] with higher values

resulting in finer granularity. In all our experiments the Wilcoxon test p-value peaked

at values far below 2.0, motivating the choice of this value as an upper boundary of the

inflation scan.

Our experiments have shown that the estimated granularity value is robust to the

introduced random rewiring as long as it is of reasonable extent: If the set of false inter-

actions obtained through random rewiring is too small, the granularity estimation will

lack statistical power, while if too many interactions are rewired, the network’s origi-

nal modular structure will be difficult to capture by the Markov clustering algorithm

and the estimate may be biased. For all networks CAPPIC was applied on, random

rewiring of 1%, 3%, 5%, or 10% of the interactions yielded identical or very similar op-

timal granularity estimates (data not shown). As mentioned above, we chose to rewire

3% in the inflation estimation step to ensure statistical power of the estimation while

keeping most of the network intact.

The inflation estimation approach described above builds on the assumption that

the optimal granularity value inferred from a partially rewired network instance (where

both false positive and false negative rates are increased compared to the real network)

is transferable to the real network. We aimed to scrutinize this reasoning and verified for

all reference networks that 1) the estimated optimal granularity was rather independent

of the random choice of links for rewiring; and 2) that interaction clusters were similar

for the intact and the partially rewired networks clustered with the same inflation value.

To test the first hypothesis, we created 100 instances of each of the six reference

networks (Table 3.1) where 3% of the links were randomly selected and rewired, and

performed an inflation value search for each. For every instance and every inflation

value, we calculated the Wilcoxon rank-sum test p-value reflecting the significance of

the score difference between original and rewired interactions (optimality criterion).

47



3. CLUSTER-BASED ASSESSMENT OF PROTEIN-PROTEIN
INTERACTION CONFIDENCE

Figure 3.2: Estimating optimal granularity for clustering through partial ran-

dom rewiring of input networks. 100 instances of every reference network were created

where 3% of the links were randomly rewired. The negative common logarithm of the

Wilcoxon rank sum test p-value reflecting the confidence score difference between rewired

and non-rewired interactions (red curves, left-hand-side Y-axis) was calculated for each

inflation value (X-axis). Moreover, the number of resulting clusters (blue curves, right-

hand-side Y-axis) is plotted against varying inflation. Thick lines indicate the median

values. We note that in the case of the Yu-Ito-Uetz network, the achieved p-value in the

optimization step was one to two orders of magnitude higher than for the rest of the net-

works. Intuitively, the reliability of confidence scores calculated by our method can be

appraised from the best achieved Wilcoxon rank sum test p-value in the inflation opti-

mization step. If the overall performance of confidence scoring for a network is bad, then

the score difference between random and real interactions in the optimization phase is

less significant. However, these p-values are not suited for a strict comparison between

networks.

The negative logarithm of the Wilcoxon test p-value and the number of clusters are

plotted against varying inflation value in Figure 3.2. For all six networks, the 100

partially randomized instances were highly consistent regarding the estimated optimal

inflation value. Figure 3.2 also shows that the number of clusters generated for the

network instances did not vary much for any given inflation value within the inflation
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search range.

To test the second hypothesis, namely that clusters have similar interaction compo-

sition for the intact and the partially rewired networks, we first clustered these networks

with the same inflation value (resulting from granularity optimization). Based on the

100 partially rewired instances, we calculated an interaction co-clustering matrix ri,j

which contained the relative frequencies that two interactions, i and j, end up in the

same cluster for all partially rewired network instances where both interactions survive

rewiring. We compared this matrix with the binary co-clustering matrix ci,j reflect-

ing interaction co-clustering for the intact reference network. We defined a clustering

agreement score to measure the agreement between ri,j and ci,j :

clustering agreement = 1− 2

∑
i,j
i 6=j
|ri,j − ci,j |(
L·,·
2

) (3.3)

By definition, the clustering agreement equals 1, if and only if pairs of interactions that

are co-clustered in the non-rewired case are also co-clustered in all rewired instances

where both interactions have survived rewiring. The agreement value is around 0 if

clusters in the non-rewired and rewired instances are completely independent from

each other, and equals -1 if they are negatively correlated. Figure 3.3 shows the two

co-clustering frequency matrices and their global mutual agreement for each reference

network. In all six cases we found the cluster composition of the real network in

high agreement with its partially randomized instances. We conclude that clusters

are very similar for the original and the partially rewired networks clustered with the

same inflation value. In other words, the link randomization we introduce to estimate

the optimal granularity in the clustering step of the algorithm does not change the

clustering result as such.

3.3 Comparative assessment of the performance of CAP-

PIC on yeast networks

3.3.1 True positive interactions are assigned higher confidence than

false positives

We measured the performance of CAPPIC and compared it to the previously proposed

network topology-based interaction confidence assessment methods ba Goldberg and
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Figure 3.3: Interaction co-clustering matrices. For each reference network and its

100 partially rewired instances, we calculated interaction co-clustering matrices ri,j and

ci,j for a fixed inflation corresponding to the estimated optimal value. This figure shows

the co-clustering heatmaps for the non-rewired networks (ci,j , below the diagonal) and the

rewired instances (ri,j , above the diagonal). Also provided is the overall agreement between

both co-clustering matrices which, by definition, equals 1 if and only if pairs of interactions

that are co-clustered in the non-rewired case are also co-clustered in all rewired instances

where both interactions have survived rewiring. The agreement is around 0 if clusters in

the non-rewired and rewired instances are completely independent from each other, and

equals -1 if they are negatively correlated. For the six reference networks, the agreement

ranges from 0.63 to 0.97.

Roth and Kuchaiev et al. using five yeast physical interaction networks and one yeast

genetic interactome map, covering major interaction inference methods (Table 3.1).

We first constructed positive (literature interactions) and negative (random links)

link sets and then evaluated the methods using receiver operating characteristic (ROC)

analysis. The positive set for each network consisted of interactions that are reported

at least three times in the literature (ranging from 3% to 34% for the six reference
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networks, Table 1), since such interactions have been shown to be on average more

reliable (114, 171). An exception was made for the Costanzo network because of the

scarcity of genetic interaction data: the positive set in this case consisted of interac-

tions that are also reported in (36). Literature evidences for all networks were retrieved

with the interaction evidence mining ConsensusPathDB plugin (122) described in the

previous Chapter. For each network, the negative interaction set for the ROC analysis

was constructed by randomly rewiring a small subset (3%) of the interactions. For the

partially rewired network networks we ranked interactions according to confidence as

calculated with CAPPIC or reference methods and created receiver operating charac-

teristic (ROC) curves.

The reference methods were applied as follows. We set the number of yeast genes

to 6,000 in the method by Goldberg and Roth, which we implemented in R (82).

The parameters of the method by Kuchaiev et al. (implementation downloaded from

http://www.kuchaev.com/Denoising) were set as follows: priorEdge=0.002945 (which

results when the estimated yeast interactome size of 53,000 interactions (72) is divided

by the number of all possible protein pairs,
(
6000
2

)
= 17997000); priorNonEdge=1-

priorEdge; dim=5 (default); d=3 (default); learnSetSize=min(5,000 or half the number

of interactions); delta=1.0; and stopEps=0.01 (default). In the case of the Costanzo

network, we set dim=3 because the program (run on a standard AMD X2 5600+

machine with 8GB of RAM running Matlab version 7.10.0.499 under Linux) did not

return results within five days for a higher number of dimensions.

ROC curves were created by successively comparing the interactions ordered by

confidence against the real positive (literature interactions) and real negative (random

links) sets to determine the true positive and false positive rates at each step. The true

positive rate is defined as the fraction of true positives from the real positives, while the

false positive rate is the fraction of false positives from the real negatives. The perfor-

mance of a given confidence assessment method in ranking positive interactions higher

than negative ones was quantified with the area under the ROC curve (AUC). The AUC

is around 0.5 if a method does not perform better than random interaction ranking,

and is closer to 1 the better it ranks positive interactions higher than negative ones.

Since the constitution of the negative and positive sets involves a random process (that

is, the random selection of interactions for rewiring), we repeated the procedure 100

times and averaged the ROC results. In general, CAPPIC assigned higher confidence
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Figure 3.4: ROC analysis measuring the performance of CAPPIC in compari-

son to the methods by Goldberg and Roth and Kuchaiev et al.. False positive rate

(1-specificity) is plotted against true positive rate (sensitivity) for each of the six reference

networks. Since the definition of a negative interaction set in the performance assessment

involves a random process, the ROC plots summarize the outcome of 100 runs. Plots show

the average ROC curves (thick lines), their standard error bands (dotted lines), as well as

the mean area under the ROC curve (AUC) of all runs. The ‘X’-marks on the green ROC

curves correspond to the fraction of true/false interactions whose proteins share network

neighbors and are thus scored by Goldberg and Roth’s method.

to true interactions than false interactions (Figure 3.4). The area under the ROC

curve (AUC), which quantifies the confidence ranking performance, was as high as 93%

for the Gavin-Krogan network. At a fixed specificity of 90% our method reached 86%

sensitivity, outperforming the other topology-based methods. None of the methods in

question showed convincing performance on the combined Y2H network Yu-Ito-Uetz.

In this example, Goldberg and Roth’s method successfully classified interactions whose

proteins shared network neighbors; however, such interactions comprised only 17% of

Yu-Ito-Uetz (see ‘X’-mark on the green line in Figure 3.4 and row “links in triangles” in

Table 1) while the rest of the interacting protein pairs did not share network neighbors.
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Nevertheless, Goldberg and Roth’s method outperformed CAPPIC by 6% AUC in the

case of the Costanzo genetic interaction network, whereas the method by Kuchaiev

et al. did not discriminate between true and false interactions better than random

(AUC=50%). Based on the results for all six networks, we conclude that the method of

Goldberg and Roth is suitable for identifying a relatively small set of high-confidence

interactions but often does not provide predictions for a considerable fraction of the

data. On the other hand, the method by Kuchaiev et al. and our approach generate

confidence scores for the complete dataset, and are therefore more appropriate when

the aim is to assess the confidence of all interactions or to filter out a relatively small

sub-set of low-confidence interactions. In all cases, CAPPIC outperformed the method

by Kuchaiev et al. in terms of AUC. It should be noted that in order to define a reli-

able negative link set, we destroyed some real interactions (increasing the false negative

rate) and simultaneously introduced the same number of false positive interactions into

the network, diminishing the biological signal in its structure. Thus, the AUC values

reported here probably underestimate the real performance.

3.3.2 Cluster-based confidence scores corroborate experimental inter-

action evidence

To compare confidence values calculated by CAPPIC with experiment-based interaction

scores, we exploited the fact that some of the interactions in Tarassov-all have been

designated high-quality by the authors based on experimental interaction intensity

(160). We checked whether our method assigned significantly higher confidence scores

to high-quality interactions than to the rest of the interactions in Tarassov-all. As

shown in Figure 3.5, the confidence score distributions of both interaction sub-sets were

different. Using the Wilcoxon rank-sum test we confirmed that confidence values were

greater for high-quality interactions than for the rest of the links in Tarassov-all (p-value

< 3 ∗ 10−10). The high agreement between cluster-based interaction confidence scores

and experimental interaction weight for the Tarassov-all network was corroborated by

a significant Spearman rank correlation between both (ρ = 0.3, p-value < 10−5).
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Figure 3.5: Histogram of confidence scores for interactions in Tarassov-all cal-

culated by our method. The normalized histograms of interaction confidence scores are

shown for the complete Tarassov-all network, as well as for its high-quality (Tarassov-hq)

and non-high-quality parts. WRST: Wilcoxon rank sum test of the difference between

confidence score distributions of both network parts. Note that the Y-axis is interrupted

to better show the differences between the three datasets.

3.3.3 High-confidence interactions are more consistent in biological

process and cellular compartment annotation

Interacting proteins are expected to participate in related biological processes and to

be co-localized in compartments of the cell (116). Therefore, Gene Ontology (GO)

(8) annotations of interacting proteins agree more often than expected by chance. We

utilized the semantic similarity of GO biological process and cellular compartment an-

notations of proteins predicted to interact as a performance measure of our approach.

If confidence values reflect the correctness of discovered interactions, we expect inter-

actions with higher confidence score to have a higher average semantic similarity of the

proteins’ GO annotations.

To test this, we calculated the GO semantic similarity (GOSemSim) values for all

interacting proteins in each network in respect to their biological process and cellular

component annotations. This was done using the method proposed by Resnik (129)

implemented in the software package GOSemSim version 1.8.0 (181). GO annotations
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Figure 3.6: Correlation of CAPPIC interaction confidence with semantic simi-

larity of Gene Ontology co-annotations. Interactions from every network are ranked

by confidence and divided into five equal sized bins (X-axis); for each bin, the average

semantic similarity of GO biological process (blue) and cellular component (green) anno-

tations of interacting proteins is shown (Y-axis). Additionally, the pale continuous lines

correspond to the mean GO semantic similarity over the complete network rather than the

separate bins. The dashed lines reflect the average GO semantic similarity of random pairs

of proteins from the network.

inferred from physical interaction (GO evidence code ‘IPI’) were excluded from the

semantic similarity calculation to avoid circularity. For each network, interactions

were ordered by increasing confidence score and divided into five equal sized bins.

The average semantic similarity values for interacting proteins within each bin were

calculated (Figure 3.6). Additionally, the mean GO semantic similarity for random

pairs of proteins from the according network was assessed by completely rewiring the

networks while preserving each protein’s degree and then calculating the mean GO

semantic similarity of links in those randomized networks (Figure 3.6, dashed lines).

The GOSemSim generally correlated with interaction confidence. In several extreme

cases (e.g. Gavin-Krogan), the average GOSemSim of low-confidence interactions was

55



3. CLUSTER-BASED ASSESSMENT OF PROTEIN-PROTEIN
INTERACTION CONFIDENCE

barely distinguishable from the average GOSemSim of random protein pairs (dashed

horizontal lines), while the higher-confidence interactions reached average GOSemSim

far above the average value of all interactions in the according network (continuous

horizontal lines). These results suggest that there are more false links among the

lower-confidence interactions than among the higher-confidence ones.

Following this line of thought, we asked whether removing low-confidence interac-

tions from clusters generated in our confidence assessment procedure would improve the

consistency in pathway annotation of proteins remaining in the clusters. Pereira-Leal

et al. have shown that Markov clustering applied to the line graph of a comprehen-

sive interactome map yields clusters that are significantly consistent with KEGG (94)

biological pathways (123). In the context of our method, low-confidence interactions

are those involving proteins that are not specific to the according cluster, thus likely

do not belong to its pathway context. We successively removed interactions ranked by

confidence from clusters generated in the Markov clustering phase of our confidence

assignment procedure. At each step, the resulting reduced interaction clusters were

transformed into non-weighted lists of genes or proteins involved in interactions re-

maining in the cluster as in (123). We quantified the consistency of the gene or protein

lists with KEGG pathways using the measure proposed in (123):

consistency =
C∑
j=1

(
1−
−
∑n

s=1 pj,slog2pj,s
log2n

)
(3.4)

In this measure based on Shannon’s entropy (144), C is the number of interaction

clusters, pj,s is the relative frequency of pathway s in cluster j, and n is the number of

KEGG pathways. In general, the consistency value increases, the more homogeneous

the clusters are regarding pathway classification of the contained proteins or genes. We

found that the pathway annotation consistency of interaction clusters increased with the

number of low-confidence interactions removed (Figure 3.7, continuous lines). Results

were clearly different when the order of the removed interactions was reversed, i.e.

when high-confidence interactions were removed first (dotted lines in Figure 3.7). This

confirmed that lower-confidence protein-protein interactions do not fit in the pathway

context of the according clusters as well as higher-confidence ones. Unlike the five

physical interaction networks, in the case of the Costanzo genetic interaction map the

consistency increased faster when interactions were removed from clusters starting with
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Figure 3.7: Interaction cluster refinement. Each reference network was transformed

into its line graph and clustered with the estimated optimal inflation value for that network.

Interactions were ranked according to confidence and successively removed from the ac-

cording clusters. Pathway annotation consistency (Y-axis) was plotted against the number

of interactions removed from interaction clusters (X-axis) starting with the low-confidence

(continuous line) or high-confidence (dotted line) interactions.

the high-confidence interactions. The reason for this is probably rooted in the fact

that most of the detected genetic interactions involve proteins in different pathways

(between-pathway interactions) than proteins in the same pathway (within-pathway

interactions) (70). Overall, the results suggest that our approach can be used to obtain

more refined functional modules in physical interaction datasets.

3.3.4 Construction of a high-quality yeast physical interactome

We used CAPPIC confidence scores of interactions in the most comprehensive avail-

able yeast physical interaction network, CPDB-yeast, to derive a high-quality yeast

physical interactome. The distribution of confidence scores for this network is shown

in Figure 3.8 A). Evident from the results presented in the previous sections is that

low-confidence interactions probably represent false positives, which was also confirmed

by the small fraction of lower-confidence interactions reported more than twice in the

literature (Figure 3.8 B). Based on the distributions of confidence scores and literature
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Figure 3.8: Confidence scores and literature evidence for the CPDB-yeast net-

work. A Histogram of of CAPPIC confidence scores of the interactions in CPDB-yeast.

Approximately 33% of the scores are very small (near 0.0), and roughly 35% are big (near

1.0). B Interactions of the CPDB-yeast network were ordered by CAPPIC confidence score

and divided into ten bins of equal size. For each bin (x-axis), the fraction of the interactions

reported in more than two publications is indicated (y-axis).

evidence (Figure 3.8 A and B), we selected the top 35% interactions with the highest

confidence scores, as well as interactions found in more than two publications from the

remaining 65%, to construct a high-quality yeast physical interactome. The resulting

network contained 28,241 interactions between 3,779 proteins. Similar to CPDB-yeast,

the high-quality interactome consisted of one large connected component and only 14

interactions were isolated. On the other hand, the high-quality interactome had a much

higher average clustering coefficient than CPDB-yeast (0.33 for the high-quality inter-

actome as opposed to 0.19 for CPDB-yeast), indicating a more pronounced modularity

(175). Moreover, it possessed a longer average shortest path (4.1 for the high-quality

interactome versus 2.7 for CPDB-yeast).

The high-quality interactome is available for download from the ConsensusPathDB-

yeast web page (http://cpdb.molgen.mpg.de/YCPDB) beside the complete physical

interactome. It should be noted that, apart from this filtered dataset, we did not use

CAPPIC to discard any interactions integrated in ConsensusPathDB.
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Figure 3.9: CAPPIC as a web tool at http://cpdb.molgen.mpg.de/cappic.

3.3.5 CAPPIC as a web tool for interaction confidence assessment

To provide easy and fast access to CAPPIC, we have implemented it as a web tool

available at http://cpdb.molgen.mpg.de/cappic (Figure 3.9). Optional parameters en-

able influencing how the optimal granularity for the given network is estimated. The

source code is also available from the web site.

3.4 Discussion

Network topology-based approaches are motivated by the fact that the structure of

interaction networks is not random but reflects biological functionality (14). Modularity

is a topological property that is inherent to protein-protein interaction networks (54,

61, 127). It is often exploited by graph clustering-based approaches aiming to find

network modules reflecting pathways or protein complexes (10, 123). We propose a

novel method (CAPPIC) to assess the confidence of individual protein interactions in
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an interaction network. Our method exploits solely network modularity for estimating

the confidence of interactions and does not require any additional knowledge about the

interacting proteins. We demonstrate the power of CAPPIC in discriminating between

true and false interactions on the basis of five physical protein interaction networks and

one genetic interaction map.

CAPPIC outperforms previous topology-based approaches by Goldberg and Roth

and Kuchaiev et al. in assigning continuous confidence scores to all interactions in a

given physical interaction network. The method of Goldberg and Roth is dependent on

shared network neighbors of interacting proteins; however, many interacting proteins

do not share neighbors. Absence of shared network neighbors is especially prevalent for

interactions in binary networks constructed using a bait-prey strategy, where links exist

between baits and preys only. As a result, the method of Goldberg and Roth scores

many interactions (83% of the interactions in the Yu-Ito-Uetz network, for example)

with a confidence value of zero. This is a particularly strong drawback of that method,

considering that many approaches operating on networks take as input probabilistic

rather than binary data. Thus, the ultimate goal of confidence assessment is often

to score all interactions in the network rather than disregard a large portion of them.

In particular, all proteins with a single available interaction would be disregarded by

Goldberg and Roth’s method (as such proteins do not share neighbors with their in-

teraction partner), albeit these single protein associations could give important clues

about the function of these proteins. On the other hand, the method by Kuchaiev et al.

is able to assign continuous scores to all interactions in a given network. Nevertheless,

their method requires fixing six free parameters. These include e.g. the dimension of

the Euclidean space for embedding, the prior probability for an interaction (which can

currently only be guessed at because the interactome size of no species is known (72)),

and several algorithm-specific parameters. In contrast, our method does not require

any parameters or reference interaction sets. The only parameter that influences the

resulting confidence scores – clustering granularity – is optimized internally for each

individual input network. Our results have shown that the number of clusters obtained

at the optimal granularity tends to be small for all reference networks, ranging from

10 to 60 clusters (see Figure 3.2). This condemned our initial concerns that interac-

tions executing essential crosstalks between related pathways could be assigned low
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confidence. Because the optimal granularity tends to be very coarse, closely related

pathways will probably not be separated but clustered together.

CAPPIC should be applicable to any binary network (of biological or non-biological

nature) with an inherent modular structure. CAPPIC fails to generate reliable confi-

dence scores in cases where modularity is not pronounced, i.e. if many of the real links

within modules are missing. This is probably the case with the Yu-Ito-Uetz reference

network: here, the topological signal that our method exploits seems to be weaker,

therefore it achieves only 58% AUC on average. Absence of modularity in this exam-

ple is evidenced by the relatively low clustering coefficient (175) of 0.06 which is four

times lower than that of the Gavin-Krogan network where CAPPIC achieves 93% AUC.

Moreover, the Yu-Ito-Uetz dataset is the sparsest of all reference networks (Table 1).

For the ConsensusPathDB-yeast network, which includes the rest of the reference net-

works used in this Chapter along with interactions from many further large-scale and

small-scale experiments, our method performs well (AUC = 81%).

Due to the multiplicative nature of the interaction confidence definition, the method

should be extendable (with an appropriate cardinality normalization) also to complex

interaction data (i.e. non-binary interaction data). Furthermore, other mathematical

functions instead of the cumulative hypergeometric distribution function can be applied

for assessing the fidelity value of a protein to a cluster (which is used to derive inter-

action confidence). For example, in our initial experiments we defined fidelity as the

number of interactions of the protein found in the cluster normalized either by the total

number of interactions of the protein (that is, its degree), or by the maximum number

of its interactions found together in any cluster. Also, we experimented with using as

fidelity value the negative logarithm of the hypergeometric test p-value reflecting the

enrichment of interactions of a protein in the cluster (that is, fidelity was defined in

this experiment as − log(1− Fp,c) where Fp,c corresponds to Equation (3.1)). None of

these alternative fidelity definitions yielded better results in the method’s performance

assessment as per Section 3.3.1.

Unlike the reference methods by Goldberg and Roth and Kuchaiev et al., CAPPIC

is able to accommodate experimental evidence weights of interactions. Interaction

detection techniques often associate such weights with predicted interactions, reflecting

for example the number of times an interaction is observed in repetitions of a yeast-two-

hybrid experiment (171, 183) or the reporter intensity value in the case of a protein-
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fragment complementation assay (160). If available, such weights can be exploited by

our method in its random walk-based interaction clustering step. This can improve the

interaction clustering result and consequently increase the performance of confidence

assessment. Moreover, the ability to incorporate experimental interaction weights helps

to avoid interaction data pre-filtering, commonly executed to derive binary interaction

networks (where pairs of proteins either interact or not). Such filtering of probabilistic

interaction data is inherently associated with data loss. However, since we set out

to estimate the performance of CAPPIC in comparison to other methods that cannot

accommodate interaction weights, we did not make use of this advantage in this work

and considered all interactions equal.

Although our approach alone is able to successfully rank true and false interactions

and achieves up to 93% AUC on the reference interactomes, it can be combined with

other lines of interaction evidence like protein co-expression and interaction homol-

ogy (157). Aggregation of different features holds the promise of even more reliable

interaction confidence assessment in specific contexts.
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Chapter 4

Elucidating disease mechanisms

with integrated interaction

networks and expression data

Gene expression profiling is a powerful technique for measuring the activity of thousands

of genes simultaneously, often applied to distinguish phenotype-specific gene signatures,

i.e. lists of genes with a consistent activity change in a certain phenotype (for example

a disease) compared to a control. A major concern, however, is that differentially

expressed genes found in different studies analyzing the same phenotypic condition

are barely overlapping (47). This is mainly attributed to the inherent variability of

biological systems and of techniques for measuring gene expression. Significantly higher

coherence between different studies is often found at the level of biochemical pathways

where the distinguished genes function (33, 40, 80, 155). This finding has shifted

analyses of expression data to a more pathway-centric perspective. This perspective

can give more concrete hypotheses about the molecular mechanisms underlying the

phenotype under study than simple lists of differentially expressed genes. The analysis

of expression data at the level of interactions and pathways has proven useful for various

purposes (discussed below). At this, integration of interactions and pathways is a

crucial prior step, because it increases the coverage of the real interactome and thus

enables more accurate predictions of methods based on these data. In this Chapter,

we show the utility of the integrated and de-noised human interaction network from

ConsensusPathDB in the context of expression data. We describe a simple approach to
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identify phenotype-associated network hot-spots and causative genes. The approach is

implemented as part of the expression data analysis module of the ConsensusPathDB

web interface at http://cpdb.molgen.mpg.de. Furthermore, we present a method for the

integrated analysis of large-scale transcriptomics/proteomics and metabolomics data at

the level of known pathways (23), and introduce the first available computational tool

for this purpose, accessible at http://impala.molgen.mpg.de (90).

4.1 Introduction: the benefits from integrating interac-

tion and expression data

In the previous chapters, we emphasized that the high degree of organization of matter,

information flow and energy transformations in the cell is reflected in the structure of

interaction networks (14). Building on this, many approaches have been developed to

extract network structures with specific topological properties from large-scale interac-

tion data. For example, different methods exist for the detection of network modules:

densely connected sub-networks which can be assigned a distinct biological function

(73) from protein-protein interaction data (19, 141). In parallel, functional groups of

genes are often searched in whole-genome gene expression data. This is routinely done

by searching for genes with similar activation patterns with clustering techniques, with

the presumption that co-regulated genes are often involved in the same biological pro-

cesses (48). Motivated by the correlation between interaction and co-expression data

(62), computational methods have been developed that integrate both data types (some

are mentioned below). While both interaction and expression data are often incomplete

and may contain large numbers of false positives, their integration should be beneficial

because signals supported by both are more likely to be of biological relevance than

those supported by either data type alone (62).

The integration of interaction and expression data has a successful history in a

variety of contexts. One class of methods search for modules of genes corresponding to

biochemical pathways or complexes supported by physical interaction and co-expression

evidence simultaneously (69, 81, 143, 150, 168). Furthermore, the existence of disease-

specific functional modules (65, 118) has motivated a group of related methods aimed

at mining such disease-relevant modules directly from large-scale interaction data in

conjunction with phenotype-associated gene expression data (32, 166, 169). Identified
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modules have potential applications in molecular medicine as they have been shown

to possess biomarker potential (32, 80, 162). Unlike the conventional, one-dimensional

approach of selecting differentially expressed genes as disease biomarkers, network-

based biomarkers constitute groups of interacting genes whose joint expression signature

is discriminative for disease. Network-based biomarkers can achieve better classification

accuracy and reproducibility across datasets than lists of discriminative genes (32). A

further advantage over gene lists is that the identified networks can provide concrete

hypotheses about the molecular mechanisms of disease in terms of interactions with

altered activity (49).

While the methods cited above attempt to construct de novo disease modules from

a whole-genome interaction network given expression data, a complementary strategy

is to assess a priori defined functional gene sets to spot the ones showing an abnormal

activity in a phenotype under study (40). Functional gene sets often correspond to the

genes found in manually curated pathways, retrieved from pathway databases or the

Gene Ontology (GO) (8). The key assumption here is that if a known pathway contains

significantly many differentially expressed genes, or if the pathway genes show a jointly

significant differential expression, then the pathway is dysregulated in the phenotype.

Such pathways may be indicative or even causative of the phenotype, and have also been

shown to possess biomarker potential (17, 165). Among the most popular approaches

to identify phenotype-associated pathways are over-representation analysis (described

in detail below) and gene set enrichment analysis (155).

A further research area where the integration of interaction and expression data has

proven useful is the identification of genes causative of complex diseases (55, 96, 113,

158, 173). The main assumption behind such methods, and the basis for our integrative

approach described in the next section, is that complex diseases like cancer are often

caused by mutations in one or a few genes and the biological signal initiated by these

mutations is propagated from the causative genes through their interactions to provoke

differential expression of downstream genes. While the differentially expressed genes

are often secondary manifestations of disease rather than its cause and thus can vary

strongly from patient to patient, they are expected to lie near the mutated genes in

a network of interactions (32, 34, 60, 65, 118). Following this assumption, existing

methods (e.g.(96, 158)) for the identification of causative genes usually attempt to find
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small sets of genes that lie near the differentially expressed ones in a physical interaction

network.

4.2 Network-based functional gene sets in aid of causative

gene identification

As mentioned above, manually curated pathways from public pathway databases and

ontologies are routinely used in pathway-based analyses of expression data aiming to

highlight biological processes associated with a phenotype of interest. Unfortunately,

currently available curated pathways face several problems: First, functional annota-

tion is still lacking for nearly half of the human genes (146)(Figure 4.1 A). Second, the

composition of a biochemical pathway is a matter of subjective judgment as pathway

boundaries are generally unclear (169). Even pathways of the same name found in dif-

ferent databases rarely agree regarding their composition (see Figure 2.4 in Chapter 2).

Third, there is a widely recognized research bias toward inferring pathways associated

with certain diseases like cancer; thus, currently defined pathways are predominantly

disease-related. For example, several databases like NetPath and InnateDB are focused

only on disease-related signaling (Chapter 2). This research bias naturally causes that

disease pathways preferentially appear in the results of pathway-driven gene expres-

sion data analyses, challenging reliability of the latter. Fourth, pathway databases

typically contain process-specific pathways but often miss essential pathway crosstalks

which are important for pathway coordination, and whose dysregulation may play an

equally important role in disease onset and progression like the pathways themselves.

For example, dysregulation of the crosstalk between Wnt and Notch signaling has been

implicated in cancer (37).

The availability of genome-wide interaction networks enables the definition of func-

tional gene sets based on network neighborhood. In principle, these functional sets

overcome all hurdles of manually curated pathway definitions listed above. Network-

based sets are motivated by the fact that interacting genes are likely to have similar

functions, shown for instance in the case of physical interaction networks in (116, 146).

For example, Sharan et al. demonstrated the correlation of interaction network dis-

tance (defined as shortest path length) with functional distance (defined as semantic

similarity of Gene Ontology annotations) of proteins, pointing out in particular that the
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Figure 4.1: Pathway annotation of human genes and its relation with protein

interactions. A Pie diagram showing the number of human genes with and without

biological pathway annotation according to the Gene Ontology (GO). B Correlation of

functional distance (quantified with GO semantic similarity) with interaction network dis-

tance for human proteins. Reproduced from (146).

direct neighbors of a protein in a physical interaction network often share its functions

(146) (Figure 4.1 B).

We constructed network neighborhood-based functional gene sets from the inte-

grated network content of ConsensusPathDB (Chapter 2), which was de-noised before-

hand on the basis of cluster-based protein-protein interaction confidence (Chapter 3).

These gene sets can be used in enrichment and over-representation analyses to high-

light network hot-spots with an abnormal activity in a phenotype under study. The

identified sub-networks can yield hypotheses about the mechanisms behind the phe-

notype in terms of disrupted interactions. Importantly, each neighborhood-based set

per definition has a distinguished central gene (detailed below) and the central gene

of a sub-network that is dysregulated in a phenotype is a more probable cause for the

dysregulation. The reasoning behind this assumption is that a gene that is mutated

does not necessarily show a change in expression, but its mutations often disturb its in-

teractions with other genes and hence affect the expression of the interaction partners
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(32, 34, 65, 118). Below, we detail the construction of network neighborhood-based

gene sets from ConsensusPathDB’s integrated content, and overview statistical meth-

ods that can be used to identify those which are dysregulated in a phenotype. Based

on two example cases, we demonstrate that while being relatively simple, our approach

is able to pinpoint known causative genes from cancer patient data.

4.2.1 Functional gene sets based on integrated network neighborhood

(NESTs)

As the basis for construction of functional sets we used the integrated interaction data

assembled in ConsensusPathDB from dozens of public interaction databases. Notably,

the interaction network contains multiple types of interactions (gene regulations, sig-

naling, catalysis, and physical interactions) of human genes/proteins. Prior to defining

functional sets, we de-noised the binary physical protein-protein interaction content

in ConsensusPathDB based on cluster-based interaction confidence and literature ev-

idence as per Chapter 3. This was important because spurious interactions resulting

from protein-protein interaction screens in principle accumulate in the meta-database

and might diminish the predictive power of our approach. In contrast, the gene regu-

latory interactions and biochemical reactions currently contained in ConsensusPathDB

have been primarily mined from the literature by experts, thus these data are expected

to contain much less spurious interactions and do not necessitate filtering. The physical

interaction content was de-noised by excluding 10% of the interactions with the lowest

CAPPIC confidence and a single publication evidence. The procedure was analogous

to Section 3.3.4 in Chapter 3; however, the confidence score and literature evidence

thresholds were relaxed here as we aimed to retain all proteins in the network (whereas

in Section 3.3.4, more than 1/3 of the proteins were removed at the chosen thresholds).

For every gene in the database we define a neighborhood-based entity set (NEST)

including the gene itself and its network neighbors (Figure 4.2). More precisely, each

NEST contains a gene as a center, as well as genes encoding proteins that interact

physically with the products of the center, genes regulating or being regulated by the

central gene transcriptionally, genes whose products participate in the same biochem-

ical reaction as the products of the central gene, and genes encoding enzymes that

catalyze or modulate successive biochemical reactions (in case that the central gene

itself encodes an enzyme or a modulator). Two biochemical reactions are successive
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Figure 4.2: Construction of neighborhood-based entity sets (NESTs). Each

NEST contains a central gene and all of its gene neighbors in the integrated interaction

network. This example network comprises the interactions (circular nodes) of a gene A:

one complex protein interaction (PPI1), two gene regulatory interactions (GR1, GR2), and

three biochemical reactions (BR1: complex binding reaction, BR2 and BR3: metabolic

reactions involving the metabolites M1, M2 and M3, catalyzed by A and G, respectively).

Network neighborhood of genes is defined as either direct physical interaction of gene

products, direct gene regulation (where the central gene is either the regulator or is being

regulated), co-participation in a biochemical reaction, or catalysis of successive metabolic

reactions (i.e. reactions sharing a non-hub metabolite).

if a product of one reaction is a substrate for the other (in Figure 4.2, BR2 and BR3

are successive reactions sharing the metabolite M2). Because many reactions are con-

nected through non-specific metabolite hubs (for instance, ATP), we have constrained

the definition of successive reactions to reactions sharing metabolites participating in

five or less reactions from the whole network in total. NESTs with different centers and

identical gene composition are collapsed together, resulting in NESTs with more than

one center. Based on the content of ConsensusPathDB (release 19), we have created

19,666 distinct NESTs with these definitions. The number of genes per NEST, being

87 on average (Figure 4.3 A shows the NEST size distribution), is comparable to the

size of manually curated pathways. However, the vast majority of NESTs are not

subsumed by such pathways: the fraction of pathway-annotated NEST members found

within the same manually defined pathway is 0.46 on average (Figure 4.3 B shows the
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Figure 4.3: Characteristics of neighborhood-based entity sets. A Histogram of

NEST size (number of genes per NEST); B Overlap between the gene compositions of

NESTs and pathways; C Histogram of the number of different databases contributing

interactions per NESTs; D Number of different types of interactions per NEST.

according distribution). For each NEST, this fraction was calculated as the size of the

largest overlap with any pathway divided by the number of NEST members. This result

means that many of the NESTs may represent pathway crosstalks. Most notably, in

contrast to manually curated pathways, NESTs comprise the vast majority of human

genes. Furthermore, a view on the number of sources per NEST reveals that in the

majority of cases, more than one database contributes interactions for NEST composi-

tion (4.3 source databases per NEST on average, see Figure 4.3 C for the distribution).

For instance, NESTs centered by SMAD4 or by members of the histone deacetylase

family are composed with interaction data from as many as 20 source databases. Many

NESTs are constructed from physical interactions only (Figure 4.3 D) because the

currently available interaction knowledge is dominated by such interactions. This is
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mainly due to the high throughput of protein interaction discovery techniques. 30% of

the NESTs are contributed by both protein interaction and biochemical reaction data,

while 5% include in addition gene regulatory relations, limited by the small number

of gene regulatory interactions (2,270 interactions) compared to protein interactions

(138,470 binary or complex interactions) in ConsensusPathDB.

4.2.2 Statistical approaches for identifying dysregulated NESTs

Given an expression dataset obtained e.g. by microarray-based or RNAseq-based profil-

ing (139, 174) of a phenotype under study compared to a control, NESTs can be tested

for differential activity using statistical methods. Entity set over-representation

analysis is a classical approach used in gene set-based analysis to assess the significance

of overlap between a predefined functional set, e.g. a NEST, and a custom list of genes

that usually comprises the ones that show significant differential expression in the phe-

notype of interest (40). To quantify the significance of overlap, the hypergeometric test

(identical to the one-tailed version of Fisher’s exact test) is commonly used. Suppose

that a NEST consists of n genes, the input set comprises m differentially expressed

genes, and the background has N genes (Figure 4.4 A). The background typically com-

prises all genes whose expression has been measured and which are found in at least

one NEST. The probability that exactly k entities from the input set are found by

chance in the NEST is given by the probability mass function of the hypergeometric

distribution:

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) (4.1)

For an observed overlap of size K between a NEST and an input gene list, we rather

aim to assess the probability that an overlap of this size or larger is obtained by chance.

This probability corresponds to the hypergeometric test p-value for the observation K:

P (X ≥ K) = 1− P (X < K) = 1−
K−1∑
k=0

(
m
k

)(
N−m
n−k

)(
N
n

) (4.2)

The p-value is small for big overlap sizes K that are unlikely to appear by chance,

supporting the alternative hypothesis that the overlap is caused by a biological effect.

NESTs containing significantly many differentially expressed genes correspond to hot-

spots in the interaction network with altered activity between phenotypes.
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Figure 4.4: Over-representation and enrichment analyses. A and B: squares rep-

resent genes, the big ovals represent the gene background and the small ovals represent

a functional gene set, e.g. a NEST. A For over-representation analysis, a relatively small

set of genes (shown in black) is first to be distinguished from the expression data often.

Conventionally, this set comprises the differentially expressed genes. Over-representation

analysis then quantifies for each NEST whether it contains significantly many of these dis-

tinguished genes. B in contrast, enrichment analysis takes as input the complete measured

set of genes rather than just the differentially expressed ones. Here, continuous values

must be provided for every measured gene reflecting its expression level in the case and

control phenotypes. The color of the squares in B scales with the change in expression

of genes between the phenotypes (red: over-expression in the case compared to control;

green: underexpression in the case compared to control; yellow: no expression change).

Over-representation analysis faces several practical problems associated with how

the input set of genes is distinguished from the expression data. First, the list of differ-

entially expressed genes is ambigouous and depends on the applied statistical test and

the chosen significance level. Second, in order to assess the significance of differential

expression with enough statistical power, repeated measurements per phenotype are

necessary. Third, genes that pass the significance threshold are considered equally im-

portant for the phenotype under study, regarless of the magnitude of their expression

change. The reason is that the hypergeometric test is a discrete test that cannot han-

dle gene weights or ranks. These problems are overcome by entity set enrichment

analysis. A key point here is that no decision is made a priori regarding which genes

are differentially expressed and belong in the input set. Instead, enrichment analysis
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takes as input all genes that have been measured in the case and control phenotypes

with numerical values reflecting each gene’s expression in both phenotypes. Different

approaches can be applied to assess the enrichment of a functional set with up- or

down-regulated genes, probably the most established one being gene set enrichment

analysis (GSEA) (155). We utilize the paired Wilcoxon signed-rank test to assess the

significance of joint differential expression of genes contained in a functional category

such as a NEST. This test has been argued to be more suitable for enrichment analyses

than e.g. Student’s t-test, because its validity does not depend on a specific assumption

about the distribution of expression values (e.g. Gaussian) (110). Accordingly, the

Wilcoxon signed-rank test is more robust, in particular with respect to experimental

outliers often found in biological measurements. Suppose that a NEST has n genes, for

each of which a pair of expression values is provided. The NEST is thus represented

as a set of pairs (x1, y1), ..., (xn, yn), where xk is the expression value for the k’th gene

in the control phenotype and yk is its expression value in the case phenotype. First, a

vector z of expression differences is calculated such that zk = yk − xk. Observations

with no expression difference between the phenotypes, i.e. zk = 0, are excluded so z

has a possibly reduced size (denoted nr) compared to the number of genes n in the

NEST (nr ≤ n). The null hypothesis of the Wilcoxon signed-rank test is that the ex-

pression differences in the vector z are symmetric around a median of 0. To test it, the

absolute values |z1|, ..., |znr | are first sorted in ascending order and are assigned ranks

such that the smallest absolute value in z gets the smallest rank Ri = 1. A mean rank

is assigned to tied expression differences, i.e. where |zi| = |zj | 6= 0. The ranks of all

|zk| where zk > 0 are summed up to give R+. Similarly, R− is the sum of ranks of the

values |zk| where zk < 0. If the null hypothesis is true, then the values R+ and R− are

expected to be similar. The Wilcoxon signed-rank test statistic is S = min(R+, R−)

and its critical value for rejecting the null hypothesis depends on the sample size nr

and the chosen confidence level. Exact p-values can be obtained from tables for small

sample sizes nr, while for bigger nr, a normal approximation can be used because the

test statistic S tends toward the Gaussian distribution. If the genes with the biggest

expression difference in a NEST are overexpressed in the phenotype under study com-

pared to the control, then R− is very small (it equals zero if all genes in the NEST

are over-expressed), and the NEST is likely to be phenotype-associated. Notably, even

if no genes with individually significant differential expression are found in the NEST,
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the joint expression of the group of genes within the NEST may be significantly in-

creased or decreased. Thus, NEST enrichment analysis is able to identify interaction

sub-network that are dysregulated on a low but nonetheless consistent gene level in the

phenotype of interest.

It should be noted that Wilcoxon enrichment analysis is sensitive to pre-processing

of the input expression data. For example, if the measured expression of all genes in one

of the phenotypes is systematically higher or lower than in the other phenotype (e.g.

due to experimental error), then many NESTs will be spuriously highlighted. To avoid

this, expression values should be appropriately normalized such that that the expected

gene expression differences between phenotypes is zero. The input expression values

should also be logarithmized, in which case the Wilcoxon enrichment test deals with

gene expression fold changes rather than absolute expression differences in assessing

NEST de-regulation. This is generally advantageous because the dynamic range of

expression activity varies strongly across the genome (63), thus absolute expression

differences are barely comparable from gene to gene. As an example, transcription

factors are usually found at very low concentrations in the cell and even subtle changes

in their abundance often have a strong impact on the biology of the cell.

Because in over-representation and enrichment analyses many NESTs are typically

tested for a given input, it is crucial to control for multiple comparisons in order to avoid

a high false positive rate. Throughout our analyses we thus used the false discovery rate

(FDR) method, defined as the expected proportion of falsely rejected null hypotheses

(15). The FDR analogue of the p-value is commonly termed q-value.

4.2.3 Application 1: Network-based meta-analysis of prostate cancer

pinpoints known causative genes

We carried out a comprehensive meta-analysis of prostate cancer patient data involving

over-representation analysis of NESTs in order to unveil cancer causative genes.

Input dataset

To obtain an input list of genes that are commonly deregulated on the expression level

in metastatic prostate cancer, we combined results from 9 studies (Table 4.1) providing

a total of 11 datasets where samples from metastatic prostate cancer patients have
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been compared against primary prostate carcinoma through microarray-based whole-

genome expression profiling. All study results were retrieved from Oncomine 3.0 (130)

Study PubMed ID

Dhanasekaran et al. (2005) FASEB J. 19:243-5 15548588

Dhanasekaran et al. (2001) Nature 412:822-6 11518967

Holzbeierlein et al. (2004) Am J Pathol. 164:217-27 14695335

Lapointe et al. (2004) Proc Natl Acad Sci USA. 101:811-6 14711987

LaTulippe et al. (2002) Cancer Res. 62:4499-506 12154061

Tomlins et al. (2007) Nat Genet. 39:41-51 17173048

Vanaja et al. (2003) Cancer Res. 63:3877-82 12873976

Varambally et al. (2005) Cancer Cell. 8:393-406 16286247

Yu et al. (2004) J Clin Oncol. 22:2790-9 15254046

Table 4.1: Studies comparing whole-genome expression profiles of metastatic

prostate cancer against primary prostate carcinoma. The studies by Tomlins et

al. and Varambally et al. provide two different datasets each; the rest provide one dataset

each.

where a p-value reflecting the significance of differential expression is provided for each

measured gene in each study. From 19,500 genes measured in at least one dataset,

11,350 (58%) showed differential expression at a q-value threshold of 0.05 in one or

more of the datasets. Not a single gene was found to be differentially expressed in all 11

datasets, and only five genes (CTGF, CYR61, MGP, PDLIM5, and PPP1R12B) showed

differential expression in nine or ten of them (Figure 4.5). This result demonstrates

the high variability of differentially expressed genes across different studies, which often

hampers objective conclusions about the set of genes associated with cancer based on

their expression value.

For NEST over-representation analysis, we used genes that were found to be differ-

entially expressed at a confidence level q < 0.05 in more than half of the datasets in the

analysis (i.e. at least 6 datasets). The input gene list consisted of 191 genes, termed

DE genes (Table 4.2).
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Figure 4.5: Agreement of different studies focused on the same phenotypes

in respect of differentially expressed genes. The number of differentially expressed

genes found in at least n of the 11 datasets from Table 4.1 is plotted against the number

of datasets n.

NEST over-representation analysis results and discussion

With the DE gene list, NEST over-representation analysis highlighted 36 NESTs at an

FDR level q < 0.05 (the NESTs are listed in Appendix Figure A.2). They yielded a

total of 88 NEST center genes (termed NC genes, Table 4.3), because some of them

were centered by gene families or had multiple centers as per construction (see Section

4.2.1). For example, one of the NESTs was centered by the group “cytokine receptor”

comprising 39 genes, more than half of which were interleukin receptor genes 1.

We compared both the DE and the NC gene lists against the Cancer Gene Census

(58). The Census catalogs 457 genes for which somatic or germline mutations have

been causally implicated in cancer. We found that 11 out of the 191 DE genes (6%)

1The activity of the NEST centered by the “cytokine receptor” gene group points to inflammation,

which is likely a secondary manifestation of cancer rather than a cause.
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ABI1 ACOX1 ACTA2 ACTG2 ADAM10 ALCAM ALDH1A2 AMOTL2 ASCL1

ATF3 ATP6V0C ATXN3 BMPR1A BTAF1 BTG2 CALD1 CALU CCBL2

CCL2 CCNB1 CCND2 CCNF CDC6 CDH11 CDK6 CHD2 CNN1

CNOT2 COX7A1 CSRP1 CTGF CTNND1 CTSO CYR61 DDIT4 DDR2

DIO2 DLG7 DST DSTN DUSP1 DUSP5 ECM2 EDNRA EGR1

EGR2 EVI5 FAM189A2 FBLN1 FHL1 FILIP1L FNDC3A FOXK2 FUCA1

GABRE GBP2 GLUD1 GOLGB1 GPD1L GULP1 H2AFV HEXB HLA-DQA1

HLA-DQB1 IDE IDS IER2 IFNAR1 IL6ST JUNB KCNMB1 KIAA0101

KIFC1 KLF4 KLF9 LEPR LGALS3 LMOD1 LRRFIP1 MCL1 MCM4

MED26 MEIS2 MFAP4 MGP MITF MMP7 MYH11 MYL9 MYLK

N4BP1 NAV1 NCKIPSD NEAT1 NFE2L2 NR4A1 NR4A3 NT5C2 NTRK2

OSBPL8 PAGE4 PAM PARM1 PBX1 PCP4 PCTK1 PDE4D PDE5A

PDE8B PDLIM3 PDLIM5 PELO PGM3 PKN2 PLAGL1 PLEKHC1 PLN

PPAP2B PPP1R12B PPP2R1B PRDX3 PRKACB PRPF40A PRPF4B PSMA7 PTN

PTPRK PTTG1 PYROXD1 RAB27B RAB4A RAD23B RAP1A RBM25 RBM3

RBM9 RBPMS RCAN2 RNF141 RPS23 RPS6KB1 SELE SFRS11 SFRS2B

SLAIN2 SLC22A3 SLC26A2 SLC2A10 SLC30A9 SLMAP SNAP23 SOAT1 SON

SORBS1 SORBS2 SORL1 SPARCL1 SPG20 SPOP SRD5A1 SRI SSPN

ST13 STAT1 STC2 SYNPO2 TAGLN TCEAL1 TCF7L2 TFRC TK1

TNFSF10 TNPO1 TOP2A TPM1 TPM2 TPX2 TSPYL1 UBE2C UBE2J1

UBE2S USP7 VCL VPS39 YY1 ZFP36 ZFX ZMYM4 ZMYND11

ZMYND8 ZNF354A

Table 4.2: DE (differentially expressed) genes. The 191 genes listed here were found

to be differentially expressed at a q-value threshold 0.05 in more than half of the prostate

cancer studies (see Figure 4.5). The genes that have been causally implicated in cancer (as

of the Cancer Gene Census, (58)) are underlined.

ACP5 ACTN4 ATF2 BMP2 BMPR1A CCNF CDC26 CDKN1A CDKN2A

CNTFR CSF2RA CSF2RB CSF3R CTNNB1 CXCR1 CXCR2 EPHB2 EPOR

GHR HCRT HLA-DQA1 HLA-DQB1 HOXA9 HOXB8 IFNAR1 IFNAR2 IFNGR1

IFNGR2 IL10R IL10RB IL12RB IL12RB2 IL13BP IL13RA1 IL15RA IL17RA

IL18R1 IL1R1 IL1RAP IL1RB IL2RA IL2RB IL2RG IL3RA IL4R

IL5RA IL6R IL6ST IL7R IL9R ITGA1 ITGB5 JAK1 JAK2

JAK3 JUN LEPR LIFR LMOD1 MAPK1 MAPK3 MGP MPL

MYH11 MYL12B MYL6B MYL9 OSMR PCNA PRKG1 PRLR PXN

SORBS1 SORBS3 STAT1 STAT2 STAT3 STAT4 STAT5A STAT5B STAT6

TLN1 TNFRSF10C TP53 TPM3 TPM4 TYK2 VCL

Table 4.3: NC (nest center) genes. These genes were found as centers of the 36 NESTs

(Appendix Figure A.2), each of which contained significantly many of the DE genes from

Table 4.2. The genes that have been causally implicated in cancer (as of the Cancer Gene

Census, (58)) are underlined. For example TP53, whose mutations are known to cause

cancer, was not contained in the differentially expressed gene list but was highlighted by

NEST over-representation analysis because many of its network neighbors are differentially

expressed. The interleukin receptor genes in the table (IL10R through IL9R) originate from

the center of a single NEST: “cytokine receptors” gene group (see main text).
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Figure 4.6: Overlap between differentially expressed (DE) genes, nest center

(NC) genes, and the Cancer Gene Census. Cancer causative genes cataloged by the

Cancer Gene Census are more over-represented in the NC set (p-value = 1.9e-9) than in

the DE set (p-value = 5.5e-3).

and 15 out of the 88 NC genes (17%) are believed to contribute to cancer onset when

mutated (Figure 4.6). The according genes are underlined in Tables 4.2 and 4.3. This

means that in this example, genes connecting many differentially expressed counter-

parts by various interactions are roughly three times more probable to be causative of

disease than the differentially expressed genes themselves. Only three disease causative

genes are shared by the DE and the NC list, demonstrating the ability of NEST-based

expression data analysis for finding new potential disease causes on top of the ones

spotted through gene expression profiling. Notably, the protein p53 (TP53) whose mu-

tations are known to cause cancer (75) was not found to be differentially expressed in

any of the nine studies considered here, but it was identified as the center of a NEST in

which differentially expressed genes were significantly over-represented. The 36 NESTs

formed a connected network, supporting previous findings that disease-associated genes

induce functional network modules (65).

A possible concern could be that because of the widely recognized research bias

toward elucidating interactions of disease genes (80), NESTs centered by such genes

would be preferentially highlighted. To address this potential issue, we assessed the

expected number of known causative genes among NEST centers in a null model. We

created 1,000 lists of randomly chosen genes of the same size as the DE list, and car-
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ried out NEST over-representation analysis with each random list. Instead of selecting

NESTs passing a fixed q-value threshold as in the analysis above (for almost all ran-

dom lists, no NESTs passed the q < 0.05 threshold), for every random input list we

selected the top 36 NESTs with the smallest q-value, and assessed the overlap of their

centers with the Cancer Gene Census. The expected overlap between NC genes and

the Cancer Gene Census estimated through this null model was 1.8 ± 1.6 (mean ±
standard deviation) genes, resulting in a Z -score of 8.0 for the observed real overlap

of 15 genes. The Z -score was defined as Z = (K − µ)/σ where K was the observed

overlap, and µ and σ were the mean and standard deviation estimated from the null

model, accordingly. In fact, the mean number of known causative genes in the NC lists

in the null model µ was similar to the random expectation for the number of known

cancer causative genes in the real NC list of 88 genes. Considering that the Census

comprises 457 genes and there are 22,902 different entities found as NEST centers, 88

of which were highlighted in our analysis, the random expectation for the number of

known cancer causative genes in the real NC list is ((457/22902) ∗ 88 = 1.8). These

results show that there is no recognizable effect of research bias on our NEST-based

approach.

4.2.4 Application 2: NEST enrichment analysis with numerical data

unveils cancer-related genes and highlights the hallmarks of can-

cer

As pointed out above, gene expression data can not always be summarized as lists of

differentially expressed genes, for example because statistically sound conclusions about

differential expression require several repeated measurements per phenotype. Often, the

data consist solely of numerical values corresponding to gene expression measurements

in a phenotype of interest and a in control phenotype. Here, we demonstrate the utility

of the Wilcoxon enrichment analysis method in this common scenario.

Input dataset

Gene expression data were obtained from the study of Yu et al. (184) where the

genome-wide gene expression of prostate carcinoma patients and metastatic prostate

cancer patients has been measured with Affymetrix chips. The data were retrieved from

Oncomine 3.0 (130), summarized in the form of normalized average gene expression
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values for both patient cohorts. We additionally filtered the data to exclude expressed

sequence tags (EST) that were not mapped to genes, as well as ambiguously identified

genes. This resulted in a list of 7807 genes, for each of which the mean expression

values for both patient cohorts were available.

NEST and pathway Wilcoxon enrichment analysis results and discussion

We tested for enrichment all NESTs from ConsensusPathDB release 16. Wilcoxon

enrichment analysis yielded 57 significantly enriched NESTs at an FDR threshold of

q < 0.1 (Appendix Table A.1). The most significantly enriched NEST (Wilcoxon

signed-rank test p-value=8.34e-6; q-value=0.0483) had Histone H3-K9 methyltrans-

ferase 2 (gene symbol: SUV39H2) as the NEST center. It has been constructed from

physical interaction and biochemical reaction information originating from overall nine

different source databases. The central gene, SUV39H2, plays a role in cell cycle,

transcriptional regulation and cell differentiation (Gene Ontology annotation, UniProt

keywords) and its mutations have been shown to increase the risk of cancer in human

and in mouse models (124, 180). It is important to mention that SUV39H2 itself has

not been measured in the microarray experiment, and thus was not contained in the

expression data set that we used for Wilcoxon enrichment analysis. However, many of

the genes within its interaction neighborhood showed jointly significant transcriptional

upregulation in metastatic prostate cancer compared to primary carcinoma. Figure

4.7 depicts the NEST as visualized by the ConsensusPathDB visualization framework,

where the Yu et al. data were overlaid on protein nodes as logarithmized gene expres-

sion fold change.

Further significantly enriched neighborhood-based entity sets were centered by ribo-

somal proteins (e.g., RS4Y2 HUMAN, RS21 HUMAN, RL40 HUMAN, RL34 HUMAN)

(in accordance with (170)), cell cycle proteins (e.g., CDK-activating kinase assembly

factor MAT1: MAT1 HUMAN, Cyclin-H: CCNH HUMAN, and MAP kinase p38 delta:

MK13 HUMAN), and the transcription factor SP1 (SP1 HUMAN) which has been sug-

gested to play a role in prostate cancer (185) (Appendix Table A.1).

We additionally tested for enrichment all manually created pathways from Con-

sensusPathDB (release 16), originating from overall nine pathway source databases.

The pathways that were significantly enriched at a q-value threshold of 0.1 are pro-

vided in Appendix Table A.2. The results clearly corresponded to the hallmarks of
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Figure 4.7: Neighborhood-based entity set (NEST) centered around SUV39H2

with gene/protein nodes colored according to expression fold change.. This inter-

action sub-network constitutes the NEST centered by SUV39H2 (Histone H3-K9 methyl-

transferase 2, highlighted with red frame in the network) and contains its direct physical

interactors, as well as enzymes of successive biochemical reactions. The network consists of

13 physical interactions (orange circles) and five biochemical reactions (green circles) from

nine different databases (interaction sources are encoded as edge colors). Gene expression

data from (184) are overlaid as log2(fold change) values on the physical entity nodes (rect-

angles). Protein products of measured genes are colored according to the fold expression

change (see legend), non-measured physical entities in the network are gray (note that the

NEST center itself has not been measured).

human cancer (68) as they pointed to dysregulation of the cell cycle, transcription,

translation, signaling, angiogenesis and immune response. For example, among the

manually curated pathways whose activity is significantly changed in metastatic cancer

compared to primary carcinoma were the “Ribosome pathway” (KEGG) (in agreement

with (170)); “Translation” (Reactome); “Mitotic cell cycle” (Reactome); “Interleukin-5

immune pathway (IL5)” (NetPath); “VEGF, hypoxia and angiogenesis” (BioCarta); as
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well as several cancer-related signaling pathways like “Signaling by GPCR” (Reactome);

“PDGFR-beta signaling” (Pathway Interaction Database); “Signaling to ERKs” (Re-

actome); “Signaling to RAS” (Reactome); “JAK/STAT signaling” (INOH). Notably,

KEGG’s “Non-small cell lung cancer pathway” was also among the most enriched path-

ways.

4.3 Extending the pathway analysis paradigm: joint path-

way analysis with transcriptomics and metabolomics

data

Pathway analysis aiming to find biological processes whose executive genes are dis-

turbed on the transcriptional level in certain phenotypes is an established technique

despite the problems mentioned above. Importantly, gene expression is not the only as-

pect of the cell that may be altered as an effect of disease. Disease often impacts other

vital processes as well, including the cell’s metabolism. For instance, a classic hallmark

of cancer cell metabolism is the Warburg effect (typical for proliferating cells): an in-

crease in glucose uptake and glycolysis to lactate even under normal oxygen conditions.

Furthermore, tumor cells are often found to exhibit higher rates of glutaminolysis,

fatty acid and lipid metabolism, and nucleotide synthesis (23, 77). Motivated by the

detectable impact of disease on metabolism, large-scale metabolomic techniques are in-

creasingly applied to measure the whole metabolite repertoire of cells (76) to ultimately

highlight metabolite biomarkers discriminative of disease (111, 172). Computational

methods and tools for pathway-driven interpretation of large-scale metabolomic pro-

files (27, 178) are emerging in parallel to analogous utilities based on whole-genome

expression profiles (78, 89, 156).

Since the cell is a complex system where gene expression and metabolism are highly

coordinated not only within but also between each other, analyzing just one of these

functional levels at a time is certainly sub-optimal for understanding the system’s nor-

mal or abnormal functioning. With the increasing parallel generation of gene expression

and metabolomics data for the same phenotypes, new methods and tools are urgently

needed to allow integrated analysis of such data.

In a proof-of-principle study, we demonstrated that combining transcriptomic and

metabolomic evidence for pathway association with a certain phenotype can aid path-
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way biomarker discovery (23). Briefly, on the basis of a panel of 59 cell lines obtained

from different types of cancer (140) we studied the associations between measured

genes and metabolites and the resistance of the cells to platinum-based chemoterapeu-

tics. The cell lines under study have been treated with four such chemoterapeutics

that were carboplatin-, cisplatin-, iproplatin-, or tetraplatin-based. Our goal was to

identify pathways relevant to general platinum sensitivity, as opposed to particular

platinum compounds. Figure 4.8 shows a schematic outline of the study approach.

As a first step, we derived a set of genes and a set of metabolites whose measured

expression / concentration values were significantly correlated with sentisivity to car-

boplatin, cisplatin, iproplatin, or tetraplatin. For each of the four drugs, we carried

out pathway over-representation analyses with the associated genes and metabolites

separately. The pathways, originating from many public pathway databases, were re-

trieved from ConsensusPathDB. Based on the pathway over-representation analyses

with genes, we identified four pathways that were coincidently over-represented at the

chosen significance level for all four drugs, and thus were likely relevant to general

platinum sensitivity (Figure 4.9 A). These pathways were “Rho GTPase cycle” (Reac-

tome), “T cell receptor pathway” (NetPath), “Apoptotic dna-fragmentation and tissue

homeostasis” (BioCarta), and “Integrin cell surface interactions” (Reactome). No path-

ways were coincident for all four drugs when over-representation analysis was performed

with metabolites (Figure 4.9 B). Next, we integrated both lines (transcriptomic and

metabolomic) of pathway-phenotype association evidence to identify further platinum

resistance-related pathways. Essentially, we assumed that pathways highlighted when

using transcriptomics or metabolomics data were independent because these data have

been obtained with independent techniques. Thus, to integrate both data types at the

pathway level we computed for each pathway a joint p-value pi,J = pi,Gpi,M where pi,G

and pi,M denote the over-representation p-values of the ith pathway with respect to

genes and metabolites correlated with drug chemosensitivity, respectively. The added

value of the joint analysis compared to the separate gene-based and metabolite analyses

was assessed through two null models, the first assuming that genes and metabolites

identified as significantly associated to a phenotype were randomly selected, and the

second null model assuming that pathways were selected randomly (see (23) for details).

The combination of evidence for pathway association with drug resistance enabled the

identification of six pathways generally related with resistance to platinum (Figure

83



4. ELUCIDATING DISEASE MECHANISMS WITH INTEGRATED
INTERACTION NETWORKS AND EXPRESSION DATA

Figure 4.8: Pathway-level integration of transcript and metabolite data: a

schematic overview of the study design. Large-scale gene expression, metabolomic,

and drug sensitivity data obtained from the NCI60 tumor cell line panel (140) were used

to distinguish genes and metabolites associated with chemosensitivity to four platinum-

based cancer drugs (carboplatin, cisplatin, iproplatin or tetraplatin). For each of the four

drugs, the lists of distinguished genes and metabolites were used separately and jointly for

pathway over-representation analyses aiming to identify pathways associated with common

chemosensitivity to platinum. Reproduced from (23).

4.9 C). For the two new candidate pathways emerging from the joint pathway analy-

sis, “Triacylglyceride biosynthesis” (Reactome) and “Base excision repair” (Reactome),

phenotype association evidence on either the transcriptomic or the metabolomic level

was not significant enough; however, the two lines of evidence were agreeing and the

joint p-value was significant. Details on this study can be found in (23).
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Figure 4.9: Pathways associated with platinum resistance based on transcrip-

tomic, metabolomic, and combined evidence for phenotype association. Each

Venn diagram shows the numbers of pathways related to the four drugs based on the tran-

scriptomics data (A), metabolomics data (B), or joint metabolomics and transcriptomics

data (C). Reproduced from (23).

To enable the scientific community to easily integrate transcriptomics/proteomics

and metabolomics data at the pathway level, we developed a web tool called IM-

PaLA: integrated molecular pathway-level analysis (90) (http://impala.molgen.mpg.de;

Figure 4.10). IMPaLA performs pathway over-representation analyses with lists of

genes/proteins and metabolites (e.g. genes with differential expression and metabolites

with significant concentration change in a certain phenotype), or Wilcoxon pathway

enrichment analyses with numerical transcriptomics/proteomics and metabolite con-

centration data. As a source for predefined pathways, IMPaLA currently uses 11

freely available databases contributing over 3,000 manually curated pathways, most

of which comprise both genes and metabolites. As in our proof-of-principle study,

evidence of pathway association to the phenotype under study derived on the gene

expression and metabolite concentration levels is combined, allowing for the identifica-

tion of phenotype-associated pathways that would not be highlighted when analysis is

applied to any of the separate functional levels alone.

4.4 Discussion

The identification of causative genes and pathways governing disease onset and pro-

gression is one of the major problems in contemporary molecular biology. Toward this

goal, different approaches have been devised that make use of genome-wide interaction
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Figure 4.10: IMPaLA: a web tool for integrated pathway-level analysis of tran-

scriptomics and metabolomics data. A IMPaLA input screen including the logos of

the 11 pathway source databases. B Output screen with a ranked list of pathways showing

i.a.: i : a link to each pathway in the according source database; ii : the size of each path-

way in terms of entities also present in the background list, followed by the number of all

pathway entities as in the source database; iii the p- and q-values from the joint analysis

with genes and metabolites.

networks or curated pathways integrated with large-scale transcriptomics, proteomics,

or metabolomics data.

We devised a simple approach to put forward the added value of prior integra-

tion and confidence-based filtering of interactions, tackled in the previous Chapters,

for interpreting gene expression data. Our approach aims to identify interaction net-

work hot-spots with altered activity and candidate causative genes in respect of a

phenotype for which gene expression data are provided. Notably, it combines the ba-

sic principles of both mainstream complementary strategies for disease-related pathway

identification: Similar to methods for de novo identification of context-specific modules

(32, 166, 169), the functional modules are mined from interaction networks. However,

the sub-networks are defined a priori and, given expression data, each sub-network

86



4.4 Discussion

is assessed through over-representation or enrichment analysis as in classical pathway

analyses (40, 155). Furthermore, the sub-networks comprise both large-scale protein in-

teractions and manually inferred interactions from signaling, regulatory, and metabolic

pathways. Thus, our approach closes the gap between the two mainstream strategies

for interaction- and pathway-based interpretation of gene expression data. It yielded

promising results when applied to prostate cancer patient data as it highlighted genes

with known causal role in cancer, even if they were not represented in the expression

data. The combination of interaction integration, de-noising, and using network neigh-

borhood information in conjunction with gene expression data appears to be key for

the identification of disease genes.

Notably, our network-based method considers only the direct interaction neigh-

borhood of every gene separately rather than attempting to explain the entire set of

observed expression effects at once with a minimal set of few causative genes like some

of the previous methods (e.g. (96)). A local search for dysregulated regions in the net-

work is motivated by the fact that disease often impacts the whole cell and is therefore

reflected not only in the expression of downstream counterparts of causative genes.

Rather, many effects observed at the gene expression level are not directly associated

with the causative genes. In cancer, for example, the reproductive machinery of the

cell is highly active due to the proliferative nature of the disease. In this light, the

reported increase of ribosome production in cancer cells (170), while certainly being a

hallmark of cancer, is more likely its secondary effect than its primary cause.

In a parallel line of work within the context of omics data interpretation we ex-

tended the pathway analysis paradigm to integrate transcriptomics/proteomics with

metabolomics measurements of a given phenotype on the level of biochemical pathways.

In a recent publication (23) summarized above we showed that combining evidence of

pathway disregulation on both gene expression and metabolite concentration levels al-

lows for the identification of phenotype-associated pathways that would be missed when

pathway analysis is applied to any of these functional levels alone. We developed the

first available computational tool for such integrative analyses (90).

A natural further development of the two contributions presented in this Chapter,

namely 1) the definition of functional gene sets (NESTs) from a network comprising

physical, regulatory, signaling and metabolic reactions in aid of disease gene identi-

fication from expression data, and 2) the integration of omics data at the pathway
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level, would be to combine both concepts. Since the interaction network in Consensus-

PathDB involves more than 5,000 metabolites additionally to human genes/proteins,

sub-networks can be constructed such that they include metabolites. When both gene

expression and metabolite measurements are present for a phenotypic condition, their

integration at the level of NESTs would certainly contribute toward more accurate

hypotheses.
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Chapter 5

Conclusion

System biology aims to provide a mechanistic view on cellular processes in health

and disease. Toward this aim, knowledge of all biomolecular interactions in the cell

is crucial. Large interaction datasets for several species are already available, albeit

they likely represent only parts of the underlying real interactomes. A system-level

picture of cellular biology is still limited also by the quality of the available data and

by the way available data are handled. In this thesis, we addressed the problems

that protein-protein interactome maps often contain many false positives, and that

interaction data often reside in complementary, heterogeneous databases. Furthermore,

we tackled the problem that gene signatures for complex diseases are often inconsistent

from experiment to experiment, and are barely sufficient for explaining the causes and

mechanisms of those diseases without taking into account interaction knowledge.

First, we developed a meta-database called ConsensusPathDB (89, 92) to solve the

recognized problem that existing interaction knowledge is scattered across many public

repositories that are complementary and barely compatible regarding their data model

and format. ConsensusPathDB integrates several different types of interactions, in-

cluding gene regulatory, signaling, metabolic, and protein-protein interactions, as well

as manually defined pathways from a total of 26 databases. With several examples we

demonstrated the necessity of interaction data integration. For instance, many of the

interactions of any particular gene would often be missed if a single primary database

is used, as we showed for the well-studied p53 protein. This could have grave impact on

many areas of biological research, for instance in drug development where predictions

about the drug impact are based on knowledge of the target’s interactions. Similarly,

89



5. CONCLUSION

pathway databases contain complementary sets of manually defined pathways, and

even homonymous pathways from different sources show grave differences in their com-

position. Pathway-based analyses of gene expression data, however, require unbiased

pathway data to ensure accurate hypotheses. Moreover, we showed that results of topo-

logical analyses of interaction networks could be different according to which databases

the networks are retrieved from. Our interaction integration efforts have resulted in a

human interactome map of unprecedented coverage, and have enabled a more complete

view on cell biology at the molecular level. This interactome can be used in various

contexts through a public interface (http://cpdb.molgen.mpg.de) offering a rich palette

of functionalities for interaction query and visualization, interaction network validation

and extension, and most notably, for network- and pathway-based analysis of tran-

scriptomics/proteomics data. Moreover, a database interface plugin for Cytoscape was

created to automate the process of evidence mining and novelty assessment for protein-

protein interactions (122). We initially developed the plugin to assess the sensitivity of

a mammalian-two-hybrid interaction screen (126). ConsensusPathDB is rebuilt auto-

matically every three months with the newest versions of the source databases to ensure

that its content stays up-to-date, and new interaction resources are added at the rate

of approximately one resource per release (Appendix Figure A.1). There are further

interaction types like genetic interactions that are currently missing in the database

but will be added in the future.

The second problem tackled in this thesis is the high rate of false positives of-

ten found in protein-protein interaction data, arising from experimental or literature

mining errors. We developed a novel approach called CAPPIC (cluster-based assess-

ment of protein-protein interaction confidence) (91) that exploits solely the topology

of a protein interaction network to assess the confidence of its individual interactions.

CAPPIC requires no parameters or reference sets for confidence scoring and optimizes

algorithmic parameters intrinsically. On the basis of several different yeast protein-

protein interaction datasets, we showed with ROC analysis that our approach achieves

a better performance than previous network topology-based methods in assigning con-

fidence to all interactions. Confidence scores calculated by CAPPIC are affirmed by a

positive correlation with Gene Ontology co-annotation of interacting proteins, and also

correlate with experimental interaction evidence. We have implemented CAPPIC as
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a publicly accessible web-based tool at http://cpdb.molgen.mpg.de/cappic, where the

source code is also available for free download.

The third research area approached in this thesis is the elucidation of molecu-

lar causes and mechanisms of complex diseases such as cancer using interaction and

pathway knowledge in conjunction with gene expression data. Toward this goal, many

methods have been developed that integrate interaction or pathway data with transcrip-

tomics or proteomics data to yield hypotheses about genes, interaction sub-networks, or

known biological processes related with disease. Such approaches require comprehen-

sive and error-free models of the cell’s molecular circuitry to ensure accuracy of results.

By combining interaction integration with de-noising based on interaction confidence

scoring, we have created a more complete and more accurate human interactome to

answer this need. We devised a simple strategy that exploits this interactome to iden-

tify centric, neighborhood-based interaction sub-networks (called NESTs) with altered

activity in gene expression profiles. Our approach is similar to classical pathway anal-

yses in that predefined gene sets are tested for over-representation or enrichment with

disease-relevant genes; however, the underlying sets are defined from a genome-wide

network integrating different interaction types and do not result from manual cura-

tion. Although NESTs are certainly not as likely to contain exclusively genes with

the same or similar functions as manually curated pathways, they have several advan-

tages over such pathways e.g. when it comes to genome coverage and bias. Notably,

identified NESTs can be suggestive for causative genes associated with the phenotype

under study. This was demonstrated with two example cases based on expression data

from prostate cancer patients, where many genes were recovered whose mutations are

known to cause cancer. Our approach was implemented within the gene expression data

analysis module of the ConsensusPathDB web interface at http://cpdb.molgen.mpg.de.

Within the context of disease mechanism elucidation, we outlined a second integra-

tive approach called IMPaLA that combines transcriptomics/proteomics with metabolo-

mics data on the level of predefined pathways (23). It can be applied when both gene

expression levels and metabolite concentrations have been measured in a phenotype

under study and the goal is to select pathways whose association with the phenotype

is supported by either or both of these datasets. IMPaLA was implemented as a web

server available freely at http://impala.molgen.mpg.de (90). To our knowledge, this is
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5. CONCLUSION

the first tool for the joint analysis of gene expression and metabolite data on the level

of pathways.

Currently, gene expression, gene regulation, protein binding, protein modifications,

metabolic reactions, metabolite dynamics, and other important cellular processes are

still mostly studied in isolation as if they were not deeply interlinked and dependent on

each other in the cell. Nevertheless, a tendency toward large-scale integration of these

and other aspects is clearly recognizable in contemporary research as an important step

toward better understanding of the molecular mechanisms governing life.
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C., Jensen, L.J., Bastuck, S., Dümpelfeld, B., Edelmann, A., Heurtier, M., Hoff-

man, V., Hoefert, C., Klein, K., Hudak, M., Michon, A., Schelder, M., Schirle,

M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G.,

Drewes, G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B. and

Superti-Furga, G. (2006) Proteome survey reveals modularity of the yeast cell

machinery. Nature, 440, 631–636. 39, 42, 43, 59

[62] Ge, H., Liu, Z., Church, G.M. and Vidal, M. (2001) Correlation between tran-

scriptome and interactome mapping data from Saccharomyces cerevisiae. Nature

Genetics, 29, 482–486. 64

[63] Ghaemmaghami, S., Huh, W., Bower, K., Howson, R.W., Belle, A., Dephoure,

N., O’Shea, E.K. and Weissman, J.S. (2003) Global analysis of protein expression

in yeast. Nature, 425, 737–741. 74

[64] Goddard, J. and Reymond, J. (2004) Enzyme assays for high-throughput screen-

ing. Current Opinion in Biotechnology , 15, 314–322. 3

100



BIBLIOGRAPHY

[65] Goh, K., Cusick, M.E., Valle, D., Childs, B., Vidal, M. and Barabasi, A. (2007)

The human disease network. Proceedings of the National Academy of Sciences of

the United States of America, 104, 8685–8690. 11, 64, 65, 68, 78

[66] Goldberg, D.S. and Roth, F.P. (2003) Assessing experimentally derived interac-

tions in a small world. Proceedings of the National Academy of Sciences of the

United States of America, 100, 4372–4376. 41

[67] Han, J.J. (2008) Understanding biological functions through molecular networks.

Cell Research, 18, 224–237. 40

[68] Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell , 100,

57–70. 81

[69] Hanisch, D., Zien, A., Zimmer, R. and Lengauer, T. (2002) Co-clustering of

biological networks and gene expression data. Bioinformatics, 18 Suppl 1, S145–

154. 64

[70] Hannum, G., Srivas, R., Guenole, A., van Attikum, H., Krogan, N.J., Karp,

R.M. and Ideker, T. (2009) Genome-wide association data reveal a global map of

genetic interactions among protein complexes. PLoS Genetics, 5, e1000782. 57

[71] Harrison, P.M., Kumar, A., Lang, N., Snyder, M. and Gerstein, M. (2002) A

question of size: the eukaryotic proteome and the problems in defining it. Nucleic

Acids Research, 30, 1083–1090. 42

[72] Hart, G.T., Ramani, A.K. and Marcotte, E.M. (2006) How complete are current

yeast and human protein-interaction networks? Genome Biology , 7, 120. 5, 38,

39, 40, 42, 51, 60

[73] Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W. (1999) From molec-

ular to modular cell biology. Nature, 402, C47–52. 39, 41, 42, 64

[74] Higham, D.J., Rasajski, M. and Przulj, N. (2008) Fitting a geometric graph to a

protein-protein interaction network. Bioinformatics, 24, 1093–1099. 42

[75] Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C.C. (1991) p53 mutations

in human cancers. Science, 253, 49–53. 27, 78

101



BIBLIOGRAPHY

[76] Hollywood, K., Brison, D.R. and Goodacre, R. (2006) Metabolomics: current

technologies and future trends. Proteomics, 6, 4716–4723. 82

[77] Hsu, P.P. and Sabatini, D.M. (2008) Cancer cell metabolism: Warburg and be-

yond. Cell , 134, 703–707. 13, 82

[78] Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009) Systematic and inte-

grative analysis of large gene lists using DAVID bioinformatics resources. Nature

Protocols, 4, 44–57. 82

[79] Hutchins, J.R.A., Toyoda, Y., Hegemann, B., Poser, I., Heriche, J., Sykora, M.M.,

Augsburg, M., Hudecz, O., Buschhorn, B.A., Bulkescher, J., Conrad, C., Co-

martin, D., Schleiffer, A., Sarov, M., Pozniakovsky, A., Slabicki, M.M., Schloiss-

nig, S., Steinmacher, I., Leuschner, M., Ssykor, A., Lawo, S., Pelletier, L., Stark,

H., Nasmyth, K., Ellenberg, J., Durbin, R., Buchholz, F., Mechtler, K., Hy-

man, A.A. and Peters, J. (2010) Systematic analysis of human protein complexes

identifies chromosome segregation proteins. Science, 328, 593–599. 39

[80] Ideker, T. and Sharan, R. (2008) Protein networks in disease. Genome Research,

18, 644–652. 11, 40, 63, 65, 78

[81] Ideker, T., Ozier, O., Schwikowski, B. and Siegel, A.F. (2002) Discovering regu-

latory and signalling circuits in molecular interaction networks. Bioinformatics,

18 Suppl 1, S233–240. 64

[82] Ihaka, R. and Gentleman, R. (1996) R: A Language for Data Analysis and Graph-

ics. Journal of Computational and Graphical Statistics, 5, 299–314. 51

[83] Isserlin, R., El-Badrawi, R.A. and Bader, G.D. (2011) The Biomolecular Interac-

tion Network Database in PSI-MI 2.5. Database, 2011, baq037. 18

[84] Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. (2001)

A comprehensive two-hybrid analysis to explore the yeast protein interactome.

Proceedings of the National Academy of Sciences of the United States of America,

98, 4569–4574. 39, 43

102



BIBLIOGRAPHY

[85] Jansen, R. and Gerstein, M. (2004) Analyzing protein function on a genomic scale:

the importance of gold-standard positives and negatives for network prediction.

Current Opinion in Microbiology , 7, 535–545. 40

[86] Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabasi, A.L. (2000) The

large-scale organization of metabolic networks. Nature, 407, 651–654. 9

[87] Jeong, H., Mason, S.P., Barabasi, A.L. and Oltvai, Z.N. (2001) Lethality and

centrality in protein networks. Nature, 411, 41–42. 9

[88] Kamburov, A., Goldovsky, L., Freilich, S., Kapazoglou, A., Kunin, V., Enright,

A.J., Tsaftaris, A. and Ouzounis, C.A. (2007) Denoising inferred functional as-

sociation networks obtained by gene fusion analysis. BMC Genomics, 8, 460.

3

[89] Kamburov, A., Wierling, C., Lehrach, H. and Herwig, R. (2009)

ConsensusPathDB–a database for integrating human functional interaction net-

works. Nucleic Acids Research, 37, D623–628. 12, 14, 15, 82, 89, 118

[90] Kamburov, A., Cavill, R., Ebbels, T.M.D., Herwig, R. and Keun, H.C. (2011)

Integrated pathway- level analysis of transcriptomics and metabolomics data with

IMPaLA. Revised manuscript submitted.. 13, 14, 64, 85, 87, 91

[91] Kamburov, A., Grossmann, A., Herwig, R. and Stelzl, U. (2011) Cluster-based

assessment of protein- protein interaction confidence. Revised manuscript submit-

ted.. 13, 14, 39, 42, 90

[92] Kamburov, A., Pentchev, K., Galicka, H., Wierling, C., Lehrach, H. and Herwig,

R. (2011) ConsensusPathDB: toward a more complete picture of cell biology.

Nucleic Acids Research, 39, D712–717. 12, 14, 15, 43, 89

[93] Kandasamy, K., Mohan, S.S., Raju, R., Keerthikumar, S., Kumar, G.S.S., Venu-

gopal, A.K., Telikicherla, D., Navarro, J.D., Mathivanan, S., Pecquet, C., Gol-

lapudi, S.K., Tattikota, S.G., Mohan, S., Padhukasahasram, H., Subbannayya,

Y., Goel, R., Jacob, H.K.C., Zhong, J., Sekhar, R., Nanjappa, V., Balakrishnan,

L., Subbaiah, R., Ramachandra, Y.L., Rahiman, B.A., Prasad, T.S.K., Lin, J.,

Houtman, J.C.D., Desiderio, S., Renauld, J., Constantinescu, S.N., Ohara, O.,

103



BIBLIOGRAPHY

Hirano, T., Kubo, M., Singh, S., Khatri, P., Draghici, S., Bader, G.D., Sander,

C., Leonard, W.J. and Pandey, A. (2010) NetPath: a public resource of curated

signal transduction pathways. Genome Biology , 11, R3. 18

[94] Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) The

KEGG resource for deciphering the genome. Nucleic Acids Research, 32, D277–

280. 56

[95] Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. and Hirakawa, M. (2010)

KEGG for representation and analysis of molecular networks involving diseases

and drugs. Nucleic Acids Research, 38, D355–360. 18

[96] Karni, S., Soreq, H. and Sharan, R. (2009) A network-based method for predicting

disease-causing genes. Journal of Computational Biology , 16, 181–189. 65, 87

[97] Kemmeren, P., Berkum, N.L.v., Vilo, J., Bijma, T., Donders, R., Brazma, A. and

Holstege, F.C.P. (2002) Protein interaction verification and functional annotation

by integrated analysis of genome-scale data. Molecular Cell , 9, 1133–1143. 41

[98] Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S.,

Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., Bal-

akrishnan, L., Marimuthu, A., Banerjee, S., Somanathan, D.S., Sebastian, A.,

Rani, S., Ray, S., Harrys Kishore, C.J., Kanth, S., Ahmed, M., Kashyap, M.K.,

Mohmood, R., Ramachandra, Y.L., Krishna, V., Rahiman, B.A., Mohan, S.,

Ranganathan, P., Ramabadran, S., Chaerkady, R. and Pandey, A. (2009) Human

Protein Reference Database–2009 update. Nucleic Acids Research, 37, D767–772.

18

[99] Kitano, H. (2002) Systems biology: a brief overview. Science, 295, 1662–1664.

10

[100] Klamt, S., Haus, U. and Theis, F. (2009) Hypergraphs and cellular networks.

PLoS Computational Biology , 5, e1000385. 6, 8

[101] Koh, J.L.Y., Ding, H., Costanzo, M., Baryshnikova, A., Toufighi, K., Bader,

G.D., Myers, C.L., Andrews, B.J. and Boone, C. (2010) DRYGIN: a database of

quantitative genetic interaction networks in yeast. Nucleic Acids Research, 38,

D502–507. 37

104



BIBLIOGRAPHY

[102] Korcsmaros, T., Farkas, I.J., Szalay, M.S., Rovo, P., Fazekas, D., Spiro, Z., Böde,
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APPENDIX

Figure A.1: Growth of ConsensusPathDB’s unique interaction content since

its initial publication. ConsensusPathDB is rebuilt automatically every three months

with the newest versions of its source databases, and new databases are integrated at the

rate of approximately one database per release. The plot shows the number of unique

interactions in ConsensusPathDB for each release since its initial publication (89); newly

integrated databases are listed for each release.
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APPENDIX

Figure A.2: NESTs where cancer metastasis-associated genes are significantly

over-represented. 36 NESTs where genes differentially expressed in metastatic prostate

cancer (DE genes) are significantly over-represented are listed. For each NEST, the name

of the central physical entity, the NEST radius (1 means that all entities in the NEST

are direct neighbors of the center), the NEST size (number of physical entities in the

NEST, followed by a corrected size according to the background), the number of DE genes

contained, the p- and q-values of the hypergeometric test, as well as the source databases

that contribute interactions to the NEST (see ConsensusPathDB web page for color key)

are listed. Note that the majority of NESTs comprise data from several resources.
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Enriched interaction neighborhood based sets

set centers set size measured genes p-value q-value set sources

Histone H3-K9 methyltransferase 2 43 24 8.34e-06 0.0483 11

Trap gamma 143 87 1.2e-05 0.0483 8

Myosin regulatory light polypeptide 9 34 30 1.82e-05 0.0483 6

PPA1 106 86 2.49e-05 0.0483 6

5S rRNA; 5.8S rRNA; 28S rRNA 120 80 2.62e-05 0.0483 1

np1l4 human 96 79 3.03e-05 0.0483 5

Hsc70 137 108 4.42e-05 0.0521 8

SET domain containing (lysine methyltrans-

ferase) 7 (EC:2.1.1.43)

40 20 4.77e-05 0.0521 9

40S ribosomal protein S4, Y isoform 2 81 59 5.13e-05 0.0521 1

PP2A-regulatory subunit B delta-2 isoform 217 143 5.45e-05 0.0521 13

peroxiredoxin 6 (EC:1.11.1.7 1.11.1.15) 211 145 6.5e-05 0.0531 6

Fructose-bisphosphate aldolase A 311 236 6.91e-05 0.0531 13

MAT1 229 146 8.17e-05 0.0531 11

MAP kinase p38 delta 115 95 8.21e-05 0.0531 11

lactate dehydrogenase B 174 130 8.85e-05 0.0531 9

Splicing factor 3B subunit 1 86 67 0.000101 0.0531 1

CHAF1A 59 47 0.000102 0.0531 10

SRP Receptor subunit alpha 110 74 0.000107 0.0531 7

SP1 290 210 0.00011 0.0531 13

eRF3 96 67 0.000115 0.0531 6

G-protein gamma 9 (GBGT2) subunit 364 202 0.000117 0.0531 7

Trap beta; SEC61 gamma 114 75 0.000122 0.0531 4

NudC 222 154 0.000138 0.0572 9

SET domain containing 1A (EC:2.1.1.43) 63 38 0.000145 0.0577 9

HSP90B1 263 195 0.000179 0.0639 8

T-cell receptor alpha chain 90 32 0.000195 0.0639 4

T-cell receptor alpha chain V region CTL-

L17 precursor

91 32 0.000195 0.0639 2

SEC11C; SPCS1; SPCS3 105 70 0.000198 0.0639 1

7SL RNA (ENST00000410687); 7SL RNA

(ENST00000410707)

110 74 0.000201 0.0639 1

hKNL1/CASC5 135 74 0.000206 0.0639 8

MARCKS 99 81 0.000207 0.0639 8

Nup85 458 137 0.000214 0.0639 9

nasp human 124 102 0.000234 0.0679 7

SPCS2 110 72 0.000245 0.0689 7

Protein disulfide isomerase P5 190 145 0.000285 0.0759 6

HDAC1 495 351 0.000291 0.0759 18

Centromere protein P 122 65 0.000309 0.0759 2

Centromere protein N 123 65 0.000309 0.0759 3

Centromere protein Q 123 65 0.000309 0.0759 3

SRP19 117 80 0.000325 0.0776 6

40S small ribosomal protein 21 155 109 0.000334 0.078 7

G-protein beta2 (GBB2) subunit 391 213 0.000372 0.0848 9

Chk2 55 48 0.000387 0.085 11

SEC11A 112 75 0.000391 0.085 7

SET domain containing (lysine methyltrans-

ferase) 8 (EC:2.1.1.43)

33 16 0.000427 0.0881 8

60S ribosomal protein L40 173 123 0.00044 0.0881 4

SRP54 112 76 0.000443 0.0881 4

peroxiredoxin 4 (EC:1.11.1.15) 261 177 0.000452 0.0881 8

G-protein beta 3 (GBB3) subunit 362 192 0.000454 0.0881 7

ADPRT 431 308 0.00046 0.0881 12

60S ribosomal protein L34 155 105 0.000481 0.0896 7

CD151 17 13 0.000488 0.0896 6

TERT 97 75 0.000497 0.0896 8

Cyclin-H 228 149 0.000522 0.0925 13

SRP72 119 80 0.000549 0.0954 7

Table A.1: NESTs significantly associated with metastatic prostate cancer,

based on data by Yu et al. The table lists all NESTs found to be significantly ac-

tive (assessed through the Wilcoxon signed-rank test, FDR threshold=0.1) in metastatic

prostate cancer compared to primary carcinoma (expression data from (184)).
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Enriched pathway based sets

pathway name set size measured genes p-value q-value pathway source

Ribosome - Homo sapiens (human) 88 62 1.34e-05 0.00957 KEGG

Eukaryotic Translation Termination 89 61 2.05e-05 0.00957 Reactome

Formation of a pool of free 40S subunits 98 71 2.64e-05 0.00957 Reactome

Peptide chain elongation 89 62 2.76e-05 0.00957 Reactome

Eukaryotic Translation Elongation 92 65 2.88e-05 0.00957 Reactome

Signaling by GPCR 893 298 5.83e-05 0.0137 Reactome

RNA Polymerase I Promoter Opening 30 16 6.1e-05 0.0137 Reactome

E2F transcription factor network 120 62 6.63e-05 0.0137 PID

insulin 42 68 0.000103 0.019 INOH

Insulin Synthesis and Processing 115 75 0.000122 0.0191 Reactome

Cell Cycle, Mitotic 276 183 0.000127 0.0191 Reactome

GPCR downstream signaling 831 263 0.000162 0.0209 Reactome

IL5 51 50 0.00017 0.0209 NetPath

insulin Mam 49 66 0.000191 0.0209 INOH

GPCR ligand binding 392 205 0.000191 0.0209 Reactome

Neuroactive ligand-receptor interaction -

Homo sapiens (human)

272 158 0.000202 0.0209 KEGG

PDGFR-beta signaling pathway 58 49 0.000219 0.0214 PID

Muscle contraction 49 40 0.000317 0.0284 Reactome

Non-small cell lung cancer - Homo sapiens

(human)

54 49 0.000325 0.0284 KEGG

Class A/1 (Rhodopsin-like receptors) 291 144 0.000413 0.0342 Reactome

vegf hypoxia and angiogenesis 37 26 0.000465 0.0364 BioCarta

Sema4D induced cell migration and growth-

cone collapse

24 20 0.000483 0.0364 Reactome

Signalling to ERKs 35 31 0.000591 0.042 Reactome

JAK STAT pathway and regulation 121 218 0.000608 0.042 INOH

Signalling to RAS 26 24 0.00065 0.0431 Reactome

role of nicotinic acetylcholine receptors in

the regulation of apoptosis

18 13 0.000732 0.0467 BioCarta

GTP hydrolysis and joining of the 60S ribo-

somal subunit

110 80 0.000767 0.0471 Reactome

BARD1 signaling events 31 25 0.00103 0.0588 PID

Translocation of ZAP-70 to Immunological

synapse

29 17 0.00107 0.0588 Reactome

Validated targets of C-MYC transcriptional

activation

153 67 0.00107 0.0588 PID

Insulin signaling pathway - Homo sapiens

(human)

136 105 0.00112 0.0588 KEGG

Translation 125 92 0.00115 0.0588 Reactome

L13a-mediated translational silencing of

Ceruloplasmin expression

110 79 0.00121 0.0588 Reactome

3, -UTR-mediated translational regulation 110 79 0.00121 0.0588 Reactome

Diabetes pathways 224 149 0.00134 0.0636 Reactome

superpathway of glycolysis, pyruvate dehy-

drogenase, TCA, and glyoxylate bypass

61 28 0.00155 0.0698 HumanCyc

Phosphorylation of CD3 and TCR zeta

chains

31 18 0.00158 0.0698 Reactome

Smooth Muscle Contraction 22 21 0.0016 0.0698 Reactome

DNA Replication 155 102 0.00174 0.074 Reactome

VEGF signaling pathway - Homo sapiens

(human)

75 52 0.00193 0.0754 KEGG

Eukaryotic Translation Initiation 118 86 0.00195 0.0754 Reactome

Cap-dependent Translation Initiation 117 86 0.00195 0.0754 Reactome

human cytomegalovirus and map kinase

pathways

17 15 0.00201 0.0754 BioCarta

ABC transporters - Homo sapiens (human) 44 25 0.00203 0.0754 KEGG

Generation of second messenger molecules 42 27 0.00205 0.0754 Reactome

NGF signalling via TRKA from the plasma

membrane

134 114 0.00228 0.0823 Reactome

Chronic myeloid leukemia - Homo sapiens

(human)

73 65 0.00273 0.0952 KEGG

Mitotic M-M/G1 phases 131 84 0.00279 0.0952 Reactome

Signaling events mediated by VEGFR1 and

VEGFR2

70 57 0.00281 0.0952 PID

Table A.2: Pathways significantly associated with metastatic prostate cancer,

based on data by Yu et al. The table lists all manually defined pathways from Con-

sensusPathDB found to be significantly active (assessed through the Wilcoxon signed-rank

test, FDR threshold=0.1) in metastatic prostate cancer compared to primary carcinoma

(expression data from (184)).
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Abbreviations

AP-MS affinity purification coupled to mass spectrometry

AUC area under the (ROC) curve

CAPPIC cluster-based assessment of protein-protein interaction confidence

DE genes differentially expressed genes

FDR false discovery rate

GO Gene Ontology

GOSemSim Gene Ontology semantic similarity

IMPaLA integrated molecular pathway-level analysis

NC genes NEST center genes

NEST neighborhood-based entity set

PCA protein-fragment complementation assay

ROC receiver operating characteristic

Y2H yeast two-hybrid
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Software availability

The interaction meta-database ConsensusPathDB described in Chapter 2 is freely

accessible through a web interface at http://cpdb.molgen.mpg.de. NEST analysis de-

scribed in Chapter 4 is implemented in ConsensusPathDB’s web interface. Web service

access to part of the functionality of the ConsensusPathDB web interface is available;

it is documented on the ConsensusPathDB web site and the WSDL1 file is available at

http://cpdb.molgen.mpg.de/download/CPDB.wsdl.

The ConsensusPathDB plugin for Cytoscape described in Chapter 2 can be in-

stalled through Cytoscape’s plugin manager, category “Network and Attribute I/O”

The CAPPIC web-based tool described in Chapter 3 is freely accessible at

http://cpdb.molgen.mpg.de/cappic. The source code implementing CAPPIC is avail-

able on the web page.

The IMPaLA web-based tool for pathway-based analyses of large-scale gene ex-

pression and/or metabolomics data is available at http://impala.molgen.mpg.de. Web

service access to IMPaLA is available; the WSDL1 file is available at

http://impala.molgen.mpg.de/download/IMPALA.wsdl and is documented on the IM-

PaLA web site.

1WSDL: web service definition language
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Zusammenfassung

Die menschliche Zelle umfasst eine große Menge verschiedener Biomoleküle wie
Nukleinsäuren, Proteine und Metabolite. Diese Biomoleküle erfüllen ihre Funk-
tionen nicht isoliert, sondern durch ein komplexes Zusammenspiel untereinander.
Erkenntnisse über die Gesamtheit der molekularen Wechselwirkungen, die in der
Zelle stattfinden, ist unentbehrlich für das Verständnis zellulärer Prozesse auf der
Systemebene. Zum Beispiel können molekulare Interaktionen oft erklären, wie
Funktionsstörungen bestimmter Gene etwa durch Mutation zu einer bestimmten
Krankheit führen. Gerade wegen diesem Aufklärungspotential molekularer Wech-
selwirkungen wurden zu ihrer Identifizierung unterschiedliche Techniken entwick-
elt. Viele molekulare Interaktionen in der menschlichen Zelle sind bereits entdeckt
und veröffentlicht worden, wenngleich sie schätzungsweise nur einen kleinen Teil
der wirklich existierenden Wechselwirkungen darstellen. Diverse Datenbanken
sind entwickelt worden um Interaktionsdaten, die zum Beispiel über Datamining
gewonnen werden, systematisch zu sammeln. Vorhandene Interaktionsnetzwerke
werden bereits in verschiedenen Methoden eingesetzt, die zum Ziel haben, neue
Erkenntnisse über krankheitsrelevante Gene, Stoffwechselwege und Signalwege zu
gewinnen.

Ein tieferes Verständnis über normale und krankheitsbedingte zelluläre Prozesse
auf der Systemebene ist allerdings durch zwei weitere Hauptfaktoren (neben
der Unvollständigkeit vorhandener Interaktionsdaten) stark eingeschränkt. Zum
einen sind solche Daten in der Regel fehlerhaft, das heißt, sie enthalten viele
falsch positive Interaktionen. Diese entstehen meistens durch Fehler bei den ex-
perimentellen Messungen oder gegebenenfalls beim Datamining. Zum anderen
sind vorhandene Daten in Hunderten von Datenbanken verstreut, wobei jede
Datenbank Interaktionen nur einer oder weniger Arten enthält: manche Daten-
banken enthalten ausschließlich Proteininteraktionen, während andere auf Gen-
regulationen, metabolische Reaktionen oder Signalwege spezialisiert sind. In der
Zelle wirken all diese Arten von Interaktionen zusammen um biologische Prozesse
zu treiben. Interaktionsdatenbanken müssen also integriert werden, damit ein
vollständigeres Modell der zellulären Biologie entsteht. Eine solche Integration ist
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dadurch erschwert, dass die einzelnen Datenbanken sehr unterschiedliche Daten-
modelle und -formate haben.

Diese Dissertation beschäftigt sich mit den Herausforderungen, dass vorhandene
Interaktionsdaten zum einen fehlerhaft sind und zum anderen in vielen, wenig
überlappenden Datenbanken zerstreut sind.

Zuerst wird eine neue Metadatenbank für molekulare Wechselwirkungen namens
ConsensusPathDB vorgestellt. Hier werden unterschiedliche Arten von Interak-
tionen aus vielen öffentlichen Ressourcen integriert um ein vollständigeres Bild
der molekularen Wechselwirkungen in der menschlichen Zelle zu erzielen. Zur Zeit
sind Wechselwirkungen sowie Signal- und Stoffwechselwege aus sechsundzwanzig
öffentlichen Ressourcen in der Metadatenbank integriert. Deshalb stellt das in der
ConsensusPathDB vorhandene Interaktionsnetzwerk das umfangreichste Modell
der Wechselwirkungen in der humanen Zelle dar. Der Mehrwert der Datenin-
tergation wird anhand einiger Beispiele veranschaulicht. Die Webschnittstelle
der Datenbank (http://cpdb.molgen.mpg.de) bietet zahlreiche Tools für Daten-
suche, Netzwerkanalyse und -visualiserung, sowie Interaktions- und Pathway-
basierte Analysen von Genexpressionsdaten. Diese stellen wichtige Hilfsmittel
für Biologen und Molekularmediziner dar.

Zweitens wird eine neue Methode vorgestellt, mir der Proteininteraktionen bezüg-
lich ihrer Richtigkeit beurteilt werden. Die resultierenden Konfidenzwerte können
benutzt werden um falsch positive Interaktionen zu detektieren, oder können als
Interaktionsgewichte in netzwerkbasierten Methoden fungieren. Im Gegensatz zu
vielen anderen Methoden werden hier keine Referenzdatensätze oder zusätzliche
Informationen über die einzelnen Netzwerkelemente benötigt. Solche Daten sind
oft nicht vorhanden, was vergleichbare Methoden zur Konfidenzwertbestimmung
limitiert. Die vorgeschlagene Methode benutzt ausschließlich die Netzwerkstruk-
tur, im Speziellen ihre Modularität, um die Konfidenzwerte zu berechnen.

Drittens wird ein zugleich vollständigeres und akkurateres Modell zellulärer Wech-
selwirkungen erstellt, indem die vorgestellte Konfidenzwert Methode auf die inte-
grierten Daten aus ConsensusPathDB angewandt wird. Von dem resultierenden
Netzwerk wird in einem neuen Verfahren zur Identifizierung von krankheitsrel-
evanten Genen und Subnetzwerken unter Berücksichtigung von Genexpression-
sprofilen Gebrauch gemacht. Das integrative Verfahren wird auf Genexpressions-
daten aus Prostatakrebspatienten angewandt um sein Potential zu demonstrieren,
Krebsgene richtig zu erkennen.
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