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schuette@mi.fu-berlin.de

Supervisor: Prof. Dr. Vladimir Spokoiny
spokoiny@wias-berlin.de

date of disputation: 31.7.2009

Abstract

Concerning the analysis of large molecular systems increasing amounts of simulation data
and growing dimensionality have led to the demand of data-driven approaches to extract
physically interpretable information from large data sets. Hence a mapping to a low di-
mensional manifold, representing the essential degrees of freedom of a molecular system is
sought. A general obstacle to such an analysis is the curse of dimensionality. This thesis
is motivated by the fact that most dimension reduction methods are either not reliable
in dimensionality regimes of realistic biomolecular systems or restricted to data sets with
special features. On the one hand the aim is to develop an unsupervised linear feature ex-
traction method, that allows to extract any multimodal distributed component to a given
high dimensional data density. On the other hand the development of a geometric ap-
proach to the analysis of the large scale dynamical behavior of biological active molecules
is intended. To this end a very general semi-parametric framework for unsupervised fea-
ture extraction based on weak structural assumptions on the data density is introduced.
We discuss and develop different iterative and non-iterative approaches to semi-parametric
dimension reduction allowing for identifying a low-dimensional non-Gaussian component
of the whole distribution in a structure adaptive way. The main difference between the
approaches discussed consist in the reconstruction of the low dimensional, non-Gaussian
target space of the method on focus. We discuss methods based on Principle Component
Analysis (PCA), convex projection and semi-definite programming. It turns out that the
choice of the optimization problem to be solved in order to reconstruct the target space
from some estimators is decisive for the statistical sensitivity of the method to a vari-
ety of non-Gaussian components. Currently the best alternative is Sparse NonGaussian
Component Analysis based on semidefinite programming. Combining this linear projective
method with the so called dip index specialized on the detection of multimodality, we come
up with NonGaussian Cluster Analysis (NCA). It is demonstrated that NCA used as a
preprocessing step to the metastablility analysis of biomolecules is superior to comparable
dimension reduction methods. Combining NCA with the state-of-the-art approach of Hid-
den Markov Models to metastablility analysis, results in an almost geometrical approach
to high dimensional analysis of metastablility as requested.
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Notations

Rd set of d dimensional real numbers
Sd cone of symmetric matrices from Rd × Rd

A � 0 positive semi-definite matrix A
A � B has the same meaning as A−B � 0
I identity matrix from Rd

Tr(A) trace of a matrix A
det(A) determinant of a matrix A
diag(A) main diagonal of a matrix A
Bd unit ball Bd = {x ∈ Rd| : ‖x‖2 ≤ 1} in Rd

E vector space over Rd

E∗ dual space to E
f̂ estimator of the function f
〈·, ·〉 inner product of E
dist(·) metric on E
‖ · ‖ generic vector or operator norm of a space

‖ · ‖∗ dual norm ‖ · ‖∗
def= maxx∈E{〈·, x〉 : ‖x‖ ≤ 1}

‖ · ‖F Frobenius norm (Tr[A>A])
1
2

‖ · ‖p canonical norm on Lp

X ,Y,Z,W nonempty, convex, compact sets, domains of a problem
Lpµ(R) {f : E → R | f measurable wrt. µ, ‖f‖p ≤ ∞}
C2(Rd,Rm) set of twice continuously differentiable functions f : Rd → Rm

Ed ellipsoid in Rd

∇f gradient of f
f ′ gradient or subgradient of f
∂xf(x) partial derivative of f(x) with respect to x
f∗ optimal value of f
L‖·‖(f) Lipschitz constant of f w.r.t. ‖ · ‖
domf domain of a function f
ρ(x) function from Rd → R with

∫
Rd ρ(x)dx = 1, data density

IP (·) probability measure
X,Y, Z random variables
IE[X] expectation of a random variable X
IEN [X] = N−1

∑
iXi empirical expectation of a random variable X

V ar[X] variance of a random variable X
Cov[X,Y ] covariance of random variables X and Y
L log likelihood
Θ parameter of a model
ΣXY covariance matrix of random variables X and Y
N (µ, σ) normal distribution with parameter µ and σ
U[a,b] uniform distribution in the interval [a, b]
χ2
f χ2

f distribution with f degrees of freedom
P matrix of probabilites
ν finite measure
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L Lagrange function
ΠX (·) orthogonal projector on the set X
∆+
d (full) d-dimensional simplex

Tβ(x, s) prox mapping
cplδ(·) analytical complexity
O(·) arithmetical complexity
O(1) some positive constant
bxc The closest integer smaller or equal than x.
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Chapter 1

Introduction

In recent years the availability of massive data and challenges from frontiers of research
and development have reshaped statistical thinking and data analysis. Nowadays we col-
lect massive amounts of data with relatively low cost. Therefore many mathematical
applications in science are confronted with high dimensional data. Such data sets present
new challenges in data analysis, since often the data have dimensionality ranging from
hundreds to hundreds of thousands of components. Due to high-dimensionality there are
general limits to any kind of data analysis, usually referred to as curse of dimensional-
ity [15]. Dimensionality is an unwelcome issue arising in many applied scientific fields,
ranging from computational biology especially in proteomics [42], structure prediction
e.g. metastability analysis of biomolecules [97] to financial engineering or climate research
[156]. Generally speaking, the difficulty lies on how to analyze and how to visualize a
high dimensional function or data set: It is well known and widely accepted that classi-
fiers and estimators perform poorly in a high dimensional space with a limited number of
samples. In fact these limits have their origin in the convex geometry of metric spaces [245].

The burden of responsibility for the mathematical difficulties in analyzing high-dimensional
data has to be put on two phenomena. On the one hand high-dimensional spaces have
several counter-intuitive geometrical properties far from the properties that can be ob-
served in spaces up to d = 3 dimensions. On the other hand statistical data analysis
methods are most often designed having in mind intuitive examples in low-dimensional
spaces. However to infer algorithmically knowledge or information successfully from data
sets primarily depends on two key ingredients:

• Generalization of knowledge on data that are much different from the learning points
as yet available is not advisable: Any feasible generalization comes from interpolation
but not from extrapolation.

• Even in high dimensions successful learning requires enough data for learning so that
they fill the space or parts of the space, where the hypothesis on focus should be
valid.

We demonstrate in section 2.1.1 and 2.1.2 that the violation of both assumptions starts
not later than dimension d = 5 and thus can be considered as completely misleading in
dimensions higher than d = 10.

Moreover towards higher dimensions other well known problems such as collinearity easily
occur, meaning the number of samples available for learning is less than the dimension of
the data space. Such problems are even worse when using nonlinear models since most
nonlinear methods involve more parameters than input variables e.g. resulting in lack
of model identifiability, numerical instability of the methods and overfitting i.e. in a too

1
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efficient modelling where only a special feature of the given samples is represented by the
model generalization ability [76]. Due to these facts dimensionality in data analysis should
in general be viewed as an independent parameter of mathematical methods.

Structural Analysis and Rare Events: Although these facts provide sufficient rea-
sons to attempt to break or at least to circumvent the curse of dimensionality in data
analysis [61], it is far from clear which method will serve as appropriate preprocessing step
for information other e.g. statistical or dynamical analysis methods. The data itself as
well as the characteristics of the subsequent mathematical analysis heavily influences the
choice of the dimension reduction method. Consequently it is always a good advice to
have first a close look at the application of interest.

Once in a while the detection of statistically rare events coincides with an extraction of
the structured parts in a data set, that are build up by non-normal contributions to a
distribution sampled by the given data: If cluster in high dimensional data stem from
sudden changes of e.g a physical or biological system in their observation space, then
detecting the non-Gaussian components of a data distribution is a suitable preprocessing
step to a dynamical analysis of important but rare events in time series reporting the
geometrical large scale changes of complex systems. The effect of a data mapping onto an
appropriate reduced subspace is illustrated in figure 1.1.

Figure 1.1: Basic idea of clustering using non-Gaussian projections

In this thesis we only concern biomolecular systems as examples for real complex systems.
The number of atoms in these biomolecular system typically ranges from at least 33 to
hundreds of thousands.

Geometrically large scale transitions in biomolecular systems have been studied for a long
time as characteristic features of transition processes using set oriented methods [196; 36;
52; 54; 53; 173; 199; 202] as well as so called Hidden Markov Models [70; 100; 96; 95; 201].
In the context of biomolecular systems rare events between so called metastable states can
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be observed: It is well known that e.g. for proteins the transition from an unfolded in
a folded macroscopic state is in the range up to milliseconds. In comparison the small-
amplitude motions of the atoms of the amino acid side chains took place at the femtosecond
scale [200]. From a physical point of view transitions between metastable states are driven
by the mechanical and electrostatic random interactions of the atoms in the molecule
or in the solvent constraint by the given electronic bond structure of the biomolecule.
Intensity and amplitude of these interactions reflect the temperature at which the rare
events occur. From a statistical point of view the dynamics of the transition process is
dominated by noise associated with an energy scale with respect to a thermodynamical
(canonical) ensemble, that serves as a model for a single molecule. Transitions are rare
events, since they depend on the height of the energy barrier separating the metastable
states from each other: the time scale of escape from a given metastable state depends
exponentially on the ratio of both energies. In spite of the fact that the formal description
of a biomolecular system required to observe such transitions can often be reduced using
e.g. the torsion or backbone angles of the biomolecule [6], time series from numerical
molecular dynamics [5] simulation are in almost all cases high dimensional.

Outline of the Thesis: The motivation for this thesis is twofold. On the one hand a
survey of existing unsupervised feature extraction methods will show that a data driven
method with low complexity and sufficient statistical sensitivity even in high dimensions,
currently do not exist. Moreover justified convergence rates for methods of dimension
reduction are hardly available. In particular as far as we know up to know there is no
possibility to control if the assumptions, providing reasons for the method on focus, are
fulfilled, such that interpretable results of the methods are more stroke of luck than quo-
tidian. On the other hand we aim to develop a fully geometric approach to the analysis
of metastability of biomolecular systems.

In chapter 2 we start in section 2.1.1 with a survey of the geometrical phenomena occurring
in the Lp-spaces, that are responsible for the notorious mathematical limitations in high
dimensional data analysis. We summarize in section 2.1.2 some consequences in statistics
and machine learning that are frequently discussed but more often ignored in the applied
sciences. Then we introduce in section 2.3.1 the well known Continuous Latent Variable
Model [13], that is used in a variety of popular methods of dimension reduction. In section
2.3.2 we describe an alternative semiparametric framework [212]. In this thesis we show
that this framework, based on a very weak structural assumption about the data density,
allows to design some new efficient methods of dimension reduction. Finally we give in
chapter 3.2 a concise report of existing feature extraction methods, that may be compa-
rable to the here favored approach to dimension reduction, called Sparse NonGaussian
Component Analysis (SNGCA).

The role of SNGCA as a tool for high dimensional structural analysis can be sketched
as follwows: In statistics projections are a common tool for extracting useful information
from high dimensional data. Almost all projection methods for feature extraction like
e.g. Principle Component Analysis [117], Projection Pursuit [74; 82], Partial Least Square
Regression [236; 237], Conditional Minimum Average Variance Estimation [239] or Sliced
Inverse Regression Methods [140; 43; 32] decompose the problem of dimension reduction
into two more or less independent tasks: First one has to determine elements from the
reduced data space, also referred to as target space. Second, one has to construct a basis
of the target space from these elements. For the latter task one has to know the number
of required basis elements.
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SNGCA, described in this thesis, is a linear unsupervised projection method for feature
extraction, that links pure Gaussian (PCA) and pure non-Gaussian Independent Compo-
nent Analysis (ICA) [110]. In this thesis the method comes in two approaches. And as
usual there are some good and some bad news about both of them:

• The first approach comes as an iterative and structure adaptive method, that repeats
the established two-stage strategy of element estimation and basis construction. The
good news is, that the dimension m of the target space can be determined from
the estimation procedure. The bad news is that this approach is computationally
expensive. We will call this the ”convex projection”-approach to SNGCA. The use
of convex programming for estimating elements from the target space I by convex
projection is new and allows to realize a uniform bound for the estimation error ε
based on a well known result from empirical process theory [226].

• The second approach, developed in this thesis, ”shortcuts” the intermediary stages
described above, and moreover makes the best use of the available information for
computing estimatior from the target space. This can be archived by a direct esti-
mation of the so called subprojector onto the target space. However to this end the
reduced dimension m must be apriori given to the algorithm as a tuning parameter.
We will call this the ”semidefinite programming”-approach to SNGCA. We will see
that the use of semidefinite programming [238] in structural data analysis instead of
Interior Point Methods [184] results in a linear matrix game with bounded convex
domains of its arguments. The good news is that this new approach in statistical
data analysis is responsible for improving the statistical sensitivity of the complete
method while decreasing the required computational effort.

In comparison to ICA we will see that the SNGCA allows for cross-dependence of the
non-Gaussian components and for presence of a full dimensional Gaussian part. The only
important assumption for the SNGCA approach is that the non-Gaussian part is low di-
mensional, otherwise no dimensionality reduction will be produced. Correspondingly, the
target of the SNGCA is to ”kill the noise” rather than to describe the whole distribution.
Projecting the data onto a low-dimensional subspace means that the orthogonal comple-
ment to this subspace only contains a non-informative noise. SNGCA do not depend on
a special difference in the magnitude of the second moments of Gaussian noise and infor-
mative data components as e.g. PCA.

In chapter 4 we introduce the ”convex projection”-approach to SNGCA as a realization
of several desired properties of linear unsupervised feature extraction methods. The label
”convex projection” indicates that this approach uses an aggregation strategy to estimate
vectors β from the dimension reduced target space I as convex combinations resulting in
outstanding statistical properties: On the one hand as an upper bound for the ”prize of
aggregation” there is a value ε =

√
C/N for a fixed positive constant C and a random set

A of a dominating probability such that for the projector I−ΠI onto the complementary
space Ic it holds ‖(I−ΠI)β̂‖2 ≤ ε for all such constructed vectors β̂ . Here N denotes the
number of samples. In addition the dimension m of the target space I can be estimated
correctly from the data. On the other hand numerical simulations in section 4.5 show that
the detection of I is nearly independent of the variance of the normal noise, that embeds
the information representing components to the data density. In section 4.4 we present
the algorithmic details of the ”convex projection”-approach .
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In chapter 5 we describe the ”semidefinite programming”-approach to SNGCA that aims to
improve the statistical sensitivity of SNGCA. Having introduced the ”recipe” of semidefi-
nite relaxation we demonstrate that the arising nonconvex, nonsmooth optimization prob-
lem can be efficiently solved in the very general setting of variational inequality problems.
The error with respect to original problem made by solving the relaxed problem can be
bounded by O(1)(δλmin(Σ))2 where δ is the desired numerical accuracy and λmin(Σ) the
minimal eigenvalue of the covariance matrix Σ of the data distribution. In order to make
the ”semidefinite programming”-approach viable we ”hide” the linear constraints in the
geometry of the feasible sets associated with the objective (see section 5.2.3). Numerical
simulations with respect to the statistical sensitivity demonstrate that this new approach
to SNGCA archives to exploit the information obtained from the data space sampling
better than comparing methods.

In chapter 6 we first give a sketch of the metastability analysis by means of Hidden Markov
Models, described in section 6.2. Since conventional clustering algorithms have serious
drawbacks in high dimensions, we apply the ”semidefinite programming”-approach to
SNGCA to simulated biomolecules in order to make a dynamical analysis reliable (c.f. [99]).

Figure 1.2: general scheme of the geometrical approach to metastability analysis

Using SNGCA as a preprocessing step allows to apply a geometric mean-shift clustering
algorithm [35] on the dimension reduced data that provides an necessary initialization for
a state-of-the-art approach to metastability described in [153]. The combination of these
algorithms results in a completely geometric approach to high dimensional metastability
analysis illustrated in figure 1.2. In section 6.3 we present examples of the metastability
analysis of oligo-peptides that illustrate the progress made by this strategy.

However with respect to the first motive of this thesis the types of data sets concerned
here are subject to some important restrictions:

1. Here we only deal with metric and unlabeled data. Hence in this thesis we put the
focus on unsupervised methods for dimension reduction.

2. We assume that all data is a sample from a stationary density. Consequently we are
only interested in global methods for dimension reduction.

3. We only account for situations where the number N of the data is much bigger than
the dimensionality d of the data space Rd.

The Matlab-toolbox that implements both approaches to Sparse NonGaussian Compo-
nent Analysis described in the chapter 4 and 5 is available on the web either here
http://www.wias-berlin.de/people/spokoiny/ or here
http://www.math.fu-berlin.de/groups/biocomputing/projects/projekt A10/index.html.
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Chapter 2

Complexity

2.1 The Curse of Dimensionality

Aside from differences underlying various scientific contexts, requests for dimensionality
reduction do have a common geometric root provided by the so-called curse of dimension-
ality. This expression is coined by to Bellman [15] to describe a set of problems caused
by the exponential increase in volume associated with adding extra dimensions to e.g. an
Euclidean space E. Some of them are relevant to the topics of this thesis and will be
described in the following.

2.1.1 Strange Geometric Phenomena in Lp-Spaces

Space is measure linearly and volumetrically. But the relation between linear and vol-
umetric measures itself is not linear causing a breakdown of geometric intuition in high
dimensions. In order to illustrate this we consider first of all the volume V ol(Sd(r)) of the
d-dimensional hypersphere Sd(r) of radius r and the volume V ol(Cd(r)) of d-dimensional
unit hypercube Cd(r). Then we get asymptotically:

lim
d→∞

V ol(Sd(r))
V ol(Cd(r))

= lim
d→∞

1
2d

π
d
2

Γ(d2 + 1)
= 0 (2.1)

where Γ(·) is the gamma function. Obviously towards higher dimensions the volume of the
hypercube concentrates on its corners and its central parts shrink to zero [203]. Also, the
length of the diagonals goes to infinity. Consequently the hypercube has to be imagined
as an anisotropical body: As illustrated in figure 2.1 the inner ball-like part with r << 1
is covered with 2d ”spikes” with a length going to infinity for large d [91]. This is shown
in figure 2.1.

Figure 2.1: Illustration of the geometric shape of a d-dimensional hypercube projected on
a plane where d is very large.

7
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This phenomenon is called the empty space phenomenon. The analogously argument [235]
for the volume between two concentric spheric shells with radii r and r(1 − ε) we get
asymptotically:

lim
d→∞

V ol(Sd(r))− V ol(Sd(r(1− ε)))
V ol(Sd(r))

= lim
d→∞

1−
(

1− ε

r

)d
= 1 (2.2)

Hence the content of a hypersphere is in a way concentrated close to its surface, which is
only a (d−1)-dimensional hypersphere. In terms of a data density in the space, this means
that if there are uniformly distributes points over the complete cube, the probability that
they fall near the corners is almost one. Moreover even if the two radii only differ by 10%,
the ratio between both volumes is almost 0 for d = 10. For uniformly distributed data,
this means that almost all of them will fall in its skull, and will therefore have a norm
equal to 1. These effects of increasing dimensionality is illustrated in figure 2.2.

Figure 2.2: Figure a) shows the volume of a unit-radius sphere with respect to d. Figure
2 b) shows the ratio between the volume of a unit-radius sphere and the volume of a
cube with edge lengths equal to 2. Figure 2 c) shows the ratio between the volumes of
two embedded spheres, with radii equal to 1 and 0.9 respectively. Figure 2 d) shows the
percentage of the volume of the Gaussian function that falls inside a radius equal to 1.65.
For d = 1 this percentage 90% but decreases rapidly up to almost 0 for d ≥ 10, such that
almost all the volume of a Gaussian function is contained in its tails.

Consequently in some sense, almost all of the high-dimensional space is ”far away” from
its origin. Considering a data set uniformly distributed over Sd(r) and Cd(r) most of the
data fall near the boundary and edges of the cube and lead to a significant sparsity of the
data.

Now consider a standard Gaussian in different dimensions and compute the probability
density function (pdf) to find a point arbitrarily chosen from N (0, I) at distance r from
the center of the distribution. Figure 2.3 shows that when the dimension increases, the
bell shape more or less remains, but is shifted to the right.
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Figure 2.3: Probability of a point chosen from N (0, I) to be at distance r = 2, 3, 5, 10, 20
of the center increasing dimensions.

This means that the distances between all points and the center of the distribution are
concentrated in a small interval and relative differences between these distances become
less and less discriminative. The phenomenon is called the concentration of norms. It has
be shown [175] that for every random vector with independent and identically distributed
(i.i.d.) components, the mean of their Euclidean norm increases as the square root as the
dimension of the space, while the variance of their norm does not increase. Consequently in
high dimensions, all vectors are normalized, as the error resulting from taking the mean of
their norm instead of their actual norm becomes negligible. In other words towards higher
dimensions distance measures become increasingly meaningless: Additional dimensions
spread out the points until in very high dimensions, they are almost equidistant from each
other for arbitrary distance measures and a wide variety of data distributions [19]. For
example this makes a proximity query meaningless and unstable because there is only poor
discrimination between the nearest and furthest neighbour. Moreover the concentration of
the norms phenomenon results in the fact that Gaussian kernels become a inappropriate
tool in high-dimensional spaces [66].

Finally we consider a set of centered diagonal vectors v in [−1, 1]d from the origin to a
corner and let ed be an arbitrary coordinate axis. Then it holds [203]

lim
d→∞

cos(](v, ed)) = lim
d→∞

ved
‖v‖‖ed‖

= lim
d→∞

±1√
d

= 0 (2.3)

Thus, all v are nearly orthogonal to all coordinate axes ed for larger dimensions. This
phenomenon is called the distortion of space, having consequences for data clustering: A
cluster lying near an arbitrary v of the cube will be mapped almost completely into the
origin of the coordinate system, while a cluster positioned along a coordinate axis will be
visible in some projection. Thus the choice of coordinate systems is critical in some data
analysis. Further cheerful facts about the curse of dimensionality can be found in [11; 121].

2.1.2 Consequences in Data Analysis

We restrict ourselves to some striking examples instead of making a complete list of un-
pleasant effects typically associated with the term curse of dimensionality.
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Statistics: When data in high-dimensional spaces become inherently sparse the work
for a statistican gets harder. We will illustrate this using the uniform and the normal dis-
tribution: Recall that the probability that a point from U[−1;1]d in the d = 10-dimensional
sphere falls at a distance of 0.9 or less from the center is only 0.35. This causes severe prob-
lems for brute-force implementations of Monte Carlo methods. In particular the sampling
of non-Gaussian pdfs requires sample sizes exponentially growing with d [139]. Moreover
the analogous problems occur in density estimation methods, as regions of relatively low
density can contain a considerable part of the distribution, whereas regions of apparently
high density may be completely devoid of observations in a sample of moderate size [210].
In the case of the standard d-dimensional normal distribution, equiprobable contours are
hyperspheres. The probability IP that a point is within a contour of density ε or, equiva-
lently, inside a hypersphere of radius r =

√
−2 ln ε, is:

IP (‖x‖2 ≤ −2 ln ε) = IP (χ2
d ≤ −2 ln ε) (2.4)

since x ∈ Rd ∼ N (0, I). Equation (2.4) gives the probability that a random point will not
fall in the tails, i.e., that it will fall in the medium- to high-density region. Therefore, and
contrarily to our statistical intuition, in high-dimensional spaces the entire sample will be
in the tails of a distributions and are much more important than in one-dimensional ones.
We give an example of this fact in figure 2.6.

Figure 2.4: 64 data points are simulated from U[0,1]. For d = 1 all the data points are
clustered together and with increasing dimension the data become more sparse.

The empty space phenomenon implies also that most (spherical) local neighborhoods of
e.g. data uniformly distributed over a hypercube in high dimensions are empty. Hence
since many estimation methods are based on some local average of the neighboring observa-
tions [210], in order to find enough neighbors in high-dimensional spaces, the neighborhood
has to reach out farther, such that the locality is lost. This implies that, in the absence of
simplifying structural assumptions, the amount of training data, needed to get reasonably
low variance estimators is really high [232] and its convergence to the estimated function
becomes very slow [23]. Moreover such large data sets may not be available in practical
situation.

As an example we consider density based clustering. In high dimensions the method will
only consider those regions of the density landscape as clusters that rise above the noise
threshold. Another example is given by nonparametric regression. It is shown [216] that
under certain regularity assumptions, the optimal rate of convergence varies as N−p/(2p+
d), where N ∈ N is the number of samples from Rd with d ∈ N, and where the regression
function is assumed to be p ∈ N times differentiable. Consequently in the case of N = 104,
p = 2 and d = 10 the number of sample points must be increased to approximately 10
million in order to achieve the same optimal rate of convergence compared the case d = 10.
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Furthermore we consider a typical method of parameter estimation: In order to archive
a prescribed mean squared error when estimating the data density needs about (ε−2)d+2

observations [61]. The required sample size increases if there are linear correlations in the
data, that is very likely in high dimensions [203]. In particular the rates of convergence
of nonparametric estimates rapidly slows down with the dimensionality for e.g. Lipschitz
continuous functions of d variables at rate O(N

−1
2+d ). Other problems occurring in in

non-parametrical testing are reported in [213; 101; 17].

Machine Learning: In order to provide a formal framework for learning problems as
inference, classification, model construction, prediction or gaining knowledge statistical
learning makes assumption on the statistical nature of the hitherto existing observations of
the phenomena on focus [59]. For example it is assumed that the past training data and the
future data are from the same general probabilistic model and are independently sampled.
Consequently one can construct consistent algorithms, which means that the predictions of
the algorithm come closer to optimal predictions the more data are available. In particular
many algorithms in statistics or machine learning make use of kernel functions [229; 24; 25]
due to the following assumptions:

• Using local functions avoids illegitimate generalization in almost empty regions.
Gaussian kernels are deemed to be local.

• Gaussian functions evaluated on the norm of a distance between two points results
in a high value if the points are close, and in a low one if the points are far one
from each other. Hence Gaussian kernels are used as a smooth measure of similarity
between two points.

Figure 2.5: Kernel values as a function of the distance to their centers different dimensions
d = 2, 5, 10, 100, along with the distribution of distances for normally distributed data.
Vertical lines correspond to 5 and 95 percentile respectively.

However figure 2.5 illustrates a different statement for highdimensional spaces. The bell-
shaped curves (thin lines) show, in dimensions 2, 5, 10 and 100, the distribution of distances
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between each sample and the center of a multivariate normal distribution: The vertical
lines correspond to the 5% and 95% percentiles respectively. Gaussian kernels are super-
imposed on the graphs (thick lines). Obviously in dimensions 2 and 5, the values taken by
the Gaussian kernels are different for small and large distances found in the distribution
(see the dotted vertical lines). Towards higher dimensions this does not remain true. Even
by adjusting the standard deviation of the Gaussian kernels (see the dotted kernels), they
remain flat in the range of effective distances in the distribution.

Moreover in multivariate data sets obtained in technical or financial applications measured
variables are often highly correlated or provide redundant information. Time series often
contain significant noise, i.e. subsequences that are the result of random fluctuations. Even
if the class densities in these cases are completely known, an increase in the number of
features, represented as random variables, will not result in an increase in the probability
of misclassification. It has been often observed [185] that the added features may degrade
the performance of a classifier if the number of training samples that are used to design
the classifier is small relative to the number of features: Noisy or irrelevant features can
have the same influence e.g. on classification as predictive features so they will impact
negatively on accuracy. On the other hand, a reduction in the number of features may
lead to a loss in the discrimination power and thereby lower the accuracy of the resulting
recognition system. Moreover classification methods emerging from statistics cannot be
accurately modelled when the amount of available samples is small compared with its
dimension and the convergence of estimators to the value of an estimated smooth function
defined on a space of high dimension is unacceptable slow [131].

2.2 Information-Based Complexity Theory

Complexity Theory aims at understanding the nature of efficient computation [225] and
provides a simple way of formalizing what is meant by the curse of dimensionality: In this
setting we say that a problem is subject to a curse of dimensionality if the lower bound on
computational complexity grows exponentially fast as the dimension d increases. Prob-
lems with infinite complexity are called unsolvable or non-computable. A problem which
is subject to the curse of dimensionality is said to be intractable. If the computational
complexity of a problem is bounded above by a polynomial function of d and ε then it is
not subject to a curse of dimensionality.

Independently from the occurrence of the geometric phenomena from above the size of a
sample from a distribution needed to estimate a function of a high dimensional random
variable X with reasonably low variance, grows exponentially with N [188]. This can eas-
ily illustrated as follows: Consider 100 evenly-spaced points suffice to sample the interval
[−1, 1] with no more than 0.01 distance between every two points. Then an equivalent sam-
pling of a 10-dimensional unit hypercube with a spacing of 0.01 between adjacent points
requires 1020 sample points. Consequently in some sense, the 10-dimensional hypercube
can be said to be a factor of 1018 ”larger” than [−1, 1]. This means an exponential in-
crease of the computational burden for many methods [89]. Hence even if the classification
process leads to satisfactory results, the procedure can be prohibitively time consuming.
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Figure 2.6: Gneral idea of the curse of dimensionality.

Here the curse of dimensionality means the intractability of accurately approximation of a
high-dimensional Lipschitz-continuous function f : If one wants to approximate f in d vari-
ables, one needs evaluations on a grid in order O(1/(εd)) to obtain an integration scheme
with approximation error ε. Hence we also found an completely analogue intractability of
integrating f in d variables. The same fact can be observed in optimization by exhaustive
search [61].

The sense of continuous complexity we encounter in the second part of this thesis deals
with the task of solving extremely large-scale nonlinear optimization problems of the form

min
x∈X

f(x) f ∈ C1 (2.5)

where the nonempty, convex and compact set X is the feasible domain of the problem
and f : Rd → R is a Lipschitz-continuous function with Lipschitz constant L‖·‖(f). By
means of these properties (2.5) belongs to a certain class C such that numerical methods
are designed to use the class characteristics in order find an approximate solution with
numerical error δ. There are two measures of the complexity of (2.5) [163]:

• The analytical complexity cplδ(C) is the lower bound on the number of calls of a
black-box routine, called oracle, which returns on an input point x ∈ X , the value
of f and a subgradient f ′ of f at x, required to solve the problem up to the given
accuracy δ.

• The arithmetical complexity O(·) is the total number of the arithmetic operations
necessary to find an approximation solution to (2.5).

In a sense the information that is accumulated up to the kth step of the optimization pro-
cess can be given by some kind of information base D def= {f(x1), f ′(x2), . . . , f(xk), f ′(xk)}
and is associated with a characteristic complexity.

In [242; 243] the prove of the negative result that a static nonlinear optimization problem
is subject to an inherent curse of dimensionality irregardless of whether deterministic or
random algorithms are used was given the first time. However it is possible to break
the curse of dimensionality for certain subclasses of problems such as convex optimiza-
tion problems [241] since the arithmetical complexity for d-dimensional for that class of
problems is only O(d log d). Some main results on information-based complexity of convex
programming provided in [163] are listed below. As usual X denotes a convex compact
set with a nonempty interior and F is the family of all convex, but not necessarily smooth
functions on Rd normalized by

max
x∈X

f(x)−min
x∈X

f(x) ≤ 1 (2.6)

In the following O(1) denotes an appropriately chosen positive constant.
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Suppose that we ignore the geometry of X . Then it holds for every f ∈ F , that the
analytical complexity cplδ(F) in fixed dimension is nearly independent of the geometry of
X . In particular, we get

∀ δ ≤ δX : O(1)d ln
(

2 +
1
δ

)
≤ cplδ(F)

where δX has the upper bound 1
d2 and depends on the geometry of X . Definitely these

are bad news: There is no hope to guarantee an accuracy e.g. of order 10−6, when solving
large-scale problems with black-box-oriented methods. With O(d) steps per accuracy digit
and at least O(d) operations per step to introduce a new search point to the black box
routine, the arithmetic cost per accuracy digit has at least a lower bound of O(d2), which
is prohibitively costly for high values in d.

However if we pay attention to the geometry of the feasible set X of the problem, there
are some good news:

• Consider the d-dimensional box X := {x ∈ Rd : ‖x‖∞ ≤ 1}. Then we get

O(1)d ln
1
δ
≤ cplδ(F) (2.7)

• For a d-dimensional ball Bd := {x ∈ Rd : ‖x‖2 ≤ 1} it holds

O(1)
δ2
≤ cplδ(F) (2.8)

• Finally we consider the d-dimensional hyperoctahedron X := {x ∈ Rd : ‖x‖1 ≤ 1}.
In this case, it holds

O(ln d)
δ2

≤ cplδ(F) (2.9)

In other words there are circumstances where the analytical complexity of minimizing a
convex function to a fixed accuracy δ depends only weak on the dimension d of the data
space. In spite of the fact that the complexity bounds from above are not polynomial
in ln(δ−1), this might be tolerable when a medium accuracy of the numerical solution is
sufficient for the application on focus.

2.3 Reduction of Dimensionality in Data

A long-standing problem in statistics is how not to deduce by analysis but to infer from
observations a suitable low-dimensional representation of high-dimensional multivariate
data [89], that conveyed by fewer dimensions the same information if the variables are
wisely combined. Representation here means that we would like to transform the data,
so that the resulting set of low dimensional variables shows its essential structure and
captures according to some criterion the content in the original data. Dimensionality
reduction is the formal process by which we represent a system that appears as having
several degrees of freedom using a smaller number of degrees of freedom instead [67].

In order to illustrate the task of dimension reduction in more detail we consider a certain
phenomenon governed by m ∈ N stochastically independent variables. In measurements
the observable of this phenomenon will actually appear in Rd . The additional degrees of
freedom may stem from the influence of a variety of uncontrolled components e.g. noise,
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imperfection in the measurement system or the addition of irrelevant observable. In that
sense m can be considered as the intrinsic dimension of a phenomenon. From a geo-
metrical point of view m is the dimension of a manifold that approximately contains
the structure of the sample data. Alternatively we can consider this structure as a low
dimensional signal embedded in high dimensional noise.

More formally the problem of dimension reduction can be stated as follows. Let the
m-dimensional manifold I embedded in a d-dimensional input data space and consider
a smooth function f : Rd → Rm having the rank m. Then, the function f is called an
embedding. Usually I is called the feature or latent space. Given a set of N independently
identically distributed observations of the d-dimensional random vector X1, X2, . . . , XN ,
the dimensionality reduction refers to the estimation of the unknown lower (intrinsic) m-
dimensional vector Y = (Y1, Y2, . . . , Ym), such that we get a data model with additive
noise

X = f(Y ) + Z (2.10)

with Z denoting the uninteresting noise. As usual the vector Y is the latent or hidden
variable or component in the linear case. If the perturbations do not mask the original
model, dimension reduction techniques may be appropriate for understanding the under-
lying phenomena of interest [67]. The determination of the intrinsic dimensionality m of a
process contained in the target space I is central to the problem of dimensionality reduc-
tion, because knowing it would exclude over- or underfitting [89]. Intuitively reduction of
dimensionality may be sound if e.g. any of the variables have a variation smaller than the
measurement noise and are thus irrelevant or are correlated with each other trough linear
or functional dependence. In the latter case a new set of uncorrelated variables should be
found.

Fortunately in some applications the underlying variability in observed data is known to
result from only a handful of physical interpretable variables, providing a strong motiva-
tion for seeking low-dimension representations of the data before attempting a statistical
analysis. However, dimension reduction without loss of information is only possible if the
data fall exactly on a smooth, locally flat subspace. But real data are typically noisy.
Therefore in most cases an exact mapping do not exist. We can only hope to find a map-
ping approximately preserving some properties of the original data. There will be hardly
a single tool that can outperform all the others in every practical situation.

The standard approach to deal with the high dimensional data is based on structural
assumptions which allows to reduce the complexity or intrinsic dimension of the data
without significant loss of statistical information [188; 156]. Since this thesis is interested
in linear unsupervised methods we will briefly report the associated underlying frameworks
in the next section.

2.3.1 The Continuous Latent Variable Model

Latent variable models are frequently used probabilistic, but not necessarily parametric
models that aim to explain a high-dimensional stochastic process in terms of only a small
number of continuous, so called latent variables. To this end a low-dimensional manifold
where the data would live if there is no noise, is sought [67].
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A continuous latent variable model has three main parts: a prior distribution in the latent
space with dimensionality m < d spanned by the latent variables, a smooth, i.e. continu-
ously differentiable mapping from latent to original data space and last not least a prob-
abilistic noise model [12]. To be more precise we define a distribution IP (x) = IP (x|g(y))
with observables x ∈ Rd and pairwise stochastically independent latent variables y ∈ I.
The function g : I → Rd is a smooth non-singular mapping. Then the joint data proba-
bility is given by

IP (x) =
∫

Rd
IP (x, y) dx =

∫
Rd
IP (x|y)IP (y) dx (2.11)

Typically the effect of g is absorbed by IP (x|y). Thus, a special latent variable model
is essentially a specification of IP (x) and IP (x|y). The only empirical evidence available
concerns IP (x) through the sample data and so the only on the probabilities IP (x) and
IP (t|x) is given by (2.11).

In general choosing functional forms for these parts gives different latent variable models.
For example, a linear mapping with normal prior and noise give the Factor Analysis model
(FA) [13]. Other models from this class are Principal Component Analysis, Independent
Component Analysis and Independent Factor Analysis (IFA) [117; 111; 10]. In a broad
sense many probabilistic models in statistics and machine learning can be considered as la-
tent variable models inasmuch as they include probability distributions for variables which
are not observed. Prominent examples are mixture models, where the variable, which in-
dexes the components, is a latent variable, the Hidden Markov Models (HMM) assuming
that the state sequence is unobserved, Helmholtz machines [50] and elastic nets [63].

Due to the use of a prior in latent variable models a dimensionality reduction mapping
can be defined from observed to latent variables via Bayes’ theorem in many cases. The
objective then is to learn the low dimensional generating process defined in terms of
latent variables using the noise model, rather than to learn the dimensionality reduc-
ing mapping itself. A natural choice of IP (x|g(y)) should fulfill the following properties:
∀y ∈ I : IE[X|Y ] = g(y), where IE[X] denotes the expectation and IP (x|g(y)) should
decay gradually as the distance of x to g(y) increases according to some parameter related
to the noise covariance. Moreover IP (x|g(y)) assigns nonzero probability to every point
in the observed space. Finally IP (x|g(y)) should have a diagonal covariance matrix to
account for different scales in the different observed variables. A justification of the last
request comes from the central limit theorem: if the noise is due to the combined additive
action of a number of uncontrolled variables of finite variance, then its distribution will be
asymptotically normal. In all the specific latent variable models like IFA or PCA this is
realized using the normal distribution. Disadvantages of this choice are its unrealistic sym-
metry and that its tails decay very rapidly, which reduces robustness against outliers [105].

The latent variable framework is very general, accommodating arbitrary mappings and
probability distributions. But the traditional treatment of latent variable models in statis-
tic literature is restricted to the linear normal model since the rigorous analysis of nonlinear
models is difficult [134]. However due to the exponential increase of the computational
burden to integrate high dimensional functions numerically, this presents severe math-
ematical and computational difficulties, particularly in the evaluation of integral (2.11)
or when maximizing the log-likelihood. In fact, the only tractable case in arbitrary di-
mensions seems to be when both the prior IP (y) in the latent space and the noise model
are mixtures of Gaussians or Dirac deltas and when the mapping f is linear. Hence not
every choice for the components lead to models, that can be handled, and to convenient
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algorithms for parameter estimation. Consequently an alternative framework for the case
of additive noise realized in given high dimensional data is sought.

2.3.2 Semi-Parametric Framework for Dimension Reduction

According to the popular parametric approach, that includes some of the latent variable
models, the data density function ρ(x) belongs to a parametric family F def= {ρθ(x)}
where θ is an finite dimensional parameter which uniquely identifies the data density
ρ(x) . Then an algorithmic procedure to find a reliable value for an estimator θ̂ of θ has
to be applied to the data. However parameter estimation has to tackle with the curse of
dimensionality and the execution time to evaluate a multivariate density typically has an
exponential growth in the number of dimensions [203]. Another drawback of parametric
modelling is the requirement that both the structural model and the error distribution
have to be correctly specified. In order to avoid these drawbacks, we apply a more flexible
semi-parametric approach. The semi-parametric framework for dimension reduction used
in this thesis is firstly introduced in [212] and more general compared to the well known
latent variable model and only concerned with the case (2.10). We combine a parametric
form for most of components of the data generating process with weak non-parametric
restrictions on the remainder of the data density.

Figure 2.7: General idea of dimension reduction to a reduced space using a structural
assumption on the density where px and py denote the distribution of the observed and
the latent variables respectively.

Typically the problem of dimension reduction decomposes into two tasks: First one has to
determine elements from the target space. Second, one has to construct a basis of the tar-
get space from these elements. Considering the last task we assume in the semi-parametric
framework the following stationary data model. Let X1, ..., XN be i.i.d. random observ-
able from a distribution IP in Rd describing the random phenomenon of interest. We
suppose that IP possesses a density ρ w.r.t. the Lebesgue measure on Rd , which can be
decomposed as follows:

ρ(x) = φµ,Σ(x)q(Tx). (2.12)

In the sequel we will call this the semi-parametric assumption that is illustrated in fig-
ure 2.7. In (2.12) φµ,Σ denotes the density of the multivariate normal distribution
N (µ,Σ) with expectation µ ∈ Rd and covariance matrix Σ ∈ Rd×d . The function
q : Rm → R with m ≤ d has to be nonlinear and smooth. T : Rd → Rm is an unknown
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linear operator with

I = ker(T )⊥ = range(T>). (2.13)

(2.12) is not a unique representation. However the m -dimensional linear subspace I ⊂ Rd

is uniquely defined by (2.13). I contains the non-Gaussian distributed data and is called
the non-Gaussian subspace. Loosely speaking, we would like to project X linearly so
as to eliminate as much of the noise as possible while preserving the signal information.
By analogy with the regression case [43; 141; 140], we may call I the effective dimension
reduction space (EDR-space) alternatively. We call m the effective or intrinsic dimension
of the data. In many applications m is unknown and has to be recovered from the data.
Furthermore the semi-parametric assumption can be regarded as the distribution of the
low dimensional signal Y corrupted by a full dimensional Gaussian noise Z :

X = Y + Z. (2.14)

This is due to the following theorem [212]:

Theorem 1. The density ρ(x) for the model (2.14) with the m -dimensional signal Y
and an independent Gaussian noise Z can be represented as

ρ(x) = φµ,Σ(x)q(Tx).

where T is a linear operator from T : Rd → Rm , q(·) is some function on Rm and
φµ,Σ is the density of the Gaussian component.

The formal proof of this theorem is given in the Appendix.

From the point of view of the interpretation of the new semi-parametric framework, the
semi-parametric assumption is motivated by the well known theorem:

Theorem 2. (maximum entropy property)
Let X ∈ Rd be a random vector with density ρ, IE[X] = 0 and Σ = IE[XX>]. Then it
holds

h(x) ≤ 1
2

log(2πe)d det Σ (2.15)

where h(X) def= −
∫
ρ(x) log ρ(x)dx denotes the differential entropy of X. In particular

equality is attained if and only if X ∼ N (0,Σ).

A nice proof of this theorem can be found in [44]. Consequently among all distributions
with the same variance, the normal distribution has the least information in the sense of
Fisher information as well as in the sense of negative entropy. Hence in this thesis the
Gaussian components of ρ(x) are considered as entropy maximizing and consequently
as non-informative noise such that only the non-Gaussian components contained in the
target space I represent the structure realized in the data.

In order to detect non-Gaussian components general contrast functions can be used. Such
contrast functions Jg are formulated to have good statistical properties without requir-
ing knowledge of their distributions and to allow simple interpretation and algorithmic
implementation. They measure non-Gaussianity of the standardized random variable X
compared to a standard Gaussian variable Y via a smooth non-quadratic even function
g(·) by

Jg(x) = ‖IE[g(x)]− IE[g(y)]‖p (2.16)
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where 1 ≤ p ≤ 2. Estimators based on optimizing generalized contrast functions have
superior statistical properties than cumulant-based estimators.
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Chapter 3

Nonparametric Methods For
Highdimensional Data

There is an overwhelmingly number of dimension reduction methods such that in this
thesis we can only give an impression of the ideas leading to certain methods that can be
combined to new algorithms. In this thesis we only discuss geometric methods for feature
extraction and dimensional reduction. In particular in a complex field like dimension
reduction, it would not be advisable to anticipate the existence of any single method that
can outperform all other methods for all data sets.

3.1 Taxonomy of Dimension Reduction Methods

Generally speaking, dimensionality reduction techniques aim to extract the low-dimensional
information about a single one or a collection of signals from a high-dimensional data space.
Figure 3.1 gives an (incomplete) impression of the diversity of methods.

Figure 3.1: Taxonomy of dimensionality reduction techniques.

21



22 CHAPTER 3. NONPARAMETRIC METHODS FOR HIGHDIMENSIONAL DATA

Common tasks include approximation and compression, in which the goal is to maintain
a low-dimensional representation of a signal from which a faithful approximation to the
original signal can be recovered.

3.1.1 Geometric Methods

Geometric methods of dimension reduction can be devided into projective methods as
e.g. PCA, Linear Discriminant Analysis (LDA), Singular Spectrum Analysis [78] or ICA
and methods that model the manifold on which the data lies e.g. multidimensional scaling
(MDS), Isomaps [113], local-linear embedding [188], Laplacian eigenmaps [146] are some of
the approaches that estimate an underlying nonlinear manifold. In this thesis we are only
interested in completely data driven models that disclaim to model the assumed manifold.
New techniques that allow only non-negative values in their decomposition factors such as
Non-negative Matrix Factorization [37], Local Non-negative Matrix Factorization [219] and
Discriminant Non-negative Matrix Factorization [130] were designed only for a special task
and hence are not discussed also. In the age of information overload computational cost
and memory requirements should be as important as intuitively appeal and theoretical
reliability for a comparison of existing methods.

Linear Methods: The simplicity and efficiency of linear transformations are the main
reason for their popularity for extracting features represented by some data. Examples
of their applications include image compression and reconstruction, discriminant analy-
sis, pattern classification and image retrieval. Assuming that the data are stored in the
columns of X ∈ Rd×N , the linear dimension reduction techniques attempt to decompose
the data according to

X = BY (3.1)

where B ∈ Rd×m is a matrix with each column of the input data X is a linear combination
of the elements in B. Y ∈ Rm×N convey in its columns the new m-dimensional (hidden)
variables. The linear combinations of random variables can be viewed as linear projections.
Nonlinear methods reduce dimension through the use of nonlinear functions of random
variables.

The linear dimensionality reduction techniques can only retrieve the linear structure of
the target space. In spite of the fact that approximating a nonlinear manifold globally by
a low-dimensional hyperplane as e.g. in PCA or ICA will fail in general, linear approaches
will be instead useful in cases with close proximity of important data points to a linear
or nonlinear underlying manifold with negligible curvature. However in some cases, the
assumption that the input space can be represented as linear combination of the feature
subspaces does not always account for expected results from the real-world scenarios.
Therefore, undertaken a nonlinear decomposition of the input space can lead to more
appropriate subspace representation [31]. However the roles of these more general methods
in statistical learning remains to be fully investigated.

Sparse Models: Sparse signal models arise commonly in audio and image process-
ing [220]. In a sparse signal model, every signal can be at least approximately represented,
where the relevant set of basis functions may change from signal to signal. A simple ex-
ample is the wavelet representation of piecewise smooth signals: Discontinuities in each
signal can be sparsely represented in the wavelet domain and as the locations of the dis-
continuities vary from signal to signal, the required set of wavelets varies from signal to
signal [60].
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Supervised Learning Methods: Supervised techniques perform dimension reduction
in a manner that allows for optimal prediction of a variable of interest, e.g. class mem-
bership or some other response variable. They are concerned with problems as inference,
classification, model construction, prediction or gaining knowledge. The focus is often on
e.g. measurement cost, classification errors, returns and risks minimization rather than
on the accuracy of estimated probabilistic model parameters θ. Selecting some random
variables e.g. as reliable predictors is fundamental [25]. Most representative methods of
this type are clustering, discriminant analysis and regression methods. Linear Discrimi-
nant Analysis (LDA) [217] attempts to maximize the linear separability between labeled
data points belonging to different classes. The aim of regression methods is to estimate
the regression function, describing the relationship between a dependent (response) vari-
able X ∈ Rd and the so called explanatory variable Y ∈ Rd in order to predict X. The
relationship on focus can be, without prior knowledge and with full generality, modelled
non-parametrically [69]. Regression methods can be used for dimension reduction when
the goal is to model a response variable X in terms of Y . Currently there are two main
approaches to deal with the curse of dimensionality in this setting: to assume a simpler
form of the regression function or to reduce the dimension of the space of explanatory
variable [140; 239]. More formally a dimension reduction regression model has the form

x = a+ f(BT y) + ε (3.2)

where is a vector of intercepts, and B ∈ Rd×m is an unknown orthogonal matrix of regres-
sion coefficients. The smooth regression function f can be linear or non-linear imposing a
specific structure on the regression curve IE(Y |X) [32]. Typical examples for such function
approximation methods are Sliced Inverse Regression [140; 43], Principal Component Re-
gression [117] and Partial Least Squares Regression [236; 237]. In the regression context,
it is generally assumed that the Yi’s were carefully selected, uncorrelated, and relevant
to explaining the variation in X. In current data mining applications however, those
assumptions rarely hold. Variable selection or dimension reduction is therefore needed
for such cases (see for example [126]). However traditional variable selection criterions
such as Mallows Cp [149], the Akaike Information Criterion [3] and the Bayesian Infor-
mation Criterion [152] involves a combinatorial optimization problem which is NP-hard,
i.e. associated with computational time increasing exponentially with increasing dimen-
sionality. The expensive computational cost makes traditional procedures infeasible for
high-dimensional data analysis.

Examples for further supervised methods related to regression include Projection Pursuit
Regression [106], generalized linear [61; 151] and additive [88] models, neural network
models, Principal Hessian Directions [141; 142], conditional minimum average variance
estimation [239] single and multi-index models along with different fitting methods such
as average derivatives [103].

Unsupervised Learning Methods: The general characteristic of such methods is to
perform dimension reduction in order to optimally predict the given data from the reduced
representation while preserving some properties of the original data. It is obvious that
in order to develop a pure geometrical approach to metastability analysis of stochastic
dynamical systems unsupervised methods are the methods of choice. Most prominent
already existing methods are:

• Principal Component Analysis that finds a few orthogonal linear combinations of
the X-components with the largest variance.
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• Factor Analysis and Principal Factor Analysis that estimate unknown common data
generating factors

• Projection Pursuit that defines the ”interestingness” of a direction according to a
given projection index and than locates directions maximizing that index.

• Independent Component Analysis that finds linear projections that are as nearly
statistically independent as possible.

• Multidimensional Scaling, a technique for identifying a m-dimensional representation
of X so that the distances among the points in the new space reflect the proximities
in the data.

Since we aim to develop an unsupervised method for dimension reduction we will briefly
summarize some of these methods in a subsequent subsection.

3.1.2 Feature selection vs. Feature Extraction

Currently there are essentially two approaches to unsupervised high dimensional data
analysis: function approximation using e.g. additive models [88] or projection pursuit
regression [74] and dimension reduction. Reducing the dimensionality is an effect typically
involved in one of three very general mathematical tasks: feature subset selection, feature
extraction and feature transformations. Although feature transformation methods [75]
are actually not designed to reduce the data space they are frequently used to obtain a
subspace representing some interesting features of the data [144].

Feature transformation: Feature transformations techniques are commonly used on
high dimensional data sets. The transformations generally preserve the original, relative
distances between the data points [233]. In this sense they summarize the data set by
creating linear combinations of the features, and hopefully uncover a latent structure. For
dimension reduction a feature transformation method must be combined with a subset
selection criterion [180]. Feature transformations like PCA, Nonnegative Matrix Factor-
ization, spectral clustering [171] or Factor Analysis are often a preprocessing step, allowing
e.g. a clustering algorithm to use just a few of the newly created features [55]. In spite
of the fact that they attempt to summarize a data set in fewer dimensions by creating
combinations of the original features, these techniques do not actually remove any of the
original features from consideration. Consequently information from irrelevant dimensions
such as noise is preserved, making these techniques ineffective when there are large num-
bers of irrelevant features that mask the data structure. Moreover using combinations
of features are difficult to interpret. Hence feature transformations techniques are cur-
rently best suited to data sets where most of the dimensions are relevant to the task to be
performed, but many are either highly correlated or even redundant.

Feature selection: Concerning unsupervised learning methods it is important to make
another distinction between feature selection and feature extraction methods. The term
feature selection refers primarily to algorithms that select the best subset of the input fea-
ture set according to some given criterion, while neglecting variables that do not contribute
to a given classification task. The general aim is to seek m features out of the available,
but not necessarily labeled N data [75]. Feature selection algorithms fall into two broad
categories, called the filter model and the wrapper model [81]. The filter modelling relies
on general characteristics of some given training data to select features without involving
any learning step. The wrapper model however requires at least one learning step. This
can be a hypothesis or a classifier. Then the result is used to evaluate and to determine
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which features have to be selected [115]. The wrapper model tends to find features better
suited to the learning step resulting in a superior learning performance. However it also
tends to be more computationally expensive than the filter model [25]. Since the number
of possible subsets grows combinatorically, feature selection approaches are impractical for
more than moderate values of d and m [159].

Feature extraction: In this case data features are extracted algorithmically as linear
or non-linear functions of the original set of features. According to some predefined error
criterion, such methods are designed to map the original data space into a lower dimen-
sional subspace of non-redundant features, preserving as much as possible of the local
structure in the original data. Supervised feature extraction techniques usually relate to
the discriminant analysis technique [75], which typically uses the within and between-class
scatter matrices. Currently there is a growing number of methods [7] assuming that the
data points form low-dimensional nonlinear and apriori given manifolds: Nonlinear map-
pings e.g. Isomaps [113], Multidimensional Scaling [133] and Sammon’s Mapping [193],
Local-Linear Embedding [188], Laplacian Eigenmaps [146] are some of the approaches that
estimate such underlying manifolds. However the roles of these more general methods in
statistical learning remains to be fully investigated. In comparison linear representations
are well understood and attractive due to their simplicity and computational efficiency.

We will now discuss some methods of the last type in more detail including some very
popular feature transformation methods in order to point out that there is a need for new
linear, completely data driven feature extraction method with sufficiently low complexity.

3.2 Unsupervised Linear Methods of Feature Extraction

Non-probabilistic methods for dimensionality reduction, are methods that do not assume
a probabilistic model for the data. These include linear methods as for example PCA,
projection pursuit, kernel methods, principal curves, vector quantization methods as elas-
tic net or self-organizing maps or multidimensional scaling methods. Since we are here
interested to present the ideas behind the methods on focus, numerical and algorithmic
aspects are discarded.

3.2.1 Pure Gaussian Analysis

Principal Component Analysis also known as the singular value decomposition (SVD),
Karhunen-Loeve transform, Hotelling transform, or empirical orthogonal function method,
is the most simple method for dimension reduction. Moreover most of the other methods
that were formulated up to now in the continuous latent variable framework described in
section 2.3.1 have analytical relations to PCA.

The purpose of PCA is to identify the dependence structure behind multivariate stochastic
observations in order to obtain a compact description of it, such that projecting the data
loses as little information represented by data as possible. When the observed variables
have a non-zero correlations, the dimensionality d of the data space does not represent
the number m of independent variables, that are really needed to fully describe the data:
The more correlated the observed variables are, the smaller is the number of independent
variables that can adequately describe them. Due to three important properties PCA is
a widely used dimensionality reduction technique in data analysis: First, it is a linear
distribution-free scheme which is optimal in the sense of the 2-norm for compressing a set
of high dimensional vectors into a set of lower dimensional vectors. Second, the model
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parameters can be computed directly from the data - e.g. by diagonalizing the data covari-
ance matrix. Third given the model parameters compression and decompression require
only matrix multiplications.

The basic idea PCA is to project the given data onto a hyperplane spanned by the eigen-
vectors of the estimator of the data covariance matrix. To be more precise assume that
i.i.d. random variable {Xi}Ni=1 ∈ Rd are given and Yj = Π>(Xi− IEN [X]) with Π ∈ Rd×d

denote the linear transformation to the so called principle components or features Yj ∈ Rd.
Then the sought orthogonal transformation fulfills [13]

Π̂ = arg maxΠ : ΠΠ>=I [−IE‖X −ΠΠ>X‖2] = arg minΠ : ΠΠ>=ITr[Π>IE[XX>]Π]

As a consequence we get for all i, j:

IE[Yj ] = 0 IE[YjYj ] = λj IE[Yi, Yj ] = δij

where {λj} are the eigenvalues of IE[XX>] and δij denotes the Konnecker symbol. Typi-
cally for the purpose of dimensionality reduction principal components with small variance
are discarded. There is a variety of proposals how to do this in a reasonable way (see
e.g. [13]).

It is well known that PCA attains the best dimensionality reduction map Π>m ∈ Rm×d in
the sense of maximal variance [117] in the projected space

max
ΠΠ>=1

{ 1
N

N∑
i=1

XiX
>
i

}
=

d∑
n=1

IE[Y 2
n ] =

d∑
n=1

λn

and in the sense of least squared sum of errors of the reconstructed data

min
Π>

{ 1
N

N∑
i=1

‖Xi −ΠΠ>Xi‖2
}

=
d∑

n=m+1

λn

Thus the maximization of the projection variance is equivalent to the minimization of
the mean squared reconstruction error. Moreover assuming the data vectors are normally
distributed, the mutual information I(X,Y ) between the original vectors and their pro-
jections on the hyperplane is maximal [44]:

max
Π>
{I(X,Y )} =

1
2

ln

[
m∏
n=1

2πeλn

]

where λ1, . . . , λm are the first m eigenvalues of IE[XX>]. Due to these Gaussian as-
sumptions PCA can be viewed as a limiting case of a particular class of linear-Gaussian
models

Y = AX + ε X ∼ N (0,1) ε ∼ N (0,Σ)

where Xi and εi are assumed to be i.i.d. as the covariance of the noise becomes infinites-
imally small and equal in all directions of the data space. The PCA-projector can be
computed by the SVD of the empirical covariance matrix of the data with computational
complexity O(d3). In case of Gaussian data, the dimension of the reduced linear space
might be obtained from a gap in the spectrum of the empirical covariance matrix. Since
the variance depends on the scale of the variables, it is customary to first standardize each
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variable to have mean zero and standard deviation one.

There are some statistical limitations for the application of PCA: On the one hand for
many cases the demand of orthogonality of the components is too strict. On the other
hand if the geometrical data distribution is far from being Gaussian PCA will introduce
artificial correlations in the reduced data set and hence can not be combined with other
statistical method as ICA. Moreover PCA is obviously not designed to find a clustering
structure and for non-Gaussian data the result of PCA may be difficult to interpret or even
misleading. Furthermore the sample covariance matrix is strongly influenced by extreme
outliers. Consequently all methods relying on it will not be robust against outliers.

3.2.2 Multidimensional Scaling

The term ”multidimensional scaling” (MDS) [45; 185] covers a variety of techniques that
analyze a matrix of dissimilarities. In general MDS searches for a linear mapping of the
dissimilarities to a low dimensional Euclidean space such that the pair-wise dissimilarities
become squared distances under the constraint that the original d-dimensional feature
space is preserved as faithfully as possible in the target space [133; 205]. The dissimilar-
ities are typically measured by a distance measure: The more similar two items are, the
smaller is their distance. The methods differ by their used error measure. Various stress
or objective functions are used for measuring the performance of the mapping [26]. The
most popular criterion is the so called stress function [193]. The complexity of MDS is at
least O(d3N2).

The two basis types are metric and non-metric MDS. The metric MDS assumes that the
data are quantitative, so that there exists a functional relationship between the inter-
point distances and the given dissimilarities [193]. Non-metric MDS assumes the data
to be qualitative, having ordinal significance and procedures produce configurations that
attempt to maintain the rank order of the dissimilarities.

Metric Multidimensional Scaling: In the classical version of MDS the first step is to
compute the matrix A of squared point proximity measures e.g. the empirical covariance
matrix. Then one has to conduct the so called double centering by B = −J>AJ using the
centering matrix J = I − N−1ee> where e> is the column of N ones. Obviously J has
rank N − 1 and projects onto the subspace RN−1 orthogonal to e. It is shown [26] that B
is positive semidefinite if and only if A is the distance matrix with embedding space Rm.
Moreover the minimal value for m is the rank of B and the embedding vectors are any set
of Gram vectors scaled by 1√

2
. Consequently in order to find the embedding vectors for

a given distance matrix, it is sufficient to extract the m largest positive eigenvalues of B
and the corresponding m eigenvectors. Therefore a m-dimensional spatial configuration

of the N objects is derived from VmΛ
1
2
m, where Vm is the matrix of m eigenvectors and Λm

is the diagonal matrix of m scaling eigenvalues of B.

In other words MDS typically [193] uses a stress function of the form

N∑
i=1

N∑
j=i+1

(f(xij)− dij)2

aij
(3.3)

in order to measure the discrepancy between the given dissimilarities and the derived
distances. Here 0 ≤ aij refer to scaling factors and dij to some geometric distances
measure. Metric scaling uses f(xij) = xij and the 2-norm, i.e. the data is compared



28 CHAPTER 3. NONPARAMETRIC METHODS FOR HIGHDIMENSIONAL DATA

directly to the Euclidean distances. The minimization of that stress function yields a
projection onto the first m principal components if dij are the Euclidean distances [75].
Based on (3.3) several non-linear versions [88; 151] of MDS have been developed.

3.2.3 Probabilistic Approaches

Factor Analysis: Factor analysis (FA) [67] as an other example for the continuous
latent variable model uses a Gaussian distributed latent space prior y ∼ N (0, I), an
additive model of uncorrelated noise and a linear mapping from the data space to the
latent space

x = Ay + µ+ z (3.4)

where z ∈ Rm is the noise term. The latent variables y are often referred to as factors.
The columns of the d ×m matrix A are referred to as the factor loadings. FA explains
the observed covariance structure in the data. We assume rank(A) = m, i.e. linear
independent factors although there exist varieties of factor analysis where these factors y
are correlated. In addition the factors are assumed to be standardized with variance one.
The noise model is normal centered at µ with diagonal covariance matrix Ψ. In general A
and Ψ must be estimated and the conditional distribution of the observed random variable
is

IP (x|y) = N (Ay + µ,Ψ). (3.5)

Consequently the marginal distribution is given by

IP (x) = N (µ,AA> + Ψ). (3.6)

where
∑

j=1 a
2
ij represents the variance of xi common to all hidden variables. If several

variables xi have high loadings aij on a given factor yj , then these variables measure the
same unobservable quantity and are therefore redundant. Unlike PCA the factor model
does not depend on the scale of the observed variables.

For the posterior distribution in the latent space we get [13]:

IP (y|x) = N (B−1A>(y − µ),Ψ−1B) (3.7)

where B = AA> + Ψ. The reduced-dimension representative is taken as the posterior
mean (coinciding with the mode) and is usually referred to as Thomson scores:

IE[Y |X] = B(x− µ)

Since (3.4) is invariant to rotations, we can apply an invertible linear transformation g
with matrix R to the factors y in order to obtain a new set of factors y′ = Ry. The prior
distribution p(y′) is still normal and the new factor loadings are given by A′ = AR−1.
Only if R is an orthogonal matrix the new factors y′ will still be independent and Ψ′ = Ψ.
Thus from all the factor loading matrices A, we are free to choose that one which is easiest
to interpret according to some application-dependent criterion.

The parameters (A,Ψ, µ) are obtained as the log-likelihood of a normal distribution
N (µ,Σ) with covariance Σ = AAT + Ψ:

L(A,Ψ) = −N
2

(
d ln(2π) + ln(|Σ|) + Tr(Σ̂Σ−1)

)
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where Σ̂ is the sample covariance matrix. In the case of FA the log-likelihood gradient is
given by:

∂L
∂A

= −N(Σ−1(I − Σ̂Σ−1)A)

∂L
∂Ψ

=
N

2
diag(Σ−1(I − Σ̂Σ−1))

In theory different local maxima are possible and should be due to an underdetermined
model. The parameters of a factor analysis model may be estimated using e.g. an
expectation-maximization algorithm [191; 192] with arithmetical complexity O(N2d2).

Probabilistic PCA: PCA can also be expressed as the maximum likelihood solution
of a probabilistic latent variable model. In this form Probabilistic PCA (PPCA) answers
the question, how to construct a mixture of PCA models [222] and is an extension of
factor analysis as it assumes a model of the form (3.4) with Ψ = σ2I without assuming
the model and sample covariances being equal. Hence only σ2 must be estimated from
the data. Furthermore it is assumed that the smallest d − m eigenvalues of the model
are all equal to σ2 and that the sample covariance Ψ̂ is equal to the model covariance.
Considering the eigenvalue decomposition of Ψ̂ it is shown [223], that fortunately the
resulting maximum likelihood estimates of A and σ2 have a closed form:

A = V
√

(Λ− σ2I)R

σ2 =
1

d−m

d∑
i=m+1

λi

where V is the matrix of the m principal column eigenvectors of the sample covariance
matrix. Λ is the corresponding diagonal matrix of principal eigenvalues λi and R is an
arbitrary orthogonal matrix in the latent space. Thus σ2 captures the variance lost in
the discarded FA projections and the PCA directions appear in the maximum likelihood
estimate of A. In the special case σ → 0 and R = I the factors y become the PCA
projections of the x. The advantages of a probabilistic model are obvious: for example the
weight that each mixture component gives to (3.7) of a given data point can be computed.
Moreover PPCA allows to perform PCA in case of partially missing components and m
can be estimated using Bayesian techniques [22]. However PPCA is limited to second
order statistics as well as PCA. The arithmetical complexity of this method is O(d3).

Random Projections: The method of random projections is a technique that uses ran-
dom matrices to map the data into lower dimensional spaces preserving distances nicely.
To this end the original i.i.d. data obtained from X ∈ Rd is transformed to the lower
dimensional representation Y ∈ Rm with complexity O(mdN) via Y = ΠX where the
columns of Π ∈ Rm×d are typically but not necessarily realizations of i.i.d. zero-mean
normal variables scaled to unit length. Strictly speaking, there is no such projection since
Π is not orthogonal, since otherwise the linear mapping can cause significant distortions
in the data set. However orthogonalizing Π is computationally expensive. Instead, the
method relies on the proposition [92] that in a high-dimensional space there exist a much
larger number of almost orthogonal than non-orthogonal directions. Thus vectors having
random directions might be sufficiently close to orthogonal, and equivalently ΠTΠ would
nicely approximate an identity matrix.
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The key idea of random mapping arises from the Johnson-Lindenstrauss lemma: If points
are projected onto a randomly selected subspace of suitably high dimension, then the
distances between the points are approximately preserved [47].

Theorem 3. (Johnson-Lindenstrauss Lemma)
Let X ∈ Rd×N be a data matrix and β > 0 be the failure probability. Then there is a linear
but non-sparse mapping Π ∈ Rd×m such that all pairwise distances are preserved up to a
uniform distortion ε:

∀i, j : IP
( 1

1 + ε
≤ ‖Πxi −Πxj‖2

‖xi − xj‖2
≤ 1 + ε

)
≥ 1−N2β (3.8)

if m ≥ 9 ln(N)(ε2 − ε3)−1.

A proof of this theorem can be found in [116]. Furthermore it is shown, that the choice
of at least O(N) directions will result in a projector having arbitrarily high probability
of preserving distances. An improved approach to this method is given in [1], where the
projection matrix Π is more easier constructed in one of the following ways paying the
price of a slight loss in accuracy:

• Πij = ±1 with probability 0.5.

• Πij =
√

3± 1 with probability 1/6 or 0 with probability 2/3 [128].

Then on the average the distortion of the inner products is zero and its variance is at most
2/d [120]. It has been shown empirically that results obtained by random projections are
comparable with results obtained with Principle Component Analysis [120].

However, there are several drawbacks of this method: Random projections are highly un-
stable meaning that different random projections may lead to radically different projection
results.

Figure 3.2: Illustration of lower bound for m for random projections as a number of data
points. The upper curve corresponds to ε = 0.1, the middle to ε = 0.2 and the lower to
ε = 0.5
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Moreover even if the elements of x are mutually independent the same does not hold
for the elements of Πx when conducting such a projection. This is due to the fact that
each element of y = Πx is a linear combination of x with a column of Π. Last not least
figure 3.2 illustrates that the lower bound of the reduced dimensionality of the embedding
is not dominated by the data properties but depends on N . In particular the last fact is
not a recommendation for the use of that method with large data sets.

3.3 Unsupervised Nonlinear Methods of Feature Extraction

3.3.1 Nonlinear PCA

First of all nonlinear versions of PCA like e.g. Principle Curves [87] have to be dis-
tinguished from generalized PCA, which is not a method to find nonlinear dependencies
between random variables, but an algebraic tool for subspace clustering based on fitting
data with a set of polynomials. The intuitive idea of generalized PCA is to rewrite the
target space bases in terms of factors of the polynomials [230].

It is well known that the purpose of PCA is to identify linear correlations between random
variables [117]. This may be an appropriate assumption for many data sets. In some cases
however, it may be more appropriate to assume that the hidden factors are nonlinear
functions of the variables. The problem in Nonlinear PCA (NLPCA) is then to minimize
the mean squared reconstruction error

arg minΠ,ΠΠ>=IIE[‖x−Πg(Π>x)‖22] (3.9)

where y = g(x) are the non-linear principal components [176] and g ∈ C1. Since the
optimal choice of g is not unique, non-linear hidden factors depend on g. Commonly used
non-linear and smooth functions g(·) are odd functions like g(y) = tanh(y) or g(y) = y3.
Nonlinear principal component analysis is commonly seen as a nonlinear generalization
of PCA, not only generalizing the principal components from straight lines to curves,
but including also higher order statistics. Several versions of nonlinear PCA have been
proposed [57]. For illustration we be briefly summarize the kernel PCA method proposed
in [229].

Kernel PCA: Standard PCA formalizes the intuition that the structure in the data
only depends only on first and second moments of the data in linear subspaces, whereas
kernel PCA does not have such a limitation. Kernel PCA can find non-linear subspaces
with high variance. The basic idea is to extend the original features with a large number of
non-linear features and then to apply linear PCA in the new feature space. Increasing the
number of features means, that it becomes unfeasible to compute PCA via an eigenvalue
decomposition of the data covariance matrix since its size grows quadratically with the
number of features. Moreover if we use the inner product data matrix the time needed to
compute the inner products will increase linearly with the increasing number of features.
However it turns out that for appropriate choices of new features, we can rewrite the
resulting inner product as a function of the original features that can be evaluated with
much smaller arithmetical complexity than the number of new features.

The function used to compute the inner products is called ”kernel function” correspond-
ing to these features. Conversely, Mercer’s theorem provides the conditions under which
a kernel function computes the inner product in some associated feature space. Using
a kernel allows a representation of data in extremely high dimensional spaces without
explicitly mapping the data to this feature space and thus avoiding the computational
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burden of using such rich representations [195]. Now recall that the so called kernel trick
assumes an algorithm depending only on dot products of the data. Using the nonlinear
transformation x 7→ Φ(x) ∈ E, where E is a Hilbert space, the algorithm depends only
on the dot products 〈Φ(xi),Φ(xj)〉. Then suppose there exists a continuous, positive and
symmetric kernel function k(xi, xj) such that for all xi, xj ∈ Rd, k(xi, xj) = 〈Φ(xi),Φ(xj)〉
where Φ(xi) denotes a basis function of the feature space E. Then Φ(x) never has to be
computed explicitly. Instead the kernel form can always be used.

In [195] it is shown that PCA can be written entirely in terms of dot products transforming
thereby into a nonlinear feature extraction method due to some key observations: The
eigenvectors of the covariance matrix in E lie in the span of the centered and mapped data.
Therefore no information in the eigenvalue equation is lost if the equation is replaced by
m equations, formed by taking the dot product of each side of the eigenvalue equation
with each centered and mapped data point. To be more precise we have the covariance
matrix

Σ =
1
m

m∑
i=1

(Φ(xi)− µ)(Φ(xi)− µ)> (3.10)

where µ = 1
N

∑
i Φ(xi). Then the eigenvectors v of Σ lying in the span of Φ(xi) − µ are

sought, i.e.

v =
m∑
i=1

ai(Φ(xi)− µ) (3.11)

where the ai ∈ R are suitable constants. Consequently we get m eigenvalue equations

(Φ(xi)− µ)>Σv = λ(Φ(xi)− µ)>v (3.12)

Introducing the so called kernel matrix with elements Kij = (Φ(xi)−µ) ·(Φ(xj)−µ) (3.12)
can be written as

K>Ku = NλKu (3.13)

where u ∈ RN . Obviously any solution of Ku = Nλu is a solution of (3.13) also. Moreover
any solution of (3.13) is a solution of Ku = Nλu plus a vector w ⊥ u where w fulfils∑N

i=1wi(Φ(xi)−µ) = 0 and hence do not contribute to (3.11). Consequently we only have
to ask for the equality

1 = v · v = Nλu · u (3.14)

Therefore u computed by an eigenvalue decomposition of the centered kernel matrix must
be rescaled to have length (Nλ)−1/2. For dimensionality reduction purposes, the projec-
tions on the N principal components can be taken as features.

Unfortunately the complete procedure is sensitive to the used kernel, but we do not know
a priori what kernel is advisable to use. Moreover in spite of the fact that with Kernel
PCA nonlinear components are obtained without any nonlinear optimization, Kernel PCA
obviously has a higher computational effort than classical PCA for large data sets.
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3.3.2 Pure NonGaussian Analysis

Independent Component Analysis, as a special case of blind source separation, is a com-
putational linear method for separating a multivariate, linear mixture of a number of
signals from variate mathematical or physical models into additive, unknown, zero mean
and time-dependent subcomponents supposing the mutual statistical independence of the
univariate components of the given data density [111]. More precisely the noisy variant of
ICA assumes the linear mixing model

X = A(Y − IE[Y ]) + ε with ε ∼ N (0,Σ)

where A ∈ Rd×d is the mixing matrix and Y are the independent components. The mixing
matrix A needs to be of full rank, but not to be orthogonal. Since A and Y are unknowns,
the variances of Y are not detectable such that a whitening pre-procedure of the data is
required. ICA aims to learn unsupervised the linear transformation W> ∈ Rd×d such that

y = W>x subject to W>A = 1d

from the data where the hidden and data generating, non-Gaussian distributed compo-
nents Yi, Yj are mutually independent. Hence the functional to be numerically maximized
is

Ŵ> = arg maxW> −KL(IP (x1, . . . , xd)|IP1(x1) · IP2(x2) · . . . · IPd(xd))

where IP (·) denotes the joint probability and IPi(·) its marginal probabilities. KL denotes
the Kullback-Leibler divergence

KL(IP1, IP2) def=
∫
IP1(x) log

(
IP1(x)
IP2(x)

)
dx.

Since it is difficult to estimate mutual information using observations of random variables,
several approximations of this functional have been applied to obtain ICA in the literature.
Typically ICA uses Projection Pursuit [74] as a method. In this case the basic algorithmic
idea is to locate successively one-dimensional, linear projections from the high- to a low-
dimensional space that reveal the most details about the structure of the data maximizing
a so called index

ι ∈ L2(Rd)→ R (3.15)

that is sensitive to the data structure on focus. Popular examples are curtosis or negen-
tropy [110]. Typical projection indices include indices based on higher-order cumulants
and on the Fisher information [112], that are minimized by Gaussian distributions. Con-
sequently ICA is a parametric pure non-Gaussian analysis and incorporates higher than
second-order information as used in PCA. However for Gaussian data PCA is a special
case of ICA. Moreover ICA can be considered as another factor rotation method, where
the goal is to find rotations that maximize certain independence criteria [89]. For the
purpose of dimension reduction the number of independent components to be extracted
from the data must be given apriori.

As an implementation of ICA we use symmetric FastICA in this thesis. This variant of
ICA based on Newton’s method is implemented by Hyvarinnen and Oja [112] with nu-
merical complexity O(d2 + N logN + m2). For convenience we briefly summarized the
algorithm here. To this end let G(∗) be a suitable measure of stochastic independence and
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n the current number of FastICA iterations. Moreover ε ∈ R is an numerical error and
err a bound for ε used as a tuning parameter in the following algorithm.

Algorithm 1: FastICA
Data: {Xi}Ni=1, d, m, ε
Result: m-dimensional basis of target space of independent components
for j=1 to d do

while ε ≤ err do
Choose an initial vector wj ∈ Rd of unit norm.

Set: w
(n)
j = IEN

[
G′(w(n−1)

j x)x
]
− IEN

[
G′′(w(n−1)

j x)
]
w

(n−1)
j

where G′ denotes the first and G′′ the second derivative of G.

orthogonalize : w(n)
j = w

(n)
j −

∑
k 6=j(w

(n)
j wk)wk.

normalize: w(n)
j = w

(n)
j ‖w

(n)
j ‖−1

stopping rule: compute ‖w(n)
j − w

(n−1)
j ‖ = err

end
end

There are well known drawbacks of ICA: The projection pursuit procedure tends to identify
outliers since the presence of the latter gives it the sample appearance of non-normality.
This may obscure the clusters or other interesting structure being sought. The methodolog-
ical problem is the unrealistic demand on a product structure of the whole distribution and
the requirement of NonGaussianity for all the components. Moreover Comon [41] showed
that W is identifiable up to scaling and permutation of its columns if and only if at most
one of the source signals is normally distributed. Furthermore heavy tailed densities are
difficult to detect for ICA and the optimization algorithms may not work effectively if the
data contains both super- and sub-gaussian contributions to the whole density [38].

3.3.3 Self-Organizing Maps

A severe problem with almost all methods to find a dimensionality reducing mapping is
that one can not know apriori that the method or its parameterization is appropriate for
the given data. However with the development of neural networks, some new possibilities
finding non-linear dimension reducing mappings were created. There are several methods
based on unsupervised finding a continuous map to transform nonlinear statistical rela-
tionships from high-dimensional data into a lower-dimensional lattice L of apriori given
(reduced) dimension. Amongst them Self-Organizing Maps (SOM) are probably the most
well known [23]. A self-organizing map consists of a discrete map of lattice points that will
represent the topology preserving mapping [129; 127] in the sense that data clusters that
are nearby in the latent space will typically contain similar data. The mapping consists
of a lattice of reference points that are fitted to the data space in order to approximate
its density function in an ordered way.

In order just to sketch the of SOMs idea let dL and dD denote a distance measure in
the lattice and in the data space respectively. Further define a symmetric and unimodal
neighborhood hij L → [0, 1] with hii = 1 for any node in the lattice L. The further the
node j is from node i the smaller is hij . By means of a threshold τ for hij the width of
the neighborhood is determined. A typical neighborhood is given by

hij = e−
dL(i,j)

2τ2
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Kohonen’s rule uses an initially random set of reference vectors {ri ∈ Rm}ni=1, then updates
them iteratively according to the data distribution such that the final reference vectors
will be dense in regions of Rd where the data is clustered.

Figure 3.3: Different configurations of the SOM in the data space as the learning progresses
on data depicted as dots goes on.

Until convergence the following procedure over all data is iterated:

• For a given data point xi find the closest rj to it in the data space by

i∗ = arg max{1,...,J}dD(xi, rj)

• Then at iteration k and with k monotonically decreasing learning rate α(k) ∈ [0, 1]
make a gradient-type update of rj by

r
(k+1)
j = r

(k)
j + α(k)h

(k)
i∗j(xi∗ − r

(k)
j )

Figure 3.3 illustrates the development of the lattice as a function of the iteration count k:
If the initial values for {ri ∈ Rm}ni=1 are not randomly selected but as a regular array lying
on the subspace e.g. spanned by the largest principal components of input data, compu-
tation of the SOM may be much faster, since from the beginning the SOM is already
approximately organized such that one can start with a narrower neighborhood function
and smaller learning-rate factor α(k).

Since neighboring lattice points will be neighbors in the input space, the mapping preserves
topology. When maintaining an equal sampling of the lattice’s space when d increases, the
total complexity of SOM becomes O(dN exp(m)). However there are well known draw-
backs of SOMs: There is no implicit criteria that SOMs try to optimize, no explicit rules
to optimally update α(k) and h(k)

ij and hence there is no proof of convergence in general [65].

In the following chapters with IEN [·] we refer to the empirical mean of the expectation
IE[X] , i.e. for any function f(x) on Rd we set

IEN
[
f(X)

] def=
1
N

N∑
i=1

f(Xi).
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Chapter 4

Convex Projection in Structural
Data Analysis

In the last chapter we have seen that existing unsupervised projective feature extraction
methods for dimension reduction as ICA, PCA, PPCA, FA, MDS, SOM, kernel PCA or
RP have at most two drawbacks: On the one hand their inherent optimality criteria are
often unrelated to the application or based on unrealistic assumptions about the geometric
or distribution properties of the data. On the other hand concise statements about the
convergence rate of the methods or the loss of information represented by the structure in
the data are hardly available.

Thus in this section we introduce an alternative linear projective semi-parametrical method
of dimension reduction [58] as a general preprocessing tool for other e.g. statistical or
dynamical analysis methods.

4.1 The Setup of the Method

To this end we will first give an outline of SNGCA and summarize its properties in order
to motivate the design of the method.

Framework of Dimension Reduction: For SNGCA we use the semi-parametric frame-
work already described in section 2.3.2, i.e. by using the semi-parametric assumption

ρ(x) = φµ,Σ(x)q(Tx). (4.1)

for a given sample from i.i.d. random variable X1, . . . , XN . Thus we combine a parametric
form for most of the components of the data generating process with weak non-parametric
restrictions on the remainder of the data density: Obviously (4.1) links pure Gaussian
(PCA) and pure non-Gaussian (ICA) modelling. For the sake of simplicity we assume
from now on that the expectation of X vanishes: IE[X] = 0. This is easily achieved by
removing the empirical mean IEN [X] from the data.

Non-informative Gaussian Components: As usual in the statistical literature [44]
we assume that the Gaussian components in (4.1) are uninformative noise and that the
structure of a data set is represented by non-Gaussian components of the data density
ρ(x) . Note that the suggested way of treating the Gaussian distribution as a noise in
general exclude the use of the classical PCA for searching the informative density compo-
nents because PCA heavily relies on the Gaussian distribution of the data and looks at
the directions with the largest variance.

37
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Linear Projective Method: Obviously a linear method seems to be attractive due to
its simplicity, since it is identified by a m-dimensional projector from the data space Rd

onto the target space I containing the non-Gaussian structure representing component of
the data density. Maybe the inquiry of data projections to some lower dimensional subset
is the most simple approach to get information from the data. One realization of this
strategy is already given by PP described in section 3.2.1. Methods of that type have
been proven to be robust to noisy or irrelevant features [106] when applied to regression
problems [74], where the regression is using a sum of ridge functions.

However any projective approach is limited in general since for many high-dimensional non-
Gaussian distributed clouds of points, most low-dimensional projections are approximately
Gaussian: For some given data let d = d(ν) and N = N(ν) such that limν→∞ d(ν) → ∞
and limν→∞N(ν)→∞. Further suppose that with the parameter ν →∞ the fraction of
vectors in the data space not approximately orthogonal to each other tends to zero as the
distortion of space phenomenon in section 2.1.1 tells us. Then theorem 1.1 in [56] states
that the empirical distribution of the projections onto an arbitrary vector ω from the unit
ball Bd ⊂ Rd converges weakly in probability to N (0,Σ). This can be illustrated as follows.

As an example consider a set of points in the unit ball Bd distributed according to the
uniform distribution U[−1,1] and compute the density of that points projected to an arbi-
trary ω ∈ Bd passing through the origin and parameterized by θ = cos(](x, ω)). Then
the density along ω is proportional to the volume of an d-sphere of radius sin(](x, ω)).
Hence we conclude for that density ρ(x) = C(1 − θ2)

d−1
2 with a normalizing constant

C = 2−
d+1

2 d![(0.5(d− 1))!]−2. If we now plot the projected uniform density against an one
dimensional Gaussian density with variance σ2 = (d + 2)−1 in the case of d = 20 we get
figure 4.1:

Figure 4.1: Dotted line: Gaussian density with zero mean and variance 1/22. Solid line:
the same density projected uniformly from distributed data over the 20-sphere, to an
arbitrary selected line passing through the origin.

Thus we cannot hope to uncover every such data structure using one dimensional projec-
tions. For projections on higher dimensional subspaces an analogous result is give in [104].
However if the data have long-tailed distributions e.g. for Cauchy distributed data, most
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of all projections are not normal [56]. Hence finding projections along which the projected
density departs from normality, seems always to be a good idea.

Unsupervised and Structural Adaptive Method: The range of application of a
dimension reduction method would become as wide as possible, if we could get rid of all
model assumptions and tuning parameter. Consequently we should not assume any apriori
knowledge about the density ρ(x) of the original data or about the spatial distribution
of the informative data part lying on the manifold in focus or the parameter T , q and Σ
in (4.1). Moreover using an iterative method gives the chance to incorporate the result of
former estimations from the data set into the current estimation as a ”good” initial guess.

Design of the Structural Data Analysis: If we combine all desirable properties of
our method we come up to the following iterative and structure adaptive approach to an
unsupervised, completely data driven, linear projective method.

i) Whitening : The data is re-centered by subtracting the empirical mean and then
re-scaled according to Yi = diag(σ)Xi where σ

def= (σ1, . . . , σd) are the standard
deviations of the components of the random variables Xi.

ii) Directional sampling : Let 1 ≤ j ≤ J and 1 ≤ l ≤ L. Choose the components of
ωjl according to U[−1,1] from Bd as directions to project the data and evaluate the
projected data using a general contrast function (2.16).

iii) Estimation: Use the jth set {ωjl}Ll=1 in order to estimate an element βj ∈ I such
that dist(β̂j , I) ≤ ε where 0 < ε should be an uniform bound to the estimation error.
Here β̂j denotes the estimate of βj .

iv) Building an ONB : Reconstruct an orthonormal basis for I using a numerical method
with low total complexity.

v) Dimension reduction: Chose m vectors from the reconstructed ONB in order to
define the linear mapping from the data space to I.

vi) Structural adaptation: Combine the idea of structural adaptation with the projec-
tive approach by using some estimators β̂kj to get a ”better” initial guess for the
directional sampling in the (k + 1)th computation of the SNGCA-procedure.

Note that this is a two-stage procedure since the estimation of elements from the target
space and the reconstruction of a (reduced) basis are separated from each other. Tradi-
tionally the detection of the reduced dimensionality m = rank(I) is the most challenging
part for unsupervised methods of dimension reduction.

Next we will explain how elements β ∈ I can be estimated from the data without esti-
mating the parameters µ , Σ and q of ρ in (4.1).

4.2 Estimation of the Elements from the Target Space

The whole approach of SNGCA is essentially based on the following theorem.

Theorem 4. Let X follow the distribution with the density ρ(x) according to (4.1) and
let IE[X] = µ = 0 . Suppose that ψ ∈ C1(Rd,R) is a function1 fulfilling the condition

γ(ψ) def= IE[Xψ(X)] = 0, (4.2)
1We assume here, that Cp(Rn, Rm) is the normed space of functions f : Rn → Rm which are p -times

continuously differentiable.
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Define

β(ψ) def= IE
[
∇xψ(X)

]
=
∫
∇xψ(x) ρ(x) dx, (4.3)

where ∇xψ denotes the gradient of ψ in x. Then β(ψ) belongs to I . In particular if
(4.2) is not fulfilled, then there is a β ∈ I such that

‖β(ψ)− β‖2 ≤ ε

where ε is the uniform error bound:

ε =
∥∥∥Σ−1

∫
xψ(x)ρ(x) dx

∥∥∥
2
. (4.4)

Hence the distance between β(ψ) and the non-Gaussian subspace I is uniformly bounded
as given by (4.4).

Equivalently one can state the result (4.4) in the form

‖(I −ΠI)β(ψ)‖2 ≤ ε

where I is the unit operator and ΠI is the orthogonal projector on I in Rd . The proof
of this theorem is given in the appendix.

The basic strategy of every approach to SNGCA is the algorithmic realization of (4.3) and
(4.2) in Theorem 4, that relies on the vectors γ(ψ) and β(ψ) which in turn depend on the
unknown density ρ . However, both vectors are integrals with respect to ρ . Therefore,
they can be easily estimated from the data by using their empirical counterparts:

γ̂(ψ) = IEN [Xψ(X)] = N−1
N∑
i=1

Xiψ(Xi),

β̂(ψ) = IEN∇ψ(X) = N−1
N∑
i=1

∇ψ(Xi).

The important point of the semi-parametric framework from section 2.3.2 at this point is,
that the mathematical manner of using theorem 4 within this framework is not unique.
In this thesis we will describe some, but not all of them.

Early NonGaussian Component Analysis: In the following let η(ψ) def= IE[∇ψ(x)]
and let η̂(ψ) denote its empirical counterpart. In [212] is was suggested to construct
”approximating vectors” {β̂l}Ll=1 according to

β̂l = η̂l − Σ̂−1γ̂l (4.5)

with l = 1, . . . , L and Σ̂ as estimator of the data covariance matrix Σ. In the first stage
φ = hω was chosen with hω ∈ C1,1(Rd × Rd,R) of the form

hω(x) = h(ω>x)e−λ‖x‖
2/2. (4.6)

where ω ∈ Bd and λ > 0 . Then due to (4.4) the vector β̂ is informative if its length is
larger in order than the accuracy of approximation ε .



4.2. ESTIMATION OF THE ELEMENTS FROM THE TARGET SPACE 41

By means of the choice of ω the directional sampling was realized. The choice of these
directions is crucial to the algorithm because the estimated vectors β̂ are searched as
”aggregations” of the vectors ωl . In all approaches a Monte-Carlo sampling from the uni-
form distribution U[−1,1] for the coefficients of ωl ∈ Bd was used. Due to the sparsity of
high dimensional data this step becomes more and more computationally expensive with
increasing number of dimensions.

In general the function h ∈ C1,1(R,R) should be informative with respect to non-Gaussian
components. One may consider different parameter-dependent families of symmetric and
non-symmetric functions h . For the numerical simulations later shown in this thesis, we
use the families

h(t) = t3 exp(−0.5t2) (Gauss-Pow3)
h(t) = t4 exp(−0.5t2) (Gauss-Pow4)
h(t) = tanh(t) (hyperbolic tangent)
h(t) = (1 + t2)−1 exp(t) (asymmetric Gauss).

of so called test functions, playing the role of indices ι in section 3.3.2. The multiplier
e−λ‖x‖

2/2 ensures that hω(x) is bounded and integrable with respect to the data den-
sity ρ over the whole space Rd . Then at the second stage the projector was estimated
by Π̂ =

∑m
j=1 vjv

T
j , where vj , j = 1, ...,m, are m principal eigenvectors of the matrix∑L

l=1 β̂lβ̂
T
l . Note that in this early approach m must be apriori given.

However this implementation of has some serious drawbacks: The way in (4.5) focus on
the major non-Gaussian directions and discards the less pronounced directions. Moreover
it relies upon the estimation of the covariance matrix Σ of the Gaussian component, which
can be hard when d increases. Moreover Σ̂ is bad conditioned in high dimensions. Poor
estimation of Σ then will result in badly estimated vectors β̂l. This - of course - limits the
accuracy of the estimation of the reduced target space I. Furthermore using the eigenvalue
decomposition of

∑L
l=1 β̂lβ̂

T
l entails that the variance of the estimation Π̂ of the projector

Π on I is proportional to L. Consequently only relatively small families {hl} can be used
to recover the target subspace, since the choice of hl becomes dependent of the unknown
data properties of the application.

Sparse NonGaussian Component Analysis: In order to circumvent the above limi-
tations of the approach in [212] we propose here a different procedure to obtain estimates
β̂ of vectors β from the target space. We refer to that method as convex projection. The
main difference is, that while copying the idea of the directional sampling, the convex
projection approach aims to learn ψ(x) as a convex combination of smooth functions h
from the data: Let {ωl}Ll=1 be a given set of vectors ωl ∈ Bd and let h′ denote the
derivative of h . Then define

ψh,c(x) def=
L∑
l=1

cl hωl(x) (4.7)

Then using definition (4.7) this yields

β(ψh,c) =
L∑
l=1

clIE
[
∇hωl(X)

]
=

L∑
l=1

cl ηωl . (4.8)
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where we used the definition:

ηωl
def= IE[∇xhωl(X)] = IE

[
ωlh
′(ω>l X)e−λ‖x‖

2/2 − λXhωl(X)
]

Similarly with γωl
def= IE

[
Xhωl(X)

]
we get

γ(ψh,c) =
L∑
l=1

clIE
[
Xhωl(X)

]
=

L∑
l=1

cl γωl . (4.9)

The data counterparts of these expressions playing the central role in the algorithm of
SNGCA are given by

γ̂ωl = IEN
[
Xhωl(X)

]
=

1
N

N∑
i=1

Xihωl(Xi) (4.10)

η̂ωl = IEN
[
∇hωl(X)

]
= ωl

1
N

N∑
i=1

h′(ω>l Xi)− λγ̂l (4.11)

β̂(ψh,c) =
L∑
l=1

cl η̂ωl

=
1
N

L∑
l=1

clωl

N∑
i=1

h′(ω>l Xi)− λ
L∑
l=1

cl γ̂l. (4.12)

We will also use the abbrevations γ̂l and η̂l instead of γ̂ωl and γ̂ωl respectively. In sum
the decisive task of estimating β ∈ I reduces to that of finding a ”good” corresponding
coefficient vector c ∈ RL in (4.7).

Aggregation and Concentration: It is well known [80] that the general problem to
find an ”aggregated” estimate f̂(x) def=

∑
j ĉjfj(x) nearly as good as the closest to f(x)

convex combination of a set of given ‖ · ‖∞-bounded Borel functions fj is associated with
a characteristic mean square estimation error in case of N → ∞ i.i.d observations and
f ∈ L2

µ: Let c∗ be the vector of optimal coefficients and ĉ their estimates. Then the
difference between the expected distance from f to the result of the aggregation and the
distance from f to the ”ideal” aggregate is bounded [20] as

O(1)
σL‖·‖2(f)

√
ln J

√
N

≤

IE

[
min
‖c‖1≤1

{∫
Rd

[f(x)−
J∑
j=1

cjf(x)]2dx

}
−
∫

Rd
[f(x)− f̂(x)]2dx

]
≤ (4.13)

O(1)
[L2
‖·‖2(f)− σL‖·‖2(f)]

√
ln J

√
N

where L‖·‖2(f) = O(1)σ and σ2 is the variance of the homogeneous normal noise in
the data. The good news about this bound is, that the loss of accuracy caused by the
aggregation is nearly independent of J . However from the perspective of complexity, the
bad news is that a procedure using an aggregation step may involve all our J functions fj
where J is very large. Hence we are interested in the consequences for the upper bound
of the statistical aggregation error that arise if we set K randomly chosen coefficients cl
to zero. It turns out [161], that the new upper bound for (4.13) ends in the following
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”
√
N -concentration result”:

O(1)
[L2
‖·‖2(f)− σL‖·‖2(f)]

√
ln J

√
N

+
L‖·‖22(f)

K

where K = d
√
d/
√

ln Je and L‖·‖2(f) denotes the Lipschitz constant of f . Naturally we
are interested in a similar result for Sparse NonGaussian Component Analysis.

Uniform error bound: A well known result from the empirical process theory [226]
claims that γ̂ω approximates the unknown vector γω with the accuracy of order N−1/2 .
Moreover, this result can be stated uniformly over all ω ∈ Bd . The same holds for the
differences η̂ω − ηω . Then the use of convex combinations ψh,c(x) =

∑
l h(ω>l x) allows

to extend this accuracy of approximation ε on the difference β̂(ψh,c)−β(ψh,c) . The next
result justifies to construct β(ψh,c) in (4.8) together with the constraint ‖c‖1 ≤ 1 .

Theorem 5. Suppose that f(x, ω) is continuously differentiable in w and for some fixed
constant f∗1 and any ω ∈ Bd, x ∈ Rd

Var
[
Xj f(X,ω)

]
≤ f∗1 , Cov

[
Xj ∇ωf(X,ω)

]
≤ f∗1 I,

Var
[
∂

∂xj
f(X,ω)

]
≤ f∗1 , Cov

[
∇ω

∂

∂xj
f(X,ω)

]
≤ f∗1 I,

Consider the (random) set

C =
{
c ∈ RL : ‖c‖1 ≤ 1, γ̂(c) = 0

}
. (4.14)

Then for any ε > 0 there is a set A ⊂ Ω of probability at least 1− ε such that on A for
all c ∈ C , ∥∥(I −Π∗)β̂(c)

∥∥
2
≤
√
d δN

(
1 + ‖Σ−1‖2

)
,

where

δN = N−1/2 inf
λ≤λ∗1N1/2

{
5n0f

∗
1λ+ 2λ−1

[
ed + log(2d/ε)

]}
and ed = 4d log 2 .

The proof of this theorem is given in the appendix. In other words theorem 4 shows that
the convexity condition

∑
l |cl| ≤ 1 leads to the claims that there is a value ε =

√
C/N

for a fixed positive constant C and a random set A of a dominating probability such that
‖(I−ΠI)β̂‖2 ≤ ε for all such constructed vectors β̂ . Consequently the idea of the convex
projection approach is to repeat this for different combinations of ξ, ω1, . . . , ωL leading to
a family of estimated vectors β̂ . Then the subspace I can be recovered from the set of
β̂ ’s. Due to this result, any vector c ∈ C can be used to estimate a vector β̂(c) which is
”close” to I . However, vectors constructed in this way are only informative if its length
is significant relative to the estimation error in theorem 4.

We will describe in the next section, how to determine the coefficients {cl}Ll=1 with c =
{cl}Ll=1 fulfills ‖c‖1 ≤ 1 by means of solving an optimization problem that can be called
convex projection.
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4.3 Reduction of Dimensionality and Structural Adaptation

Convex Projection: Using the definitions from above, consider for a given element
βj ∈ I to estimate the non-smooth, non-convex optimization problem

ĉj = arg min‖cj‖1≤1

∥∥ξj −∑
l

clj η̂l
∥∥ s.t.

∥∥∑
l

clj γ̂l
∥∥ = 0 (4.15)

where
∑

l means
∑L

l=1 in the sequel. We are interested to bound the distance of β̂

from the target space I . This distance is naturally measured by the value ‖(I −ΠI)β̂‖2 .
Again ΠI means the orthogonal projector on I .

Obviously (4.15) is a non-smooth optimization problem. However an equivalent but
smooth [27] and convex version of (4.15) is given by

arg minc−,c+
∥∥∥ξ −∑L

l=1 c
+
l η̂l +

∑L
l=1 c

−
l η̂l

∥∥∥2

2
(4.16)

such that
∑L

l=1(c+
l − c

−
l ) γ̂l = 0,

∑L
l=1(c+

l − c
−
l ) ≤ 1, 0 ≤ c+

l , c
−
l .

The estimation procedure of elements from the target space described here solves only this
smooth problem. In order to solve this problem, we refresh the problem as an equivalent
linear second order conic problem (SOCP) [145]. In the latter form the original non-
smooth and non-convex projection problem can be solved by a fast self-dual interior point
method (IPM) [238] to high accuracy. In the Matlab-toolbox implemented during this
thesis, we use a commercial solver2.

Figure 4.2: Geometry of `1-constraint: In a regression or optimization problem the use of
the 1-norm as a constraint results in vanishing weights due to the geometry of the feasible
set of the 1-norm, since the first touch point of square and ellipsoid containing the solution
of the quadratic problem (4.16) is the vertex.

Shrinkage: Moreover, it is well known [60; 62; 221; 246] that a `1-constraint in (4.14)
realizes a numerical stable, continuous shrinkage technique and thus leads to a sparse
solution in only d of L coefficients cl are different from zero. This holds even in the
non-orthogonal design in many cases [86]. Consequently (4.14) suppresses directions ωl
with small weights which are uninformative about I. Hence a welcome side-effect of the
`1-constraint is, that in addition perturbations in the estimation procedure are suppressed.
The intuitive idea of the shrinkage in this case is illustrated in figure 4.2.

2http://www.mosek.com
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The next important step of the SNGCA procedure is to recover the subspace I from the
estimated vectors β̂j . At the first glance this problem is a special case of the so called
Reduced Rank Regression (RRR) problem.

PCA-solution: A standard and popular solution of the RRR problem is given by min-
imizing the sum of orthogonal complements

∑J
j=1 ‖(I − ΠI)β̂j‖22 over all projectors ΠI

of a given rank m , i.e.

Π̂I = arg minΠI

J∑
j=1

‖(I −ΠI)β̂j‖22 s.t. rank(ΠI) = m.

The solution of this problem is known as PCA solution and it is given by the span
〈
· · ·
〉

of the first m eigenvectors of the matrix D̂
def=
∑J

j=1 β̂j β̂
>
j :

Î =
〈
first m eigenvectors of D̂

〉
.

Let βj be the vectors from I such that ‖β̂j − βj‖2 ≤ ε . The closeness of the subspace
I and its estimate Î can be measured by the error function

E(Î, I) def= ‖ΠÎ −ΠI‖2F (4.17)

where ‖ · ‖F is the Frobenius norm.

However consider the matrix D =
∑J

j=1 βjβ
>
j . This matrix is of the rank m(D) ≤ m .

Simple algebra yields

‖D̂ −D‖22 = Tr(D̂ −D)2 ≤ Jε2.

Therefore D can be well identified if its first mth eigenvalues fulfill the condition

λm(D) > Jε2.

This condition is verified if some significant fraction of the vectors βj are significant
(informative) in the sense ‖βj‖2 ≥ κ with some fixed κ > 0 . However, if the most of
vectors βj are non-informative, the PCA solution is very volatile. Moreover the larger is
the number of non-informative vectors the worse is the quality of recovering the subspace
I . This drawback requires to consider more robust estimates of I .

Figure 4.3: Illustration of the MVEE ”rounding ellipsoid” of estimated elements ”close”
to the target space consisting in the (x, y)-plane.
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”Rounding ellipsoid” solution: Another way of recovering the subspace I is given
by the ”rounding ellipsoid” idea illustrated in figure 4.3. Consider the symmetrized set S
of estimators β̂j with j = 1, . . . , J :

S def= {β̂1,−β̂1, β̂2,−β̂2, . . .}. (4.18)

For any direction orthogonal to the linear subspace I , theorem 4 states that S expands
only with the distance not larger than ε while the for the directions within I we expect
at least some informative vectors. This leads to the idea of building an ellipsoid which
contains S and hence its convex hull conv(S) 3. Then we can take its m largest axes for
estimating the subspace I .

The problem of computing a minimum volume enclosing ellipsoid (MVEE) of the sym-
metrized convex set conv(S) can be considered as the problem of computing the Löwner-
John ellipsoid:

Theorem 6. (Existence and Uniqueness) [114]
For every convex, bounded, centrally symmetric and non-empty set C there is a unique
ellipsoid E of minimum volume that covers C with the center at zero. Moreover, the
following Fritz-John-inequality holds:

d−1/2MVEE(C) ⊆ conv(C) ⊆MVEE(C).

In the sequel let E√d denote the
√
d -rounding of the MVEE of S . This ellipsoid is

described by a matrix B :

E√d(B) def= {x ∈ Rd : ‖B−1/2x‖2 ≤ 1} (4.19)

Finding the matrix B is a convex optimization problem. Numerically efficient gradient-
type schemes for computing

√
d -rounding ellipsoids are available, see e.g. [169]. We will

discuss them in more detail in the next chapter.

We measure the quality of estimation of the subspace I by the closeness of the estimated
projector Π̂ to Π∗ , where Π∗ denotes the ”ideal” projector to the target space:

E(I, Î) = ‖Π̂−Π∗‖22 = Tr
[
(Π̂−Π∗)2

]
. (4.20)

The property of the spatial information recovery, based on the idea of rounding ellipsoids,
is described in the following theorem.

Theorem 7. (approximation of rounding ellipsoid)
1. Let S be the convex envelope of the set {±β̂j}, j = 1, ..., J , and let E1(B) be an
ellipsoid inscribed into S , such that E√d(B) is a

√
d -rounding ellipsoid for S . Then

for any unit vector v ⊥ I ,
v>B−1v ≤ %2.

2. If there is µ ∈ RJ with µj ≥ 0 and
∑

j µj = 1 such that

λm

(∑
j

µjβjβ
>
j

)
≥ λ∗ > 2%2,

3Recall that the convex hull of S, denoted by conv(S), is the intersection of all convex sets containing
S. Alternatively, one can also think of conv(S) as the union of all possible convex combinations of points
in S.
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where λm(A) stands for the m -th principal eigenvalue of a symmetric matrix A , then

λm(B−1) ≥ λ∗ − 2%2

2
√
d

. (4.21)

3. Moreover, let Π̂ = Γ̂mΓ̂>m where Γm is the matrix of m principal eigenvectors of B−1 .
Then

‖Π̂−Π∗‖22 ≤
4%2d
√
d

λ∗ − 2%2
.

The proof of the theorem is presented in the appendix. The results of Theorems 4 and 6
provide a kind of theoretical justification for the algorithms presented in the next section.
Indeed, suppose that the test functions h1, ..., hL and the vectors ξ1, ..., ξJ are chosen in
such a way that there are at least m vectors with ”significant” projection on I among
β̂1, ..., β̂J . Then the projector estimate Π̂ , computed using the ellipsoid E(B) which is
rounding for the set {±β̂j} , will be with high probability close to Π∗ .

However the results about the estimation quality depend critically on the dimension d .
Numerical simulations also indicate that with growing dimension, the fraction of non-
informative vectors β̂j increases. Furthermore due to the random choice of the projected
directions ξ the length of the informative vectors is no longer correlated with small values
of

‖(I −ΠI)β̂(ψ)‖2.

In higher dimensions this leads typically to the situation when some of the longest semi-
major axis of E√d(B) are also non-informative and nearly orthogonal to I . Motivated by
this observation we propose to identify the semi-axis of E√d(B) close to I using statistical
tests on normality. Finally all numerical methods to compute a rounding ellipsoid depend
on the computation of the eigenvalue decomposition of the data covariance matrix that
typically becomes bad conditioned in high dimensions.

Identifying the non-Gaussian subspace by statistical tests: Currently the es-
timation procedure of the vectors β(ψh,c) itself does not allow the identification of the
semi-axis of E√d(B) within the target space. Hence the basic idea is to apply statistical
tests on normality with respect to a significance level α to the original data from Rd

projected on every semi-axis of E√d(B) . In order to avoid misleading results due to large
sample sizes N (see e.g. [118]), we chose randomly 1000 points from the projected data
for each semi-axis. If the hypothesis of normality is rejected with respect to the projected
data, the corresponding semi-axis is used as a basis vector for the reduced target space
I . In general this use of statistical tests allows to determine algorithmically the reduced
dimension m from the data.

Since statistical tests are specialized to a certain deviations from the normal distribution,
are more powerful, we use different tests inside of SNGCA in order to cope with different
deviations from normality of the projected data. To be more precise we use the K2 -test
according to D’Agostino-Pearson [244] to identify a significant asymmetry in the projected
distribution and a EDF-test according to Anderson-Darling [8] with the modification of
Stephens [215], which is sensitive to the tails of the projected distribution. In order to
confirm these test results from above we use the Shapiro-Wilks test [204] based on a
regression strategy in the version given by Royston [189; 190]. Once we have classified the
semi-axis of E√d(B) as being close to the target space we can use the identified subset of
axis in the structural adaptation step to be described in the next section.
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Structural Adaptation: At the beginning of the algorithm, we have no prior informa-
tion about I and therefore we have to sample the directions ξj and ωl randomly from
the uniform law. However the SNGCA procedure assumes that the obtained estimated
structure Î delivers some information about I which can be used for improving the sam-
ple mechanism and therefore the final quality of estimation. This leads to a structurally
adaptation in the iterative procedure [102]: the step of estimating the vectors {β̂j}Jj=1

and the steps of estimating I are iterated such that the estimated structural information
given by Î can be used to improve the quality of estimating the vectors β̂j in the next
iteration of SNGCA.

Statistically this structural adaptation idea is justified by the following Theorem:

Theorem 8. Let A be a random set on which

max
l
‖γl − γ̂l‖2 ≤ ε,

max
l
‖ηl − η̂l‖2 ≤ ε.

and let β∗ denote the ”ideal aggregation” β∗ =
∑

l c
∗
l ηl . Then it holds:

‖ξ − β̂‖2 ≤ ‖ξ − β∗‖2 + ε,

‖ΠI(ξ − β̂)‖2 ≤ ‖ΠI(ξ − β∗)‖2 + (1 + C1)ε.

The proof of this theorem can be found in the appendix.

In other words if the sampling directions {ξj}Jj=1 and {ωl}Ll=1 are informative then the
corresponding vectors ηl = IE∇hωl(X) are expected to be informative as well. This
ensures that the vector β∗ =

∑
l c
∗
l ηl coming out of the ”ideal” optimization problem:

{c∗l } = arg min‖c‖1≤1

∥∥ξ − L∑
l=1

cl ηl
∥∥

2
s.t.

L∑
l=1

cl γl = 0

is also informative. The message of Theorem 7 is that in this situation the estimated
vector β̂ delivers as much information as β∗ up to a small error of estimation. Therefore
we sample a fraction of directions {ξj}Jj=1 and {ωl}Ll=1 due to the previously estimated
ellipsoid B̂ and the other part randomly. The fraction of the randomly selected directions
decreases during iteration.

One Step Improvement: We will now illustrate the iterative gain of information about
the target space. To this end we use the projection of β̂j to the target space in order to
demonstrate, how the algorithm works. The next figure 4.4 shows that dist(β̂, Î) with

sin(](β̂, Î)) =
dist(β̂, Î)

‖β̂‖
=

ε

‖β̂‖

decreases with increasing number of iterations. As expected we observe, that estimators
β̂ with higher norm tend to be close to I . Nevertheless this can not be assured for much
higher dimensions. Moreover improvement in each iteration heavily depends on the size
of the MC-sampling of the measurement directions.
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Figure 4.4: Illustrative plots of SNGCA applied to toy 20 dimensional data of type (C)
(see section 4.5): We show ‖β̂‖ vs. cos(](β̂, I)) for different iterations of the algorithm
where I is the apriori known target space.

4.4 Algorithms

Normalization: As a preprocessing step the SNGCA procedure uses a componentwise
normalization of the data. To this end let σ = (σ1, . . . σd) be the standard deviations of
the data components of x1, . . . , xd . For i = 1, . . . , N the componentwise normalization
of the data is done by Yi = diag(σ−1)Xi.

Estimation of the vectors from non-Gaussian subspace: Here we repeat in more
detail the estimation procedure already presented in section (4.2). In the sequel we will
call the directions ωl and ξj the measurement directions.

Algorithm 2: linear estimation of β(ψh,c)
Data: Y ,L,J
Result: {β̂j}Jj=1

Sampling: choice of measurement directions
for j=1 to J do

for l=1 to L do
Compute:
η̂jl = 1

N

∑N
i=1∇hωjl(Yi)

γ̂jl = 1
N

∑N
i=1 Yihωjl(Yi)

end
Compute (4.15) and than β̂j =

∑L
l=1 ĉj η̂jl.

end
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Reduction of dimensionality: Let us consider again the central symmetrized set
S def= {β̂1,−β̂1, β̂2,−β̂2, . . .} already defined in (4.18). From theorem 6 we know that there
is a minimum volume ellipsoid E , that covers conv(S) . For a polytope conv(x1, x2, . . .) of
given points x1, x2, . . . the MVEE and the maximum volume inscribed ellipsoid (MVIE)
are affine invariant. In this case the computation of the MVEE can be reduced to the
computation of the MVIE [122; 123]. Even though the latter problem can be solved using
interior-point-methods in O(d3 logN) iterations, they are computationally expensive and
restricted to the case of a full-dimensional ellipsoid [224].

Recently a gradient-type method for computing the ellipsoidal rounding for some polytopes
was proposed in [169]. The heart of this algorithm is the alternate computation of the
MVIE and MVEE taking only O(d2J log(J)) operations. Moreover we expect the com-
putation of an high dimensional MVEE to be numerically bad conditioned. Consequently
while approximating the MVEE by a numerical procedure we try to avoid computations
of the inverse of

∑
l β̂lβ̂

T
l . However this method needs just a single computation of the

inverse of
∑

l β̂lβ̂
T
l at the beginning of the procedure. Then due to (4.4), the Fritz-John

theorem and the `1-constraint in (4.16) we know that there are at least d estimated points
β̂ lying on an ellipsoid bowl that exists in at least m dimensions. Hence we can randomly
choose additional points from Rd that are less informative about I than every estimated
point β̂l. Hence these additional points will not change the shape of the MVEE, but easily
lead to a regularized version of the original algorithm to compute an approximation of the
MVEE. For convenience we repeat that algorithm here:

Algorithm 3: Compute of the
√
d -rounding of the MVEE

Data: {β̂j}Jj=1

Result: B̂,
Let δk

∗
i = max1≤j≤J 〈β̂j , B̂iβ̂j〉 and set νi = δk

∗
i d
−1.

Let B̂0 be the inverse empirical covariance matrix of the
β̂j and set ti = νi

(δk
∗
i d−1−1)

. Let i be the loop index.

repeat
xi = B̂iβ̂k∗

B̂i+1 = 1
1−ti

(
B̂i − ti

1+νi
xix
>
i

)
δk
∗
i+1 = 1

1−ti

(
δk
∗
i −

ti
1+νi
〈β̂k∗ , xi〉2

)
until δk

∗
i ≤ C · d where C is a tuning parameter.

The next algorithm (4) reports the pseudocode for constructing a basis of the target space
from the estimated elements:

Algorithm 4: Dimension Reduction

Data: B̂
Result:

〈
first m eigenvectors of B̂

〉
Let V̂ be the matrix of eigenvectors v̂i from B̂ according to algorithm 3.
for i=1 to d do

Project the data orthogonal on v̂i .
Compute tests on normality of the projected data.

end
Discard every eigenvector with associated normal
distributed projected data.
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Structural Adaptation: In algorithm 2 we start with a random initialization of the
non-parametric estimator (4.12) by means of a Monte-Carlo sampling of the directions
ωjl and ξj . However we can use the result of the first iteration j = 1 of SNGCA in order
to accumulate information about I in a sequence Î1, Î2, . . . of estimators of the target
space. The procedure is described in detail in algorithm 5.

Algorithm 5: structural adaptation of the linear estimation

Data:
〈
first m eigenvectors of B̂

〉
Let {v̂i}mi=1 denote the reduced set of eigenvectors from
B̂ and let k iterations be completed. To initialize iteration k + 1 choose random
numbers zj,1, . . . , zj,m
and ul,1, . . . , ul,m from U[−1,1] and set

ξj
def=
∑m

s=1 zj,sv̂is for 1 ≤ j ≤ n1 < J

ωl
def=
∑m

s=1 ul,sv̂is for 1 ≤ l ≤ n2 < L
Then define ωL−n2 , . . . , ωL and ξJ−n1 , . . . , ξJ analogous to the case k = 1 . Now
compose the sets

{ξ(k)
1 , . . . , ξ

(k)
n1 , ξ

(k)
n1+1, . . . , ξ

(k)
J }

{ω(k)
1 , . . . , ω

(k)
n2 , ω

(k)
n2+1, . . . , ω

(k)
L }

For the initialization in the case k = k + 1 . Moreover we choose n1 = kd and
n2 = kd until n1 > J − d or n2 > L− d . Otherwise set n1 = J − d or n2 = L− d .

In the sequel we call that part of measurement directions which are chosen by a Monte-
Carlo method the Monte-Carlo-part.

Stopping criterion: Suppose that I is apriori given. Then the convergence of SNGCA
can be measured according to the criterion (5.49). More precisely we assume convergence
if the improvement of the error measured by (5.49) from one iteration to the next one is
less than δ percent of the estimation error in the former iteration.

Suppose now that I is unknown. Then compute the maximum angle θ between the
subspaces specified by the matrix of eigenvectors V (k) =

[
v̂

(k)
1 , v̂

(k)
2 , . . .

]
and V (k+1) =[

v̂
(k+1)
1 , v̂

(k+1)
2 , . . .

]
given by

cos(θ) = max
x,y

|x>V (k)>V (k+1)y|
‖V (k)x‖2 ‖V (k+1)y‖2

The algorithm stops if the change of the subspace angle is less than κ percent.

We we will now describe, how SNGCA makes use of the algorithms 2, 4 and 5 in order to
realize an iterative estimation procedure of I .

Full Description of the Procedure: For convenience we will now give a detailed
description of the complete SNGCA algorithm. The choice of the parameters will be ex-
plained in the sequel.



52 CHAPTER 4. CONVEX PROJECTION IN STRUCTURAL DATA ANALYSIS

Algorithm 6: full procedure of SNGCA
Data: {Xi}Ni=1,L,J ,α
Result: Î
Normalization: The data (Xi)Ni=1 are recentered. Let
σ = (σ1, . . . σd) be the standard deviations of the
components of Xi . Then Yi = diag(σ−1)Xi denotes the
componentwise empirically normalized data.

Main Procedure:; // loop on k

while ∼ StoppingCriterion(I, Î) do

Sampling: The components of the Monte-Carlo-parts
of ξ(k)

j and ω
(k)
jl are randomly chosen from U[−1,1] .

The other part of the measurement directions are
initialized according to the structural adaptation
approach described in algorithm 5. Then ξ

(k)
j and

ω
(k)
jl are normalized to unit length.

Linear Estimation Procedure:
for j=1 to J do

for l=1 to L do
η̂

(k)
jl = 1

N

∑N
i=1∇hω(k)

jl

(Yi)

γ̂
(k)
jl = 1

N

∑N
i=1 Yihω(k)

jl

(Yi)

end

Compute the coefficients {cl}Ll=1 by solving the
second-order conic optimization problem (4.15):

min q s.t.
1
2‖z‖2 ≤ q∑L

l=1(c+
l − c

−
l )η̂(k)

jl − z = ξ
(k)
j∑L

l=1(c+
l − c

−
l )γ̂(k)

jl = 0∑L
l=1(c+

l − c
−
l ) ≤ 1, 0 ≤ c+

l , c
−
l ∀l

Compute β̂(k)
j =

∑L
l=1(ĉ+

l − ĉ
−
l )η̂(k)

jl

end

Dimension Reduction:
Compute the symmetric matrix B̂(k) defining the
approximation of the Löwner-John ellipsoid E in
(4.19) according to algorithm 3. Reduce the basis
of X according to algorithm 4.

end

Choice of parameters: One of the advantages of the algorithm proposed above is the
fact that there are only a few tuning parameters.

i) Suppose now that ωi is an absolute continuous random variable with ωi ∼ U[−1,1] .
Without loss of generality we set e = (1, 0, . . . , 0) . Due to the normalization of
(ω1, . . . , ωd) , it holds:

P
(
|(ω1, . . . , ωd)>e| ≥ 0.5

)
=
(√
d
)−1
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However the choice of J and L heavily depends on the non-gaussian components.
In the experiments we use 7d ≤ J ≤ 18d and 6d ≤ L ≤ 16d .

ii) Set the parameter of the stopping rule to δ = 0.05 .

iii) Set the constant in the stopping rule for the computation of the MVEE to C = 2 .

iv) Set the significance level of the statistical tests to α = 0.05 .

v) The tuning parameter χ in the dimension reduction step is set to χ = 3 .

In the next section we compare the ”convex-projection”-approach to SNGCA to the early
methods of NonGaussian Component Analysis and to Independent Component Analysis
with respect to their statistical sensitivity and stability using some artificial toy examples.
Again we use the estimation error defined in (5.49).

Complexity: Let us now estimate the arithmetical complexity of SNGCA. We restrict
ourselves to the leading polynomial terms of the complexity of corresponding computations
counting only the multiplications.

1. The numerical effort to compute ηjl and γjl in algorithm 2 heavily depends on the
choice of h(ω>x) . Let h(ω>x) = tanh(ω>x) . Then this step takes O(J(logN)2N2)
operations.

2. Algorithm 3 takes O(d2J log(J)) operations [169].

3. For the optimization step in 2 we use a commercial solver 4 based on an interior
point method. The constrained convex projection solved as an SOCP takes O(d2n3)
operations there n is the number of constraints.

4. The computation of the statistical tests in one dimension: Let N denote the number
of samples. D’Agostino-Pearson-test needs O(N3 logN) and the Anderson-Darling-
test O((logN)2N2) operations. The test of Shapiro-Wilks takes O(N2) . In order
to avoid robustness problems [118] in SNGCA the number of samples is limited to
N ≤ 1000 . For larger data sets, N = 1000 points are randomly chosen.

5. The computation of the entropy estimator takes only O(N logN) operations [135].

Hence the SNGCA procedure computes an estimate Î of I in O(J(logN)2N2+d2J log(2J))
arithmetical operations in each iteration.

4.5 Statistical and Numerical Performance

The numerical comparison of different unsupervised feature extraction methods is based
on non-Gaussian densities used as informative component to ρ.

(A) Gaussian mixture: 2 -dimensional independent Gaussian mixtures with density
of each component given by 0.5 φ−3,1(x) + 0.5 φ3,1(x) .

(B) Dependent super-Gaussian: 2 -dimensional isotropic distribution with density
proportional to exp(−‖x‖) .

(C) Dependent sub-Gaussian: 2 -dimensional isotropic uniform with constant posi-
tive density for ‖x‖2 ≤ 1 and 0 otherwise.

4http://www.mosek.com
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(D) Dependent super- and sub-Gaussian: 1 -dimensional Laplacian with density
proportional to exp(−|xLap|) and 1 -dimensional dependent uniform U(c, c + 1) ,
where c = 0 for |xLap| ≤ log(2) and c = −1 otherwise.

(E) Dependent sub-Gaussian: 2 -dimensional isotropic Cauchy distribution with den-
sity proportional to λ(λ2 − x2)−1 where λ = 1 .

Each of the following test data sets includes 1000 samples in 10 dimensions and each sam-
ple consists partly of 8 -dimensional independent, standard and homogeneous Gaussian
distributions. The other 2 components of each sample are non-Gaussian with variance
unity. That means, that the non-normal distributed data are located in a linear subspace.
In all simulations the number of non-Gaussian dimensions is apriori given to each algo-
rithm.

Figure 4.5 illustrates the densities of the non-Gaussian components of the test data.

Figure 4.5: Densities of the non-Gaussian components. From upper left to lower right:
2d independent Gaussian mixtures, 2d isotropic super-Gaussian, 2d isotropic uniform,
2d isotropic sub-Gaussian and 2d isotropic uniform and dependent 1d Laplacian with
additive 1d uniform.

Each of the following simulations is repeated 100 times. All simulations are done with
the index ’ tanh ’. Since the speed of convergence varies with the type of non-Gaussian
components we use the maximum number maxIter = 3 log(d) of allowed iterations to
stop SNGCA. In the experiments the error measure E(Î, I) is used only to determine the
final estimation error. All simulations other than whose with respect to model (C) are
computed with a componentwise pre-normalization.
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In the figure 5.4 we present boxplots of the error (5.49) of the methods PP, NGCA and
SNGCA. Since the optimizer used in PP tends to trap in local a minimum in each of the
100 simulations, PP is restarted 10 times with random starting points. The best result
with respect to (5.49) is reported as the result of each PP-simulation.

(A) (B)

(C) (D)

(E)

Figure 4.6: Performance comparison using toy examples in 10 dimensions of PP and
NGCA versus SNGCA (with respect to E(Î, I) ) using the index ’ tanh(x) ’. The doted
line denotes the mean, the solid lines the variance of (5.49).

Concerning the results of SNGCA on the data sets (A) and (D) we observe a slightly
inferior performance compared to NGCA. In case of model (A) this is due to the fact that
most of the data projections have almost a Gaussian density. Consequently the decrease
of the estimation error is slow with increasing number of iterations. In case of the model
(D) the higher variance of the results indicate that the initial MC-sampling of the data
sets gives a poor result. Consequently more iterations are needed to get an estimation
error with is comparable to the result of NGCA.

In order to illustrate this interpretation we report in table (4.1) the progress of SNGCA
with respect to the estimation error E(I, Î) in each iteration for every test model. The
next table 4.1 reports these results in more detail.
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j µε σ2
ε

1 0.232504 0.045787

2 0.163022 0.072263

3 0.066537 0.032436

4 0.009380 0.021975

5 0.002359 0.000853

j µε σ2
ε

1 0.30350 0.175313

2 0.144430 0.057856

3 0.088142 0.015168

4 0.041420 0.008197

5 0.026436 0.000917

(A) (B)

j µε σ2
ε

1 0.040556 0.004215

2 0.016012 0.002441

3 0.012427 0.001105

4 0.008874 0.000169

5 0.003770 0.000125

j µε σ2
ε

1 0.203419 0.044672

2 0.023023 0.000314

3 0.019960 0.000211

4 0.012709 0.000197

5 0.009343 0.000127

(C) (D)

j µε σ2
ε

1 0.2762e-3 0.1371e-6

2 0.0450e-3 0.0031e-6

3 0.0416e-3 0.0033e-6

4 0.0360e-3 0.0014e-6

5 0.0287e-3 0.0024e-6

(E)

Table 4.1: Progress of SNGCA for the test models from above in 10 dimensions with
increasing number j of iterations. The empirical mean of E(Î, I) is denoted by µε and
σ2
ε is its empirical variance.

Now let us switch to the question of robustness of the estimation procedure with respect
to a bad conditioning of the covariance matrix Σ of the data. In figure 5.5 we consider the
same test data sets as above. The non-Gaussian coordinates always have variance unity,
but the standard deviation of the 8 Gaussian dimensions now follow the geometrical pro-
gression 10−r, 10−r+2r/7, . . . , 10r where r = 1, . . . , 8 . Again we apply a componentwise
normalization procedure to the data from the models (A), (B), (D), (E).

In figure (5.5) we observe that the condition of the covariance matrix heavily influences
the estimation error for the methods NGCA and PP(tanh). In comparison SNGCA is
independent of differences in the noise variance along different directions in most cases.
Only the detection of the uniform distribution by SNGCA is influenced by the condition
of the data variances in Σ .
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Figure 4.7: From upper left to lower right: 2d independent Gaussian mixtures, 2d
isotropic super-Gaussian, 2d isotropic uniform, dependent 1d Laplacian with additive
1d uniform and 2d isotropic sub-Gaussian: Results obtained from the toy densities with
respect to E(Î, I) with deviations of Gaussian components with respect to a geometrical
progression on [10−r, 10r] where r is written on the abscissa) .

Figure 4.8: From upper left to lower right: 2d independent Gaussian mixtures, 2d
isotropic super-Gaussian, 2d isotropic uniform, dependent 1d Laplacian with additive
1d uniform and 2d isotropic sub-Gaussian: Results obtained from the toy densities with
respect to E(Î, I) with increasing dimension of embedding Gaussian component.
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Finally we study the ability of the different algorithms to detect the non-Gaussian com-
ponents in embedding high dimensional noise called statistical sensitivity. Figure 5.6
compares the behavior of SNGCA with PP and NGCA as the number of standard and
homogeneous Gaussian dimensions increases. As described above we use the test models
with 2 -dimensional non-Gaussian components with variance unity. We plot the mean of
errors E(Î, I) over 100 simulations with respect to the test models (A) to (E).

Again concerning the mean of errors E(Î, I) over 100 simulations of PP and NGCA
we find a transition in the error criterion to a failure mode for the test models (A), (C)
between d = 30 and d = 40 and between d = 20 and d = 30 respectively. For the test
models (B),(D) and (E) we found a relative continuous increase in E(Î, I) for the methods
PP and NGCA. In comparison SNGCA fails to analyze test model (A) independently from
the size of the MC-sampling, if the dimension increase d = 12 . Concerning test model (B)
there is a sharp transition in the simulation result between d = 35 and d = 40 . Moreover
some deviations from normality are much harder to detect as others: For example we
expect most of the projected distributions of the Laplacian density to be normal, since it
has almost a Gaussian shape. However since the projections of a Cauchy distribution are
again non-normal (see section 4.1, the difference in the statistical sensitivity with respect
to to the Cauchy distributed data density components and the other non-Gaussians is
expected.

Failure modes: In order to provide a better insight into the details of the failure modes
we present box plots of the error criterion E(Î, I) in the transitions phase with respect
to the models (A) and (B).

Figure 4.9: Failure modes of SNGCA obtained from the toy densities - upper figure: model
(A) - lower figure: model(B). We show boxplots of the aperture of dimensions where the
failures occur.

Figure 4.9 demonstrates the differences in the transition phases of model (A) and (B)
respectively. The transition phase of SNGCA is characterized by high variance of the
estimation error. For model (A) the increase of the variance σ2

E of the error E(Î, I)
beginning at dimensions 13 and its decrease beginning at dimension 15 indicates that
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a sharp transition phase is happens in the interval [13, 15] . For higher dimensions iter-
ations of SNGCA have a decreasing effect on the estimation result. This indicates that
by the MC-sampling of the measurement directions, we can not detect the non-Gaussian
components of the data density.

For model (B) the transition phase starts at dimension 35 and ends at dimension 43 .
Moreover the decrease of σ2

E towards higher dimensions and the increase of the mean of
E(Î, I) is much slower. This indicates that the non-Gaussian components of the data
density might be detectable if we would allow much more iterations of SNGCA and an
enlarged size of the set of measurement directions. This observation motivates the inter-
pretation that the Monte-Carlo sampling is a very poor strategy which fails to provide
sufficient information about the Laplace distribution in high dimensions. Since we can
not increase the size of the directional sampling at exponential rate the performance of
SNGCA currently is limited.
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Chapter 5

Structural Analysis by
Semidefinite Programming

In this chapter we will benefit from our numerical simulations from section 4.5 in the sense
that they suggest to improve our current strategy of semi-parametric dimension reduction
due to the reasons of computational complexity and statistical efficiency.

Complexity: Suppose a set {β̂j}Jj=1 of elements from Î according to (4.12) has to be
estimated. Then for every β̂j ”good” coefficients {cl}Ll=1 can be found by computing the
convex projection

min
‖c‖1≤1

∥∥∥ξj − L∑
l=1

clj η̂lj

∥∥∥2

2
subject to

L∑
l=1

clj γ̂lj = 0. (5.1)

of an arbitrary vector ξ ∈ Bd on the convex hull of {η̂ωl}Ll=1 as sparse [60; 62] solution to
a linear constrained, quadratic but non-smooth optimization problem (QCP). Obviously
(5.1) suppresses directions ωl which are less informative about I. Recall that in order
to compute the set {β̂j}Jj=1 we have to solve J problems of the form (5.1) based on J

directional samplings each taking O(LN2) operations. Moreover the ”convex projection”-
approach to SNGCA uses a smooth and convex reformulation of (5.1) as an SOCP that
is a linear problem with quadratic constraints.

Hitherto it is widely accepted that the best tool for solving large scale convex optimization
problems are Polynomial Time Interior Point methods (IPM) since they enjoy at most
superlinear convergence and their computational effort to find an approximate solution
is proportional to the number of accuracy digits where the proportionality coefficient
growing polynomially with the dimension of the problem [184]. This property means rapid
convergence in terms of the number of calculations and provides high-accuracy solutions.
However in order to solve a SOCP with L variables an Newton-type IPM iteration requires
assembling and solving a L×L Newton system of linear equations [238] that takes O(L3)
operations unless the equation system is sparse with favorable patterns. In the context
of the ”convex projection”-approach O(JLN2 + (16L)3) operations are needed for the
kth iteration of SNGCA, if a primal-dual IPM is used. For 105 variables or higher this
makes the algorithmic cost of the iterative approach to SNGCA prohibitively large and
thus limits the dimensionality of the data sets. Hence a non-iterative approach to the
structural data analysis of SNGCA with almost linear in d complexity is sought.

61
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Efficiency: Hence let us consider again the development of the estimation error as a
function of increasing dimensionality of the embedding Gaussians in case of the failure
modes reported in section 4.5. The failure of SNGCA in case of the Laplacian compo-
nent to the data density is more or less expected: There is a relative slow transition with
high variance demonstrating that although the iterative procedure improves significantly
the accuracy of the recovery of I the choice of ”informative” probe vectors ξ at the first
iteration k = 0 remains a challenging task and hitherto is a weak point of the proce-
dure. However the fast transition at d ≤ 15 in the mixed Gaussian case indicates that
in the ”convex projection”-approach SNGCA do not make the best use of the available
information to estimate the target space.

”Semidefinite Programming”-Approach: In order to improve the former ”convex
projection”-approach to SNGCA within the semi-parametric framework from section 2.3.2
let G ∈ Rd×L be a matrix of averaged gradients of the test functions hω with columns γl
and U ∈ Rd×L a matrix of averaged functions xhω with columns γl. Analogously we build
Ĝ ∈ Rd×L and Û ∈ Rd×L from the data counterparts respectively such that Ĝ and Û are
estimators of G and U with

‖G− Ĝ‖2 ≤ ε and ‖U − Û‖2 ≤ ε. (5.2)

Now observe if c ∈ RL satisfies Gc =
∑L

l=1 clγl = 0 then Uc =
∑L

l=1 clηl belongs to I,
i.e. (I − Π∗)Uc = 0 where Π∗ denotes the Euclidean projector on I. To be more precise
suppose that the set {hl} of test functions is comprehensive in the sense that vectors Uc
span I where c fulfils the constraint Gc = 0. Since the projector ΠI is a symmetric d× d
matrix of rankΠ = m with the eigenvalues 0 ≤ λi(Π) ≤ 1, i = 1, ..., d and Tr[Π] = m, Π
is identified by

Π∗ = min
Π

max
c

{
‖(I −Π)Uc‖22

∣∣∣∣ 0 � Π � I, Tr[Π] = m, rankΠ = m;
c ∈ RL, Gc = 0

}
(5.3)

Here Tr[·] denotes the trace of a matrix. For simplicity we will write Π∗ instead of Π∗I if
their is no risk of confusion.

Now we aim to adapt (5.3) to the task of structural analysis. To this end we substitute
Û and Ĝ for U and G into (5.3). Thus we have to exchange Gc = 0 by the inequality
constraint ‖Ĝc‖2 ≤ δ in order to keep the optimal solution c∗ of (5.3) feasible in the
”perturbed variant”

min
Π

max
c

{
‖(I −Π)Ûc‖22

∣∣∣∣ 0 � Π � I, Tr[Π] = m, rankΠ = m;
c ∈ RL, ‖c‖1 ≤ 1, ‖Ĝc‖2 ≤ δ

}
. (5.4)

of (5.3). Currently nonconvex minmax problems as (5.4) can be solved efficiently only
in the case of convex-concave games (c.f. [163]).

Relaxation: Consequently to make the ”semidefinite programming”-approach viable
we have to ”relax” the quadratic and linear constrained problem (5.4) to a semidefinite
problem. This is a classical approach called Semidefinite Relaxation (or SDP-relaxation)
[218]. Concerning the task of structural analysis this means that the new approach to
SNGCA is unified in the sense that the intermediary stages of estimating vectors from
the target space and constructing an ONB are combined to the estimation of Π∗ from
only one directional sampling. Otherwise we transfer sampling, estimation procedure and
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the dimension reduction concept to the new approach except the strategy of iteration and
structural adaptation.

Dual Extrapolation Method: Furthermore we have to rewrite (5.4) such that the
resulting problem is equivalent to (5.4) in the sense of optimization and belongs to a class
of problems that can be solved efficiently. All known computationally cheap optimization
techniques are black box oriented [27]. In general the task of solving semidefinite prob-
lems numerically with almost linear complexity in d, the requirement of low complexity
currently leaves us with Quasi-Newton or Conjugate Gradient methods and gradient-type
methods alternatively. However it is not obvious how to handle the constraints with Quasi-
Newton or Conjugate Gradient methods [132]. Hence we focus on first-order methods with
computationally cheap iterations.

Gradient-type methods for non-smooth convex optimization originate from the subgradient
descent algorithm [208; 178]. The main update of the objective in the algorithm becomes

xk+1 = ΠX (xk − αkf ′(xk)) (5.5)

where ΠX (y) def= arg miny∈X ‖x−y‖2 is the projector onto X and αk > 0 are stepsizes. Sub-
gradient descent methods were extensively studied in the literature (see, e.g. [125; 124]).
It is well known that subgradient descent methods and their extensions are intrinsically
related to problems with Euclidean geometry. The non-Euclidean extensions of gradient-
type methods allow to adjust, to some extent, a method to the geometry of feasible sets
of the optimization problems on focus [16].

However standard first-order methods e.g. subgradient methods [18] are unable to uti-
lize a priori knowledge of the data or structure of the problem such that progress is
obtain solely on the basis of local information. Consequently in the large-scale case due to
performance limits resulting from IBCT on black-box-oriented models, they exhibit only
sublinear convergence and thus are unable to produce high-accuracy solutions on realistic
time scales. Their achievable convergence rate depends on the smoothness of the objec-
tive, the geometry of the feasible sets and is never better than O(1/k2). In the large-scale
non-smooth case, the best guaranteed rate of convergence is O(1/

√
k) [163]. However

medium-accuracy solutions are in some sense welcome: If we consider problems of the
form (5.4) based on statistical data as in SNGCA, we expect that the first iterations
of the optimization method correspond to some progress in the approximation quality as
long as the solution is adjusted to the non-Gaussian components of the data. But the
more iterations are done the more progress in optimization is due to adjusting the actual
solution to some individual, but perhaps statistically meaningless feature of the current
sample of the data. Hence in the setting of SNGCA solely medium-accuracy numerical
solutions in nonparametric statistics should not be considered as a drawback.

Fortunately motivated by results on IBCT, methods for large scale convex-concave sad-
dle point problems with low analytical complexity of O(d log d), linear memory require-
ments and convergence rate of O(1)k−1 in case of special geometry of the given feasi-
ble sets [119; 162; 167; 165] have been recently introduced. They belong to the family
of subgradient descent-ascent methods and deal with at least one gradient step in the
dual space E∗. Their total complexity O(1/δ) is cheap compared with subgradient-type
or cutting plane schemes [240] consuming O(1/δ2) evaluations of the objective where
δ = ‖f(x∗)− f(kk)‖ is a desired accuracy.
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In the next sections we will report on semidefinite relaxation and the dual extrapolation
method published in [167], that aims to solve variational inequalities with monotone oper-
ators. This type of problem is the most general optimization problem possessing a convex
structure [68]. Then we give an equivalent, relaxed reformulation of (5.4) as convex-
concave semidefinite problem such that the constraints in (5.1) are represented by the
geometry of the feasible sets. The resulting problem is simple enough to apply the ideas
of the dual extrapolation algorithm. Finally we illustrate the obtained progress using the
toy examples already introduced in section 4.5.

5.1 Semidefinite Relaxation

Basics from Convex Analysis: First of all let us briefly summarize some concepts
from convex analysis needed to introduce the ”recipe” of relaxation. For this summary we
follow [170],[93] and [238].

A set S ⊂ Rd is called convex if ∀ x, y ∈ S and all λ ∈ R with 0 ≥ λ ≥ 1 then λx+(1−λ)y ∈
S. A function f : Rd → R is convex, if ∀ λ ∈ R,0 ≥ λ ≥ 1 and all x, y ∈ Rd it holds

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

Alternatively a convex function f is a real-valued function whose epigraph is convex. The
epigraph of a function f : Rd → R is given by

epi(f) def= {(x, y) : x ∈ Rd, y ≥ f(x)}.

The function −f is concave is f is convex. Moreover any linear function is convex only if
the quadratic forms arising from matrices A have nonnegative eigenvalues, i.e. AA> � 0.
Convexity may be checked by inspecting derivatives: f ∈ C1 is convex if and only if

∀y : f(y) ≥ f(x) +∇f(x)T (y − x)

Alternatively for f ∈ C2 convexity is equivalent to ∇2f � 0.

An interesting property of convex sets is that they are the intersection of all halfspaces
which contain them.

Figure 5.1: The convex set S is separated from the points not in the set by half-spaces.
The dashed line separates the plane into two halves, one containing x and the other S.

That is, if x 6∈ S, then the Euclidean space can be divided into two halves, one half con-
taining x and the other half containing the convex set. This property suggests that when
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trying to find an optimal point x∗ in S, one could also search over the set of half-spaces
which contain the set, see figure 5.1.

Applying this line of thoughts to optimization, consider the so called primal problem

minx∈X f(x)
subject to fi(x) ≤ 0 j = 1, . . . ,M

where f is the objective, X the feasible set and fi are functional constraints. The La-
grangian for this problem is given by

L(x,w) = f(x) +
M∑
i=1

wifi(x)

with Lagrange multipliers wi. The dual problem is given by maxw≥0 minx∈X L(x,w). The
solution of the dual problem provides a lower bound of the solution of the primal problem
and is always a concave problem, even if the primal is not convex.

Figure 5.2: The set of possible pairs of g(x) and f(x) are shown as the blue region. Left:
Any hyperplane which has normal (w, 1) intersects the y-axis at the point f(x∗) + w> >
g(x∗) where x∗ minimizes L(x,w) with respect to x. Middle: A hyperplane whose y
intercept is equal to the minimum of f(x) on the feasible set. The dual optimal value is
equal to that of the primal. Right: No hyperplane can achieve the primal optimal value.
The discrepancy between the primal and dual optima is called a duality gap. The dual
optimum value is always a lower bound for the primal.

Figure 5.2 illustrates the graphical interpretation of duality: The optimal value is equal to
the minimum crossing point on the y-axis. The dual problem seeks to find the half-space
which contains the image of the problem and which has the greatest intercept with the
f(x) axis.

Finally, if the primal problem is not convex or not strictly feasible, it is often possible to
bound the duality gap between the primal and the dual optimal values from above such
that one can produce sub-optimal solutions to the primal problems whose cost is only a
constant fraction away from optimality. This is the topic of convex relaxations.

Non-convex Quadratically Constrained Quadratic Programming: The central
point is, that the Lagrangian dual of the general non-convex quadratically constrained
quadratic problem is a semidefinite problem. Note that the ”recipe” for relaxation heavily
depends on the structure of the optimization problem [207; 179; 2]. Here we consider a
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non-convex quadratically constrained quadratic program:

minx minx>A0x+ 2b>x+ c

s.t. x>i Aix+ 2b>i + ci ≤ 0 i = 1, . . . ,M.

Due to its generality this problem is NP -hard. However the problem is efficiently solvable
with a unique solution if Ai � 0 for i = 0, . . . ,M .

In order to inquire the Lagrangian dual problem, we make a variable substitution to get
the equivalent optimization:

miny min y>Q0y

s.t. y>i Qiyi ≤ 0 i = 1, . . . ,M
y2

0 = 1

where y = [1 x]> and

Qi =
[
ci b>i
bi Ai

]
Obviously the optimal values of both problems are equal. However the Lagrangian dual
objective of the latter is

L(y, w, t) = y>Q(w, t) + t where
Q(w, t) = Q0 +

∑M
i=1wiQi − t

Minimizing with respect to y, we obtain negative infinity if Q(w, t) has at least one negative
eigenvalue. The dual function q(w, t) is given by

q(w, t) =

{
t Q(w, t) � 0
−∞ otherwise

(5.6)

and hence for the dual problem we get

max t
s.t. Q(w, t) = Q0 +

∑M
i=1wiQi − t � 0

w ≥ 0

This optimization is called a semidefinite program as the search is over the cone Sd of posi-
tive semidefinte matrices. The dual problem can be solved efficiently using IPMs [227; 228].
However for large d this is prohibitive time consuming.

Note that we can split the dual program as

max
w,t

min
y
L(y, w, t) = max

w
max
t

min
y0

min
y1,...,yd

L(y, w, t)

Then we ignore the maximization with respect to w and restrict ourselves to

max
t

min
y0

min
x

[
y0

x

] [
c b>

b Q(t)

] [
y0

x

]
+ t(1− y2

0)
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Performing the minimization with respect to x, we either get negative infinity or, if the
matrix is positive semidefinite, we get the Schur complement of the quadratic form

max
t

min
y0

y2
0(−b>Q(t)−1b+ c− t) + t

Obviously the saddle point of this problem is given when

t = −b>Q(t)−1b+ c

y2
0 = 1.

Since that means

max
t

min
y0

min
x

[
y0

x

] [
c b>

b Q(t)

] [
y0

x

]
+ t(1− y2

0) = min
x

[
1
x

] [
c b>

b Q(t)

] [
1
x

]
we arrive at the conclusion that the dual values with or without the additional ancillary
variable y0 are the same.

Furthermore let us consider the dual of the dual problem. Using Z = yy> and duality
again yields the semidefinite problem

min Tr[Q0Z] s.t.
Tr[QiZ] ≤ 0 i = 1, . . . ,M

Z00 = 1 Z � 0

Recall that the duality gap for semidefinite problems is zero whenever the primal is feasible
and bounded.

Now we can demonstrate that this relaxation can be derived by dropping the non-convex
constraints from the original primal program using the following lemma:

Lemma 1. Let y ∈ Rd. Then Z = yy> if and only if Z is positive semidefinite and has
rank 1.

Proof. Let Z = V DV > be the SVD of Z, i.e. V V > = I with columns vi and D is diagonal.
Suppose that Z is positive semidefinite with rankZ = 1. Then without loss of generality
we can assume that d11 = 0 and zero elsewhere. This implies

Z = d11v1v
>
1 = (

√
d11v1)(

√
d11v1)>

and we can set y =
√
d11v1. The converse is immediate.

Then by means of the identity y>Qy = Tr[Qyy>] we can rewrite the original non-convex
quadratic program as

min Tr[QZ] s.t.
Tr[QiZ] ≤ 0 i = 1, . . . ,M
Z00 = 1 Z � 0 rankZ = 1

The rank constraint is non-convex, so a convex relaxation would be simply to drop it. This
in fact would be the recipe for the semidefinite relaxation in our structural data analysis.
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Convexification: Recall that with Π the matrix I−Π is also idempotent and orthogonal.
Thus we get the identity:

‖(I −Π)Ûc‖22 = cT Û(I −Π)2Ûc = cT Û(I −Π)Ûc = Tr
[
Û(I −Π)ÛX

]
. (5.7)

Hence using (5.7), we consider the positive semidefinite matrix X = ccT ∈ X− with
rankX = 1 as ”new variable” of a relaxed and linearized version of the objective in (5.4).
Here X− denotes the feasible set of the variable X. Moreover we set |X|1

def=
∑L

i,j=1 |Xij |.
Then rewriting the constraints of the original objective in our new terms, we can derive
the semidefinite relaxation in two steps: First due to the introduction of the new vari-
able, we substitute the `1-constraint ‖c‖1 ≤ 1 by |X|1 ≤ 1 and transform ‖Ĝc‖2 ≤ δ into
Tr[ĜXĜ] ≤ δ2.

However the constraint rankX = 1 is non-convex and leads to a computationally hard
problem [2]. In order to get an efficiently solvable problem we simply drop this constraint
such that X ∈ X and X− ⊂ X . The consequence is that for a minimization problem f we
get

min
X∈X−

f(X)) ≤ min
X∈X

f(X))

Hence we come to the linear constrained problem

Π̂ = min
Π

max
X

{
Tr
[
Û(I −Π)ÛX

] ∣∣∣∣ 0 � Π � I, Tr[Π] = m, rankΠ = m;
X � 0, |X|1 ≤ 1, Tr[ĜXĜ] ≤ δ2

}
. (5.8)

Yet the problem (5.8) is still not convex in Π. Therefore we remove the constraint
rankΠ = m and finally arrive at

P̂ = min
P

max
X

{
Tr
[
Û(I − P )ÛX

] ∣∣∣∣ 0 � P � I, Tr[P ] = m,

X � 0, |X|1 ≤ 1, Tr[ĜXĜ] ≤ δ2

}
. (5.9)

Note that P̂ of (5.9) is not a projector matrix. To provide an estimation of the projector
Π∗, one can use the projector Π̂ onto the subspace spanned by m principal eigenvectors
of P̂ .

Finally we have to bound the error of the estimations P̂ and Π̂ of Π∗ that stems from the
semidefinite relaxation. To this end we need an identifiability assumption on the system
{hl} of test functions as follows:

Assumption 9. Suppose that there are vectors c1, ..., cm, m ≤ m ≤ L such that ‖ck‖1 ≤ 1
and Gck = 0, k = 1, ...,m, and non-negative constants µ1, . . . , µm such that

Π∗ �
m∑
k=1

µkUckc
T
kU

T . (5.10)

We denote µ∗ = µ1 + . . .+ µm.

In other words, if Assumption 9 holds, then the projector Π∗ is µ∗ times a convex combi-
nation of rank-one matrices UccTUT where c satisfies the constraints Gc = 0 and ‖c‖1 ≤ 1.
The assumption holds if U spans the whole data space [46].

Theorem 10. Let Assumption 9 hold. Then an optimal solution P̂ of (5.9) satisfies

Tr
[

(I − P̂ )Π∗
]
≤ 4µ∗δ2(λ−1

min(Σ) + 1)2. (5.11)
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Further, if Π̂ is the projector onto the subspace spanned by m principal eigenvectors of P̂ ,
then

‖Π̂−Π∗‖22 ≤
8µ∗δ2(λ−1

min(Σ) + 1)2

1− 4µ∗δ2(λ−1
min(Σ) + 1)2

(5.12)

(here ‖A‖2 =
(∑

i,j A
2
ij

)1/2
=
(
Tr[ATA]

)1/2 is the Frobenius norm of A).

The proof of this theorem can be found in the appendix A. Note that Σ is the covariance
matrix of the original distribution, not the data covariance matrix that is typically bad
conditioned in high dimensions. In the next section we will give an intuitive introduction
to the dual extrapolation method.

5.2 Objectives with Convex Structure

Since we have applied a semidefinite relaxation to the original problem (5.1) used to obtain
”good” coefficients cl for the estimation of vectors β ∈ I, we arrive at a semidefinite and
constrained convex large scale problem. In order to solve this type of problem we aim to
apply the dual extrapolation method [167], that is designed to solve variational inequality
problems (VIP) with monotone operators.

5.2.1 Variational Inequalities

The deterministic gradient algorithm in the dual space from above aims at solving convex-
concave nonlinear optimization problems f : E → R of the so called saddle point form

min
X∈X

max
Y ∈Y

f(X,Y ) (5.13)

where X ,Y ⊆ domf are convex and compact sets from a finite dimensional vector space
E. With domf ⊆ Rd we denote the domain of the objective f where f is continuously
differentiable with Lipschitz continuous gradient, i.e. f ∈ C1,1

L‖·‖(f)(R
d × Rd,R) where

L‖·‖(f) is the Lipschitz constant. It is well known [18] that if f is a Lipschitz-continuous,
convex function, then f has saddle points, i.e. points (x∗, y∗) such that

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗)

for any x ∈ X and y ∈ Y. Hence minimizing a convex function over a convex feasible
set is to find the saddle points of a convex-concave Lagrange function. The existence of
saddle points gives rise to a corresponding pair of convex problems such that the minimax
inequality

max
y∈Y

min
x∈X

f(x, y) ≤ min
x∈X

max
y∈Y

f(x, y)

holds [18]. The left hand side is called the dual problem (D) and the right hand side the
primal problem (P ). Moreover we can define a duality gap by

0 < DG(f) def= max
y∈Y

f(x, y)−min
x∈X

f(x, y) (5.14)

that in terms of the objectives of the primal and dual problem is the sum of the residuals
and thus allows to determine the quality of numerical approximate solutions of (P ) and
(D). Obviously problem (5.9) is of type (5.13).
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In order to explain the ideas behind the dual extrapolation method let us rewrite (5.13)
as

F (x, y) =
[ ∂

∂xf(x, y)
− ∂
∂yf(x, y)

]
(5.15)

where F is a continuous nonlinear operator F : X × Y → E∗. Here E∗ denotes the dual
space of E with norm ‖s‖∗ = maxx∈E{〈s, x〉 : ‖x‖ ≤ 1}. X and Y are compact and
convex feasible sets. In the sequel we use z = [x, y]T and K = X × Y. Recall that the
problem of a (deterministic) variational inequality is to find a so called variational point
z ∈ K such that

VIP(F ,K) : F (z)T (z′ − z) ≤ 0, ∀z ∈ K (5.16)

Since f is convex if and only if F is monotone on K, i.e.

(z − z′)T (F (z)− F (z′)) ≥ 0 ∀z, z′ ∈ K (5.17)

we conclude that a unique solution of (5.13) can be obtained by solving (5.16) if F is
monotone [68]. In turn f in (5.13) is a C1,1-function and convex-concave and we conclude
that F is monotone.

5.2.2 Extragradient Methods

One strategy to solve a VIP(F ,K) with at most linear numerical convergence in d, is to
apply a fixpoint algorithm motivated by a close link between the variational inequality
and the projection: Consider the projection ΠK : E → K defined by

ΠK(z) def= arg minz′∈K‖z′ − z‖ (5.18)

It is well known [68] that for all z, z′ ∈ K the projection inequality holds

(z −ΠK(z))(z′ −ΠK(z)) ≤ 0 (5.19)

Using the identity F ≡ −[(I − F )− I] we obtain from (5.16) the inequality

[(I − F )(z′)− z′]T (z − z′) ≤ 0 (5.20)

Comparing (5.20) with (5.19) leads to the fixpoint equation

z = ΠK((I − F )(z)) (5.21)

The existence of a fixpoint follows by the fixpoint theorem of Brouwer for continuous
operators F [187]. Obviously (5.21) is equivalent to z ∈ ker [I−ΠK◦(1−F )]. Analogously
we conclude for a point u ∈ Rd such that z is its projection on K, u must be an element
of the kernel space of the adjoint operator, i.e.

u = (1− F ) ◦ΠK(u) = (1− F )(z) (5.22)

Since (5.16) is scale invariant a factor γ > 0 can be introduced. Then substituting (5.22)
into (5.21) gives

z = ΠK(z − αF ◦ΠK((1− αF )(z))) (5.23)
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suggesting a numerical prox-type [93] iteration scheme where α can be considered as
stepsize. Using the 2-norm in (5.18) adapts (5.23) to the Euclidean space. The efficiency
of this so called primal extragradient algorithm hinges on the computational complexity
of the Euclidean projection onto the feasible sets [90].

The Non-Euclidean Case: Let E∗ be the dual space of E. Suppose we substitute
in (5.23) the projector by the so called prox-transform Tβ(x, s). Intuitively, Tβ(x, s) tries
to make a step from x in the direction of s penalized by βV (x, y) with β > 0. To be
more precise, let d : K → R be a given distance generating function. Motivated by
the low computational complexity and geometrical considerations to be described in the
spectahedron setup below, a typical choice for d(·) is a Bregman function [28]. We impose
d(·) to be continuous and strongly convex with modulus α > 0 on K with respect to the
norm ‖ · ‖, i.e.

〈∇d(z)−∇d(z′), z − z′〉 ≥ α‖z − z′‖2 ∀z, z′ ∈ K.

As usual let us denote by

d∗K
def= max

x∈K
{〈s, x〉 − d(x) : s ∈ E∗} (5.24)

the conjugate or Fenchel-Legendre-Transformation (FLT) illustrated in figure 5.3 of d(·).
Since d(·) is strongly convex, d∗K(·) is well defined, convex and differentiable at any s ∈
E∗ [187].

Figure 5.3: FLT for a convex (left) and a nonconvex function (right). The hypeplanes
〈s, x〉 − d(x) are always below epi(f). By f∗∗ we denote the biconjugate. Note that from
f(x) ≥ f∗∗(x) it follows that f∗∗(x) is the convex hull of f and f∗(x) is a supporting
hyperplane in x.

Note that for a strict convex function it holds

s = ∂xf(x) x = ∂sf(s) f(x) + f∗(s) = 〈s, x〉

Next we define

K̃ def= {x ∈ K | x = ∇d∗K(s), s ∈ E∗} ⊆ K

and impose d(x) to be differentiable at any x ∈ K̃. Here ∇d(z) denotes the gradient of
d(z). Now the scaled prox-transform Tβ(x, s) : E × E∗ × R+ → K̃ can be introduced in
terms of the distance generating function by

Tβ(x, s) def= arg min
y∈K̃
{
〈s, y − x〉 − βV (x, y)

}
(5.25)
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where V (x, y) is a local distance called prox-function associated with d(·) via

V (x, y) def= d(y)− d(x)− 〈∇d(x), y − x〉 > 0.

β > 0 is the scaling parameter. If d(z) is a Bregman function, V (x, y) is called a Bregman
divergence. Consequently the prox-transform Tβ(x, s) as the Fenchel-Legendre transform
of βV (x, y) is well-defined and a C1,1

L‖·‖(f)-function, since V (x, y) is strongly convex also.
Geometrically, the prox-transform answers the question about the minimal shift down of
the hyperplane s = eTx ∈ Rd which places it below the graph of a given function to be
linear approximated. Since Tβ(x, s) is a contraction [162], replacing ΠK(z) in (5.23) by
Tβ(x, s) suggests a fixpoint iteration scheme also. Let us fix this more formally.

Dual Extrapolation Step: In sum the dual extrapolation algorithm adjusts the update
step of the extragradient-type method to the geometry of the objective induced by the
norm using Bregman functions. The update step Eβ,αk(s) transforms an arbitrary point
s ∈ E∗ by means of Tβ(x, s) into a new point s+:

(x, y, s+) = Eβ,αk(s)⇔


x = Tβ(x, s)
y = Tβ(x,−αkF (x))
s+ = s− αkF (y)

where it is assumed that an arbitrary point x ∈ K is the center of K. Obviously Eβ,αk(s) is
an update of an affine function, which can be considered as a local model of the objective.
In order to describe its convergence properties, let us introduce the convex, restricted
merit function [18] by

ΦD(x) def= max
y∈K
{〈F (y), y − x〉 : V (x, y) < D} (5.26)

where D > 0 is a fixed parameter. (5.26) works as a measure of the quality of any point
x ∈ K. x is an approximate solution of (5.16) on KD

def= {y ∈ K : V (x, y) ≤ D} since on
the one hand it holds ΦD(x∗) = 0 if and only if x∗ solves (5.16). On the other hand if we
define arbitrary search points [166] by

ỹn
def=

1∑n
k=0 αk

n∑
k=0

αkyk (5.27)

with stepsizes αk > 0 we get for smooth variational inequalities the complexity estimate

ΦD(ỹn) ≤
L‖·‖(F )D
α(k + 1)

(5.28)

that is unimprovable due to results from IBCT [160]. Here we have the Lipschitz constant

L‖·‖(F ) = max
z,z′∈K

‖F (z − z′)‖∗
‖z − z′‖

on K and k is the current number of iteration. Moreover ΦD(x) is well defined and convex
on E [167]. The complexity of each step heavily depends on the costs of the objective
evaluation and the computation of Tβ(x, s). In cases of special geometry of the feasible
sets of the problem the latter is cheap.
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The Spectahedron Setup: The configuration of the setup of the optimization problem
has to attend to some conditions. First if K is bounded, the parameter D can be chosen
as

D = max
y∈K

V (x, y)

such that the choice of d(·) influences the performance of the algorithm. Hence given the
feasible set and the norm of the problem the choice of d(·) should minimize D. Second if
f is Lipschitz continuous with L‖·‖1(f) such that the feasible set is the ”full” simplex

∆+
d

def= {x ∈ Rd | 0 ≤ x,
d∑
i=1

xi ≤ 1} (5.29)

then we distance generating function should represent the distribution of the components
of the solution x ∈ Rd on ∆+

d . Hence we choose as Bregman function the entropy distance
function

d(x) =
d∑
i=1

xi ln(xi) (5.30)

If ∀i 0 ≤ xi, this choice covers the always positive and convex Kullback-Leibler divergence
between the uniform distribution and the distribution given by the values of the coefficients
xi. However other choices for d(·) are possible [16]. Consequently [165; 164] it holds

V (x, y) =
d∑
i=1

yi ln
( yi
xi

)
(5.31)

and the ith component of the prox-transform is given [165] by

Tβ(x, s)i =
xi exp(si/β)∑d
j=1 xj exp(sj/β)

(5.32)

This gives rise to the spectahedron setup in the matrix case, where A,B belong to the
space Sd of d × d blockdiagonal matrices equipped with the Frobenius inner product
〈A,B〉F = Tr[AB] and the trace norm ||A||1

def=
∑n

i=1 λi(A). Here λi(A) denotes the ith

singular value of A. The dual matrix norm ||A||∗ is given by the usual spectral norm.
In this case the setup for the extrapolation method on Sd

def= {A ∈ Sd | Tr[A] ≤ 1} is
completed [164; 119] by D = ln d, α = 0.5 and

d(A) =
d∑
i=1

λi(A) ln(λi(A)) (5.33)

is the matrix entropy. The prox-transform in the spectahedron case is obtained from (5.32)
analogously.

We will now describe how to apply the dual extrapolation method in the spectahedron
setup to the task of semi-parametric structural data analysis posed by SNGCA.
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5.2.3 Application to Structural Data Analysis

Observe that due to the eigenvalue decomposition ĜĜ> = ΓΛΓ> the constraint Tr[ĜĜ>X] =
0 claims that X vanishes outside the kernel of ĜĜ>, a subspace that is spanned by the
columns of Γ corresponding to the non-zero eigenvalues of ĜĜ>. Hence we can define a
matrix Q ∈ RL×(L−d) as submatrix of that columns of Γ that corresponds to the vanishing
eigenvalues of ĜĜ>. Moreover we set V̂ = ÛQ and X = QZQ>. Using this definitions
and Z def= {Z ∈ SL−d | Z � 0,Tr[Z] ≤ 1} we get the optimization problem

arg minP∈Parg maxZ∈Z Tr[V̂ >(I − P )V̂ Z] (5.34)

However in order to stabilize the computation against stochastic perturbations we use the
convex [48] reformulation

arg min(P,W )∈P×Warg max(Z,Y )∈Z×Y

{
Tr[V̂ >(I − P )V̂ Z] + rTr[W (QZQ> − Y )]

}
(5.35)

of the primal problem instead of (5.34) where r ≥ L‖U‖2 is the parameter of the quadratic
Moreau-Yosida regularization [138]. Hence (5.35) is always smooth and convex in Z. The
regularization of the dual problem is often done by the augmented Lagrangian technique
[93]. The feasible sets W and Y in (5.35) are given by

W def= {W ∈ SL |W � 0,Tr[W 2] ≤ 1}

Y def= {Y ∈ SL | |Yij |1 ≤ 1}

In the sequel we will denote the objective in (5.35) as f(P,Z,W, Y ) also. It can be shown
that (5.34) can be reduced to (5.35) in the sense of the following lemma.

Lemma 2. Let (P̂ , Ŵ , Ẑ, Ŷ ) be a feasible δ-solution to (5.35), i.e. f(P̂ , Ŵ )−f(Ẑ, Ŷ ) ≤ δ
where

f(P̂ , Ŵ ) def= max
(Z,Y )∈Z×Y

f(P,Z,W, Y ) (5.36)

f(Ẑ, Ŷ ) def= min
(P,W )∈P×W

f(P,Z,W, Y ) (5.37)

Then the pair (P̂ , Z̃) is a feasible δ-solution to the problem (5.34), i.e. it holds that
g(P̂ )− g(Ẑ) ≤ δ where

g(P ) def= max
X∈X ,Tr[Ĝ>ĜX]≤ε2

Tr[Û>(I − P )ÛX] (5.38)

g(X) def= min
P∈P,Tr[Ĝ>ĜX]≤ε2

Tr[Û>(I − P )ÛX] (5.39)

The proof of this lemma follows directly from (5.35) and the definitions (5.36), (5.37),
(5.38) and (5.39). Writing (5.9) as (5.35) is motivated by the fact that all the feasible
sets are convex and admit evident distance generating functions d(·) such that (5.35)
conforms to the required spectahedron setup for the dual extrapolation method.

5.3 Algorithmic Procedures

We will see in this section, that the total numerical effort of the new approach is given by
O(LN2 + L logL) where every computation of the prox-transform costs O(L3).



5.3. ALGORITHMIC PROCEDURES 75

Recall that the feasible sets P, Z and Y induce the spectahedron setup whereas in the
case of computing the prox-transform (5.25) for the weight matrix W ∈ W the Euclidean
unit ball setup is appropriate. In the sequel we will denote them as standard setups.

The prox-transform of Π: Using the matrix entropy as distance generating function,
we have to solve

TβΠ
(Π, S) = arg maxY ∈P

{
Tr[S(Y −Π)]− βΠTr

[Y
m

(
log

Y

m
− log

Π
m

)]}

= arg maxY ∈P

{
Tr
[
Y
(
S +

βΠ

m
log

Π
m

)]
− βΠTr

[Y
m

log
Y

m

]}

Since S is a symmetric matrix, we can compute the eigenvalue decomposition

S +
βΠ

m
log

Π
m

= ΓΛΓ> (5.40)

with Λ def= diag(λ1, . . . , λL). Substituting (5.40) into the prox-transform leads to the
equivalent problem

y∗ = arg max0≤y≤1,
∑
l yl≤mλ

>y − βΠ

m

L∑
l=1

yl log
yl
m

(5.41)

such that TβΠ
(Π, S) = Γdiag(y∗)Γ>. Using the Lagrangian dual of (5.41) we can obtain

its solution componentwise from

y∗l = exp
(
β−1

Π sl − w
)
∧ 1 (5.42)

where the Lagrange multiplier w is set to get
∑

l y
∗
l = m. This problem can be solved by

a bisection method [18] in w.

The prox-transform of Z: Using the analogous argument as above we have to consider
the optimization problem

y∗ = arg max0≤y≤1,
∑
l yl≤1λ

>y − βZ
L∑
l=1

yl log yl

In this case the prox-transform is analytically given [16] for each component by

y∗l =
exp( slβZ )∑
l exp( slβZ )

(5.43)

such that TβZ (Z, S) = Γdiag(y∗)Γ>. Here Γ is obtained from the solution of the eigenvalue
problem S + βZ logZ = ΓΛΓ>.

The prox-transform of W : In the Euclidean case the distance-generating function is
given by d(X) = 0.5Tr[X>X]. Consequently we have to solve

TβW (W,S) = arg maxTr[Y ]≤1

{
Tr[S(Y −W )]− βW

2
Tr[(Y −W )>(Y −W )]

}
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Using the derivative of the trace the solution is given by

Y ∗ =

W + β−1
W S if ‖W + β−1

W S‖2 ≤ 1
W+β−1

W S

‖W+β−1
W S‖2

otherwise.
(5.44)

The prox-transform of Y : Again the distance generating function is the entropy.
Since the constraint ‖Y ‖1 ≤ 1 is not smooth, we set Y = U − Y with 0 ≤ Vij , Uij for all
components. The consequence of this representation is, that we have to solve the problem

TβY (Y, S) = arg max0≤Uij ,Vij≤1

{
Tr[S(U − V )]− βY

∑
ij

[
Uij log

Uij
U0
ij

+ Vij log
Vij
V 0
ij

]}

To this end we set

aij = Uij exp(β−1
Y Sij) bij = Vij exp(β−1

Y Sij)

Then in some sense the matrices U and V can be propagated inside the spectahedron by

U∗ij =
aij∑

ij aij + bij
V ∗ij =

bij∑
ij aij + bij

(5.45)

Finally we set Y ∗ = U∗ − V ∗. Now we are to describe all the details of the numerical
implementation.

Initialization: Let ε be numerical accuracy. As initial values of the variables we choose
P0 = m

d I, Z0 = 1
L
I, Uij = Vij = (2L)−1 and W = 0, where 0 ∈ RL×L and L = L− d. For

the step size we choose γ0 = γ1 = 1. P = 0, W = 0, Z = 0, Y = 0 are set as centers of the
feasible sets. Set κup = 1.4 and κdown = 0.5. The value m∗ can be estimated by looking
how many eigenvalues of P̂ in algorithm 7 are significant. Finally we set dP = log d,
dW = 1, dZ = log(L− d) and dY = log(2L2).

Stepsize and stopping rule: In comparison to subgradient schemes here it is not
necessary for convergence that the stepsizes αk > 0 build up a divergent step size series,
such that αk → 0 for k → ∞ and

∑∞
k=0 αk = ∞ [168]. However the accuracy heavily

depends on the choice of αk > 0. Let x ∈ X be the prox center, sk ∈ E∗ the corresponding
gradient in xk in the kth iteration and s++

k the extrapolated gradient. Moreover let

Ψβ(z, s) def= max
x∈KD

{
〈s, x− z〉 − βV (z, x)

}
τk(D) def= max

x∈KD

{ k∑
i=1

αi〈F (yi), yi − x〉
}

Then it is shown in [167] that for smooth variational problems, it holds that

τk(D) =
k∑
i=1

αi〈F (yi), yi − x〉+ max
x∈KD

{
−

k∑
i=1

αi〈F (yi), x− x〉
}

max
x∈KD

{
〈s, x− x〉

}
≤ βD + Ψβ(x, s) (5.46)
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For the restricted merit function ΦD(x) defined in (5.26) this means

ΦD(ỹk) ≤ τk(D)(
k∑
i=1

αi)−1 (5.47)

(5.46) and (5.47) can be used to justify a stepsize strategy as well as a termination criterion
as follows: Suppose we want to test the current stepsize αk. Depending on the setup of
the variable of the objective we can compute in the kth iteration

ζk(x) def= αk〈s++
k , xk − x0〉 − βV (s++

k , x0)

for every primal variable. Hence if ζk ≤ ζ0−τk with ζk = ζk(P )+ζk(Z)+ζk(W )+ζk(Y ) the
stepsize αk is acceptable small. Moreover due to (5.48) and (5.47) a reasonable termination
criterion is given by

ζk + d+
∑k

i=1 τi(D)∑k
i=1 αi

≤ ε

where d = βPdP + βWdW + βZdZ + βY dY .

Choice of scaling parameters: According to (5.46) and (5.47) we are interested in
the lowest upper bound for the merit function. Hence in order to compute the scaling
parameters of the prox-transform βP , βZ , βY and βW we have to solve to following problem:

min {βPdP + βWdW + βZdZ + βY dY } s.t. (5.48)
βPβZ ≥ K12, βWβY ≥ K24, βWβZ ≥ K23

Depending to the standard setups [119] of the extrapolation method one finds [167] for
the constants K12, K24 and K23:

K13 = 4
L2
‖·‖(f(P,Z))

αPαZ
, L‖·‖(f(P,Z)) = λmax(V >V )

K23 = 4
L2
‖·‖(f(W,Z))

αWαZ
, L‖·‖(f(W,Z)) = r

K24 = 4
L2
‖·‖(f(W,Y ))

αWαY
, L‖·‖(f(W,Y )) = r

αP = 1
2m2 , αP = 0.5, αY = 0.5

The first two constraints are always active, since the scaling parameter have to be positive.
Consequently we distinguish two cases: When all constraints are active and the solution
of (5.48) is given by

β2
W =

K23(K23dZ +K24dY )
K13dP

, β2
W =

K23(K23dZ +K24dY )
K13dP

βP =
K13

dZ
, βY =

K24

dW

But if βWβZ ≥ K23 it holds:

β2
P =

K13dZ
dP

, β2
W =

K24dY
W

, β2
Z =

K13dP
dZ

, β2
Y =

K24dW
dY

Using these parameter values and initial guesses for the primal variables we come to the
following algorithm:
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Algorithm 7: Adaptive Dual Extrapolation Method in Spectahedron Setup
Data: m, ε, κup, κdown
Result: P̂ , Ŵ , Ŷ , Ẑ
Initialization:
Choose the primal approximate solution variables Pk=0 ∈ P, Wk=0 ∈ W,
Yk=0 ∈ Y, Zk=0 ∈ Z as the prox centers of the corresponding feasible
sets of the objective. Let k = 0 be the iteration index.
Compute the scaling parameter β = (βP , βw, βY , βZ) according to (5.48).
Chose a stepsize α0 and a regularization parameter r according to (5.35).
Consider the objective in (5.35) and denote with

sP0

def= α0∇P f(P0,W0, Y0, Z0) sW0

def= α0∇W f(P0,W0, Y0, Z0)

sY0

def= −α0∇Y f(P0,W0, Y0, Z0) sZ0

def= −α0∇Zf(P0,W0, Y0, Z0)

Compute the gradient S(P0,W0, Y0, Z0) = (sP0 , sW0 , sY0 , sZ0)T .
According to (5.41), (5.43), (5.44) and (5.45) compute the prox-transform

(P+
0 ,W

+
0 , Y

+
0 , Z+

0 ) = Tβ(S(P0,W0, Y0, Z0), (P0,W0, Y0, Z0)).

and set P = P+
0 , W = W+

0 , Y = Y +
0 , Z = Z+

0 . Moreover let s denote
s = −α1S(P0,W0, Y0, Z0). Finally, for later use we set

ζ = (P+
0 ,W

+
0 , Y

+
0 , Z+

0 )[s− β log(P+
0 ,W

+
0 , Y

+
0 , Z+

0 )T ]− (P0,W0, Y0, Z0)s.

while 1 do
Evaluate sk = S(P,W, Y, Z) and set Pk = P , Wk = W , Yk = Y , Zk = Z.
while 1 do

Compute the corresponding mirror points

(P+,W+, Y +, Z+) = Tβ(−αksk, (Pk,Wk, Yk, Zk)).

Evaluate s+
k = S(P+,W+, Y +, Z+) and make the extrapolation step

s++
k = s− αks+

k .

Renew the mirror points (P,W, Y, Z) = Tβ(s++
k , (P0,W0, Y0, Z0)).

To control the size of αk, compute

ζk = (P,W, Y, Z)[s− β log(P,W, Y, Z)T ]− (P0,W0, Y0, Z0)s0

τk = αk(P+ − P ∗0 ,W+ −W ∗0 , Y +
0 − Y

+, Z∗0 − Z+)s+
k .

if ζk ≤ ζ − τk then
Update s = s++

k , αk+1 = κupαk, ζ = ζk and
terminate the inner while-loop.

else
αk+1 = κdownαk

end
end
Set ck = (

∑k
i=1 αi)

−1 and tk =
∑k

i=1 τi.
if ck(ζk + (dP , dW , dU , dY )βT + tk) ≤ ε then

terminate the outer while-loop.
end
Set k = k + 1.

end
Averaging: Set (P̂ , Ŵ , Ŷ , Ẑ) = ck

∑k
i=1 αi(Pi,Wi, Yi, Zi)
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The number of iterations required [167] in algorithm 7 to archive (5.28) is 1+cLDαδ b. In
sum the complete ”semidefinite programming”-approach has the form:

Algorithm 8: full procedure of unified approach to SNGCA
Data: {Xi}Ni=1,L,m
Result: Î
Normalization: The data (Xi)Ni=1 are re-centered. Let σ = (σ1, . . . σd) be the
standard deviations of the components of Xi . Then Yi = diag(σ−1)Xi denotes the
componentwise empirically normalized data.

Main Procedure:

Directional Sampling: The components of of ω(k)
l are randomly chosen from

U[−1,1] . Then ω
(k)
l are normalized to unit length.

Linear Estimation Procedure:
for l=1 to L do

η̂
(k)
l = 1

N

∑N
i=1∇hω(k)

l

(Yi)

α̂
(k)
l = 1

N

∑N
i=1 Yihω(k)

l

(Yi)

end

Solve the relaxed and regularized semi-definite optimization problem:

arg min(P,W )∈P×Warg max(Z,Y )∈Z×Y

[
Tr[V̂ >(I − P )V̂ Z] + rTr[W (QZQ> − Y )]

]

stated in (5.35) by the dual extrapolation method.

Dimension Reduction:
Choose the relevant columns of P̂ according to some criterion for NonGaussianity.

In this form the total numerical complexity of the unified approach to SNGCA is O(N2L)
for the linear estimation procedure and O(L logL) for optimization step. The numerical
convergence of the algorithm is O(δ−2L‖·‖(f)2 logL).

5.4 Numerical Simulations

The aim of this section is to compare the different approaches to SNGCA with other
statistical methods of dimension reduction. To this end we will discuss the well known
test densities from section 4.5 in order to demonstrate the progress that is made with the
”semidefinite programming”-approach to SNGCA. To this end by SNGCA(2) we refer to
the latter and by SNGCA(1) to the ”convex projection”-approach .

Let us compare SNGCA(2) with PP and SNGCA(1) using the test data sets from above
with respect to the estimation error

E(Î, I) def= ‖ΠÎ −ΠI‖2F . (5.49)

where ‖·‖F is the Frobenius norm. Each simulation is repeated 100 times. All simulations
are done with the index ’tanh’. In the experiments the error measure E(Î, I) is used only
to determine the final estimation error. All simulations other than whose with respect to
model (C) are computed with a componentwise pre-whitening.
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Since the optimizer used in PP tends to trap in local a minimum in each of the 100 simula-
tions, PP is 10 times restarted with random starting points. The best result with respect
to (5.49) is reported as the result of each PP-simulation. In all simulations the number
of non-Gaussian dimensions is apriori given. In the next figure 5.4 we present boxplots of
the error (5.49) of the methods PP, SNGCA(1) and SNGCA(2).

PP(tanh) SNGCA(1) SNGCA(2)
0

0.005

0.01

0.015

0.02

0.025

0.03

PP(tanh) SNGCA(1) SNGCA(2)
0

0.05

0.1

0.15

(A) (B)

PP(tanh) SNGCA(1) SNGCA(2)
0

0.01

0.02

0.03

0.04

PP(tanh) SNGCA(1) SNGCA(2)
0

0.005

0.01

0.015

0.02

0.025

(C) (D)

PP(tanh) SNGCA(1) SNGCA(2)

10
−5

10
−4

10
−3

10
−2

(E)

Figure 5.4: Performance comparison in 10 dimensions of PP and SNGCA(1) versus
SNGCA(2) (with respect to the error criterion E(Î, I) ) using the index ’tanh’. The
doted line denotes the mean, the solid lines the variance of (5.49).

Concerning the results of SNGCA(2) we observe a slightly inferior performance compared
to SNGCA(1). This is not surprisingly since gradient-type methods are well known to
archive fast progress during the first iterations before they start jamming [93]. Since the
size of the directional sampling is constant the lower variance in the case of model (B)
and (E) is due to the fact, that the corresponding non-Gaussian components show a big-
ger degree of deviation from normality and hence are much easier to detect for SNGCA(2).
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Figure 5.5: Results with respect to the test densities from section 4.5 in terms of E(Î, I)
with deviations of Gaussian components following a geometrical progression on [10−r, 10r]
where r is the parameter on the abscissa) .

Now let us switch to the question of robustness of the estimation procedure with respect
to a bad conditioning of the covariance matrix Σ of the data. In figure 5.5 we consider the
same test data sets as above. The non-Gaussian coordinates always have variance unity,
but the standard deviation of the 8 Gaussian dimensions now follows the geometrical pro-
gression 10−r, 10−r+2r/7, . . . , 10r where r = 1, . . . , 8. Again we apply a componentwise
whitening procedure to the data from the models (A), (B), (D), (E). We observe that the
condition of the covariance matrix heavily influences the estimation error for the methods
PP(tanh) but not for SNGCA(1) and SNGCA(2). The variants of SNGCA are indepen-
dent of differences in the noise variance along different direction in most cases. Moreover
SNGCA(2) gives a better result in case of the uniform components to the data density
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than SNGCA(1).

The next figure 5.6 compares the behavior of SNGCA compared with PP and SNGCA as
the number of standard and homogeneous Gaussian dimensions increases.
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Figure 5.6: Results with respect to the test densities from section 4.5 in terms of E(Î, I)
with increasing number of gaussian components.

As described above we use the test models with 2-dimensional non-Gaussian components
with variance unity. We plot the mean of errors E(Î, I) over 100 simulations with respect
to the test models (A) to (E). Again concerning the mean of errors E(Î, I) of PP we
find a transition in the error criterion to a failure mode for the test models (A), (C) and
(D) between d = 30 and d = 40 and between d = 20 and d = 30 respectively. For
the test models (B), and (E) we found a relative continuous increase in E(Î, I) . For the
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methods SNGCA(1) the methods fails in case of model (A) after 10 dimensions and in
case of model (B) after 35 dimensions. However SNGCA(2) is successful for all kinds of
deviations from normality up to 50 dimensions. Moreover there is only a slight increase
of the error function towards higher dimensions.

The results of the numerical simulation indicate that the new ”semidefinite programming”-
approach to SNGCA archives to exploit the information obtained from the test densities
much better that other approaches to NonGaussian Component Analysis. Moreover the
new algorithm gives promising results in comparison to other linear projective feature ex-
traction methods.

In the final chapter we will apply the ”semidefinite programming”-approach to SNGCA
as a preprocessing step to the metastability analysis of large biomolecules.
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Chapter 6

A Geometric Approach to
Metastability Analysis

Introduction: In many cases one can observe that biological active molecules M exhibit
different large geometric structures G on a length scale much larger than the diameter of
the atoms. However the existence of G do not imply a set of fixed positions of the atoms
of M. Rather one can observe a local flexibility in the bonds between the atoms such that
they exhibit local random vibrations around a stable geometric mean position. If there are
more than only one large scale structures G with life times much larger that the time scales
of the local vibrations of the atoms, then we will call G of M metastable [197]. Therefore
the term conformation has dynamical provenance since we refer to a set of geometrical
structures as variations of the same global configuration of M. This configuration can be
identified as connected subsets of state space. With G we do not refer to a local minimum
of some energy functional of M or the corresponding thermodynamical ensemble used in
molecular dynamics (MD) [5] to describe M. Hence conformations represent all molecules
belonging the same large scale geometric structure. To find metastable conformations is
thus an aggregation problem with respect to molecular states into conformational states
that can be considered as clustering problem. We illustrate conformational changes in
figure 6.1.

Figure 6.1: Changes of geometric large scale configurations of a biological active molecule
with life times much longer than the time scale of the internal interactions between the
atoms and the random perturbations of the molecules with the solvent visualized by
AMIRA [214].
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The observation from above motivates the separation of different time scales in the de-
scription of the dynamics of M as well as the decomposition of the corresponding phase
space into domains, that can not be defined in terms of some potential energy. Concerning
the multiscales the shorter time scales typically range from femto- to picoseconds, while
the larger time scale can be found on nanoseconds to seconds [64]. Hence transitions be-
tween different conformations of a molecule are rare statistical events on the macroscopic
length scale compared to the fluctuations within each conformation on the microscopic
scale. With respect to the phase space decomposition a paradigmatic concept to visualize
this is the so called Ramachandran plot [182]. In the next exposure we mainly follow [155].

Dieder-Angles: The general motive to explain the folding process of M goes back to
the fact that the geometrical large scale structure of M is essential for its biological func-
tion, i.e. the interaction of M with the physiological environment [71]. As examples for
biomolecules we primarily consider in this thesis peptides built up from so-called proteino-
genic amino acids.

Recall that peptides are built up from an almost periodic sequence of proteinogenic amino
acids, that itself consist in an amino group linked to a carboxyl group via an α-carbon
Cα. Cα has a broad variety of side groups ranging from a H-atom over a CH3-group to
other more complex residuals determining the type of the amino acid. Frequently one
amino- and one carboxyl-group bound electronically such that a so-called peptide bond
emerge. Remarkably a peptide bond is planar an hence stable against rotations. If we
call the repeated Cα −C −N -chain connecting the amino acids in a peptide the backbone
of a peptide, we can conclude that the only degrees of freedom for each adjacent pair of
amino acids along the backbone of M are the Φ-angle, is identified by the dihedral angle
C − N − Cα − C, and the Ψ-angle located along N − Cα − C − N . For an analysis the
macroscopic flipping process between different conformations this results in a description
of conformational changes in terms of a sequence of (Φ,Ψ)-pairs along the backbone of
M [71]. Figure 6.2 illustrates the dieder-angles (Φ,Ψ) of the backbone.

Figure 6.2: Since some of the bonds in M are a planar and thus stiff peptid bond, the
rotational degrees of freedom (Φ,Ψ) allow to describe the macroscopic folding process of
a biomolecule as a change of the geometric configuration of the backbone of M.

However due to steric interactions and the emergence of H-bond bridging between differ-
ent peptide bond units, (Φ,Ψ) are not completely free for a given M. Consequently there
are ”allowed” and ”forbidden” domains for M in the Ramachandran plane [183], which
are similar for most of the amino acids. In other words the Ramachandran plane contain
the most favorable energetic domains corresponding to the secondary structures of M.
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In the next section we summarize the state-of-the-art explanation of the origination of
conformational changes and of the dynamics on the smaller length scales. The latter one
involves the introduction of concepts central to MD-simulations.

6.1 Conformational Dynamics of Biomolecular Systems

Molecular Dynamics: Classical MD-models describe M by means of coupled ordinary
differential equations for the N atoms [5]. The well known equations of motion have the
following general form:

d

dt
q(t) = M−1p(t),

d

dt
p(t) = −∇V (q(t)), (6.1)

where (q, p) ∈ R3N × R3N and (q, p) are the atomic positions and momenta, respectively.
M ∈ R3N×3N denotes the (assumed diagonal) mass matrix and V : Rd → R, q 7→ V (q) is a
differentiable potential energy function describing all the interactions between the atoms.
The state space of the system M is Γ ⊂ R6N . The Hamiltonian function

H(q, p) =
1
2
pTM−1p + V (q), (6.2)

denotes the internal energy of the system in state (q, p) that is the total energy of the
system and preserved by the dynamics in energetically closed systems.

However if the perspective on conformations in the above section is correct, a symplec-
tic [136; 137] time integrator may take infinite long time to propagate a single molecule
to every state in Γ that is allowed with respect to the physical constraints as constant
volume, constant temperature and constant number of particles. Fortunately the hypoth-
esis of ergodicity [150], that states an equivalence of time and particle averaging, allows
to consider sets of copies of a molecules instead of single molecules, where to each copy
a unique physical microstate is assigned. The macroscopic observable, representing the
macroscopic properties, are obtained by averaging over the complete ensemble of systems.
Although due to energy conservation, a single solution of the Hamiltonian system (6.1)
can never be ergodic (wrt. the canonical measure), the equivalence in the thermodynam-
ical limit is due to the fact that using Hamiltonian systems with randomized momenta
allows to sample the state space Γ appropriately with respect to some prescribed statisti-
cal distribution. Consequently we can restrict ourselves to the consideration of the time
evolution of ensembles, represented by a probability distribution of initial states.

To this end let Φt denote the flow in Γ associated with the Hamiltonian, such that the
solution xt = (qt, pt) for the initial value x0 = (q0, p0) is given by xt = Φtx0. Now consider
an ensemble at constant temperature T with a constant number of molecules N and
constant volume. Then the time evolution of the initial canonical ensemble is governed
by the dynamics of the single molecules [196]. Then due to Liouville’s Theorem implying
conservation of probability, we get in terms of the ensemble:

ρ(x, t) = (ρ0 ◦ Φ−t)(x) , with ρ0 = ρ(·, 0) . (6.3)
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The prominent case of a canonical density is the Boltzmann density

ρcan(x) def=
1
Z

exp(−βH(x)) (6.4)

Z
def=

∫
Γ

exp(−βH(x))dx , (6.5)

where β def= 1/kBT is the inverse temperature and kB the Boltzmann constant. Recall that
the particle dynamics and the ensemble dynamics are equivalent [49]. The time evolution
of a probability density is governed by the Fokker-Planck equation.

The Langevin Equation: Unfortunately there are no general conditions to ensure the
quality of the sampling of Γ, while the ergodicity of deterministic Hamiltonian systems is
preserved [109; 94] in the simulations. Hence Langevin dynamics, arising from a stochas-
tic modelling of M, is a promising alternative to describe the dynamics of M under given
physical constraints from above, since it also realizes a Boltzmann density [39].

A Langevin system [186] includes stochastic interaction with the environment in Γ:

d

dt
q = M−1p

d

dt
p = −λqV (q)− γM−1p+ σẆt (6.6)

It can be regarded as an open mechanical system where the stochastic term mimics the
stimulation from the environment. In (6.6) γ > 0 denotes a friction constant and Fext =
σẆt is the external forcing given by a 3N -dimensional Brownian motion Wt. The noise
σ models the influence of a surrounding heat bath and the friction Ẇt is chosen such
as to counterbalance the energy fluctuations due to the noise. Recall that the Langevin
dynamics is ergodic with respect to the invariant equilibrium (probability) measure

dν(q, p) =
1
Z

exp(−βH(q, p))dqdp,

if the fluctuation-dissipation relation β = 2γσ−2 holds [14].

Since the Langevin system is given by a linear stochastic equation (SDE), (6.6) has a
unique and continuous solution, if the Brownian motion has finite second moments [9].
Furthermore suppose that a linear SDE

dz(t) = A(t)z(t)dt+ a(t)dt+ Σ(t)dW (t), (6.7)

with drift coefficient A : Rd×[t0, T ]→ Rd and diffusion coefficient Σ : Rd×[t0, T ]→ Rd×m

has, for every initial value z(t0) = c independent of the increments W (t)−W (t0), t0 ≤ t,
a unique solution in [t0, T ] provided that A(t), a(t),Σ(t) are measurable and bounded on
[t0, T ]. Then the solution is a Markov process

z(t) = Ψ(t)
(
c+

∫ t

t0

Ψ(s)−1a(s)ds+
∫ t

t0

Ψ(s)−1Σ(s)dW (s)
)
,

where Ψ(t) is the solution of d
dtΨ(t) = A(t)Ψ(t) with Ψ(t0) = I [174]. Recall that a

(time-continuous) stochastic process {X(t), 0 ≤ t} with state space Γ is called a Markov
process [29] if for any 0 < t0 < · · · < t< ≤ tk+1 and any j, i1, · · · , ik ∈ Γ it holds

IP (X(tk+1) = j|X(tk) = ik, · · · , X(t1) = i1) = IP (X(tk+1) = j|X(tk) = ik). (6.8)
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A time-continuous Markov process is called homogeneous if the right hand side of (6.8)
only depends on the increments tk+1 − tk. A Markov process with discrete state space is
called a Markov jump process. More technical details about the generation of the time
series and the analysis of Langevin systems can be found in [201; 108; 198].

Consequently we finally arrive at the following picture of the dynamics of the conforma-
tional changes of M.

Conformational Changes: Concerning the analysis of large molecular systems mod-
elled as a Langevin- or Smoluchovski-system, the free energy landscape of such thermody-
namical systems decompose into particulary deep wells each containing many local min-
ima [177; 72]. These wells are typically separated by relatively large barriers from each
other measured on the scale of the thermal energy kbT . Deep wells represent different
almost invariant geometrical large scale structures [197]. In the configuration space the
conformations are represented by clusters of stationary distributed points generated by a
homogenous and time-reversible Markovian process. Since the shape of the free energy
landscape and hence the canonical density are unknown, the essential degrees of freedom,
in which the rare conformational changes occur, are sought. Due to the existence of ”for-
bidden” domains for M in the Ramachandran plane, we expect the interactions internal
to M to be confined to a tiny fraction of the full high-dimensional configuration space [6].
In particular the macroscopic dynamics is assumed to be a Markov jump process, hopping
between the metastable sets of the state space while the microscopic dynamics within
these sets mixes on much shorter time scales [201].

6.2 Hidden Markov Models with Gaussian Densities

The most important outcomes of the last sections are the existence of different time scales
in the dynamics of observed stochastic process {X(t), 0 ≤ t} and that {X(t), 0 ≤ t} is
a discrete and reversible Markovian process associated with M. In order to develop an
almost geometrical approach to the metastability analyis of highdimensional biomolecules
both results can be represented in the well known technique of parametric Hidden-Markov
Models (HMM) [181].

Hidden-Markov Models: In comparison to other approaches to metastability (c.f. [234;
52]) HMMs abstain from a decomposition of the observation space. Instead it favors to
fit a hidden and discrete Markovian stochastic process {Yt, 0 ≤ t} switching between dif-
ferent conformations to the observable data by means of optimizing a high dimensional
likelihood function. In particular the discrete observations {Xt, 0 ≤ t} depend on the
current conformation, that correspond to a special parameterization of an assumed local
model. The fitting itself by means of maximum likelihood (ML) estimation via expectation-
maximization (EM) algorithm [51] and Viterbi-algorithm [231] is a little bit expensive and
takes O(N(M2 + Md2) + Md3) operations, where M is the number of model parame-
ter [181].

Formally a HMM is given by H = {Γ,Rd,P, ρ, IP0} where

IP0 =
(
IP (Yt=1 = 1), . . . , IP (Yt=1 = n)

)
is the initial state distribution and

P =
(
IP (Yt+1 = j|Yt = i)

)
ij
∈ Rn × Rn (6.9)
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a transition matrix of the hidden Markov process, Γ = {1, 2, . . . , j, . . . , n} is the finite
state space of the hidden model with output densities ρ = (ρ1, ρ2, . . . , ρn). Algorithmically
the computation of a HMM means parameter estimation of the output densities in the
ML-sense in high dimensional parameter spaces. In this thesis we focus on HMMs with
Gaussian output [143].

Parameter Estimation: In order to identify algorithmically the parameters of a HMM
a nonlinear global optimization problem in small dimensions must be solved [70]: In the
kth step of the optimization process an EM-algorithm based on dynamical programming
techniques [21] can determine the optimal parameters θ∗ via maximizing the expectation

IEθ,θk = IE[log p(X, j|θ)|X, θk]

where p(X, j|θ) is the density of IP (X, j|θ) wrt. the hidden states. This can be rewritten
as a sum over all hidden sequences [143]:

IEθ,θk =
n∑
j=1

p(X, j|θk) log p(X, j|θ)

In general the expectation-step of the EM-algorithm evaluates the expectation based on
the given parameter estimate θk, while the maximization-step determines the refined model
parameter set by the solution of

θk+1 = arg maxθIEθ,θk .

Moreover if the complex system is ergodic, the estimators corresponding to a global max-
imum converge weakly to their estimated functions [99]. However the EM-algorithm is if
only a local optimization method such that one has to provide an appropriate initial guess
for the model parameters.

Next we have to determine the optimal sequence j∗ of hidden metastable states for optimal
parameters by means of the well-known Viterbi algorithm, which exploits again dynamic
programming techniques to resolve in a recursive manner the optimization problem

j∗ = arg maxjp(X, j|θ∗)

The obtained optimal sequence j∗ is called the Viterbi path. The algorithmic complexity
of the Viterbi algorithm is O(n2N) [181].

Initialization of EM-Algorithm: In numerical simulations it turns out that the con-
vergence of the EM-algorithm is dominated by the initial Viterbi path. Since we only
aim to find a HMM model for the reduced data, we can use a non-parametric clustering
algorithm to generate an appropriate guess for the initial Viterbi path. In the thesis we
use an adaptive mean-shift clustering algorithm [35; 206]. The mean shift algorithm does
not require prior knowledge of the number of clusters and does not constrain appropriate
geometric shapes of the clusters. The basic idea here is to use radially symmetric kernels
k(x) for estimating the multivariate kernel density with window radius h according to

ρ(x) =
O(1)
Nhd

N∑
i=1

k(
X −Xi

h
)
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The modes of the density function are located by means of ∇ρ(x) = 0 with

∇ρ(x)) =
2O(1)
Nhd+2

[
N∑
i=1

−k′
(
‖X −Xi

h
‖2
)][∑N

i=1−xik′
(
‖X−Xih ‖2

)
∑N

i=1−k′
(
‖X−Xih ‖2

) − x].
The second brackets contain the mean shift. The mean shift vector always points toward
the direction of the maximum increase in the density. The mean shift procedure is obtained
by successive computation of the mean shift vector and then translation of the window by

x(k+1) = x(k) +mh(x(k))

The mean shift mode finding process is illustrated in figure 6.3:

Figure 6.3: Illustration of non-parametric mean-shift mode finding process for component-
wise normalized data in R2. The blue circles are the windows of the algorithm. The black
stars are the centers od the windows.

In numerical simulations it turns out, that for componentwise normalized data the band-
width h can be set to h = 0.6 for all data sets. A wrong choice of h would change the
convergence if the clustering. In particular it leads to a wrong number of clusters.

Viterbi clustering: However the parameter fitting step requires the specification of
the number M of hidden states, which, whenever the hidden states should be metastable
states, is in general not known apriori. One practical way to overcome this problem is
to assume a large number of hidden states in the HMM-step of the analysis. Then one
performs the parameter fitting as described and conduct a further aggregation of the
estimated transition matrix based on the resulting Viterbi path. This can be done by
means of the set-oriented Perron Cluster Cluster Analysis (PCCA) (c.f. [107] and the
references therein): A normalization of the transition matrix P introduced in (6.9) yields
a stochastic (symmetric) matrix whose spectral properties can be used to identify the
conformations as metastable sets of states of the obtained (reversible, homogenous and
aperiodic) Markov chain. Note that P has to be estimated from the (reduced) data
as proposed in [98]. Then the number of metastable states is given by the number of
eigenvalues close to 1 that are separated from the rest of the (perturbed) spectrum by
a small gap. This method is due to the fact that aggregating the hidden states into
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conformation states also allows to aggregate the clusters into conformations. However the
numerical complexity of this PCCA-step in one dimension is O(n3) where n is the number
of hidden states of the dynamical system.

6.3 Reduced Conformational Dynamics

In this section we explain the geometrical approach to metastability analysis and conduct
some numerical simulations. Up to now we have described all the algorithmic tools addi-
tional to the SDP-approach of SNGCA that will be used to analyze the essential dynamics
of high dimensional biomolecules. It is obvious that all tools are geometric except PCCA
required to determine the number of (hidden) conformations realized in a given data set.
Moreover the only apriori knowledge about the data used in our tools is the intrinsic di-
mension m of the SNGCA target space. It remains to try out the tools for extracting a
multimodal component from a high dimensional data density and to compare them with
other methods.

6.3.1 Clustering of Highdimensional Data

The popularity of the geometric clustering methods like e.g. K-means [148] is due to its
low computational complexity of O(NkKd), where K is the number of clusters and k the
number of K-means-iterations. While e.g. K-means often produces reasonable results in
small dimensions, in high dimensions it has difficulties with outliers: Points which do not
belong to any of the K clusters can move the estimated means away from the densest
regions. Moreover K-means fails when high dimensional data deviates from properties
as equal size, equal density, globular shape and very low noise. Other methods like ag-
glomerative hierarchical clustering schemes, which are often thought to be superior to
K-means for low-dimensional data, have similar problems. For example, the single link-
age approaches are very vulnerable to noise and differences in density and group average.
Complete linkage has trouble with differing densities and, unlike single linkage, cannot
handle clusters of different shapes and sizes [147]. As expected from section 2.1 one source
of these problems is the use of the Euclidean distance measure. There are many proposals
to cope with the fact that the Euclidean distance does not work well in high dimensions.
Some clustering algorithms use distance or similarity measures that work better for high
dimensional data e.g., the cosine measure. Other approaches use iterative mode estimation
techniques in the underlying feature space e.g. mean shift based clustering [77]. However
to our current knowledge the question for a reliable clustering method for high dimensional
data sets is still open.

Detecting Multimodality: Different linear projection methods for feature extraction
indicate different approaches to solve the task of clustering high dimensional data. In
the case of Principle Component Analysis there is a joint solution of the problem of di-
mension reduction and the cluster detection problem: A gap in the series of eigenvalues
of IEN [XX>] indicates that the eigenvectors corresponding to the vanishing eigenvalues
represent a basis for the nullspace of IEN [XX>]. Hence projecting the data on the set
of m eigenvectors of IEN [XX>] corresponding to the non-vanishing eigenvalues implies a
solution to the problem of detecting multimodality only if the variance in the clustered
part of the data is much higher than in the rest of the data. Obviously this is a limiting
assumption using PCA as a pre-processing step for high dimensional clustering.

Compared to PCA using ICA also implies a joint solution of the problem of dimension
reduction and the cluster detection problem. However due to the successive extraction
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of non-Gaussian components it is supposed that the part of the given data distribution
which shows most deviance from normality coincides with the clustered part of the data.
Hence the ICA-solution to the problem of detecting multimodality does not depend on a
special difference in the magnitude of the second moments of Gaussian noise and infor-
mative data components, but equates interestingness with NonGaussianity. However, in
cluster analysis we are more interested in a departure from unimodality. Consequently
the ICA-assumption may be too restrictive for some applications, since e.g. the entropy of
the mixture of Gaussians is much closer to the entropy of a standard normal distribution
than the entropy of the unimodal Pareto distribution [4].

Obviously for one-dimensional data any departure from an unimodal distribution implies
departure from normality. But the converse is not true, since identifying the non-Gaussian
components of ρ(x) is a solution to a more general task and thus may be too rough to iden-
tify a cluster structure in real world examples with sufficient accuracy. But the dynamics
of a polypeptide taken as an example for a biomelcular system revealing metastablity is
typically modelled as an Markovian process [154], that implies a spatial separation of the
metastable states in the high dimensional state space. Consequently a statistical measure
sensitive to multimodality with appropriate properties as scale invariance and robustness
to noise or outliers is sought. However it is well known that the cumulant indices are
highly sensitive to outliers and favor heavy tails of the distributions [73]. Consequently
higher moments of a distribution as skewness or kurtosis or other tests on non-normality
will not be very helpful to determine a multimodal structure in the reduced data contained
in the estimated target space I.

The dip index: The are many non-parametric statistical tests for multimodality e.g.
the dip test [85], the excess mass test [158], and Silvermans bootstrap test [209]. The dip
test and the excess mass tests are equivalent in the sense that the excess mass statistic is
exactly twice the dip statistic [33] in one dimension. Figure 6.4 illustrates the geometrical
meaning of the dip statistics.

Figure 6.4: Illustration of the important points of a density: modes, bumps, dip and
shoulder. Points A and B are modes, shaded areas C and D are bumps, area E is a dip
and F is a shoulder point.

The dip test is extended to the case of multimodalily in [84]. However, compared to the
Silverman test, the dip test is more conservative, since the dip test requires a greater mass
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to signify a mode. Hence, it will be more likely to accept the unimodality using the dip test.
For the numerical experiments to be described here we use the so called non-parametric
dip-test [83; 85] as an index in order to identify successively a linear subspace IM ⊆ I.
This choice is due to the most important assumption in the analysis of metastability, the
Markov assumption. Hence if SNGCA successfully detects the multimodal components
we are interested in a target space IM of ”best cluster separation”.

The dip test is the maximal difference between the empirical kernel distribution function
and the unimodal distribution function that minimizes this difference. That is, the dip is
the distance between the tightest fitting unimodal distribution function and the empirical
distribution

FN (x) def=
1
N

N∑
i=1

1(Xi≤x) (6.10)

with respect to the supremum norm. Moreover the dip-statistic is scale-invariant and
robust against outliers [34]. In order to see that the dip index is a measure of departure
from unimodality define the Kolmogorov distance

distK(F,G) def= sup
x∈R
|F (x)−G(x)| (6.11)

where F and G are bounded functions. Then we can define the one dimensional dip-
statistics as follows:

Definition 1. (dip-statistic)
Let U ⊂ D(R) be the subset of unimodal distribution functions with respect to the class
D(R) of all distribution functions from R. Then the dip of a distribution function F is
given by D(F ) def= infG∈U distK(F,G).

Note that

D(F1) ≤ D(F2) + inf
G∈U

distK(F,G)

and

D(F1)

{
= 0 if F ∈ U
≥ 0 if F 6∈ U .

.

Hence D(F ) is a measure of departure from unimodality.

In order to explain how the dip statistic works on R, observe that for calculating algorith-
mically the tightest fitting unimodal distribution and the dip statistic, one can exploit the
fact that an unimodal distribution on the real line is concave over the interval ] −∞, a]
and convex over [a,∞[, where a is the position of the mode. Then denote by G(x) the
greatest convex minorant (GCM) of the distribution F on ]−∞, a] the supremum over all
real-valued convex functions G(x) from ]−∞, a], satisfying

G(x) ≤ F (x), ∀ x ∈]−∞, a]

The lowest concave majorant L(x) (LCM) of the distribution F in [a,∞[ is the infimum
over all concave functions L(x) satisfying

L(x) ≥ F (x), ∀ x ∈ [a,∞[
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Now the basic steps of the algorithm are instructive: Suppose the sample from the given
distribution is listed in ascending order. Then:

• Set xL = X1, xU = XN and D(FN ) = 0.

• Compute the GCM G and the LCM L with respect to FN in the interval [xL, xU ].
Let {gi} and {lj} denote the contact points of G and L with FN respectively.

• If d = distK(G(gi), L(gi)) ≥ distK(G(li), L(li)) for a given index i and the supremum
occurs in gj satisfying lj ≤ gi ≤ lj+1, the set xi = gi and xL = lj+1.

• If d = distK(G(li), L(li)) ≥ distK(G(gi), L(gi)) for a given index i and the supremum
occurs in gj satisfying gj ≤ li ≤ gj+1, the set xi = gi and xL = lj .

• If d ≤ D(FN ), then stop.

• Otherwise set

D(FN ) = sup
{
D(FN ), sup

xL≤x≤xoldL

|G(x)− FN (x)|, sup
xoldU ≤x≤xU

|L(x)− FN (x)|
}

The computation of GCM and LCM is done by means of (6.10) and rather technical. More
details about the algorithmic realization can be found in [83].

Furthermore it is shown in [83; 85] that the dip is asymptotically larger for the uniform
distribution than for any distribution in a wide class of unimodal distributions: With
growing sample size, the dip statistic for a unimodal distribution approaches zero while
the dip of a any multimodal distribution approaches a positive constant. This leads to
an algorithm with numerical complexity O(N) where N is the sample size. Figure 6.5
illustrates the computation of the dip index for a mixture of Gaussians with increasing
distance of their mean values.

Figure 6.5: Illustration of the estimated values of the dip index significant for multimodal-
ity computed for a mixture of Gaussians with increasing distance of their mean values.
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The dip statistic from above can be used to identify the cluster structure contained in
the data projected to I. To this end we project the data to every element of the basis of
Î given by the columns of Π̂. Computing the dip statistic with respect to the projected
data allows to select a basis for IM that not only contains non-Gaussian components of ρ
but also the multimodal structure in the data. This step is inevitable since the solution
of the semidefinite reformulation of (5.1) implies noting about any kind of ordering of
the columns of Π̂. This means that the dimension reduction is essentially done using the
dip-index. Finally we end up with the following algorithmic scheme:

Algorithm 9: NonGaussian Cluster Analysis
Data: {Xi}Ni=1,ε,L,m
Result: m-dimensional basis of target space I
Directional Sampling: As usual choose randomly a set of directions {ωl},
l = 1 . . . L with L >> d from Bd.

Estimation: Compute γ̂l and η̂l according to (4.10) and (4.11) for l = 1, . . . , L.

Convex Optimization: Solve the corresponding linear constraint semi-definite
problem to get an estimator Π̂ for the projector on the SNGCA target space I.

Dimension Reduction: Project the data on the basis vectors of I provided by
the column space of Π̂. Choose p ≤ m vectors with significant high dip index as
ONB for the so called multimodal subspace IM .

For simplicity we call this algorithm the NonGaussian Clustering Analysis (NCA). Due
the use of the dipp index NCA is highly selective to any cluster structure in the data.

The next task is to illustrate geometrically the differences between the projection methods
described above using an artificial toy example of 3 non-spherical Gaussian clusters in R3

with N = 1000 points in every cluster. This is shown in figure 6.6.

Figure 6.6: Original data consisting of 3 non-overlapping clusters. The colored axis are
the basis provided by the concurrent methods: Red color indicates PCA, blue and black
color ICA and NCA respectively.
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In comparison it is demonstrated in figure 6.7 that a clustering of the same data as in
figure 6.6 even in a low dimensional space according to the features of maximal data vari-
ance or NonGaussianty in principle differs from the clustering results obtained from NCA.

Figure 6.7: Illustration of general differences of comparable projective feature extraction
methods from R3 to R2. On the upper left the data projected on the first two eigenvectors
obtained from PCA are shown, the upper right and the lower left figure show the analogous
result for ICA and NCA respectively. Obviously only NCA gives a sufficient separation of
the cluster.

In the next section we will apply PCA, ICA and NCA described in algorithm 9 as a pre-
processing step to a state-of-the art Markovian approach to the analysis of the metastable
dynamical behavior of polypetides using Hidden Markov Models with Gaussian output
combined with the Viterbi-clustering, that we have already described in section 6.2.

6.3.2 Metastability of Polypeptides

The problem of dimension reduction becomes crucial when dealing with e.g. data from
molecular dynamics trajectories. Although chemical observations reveal that sometimes
even for larger biomolecules the curse of dimensionality sometimes can be circumvented by
exploiting the hierarchical structure of the dynamical properties of biomolecular systems
e.g. [154], for many biomolecules a conformational analysis is possible only in low dimen-
sions. In particular there are frequently relatively few independent essential degrees of
freedom, needed to describe the conformational transitions and the rich spatial multiscale
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structure induced by a structured potential energy landscape. However the essential de-
grees of freedom are typically unknown and have to be recovered from a non-hierarchical
analysis of the large scale dynamical behavior of e.g. polypeptides.

6.3.3 Penta-Alanine

It is well known [182] that the effective dynamics of the real penta-alanine molecule showed
in figure 6.8 occurs mainly in pairs of backbone torsion angles (Φ,Ψ) belonging to the
same amino acid residue. Recall that electromagnetic repulsion between adjacent ligands
and H-bond bridging between different peptide bonds serve as constraints for the rota-
tion in these angles. The different global (secondary) structures of polypeptides (folded
and unfolded) can hence be easily determined by the peptide angles, since other internal
coordinates such as bond lengths, bond angles usually do not undergo changes of large
amplitudes [157].

For each alanine amino acid we consider two of these backbone torsion angles shown in
figure 6.8. These peptide angles pairs do not take arbitrary values, but adopt values in
definite regions of the Ramachandran plane. They belong to various secondary structures
of the molecule and shows the energetically preferred regions of a so called dihedral pairs
of backbone angles.

Figure 6.8: The figure shows the ten peptide angles of 5-alanine determining the secondary
structure of 5-alanine, marked by Φ1,Ψ2, . . .Φ9,Ψ10.

The time series to be analyzed consists in a 10 dimensional cyclic data set from the interval
]− 180◦, 180◦] of all backbone torsion angles. The numerical simulation that corresponds
to this time series, has been elaborately discussed in [157]. For convenience we only report
the basic facts here: The simulation using a leap frog numerical integration scheme was
done with explicit water using a thermostat of 300K. The integration step size is 0.1ps
whereas the complete integration time is 100ns. Since we have a representation of the
time series of 5-alanine in cyclic coordinates, the conformations of the molecule are not at
best separated in the data. In order to minimize the periodicity in the data, the data were
linear shifted such that the smallest local minimum of the data density is chosen as the
point −180◦. To this end we compute a adaptive kernel density estimation with Gaussian
kernel [203] in each dimension of the time series.

Dimension Reduction: For the analysis with ICA we use the tanh-index. For PCA
the reduced dimension m is obtained from a gap in the eigenvalue spectrum of the data
covariance matrix. In the case of NCA the reduced dimension m is experimentally found
using the gap size in the decreasing series of the dip index values. The same value for m
is used in the case of ICA. For the detection of the non-Gaussian target space with NCA
we found that the choice of the nonlinear test function is hω(x) is essential. Throughout
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this section we use

hω(x) =
1

1 + exp(−ω>x)
(6.12)

The results obtained from PCA, ICA and NCA are controlled using the dip index in the
following way: If the linear target space of each dimension reduction method contains the
structure in the data set, we expect the dip index of the data projected on each basis
vectors of the target space significantly higher than the index values of the data projected
on each basis vector of its complement. In this sense the step of dimension reduction is
essentially based on the idea of feature extraction.

The next figure 6.9 shows the values of the dip index computed from the projected data
corresponding to the directions of decreasing maximum data variance and NonGaussian-
ity respectively. Moreover in order to get some insight in the success of the dimension
reduction method, we mark the target space of the reduction methods on focus using the
eigenvalues and the entropy of the projected data respectively.

(A) (B)

(C)

Figure 6.9: Comparison of feature extraction methods by means of the dip index and the
estimated entropy of data, projected on the basis of I: (A) shows the normed eigenvalues
from PCA against the dip index, (B) the results from ICA and (C) the results from NCA.

The essential role of the dip index for the task of extracting the multimodal contribution
to the data density ρ is illustrated in the next figures 6.10 and 6.11.



100 CHAPTER 6. A GEOMETRIC APPROACH TO METASTABILITY ANALYSIS

Figure 6.10: Densities, estimated by adaptive kernel methods [210] of the data from sim-
ulations of 5-alanine projected on the basis vectors of the PCA target space.

In the figures 6.10 and 6.11 we show the estimated densities of the data in the target
space of the corresponding dimension reduction method projected on every of its basis
vectors. The estimation is done with an adaptive kernel density estimation method using
a Gaussian kernel [210].

Figure 6.11: Estimated densities of the data from simulations of 5-alanine projected on
the basis vectors of the NCA target space.
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We observe for PCA in figure 6.9 and figure 6.10 that for the simulated data from 5-
alanine described above the cluster structure in the data is not contained in the subspace
of maximum data variance. Moreover with respect to ICA based on this observation in fig-
ure 6.9 we are forced to conclude that the subspace build up of directions with successively
decreasing NonGaussianity contains only a small fraction of the multimodal distributed
data. Furthermore multimodality is found in the complement of its target space. This
means that NonGaussianity can be a misleading feature for the task of detecting multi-
modality. However in case of the cluster analysis with NCA figure 6.9 shows a gap in the
decreasing series of dip-index values that corresponds to a 5 dimensional subspace Im = I
of multimodal distributed data. We show the estimated density of the data in the target
space I of NCA projected on every of its basis vectors in figure 6.11.

Obviously I is much better adapted to the position of the multimodal distribution part
of the data than e.g. the subspace of maximal data variance provided by PCA. In order
to affirm this result we compute the angle between the subspace U and V [79] defined by

](U, V ) def= arccos(U>V ) [rad] (6.13)

for all pairs of target spaces. For ICA get ](ICA,NCA) = 0.9320 and for PCA we found
](PCA,NCA) = 1.3795. We conclude that for 5-alanine PCA and ICA are not appro-
priate geometric pre-clustering methods, such that the attempt to understand the free
energy surface of 5-alanine in terms of their low-dimensional projections will be deceptive.
Consequently the following results on 5-alanine are obtained using NCA.

Analysis of Metastability: In the analysis of metastability the first step is to determine
the number of clusters in the reduced data set. Using the the spectrum of the estimated
symmetric transition matrix, figure 6.12 shows the Viterbi clustering result from PCCA of
the Viterbi path obtained from the HMM-analysis discussed in the last section performed
with 50 clusters. Here PCCA is used with a discretization of [0, 2π] with 100 boxes.
Alternative methods for determining the number of clusters are available [99].

Figure 6.12: Plot of first 30 PCCA-eigenvalues from Viterbi-Path-clustering of 5-alanine
after dimension reduction with SNGCA.
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Using the gap criterion of the eigenvalues, reasonable values for the number of metastable
states with dominating mean life time are 4, 9, 15 or 16 respectively. This result coincides
with a former hierarchical analysis of 5-alanine proposed in [154]. In order to get an insight
of higher resolution in the dynamical behavior of 5-alanine we choose n = 9 as the number
of metastable states. Using this tuning parameter we conduct a geometric analysis of
the NCA-reduced data by means of the HMM-approach from above in a 5 dimensional
subspace I.

Figure 6.13: Schematic Ramachandran plot of penta-alanine.

In order to find a reasonable interpretation of our results that will enable a certain control
of the metastability analysis, we use the Ramachandran plot of 5-alanine. The plot is
obtained from physical considerations [182] and can be found in [154]. Since the free
energy surface is pointwise given by

∆G(x) = −kBT [ln(IP (x))− ln(IPmax)] (6.14)

where IPmax denotes the maximum of the whole distribution, the interesting information
about the almost metastable states is given by the estimates of the density in the (Φ/Ψ)-
plane with respect to the time series points belonging to its conformation. The above
figure 6.13 shows the schematic Ramachandran plot of penta-alanine.

In order to get a first interpretation of the reduced dynamics we show in the figures 6.14
and 6.15 the empirical Ramachandran-plots of the first 4 conformations with dominating
life time in descending order characterizing the effective dynamics of 5-alanine.
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Figure 6.14: Empirical Ramachandran-plots of the first 2 conformations with dominating
life time in descending order characterizing the effective dynamics of 5-alanine.
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Figure 6.15: Empirical Ramachandran-plots of the conformations 3 and 4 with dominating
life time in descending order characterizing the effective dynamics of 5-alanine.

Using the Ramachandran plot in figure 6.13 we can now compare the positions of the
density peaks in the first conformation from figure 6.14 and 6.15 with the theoretical
expectations: Obviously the first conformation corresponds to an α-helix structure.
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Figure 6.16: Empirical Ramachandran-plots of the conformations 5, 6 and 7 with dom-
inating life time in descending order characterizing the effective dynamics of 5-alanine.
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Figure 6.17: Empirical Ramachandran-plots of the conformations 8 and 9 with dominating
life time in descending order characterizing the effective dynamics of 5-alanine.

Figures 6.16 and 6.17 show the empirical Ramachadran plots, i.e. the estimates of the
densities corresponding to the conformations 5−9 with dominating life time in descending
order. We observe again separated favourable energetic regions in the Ramachandran
plane, indicating a set of global structures, that are stable over long periods of time but
not a single state corresponding to a local minimum of some energy function. A stable β-
sheet conformation is not expected for 5-alanine, since it has a too short alanine amino acid
chain. Other conformations identified in the reduced data set allow no unique assignment
to a specific secondary structure. Unfortunately only the dominating metastable state has
a unique geometrical interpretation since the other states exhibits a high flexibility with
respect to dieder angles.
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6.3.4 Octa-Alanine

Our next example is a times series from 8-alanine, presented in figure 6.18 and generated
by a equilibrium molecular dynamics simulation with zwitterionic termini at temperature
T = 300K (courtesy to F. Noe). With the same motivation as in the example of 5-alanine,
we consider the backbone dihedral angles in order to determine different conformations.

Figure 6.18: 8-alanine in α−helix (left) and hair−pin configuration (right) representation
with dihedral angles.

The time series consists in 14 dimensional cyclic data set of the all backbone torsion angles
of 8-alanine. Therefore we conduct a linear transformation as described in the last section.
The generation of the time series using CHARMM [30] is already described in [172]. Thus
we will only summarize the main facts briefly. The simulation was done at 300K with
implicit water by means of the solvent model ACE2 [194]. The time series comes with an
integration step of 1fs using a symplectic Verlet integrator. The total trajectory length
was 4µs and every τ = 50fs a set of coordinates was recorded.

Dimension Reduction: Analog to the last numerical example we compare the dimen-
sion reduction methods PCA, ICA and NCA on 8-alanine using the dip index and the
estimated entropy [135] described above. Again due to its essential role we use the dip
index for the task of extracting the multimodal contribution. Figure 6.19 shows the values
of the dip index corresponding to the directions of decreasing maximum data variance
and NonGaussianity respectively. Again for the case of NCA the reduced dimension m is
experimentally found using the gap size in the decreasing series of the dip index values.
The same value for m is used in the case of ICA.
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(A) (B)

(C)

Figure 6.19: Comparison of feature extraction methods by means of the dip index and the
estimated entropy of data, projected on the basis of I: (A) shows the normed eigenvalues
from PCA against the dip index, (B) the results from ICA and (C) the results from NCA.

Concerning the results of the dimension reduction we observe that the PCA-subspace
determined by the number of eigenvalues close to 1 and well separated from the rest of
the empirical spectrum only contains a small fraction of the multimodal contribution to
the data density compared to the case of NCA. Here we found for the subspace angle
](PCA,NCA) = 1.4932. In the case of ICA we found that the multimodal compo-
nents are partially contained in the complement of the ICA-subspace. However we found
](ICA,NCA) = 1.5128. In comparison to the 5-alanine example it seems, that also in
the case of 8-alanine the dip index is a more reliable criterion to determine the interesting
column space of Π∗, that identifies target space of SNGCA than the estimated entropy.
Consequently PCA and ICA are not acceptable dimension reduction methods for 8-alanine.
Using NCA we detect a 5-dimensional subspace Im that contains the multimodal compo-
nents of the data density ρ.

Analysis of Metastability: Again we determine the number of metastable states of
the dimension reduced 8-alanine data set using a Viterbi clustering result from PCCA
with a discretization of [0, 2π] using 100 boxes of the Viterbi path obtained from the
HMM-analysis performed with 50 clusters. The result is shown in the figure 6.20.
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Figure 6.20: Plot of first 30 PCCA-eigenvalues from Viterbi-Path-clustering of 8-alanine
after dimension reduction with SNGCA.

Using again the PCCA-eigenvalue gap criterion from above, we can identify of 9,12 or 15
metastable states with dominating mean life time respectively. The more conformations
are accepted, the richer becomes the dynamical analysis. Again (6.14) motivates the use
of the empirical Ramachandran-plots of 8-alanine in the (Φ,Ψ)-plane. In the following we
present a dynamical analysis with 9 metastable clusters. Due to their unimodal densities
the metastable states 1, 2, 5, 6, 8 and 9 of 8-alanine with dominant life time in descending
order have a unique geometrical interpretation.

In complete analogy to the simulation with respect to penta-alanine we present the em-
pirical Ramachandran-plots of the different conformations with dominating life time in
descending order characterizing the effective dynamics.

Figure 6.21: Empirical Ramachandran-plots of the first conformation with dominating life
time in descending order characterizing the effective dynamics of 8-alanine.
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Figure 6.22: Empirical Ramachandran-plots of the conformations 2 and 3 with dominating
life time in descending order characterizing the effective dynamics of 8-alanine.

Since the Ramachandran plot of the most favorable energetic regions is similar for many
peptides [40], we use figure 6.13 again in order in find a reasonable interpretation of the
results in the figures 6.21, 6.22, 6.23 and 6.24. In spite of the fact that the densities of the
first two metastable states with dominant life time in descending order are unimodal only
the second dominating state seems to be an α-helix configuration. The next figures show
the states 4,5,6,7,8 and 9 metastable states again with dominant life time in descending
order.
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Figure 6.23: Empirical Ramachandran-plots of the conformations 4, 5 and 6 with dom-
inating life time in descending order characterizing the effective dynamics of 8-alanine.
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Figure 6.24: Empirical Ramachandran-plots of the conformations 7, 8 and 9 with dom-
inating life time in descending order characterizing the effective dynamics of 8-alanine.
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Again we conclude that only NCA is an acceptable pre-processing method for an analysis of
the conformations of 8-alanine. However these good news for NCA can not be generalized:
Which of the available dimension reduction methods will provide acceptable results only
depends on the properties of every single data set. Unfortunately an obvious physical
interpretation of the last conformation of 8-alanine is not available.
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Chapter 7

Summary and Conclusion

In this thesis two formerly different projects have been merged and realized:

The first project is to develop an unsupervised, linear, projective feature extraction method
that uses a completely different semi-parametric framework for dimension reduction than
the common and well known Continuous Latent Variable Model. For this development it
is required that almost none information represented by the original data is lost during
the dimension reduction process and that the method is statistically sensitive and com-
putationally cheap. It is shown that structural assumptions can be used in different and
efficient ways to extract non-Gaussian components representing the information contained
in the given high dimensional data distributed according to a stationary density. The best
approach is realized using a combination of common relaxation and regularization meth-
ods with state-of-the-art dual gradient-type methods for semidefinite programming. By
means of empirical process theory it is demonstrated that the statistical estimation error
has rate of convergence O(‖Σ−1‖2, d) 1√

N
. The whole SNGCA procedure has analytical

complexity O(L logL). However the numerical bottle neck is the arithmetical complexity
of O(N2L + L3) required for the data space sampling and the computation of the prox-
transform. Using a broad variety of deviations from normality it was demonstrated, that
SNGCA is superior to currently comparable feature extraction methods indicating the
success of the semi-parametric framework.

The second project is to inquire the scope of an approach to the analysis of metastability
that is almost geometric in the sense that only the metric relations between the points in
the data space are used to detect a cluster structure in high dimensional data confined
to a low-dimensional subspace, that represents the essential macroscopic dynamics of a
biological active molecule. Due to the geometric origins of the curse of dimensionality
described at the beginning of this thesis, the use of any metric in a common clustering
algorithm will produce misleading clustering results even if a low dimensional set of in-
dependent vectors can be found to fully describe the cluster structure. Hence SNGCA
is combined with a special index in the sense of projection pursuit that is sensitive only
to a multimodal structure. Thus we come up to the so called NonGaussian Clustering
Analysis, that works as a preprocessing step for a HMM-anaylsis combined with a Viterbi
clustering. We have demonstrated that NCA is more efficient to extract a cluster structure
from the data than other current popular methods. Finally we have applied the resulting
almost geometrical approach to metastability to several biomolecular systems. Since in
the reduced data space the extracted clusters are typically well separated, we found some
evidence that the resulting data at least approximately fulfil the central assumption that
the macroscopic dynamics is still Markovian.
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Chapter 8

Zusammenfassung

Im ersten Teil dieser Arbeit wird eine vollständig datengesteuerte, lineare und projektive
Methode der Merkmalsextraktion entwickelt. Sie beruht auf einer semiparametrischen Hy-
pothese in Bezug auf die Datendichte und unterscheidet sich grundlegend von dem im lin-
earen Fall typischerweise benutzten Continuous Latent Variable Model. Als Adäquatheits-
bedingung wurde verlangt, daß so wenig wie möglich von der durch die Daten repräsen-
tierten Information bei der Dimensionsreduktion verloren gehen darf. Weiter sollte die
Methode auch in hohen Dimensionen sensitiv und mit wenig Zeitaufwand zu berechnen
sein. Es wurde gezeigt, daß die semi-parametrischen Hypothese in verschieden effizienter
Weise benutzt werden kann, Merkmale aus einer hochdimensionalen Dichte zu extrahieren.
Als bester Zugang hat sich eine Methode erwiesen, die neuste Techniken der semidefiniten
Programmierung benutzt. Mit den Mitteln der empirischen Prozeßtheorie wurde gezeigt,
daß die Konvergenzrate des Schätzfehlers O(‖Σ−1‖2, d) 1√

N
ist. Der Aufwand des kom-

pletten SNGCA-Algorithmus hat eine analytische Komplexität von O(L logL). Der nu-
merische Flaschenhals besteht jedoch in der arithmetischen Komplexität von O(N2L+L3),
die beim Abtasten des Datenraums und der Berechnung der prox-Transformation anfällt.
Ein Vergleich mit anderen, gegenwärtig populären, projektiven Methoden zeigt für eine
Vielzahl verschiedener Abweichungen von der Normalverteilung, daß SNGCA im Moment
die überlegene Methode ist. Das zweite Unterprojekt untersucht die Reichweite eines
Zugangs zur Analyse von Metastabilität bei Biomolekülen, der soweit wie möglich ge-
ometrisch ist in dem Sinne, als nur die metrischen Relationen zwischen den Datenpunkten
benutzt werden, um eine Clusterstruktur in einer stationären Verteilung von Punkten
zu identifizieren, welche, auf einen niedrig dimensionalen Unterraum beschränkt, die es-
sentielle, makroskopische Dynamik z.B. eines biologisch aktiven Moleküls repräsentiert.
Aufgrund des geometrischen Ursprungs des sogenannten Fluchs der Dimension, liefern
herkömmliche Clusteralgorithmen, die auf der Berechnung einer Metrik in hohen Dimen-
sionen beruhen, jedoch typischerweise irreführende Ergebnisse. Dies gilt selbst dann,
wenn die betreffenden Punkte faktisch auf einer niedrigdimensionalen Mannigfaltigkeit
liegen. Aus diesem Grund wurde SNGCA mit einem Index im Sinne des projection-
pursuit-Ansatzes kombiniert, der ausschließlich sensitiv ist gegenüber multimodalen Kom-
ponenten der vorgegebenen Dichte. Die entstandene Methode der NonGaussian Clustering
Analysis wurde als Dimensionsreduktion vor einer Metastabilitätsanalyse auf der Basis
von Hidden-Markov Modellen verwendet, was einen nahezu vollständig geometrischen Zu-
gang zur Metastabilitätsanalyse bedeutet. Ein Vergleich verschiedener, und gegenwärtig
populärer Methoden mit NCA zeigt, daß letztere besser als jene geeignet ist, Cluster-
strukturen in hochdimensionalen Datensätzen zu detektieren. Insbesondere weist die gut
ausgeprägte Separation der reduzierten Daten in Cluster bei verschiednen Simulationen
von Biomolekülen darauf hin, daß die Dimensionsreduktion die der Metastabilitätsanalyze
zugrunde liegende Markovannahme approximativ erhält.
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Appendix A

Proofs

In this appendix we will give the proofs of the theorems used in this article.

A.1 Proof of Theorem 1

Theorem 1. The density ρ(x) for the model

X = Y + Z (A.1)

with the m -dimensional signal Y and an independent Gaussian noise Z can be repre-
sented as

ρ(x) = φµ,Σ(x)q(Tx). (A.2)

where T is a linear operator from T : Rd → Rm , q(·) is some function on Rm and
φµ,Σ is the density of the Gaussian component.

Proof. Consider the model (A.1) as well as the projectors ΠI : Rd → Rm and ΠI⊥ :
Rd → (Rm)⊥. Let Z be decomposed in independent noise components Z = Z1 + Z2 with
Z1

def= ΠIZ and Z2
def= ΠI⊥Z. Then due to (A.2) the model (A.1) can be written as

X = (ΠIY + Z1) + Z2. According to our premises in (A.1) the noise is independent from
the signal Y . Hence the density of ΠIY +Z1 can be represented as the product q(x1)φ(x1)
for some function q and the normal density φ(x1) , x1

def= ΠIx ∈ Rm . Furthermore due
to their construction, we have independence of Z1 and Z2 . Consequently the density ρ
can be written as

ρ(x) = g(x1)φ(x1)φ(x2) = g(x1)φ(x)

where x2
def= ΠI⊥x. Setting T def= ΠI leads to ker(T ) = ΠI⊥ .

Now suppose that Z is standard normal. Then we are done. Next suppose that Z is
not standard normal and the covariance matrix ΣZ is nondegenerated. Then we get the
model

Σ
− 1

2
Z X = Σ

− 1
2

Z Y + Z̃ (A.3)

where Z̃ def= Σ
− 1

2
Z Z is standard normal. Using X̃ def= Σ

− 1
2

Z X allows to repeat the argument

from above with Ĩ def= Σ
− 1

2
Z I and T = ΠI⊥Σ

− 1
2

Z .
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A.2 Proof of Theorem 3

Theorem 3. Let X follow the distribution with the density ρ(x) according to (4.1) and
let IEX = µ = 0 . Suppose that ψ ∈ C1(Rd,R) is a function fulfilling the condition

γ(ψ) def= IE[Xψ(X)] = 0, (A.4)

Define

β(ψ) def= IE[∇ψ(X)] =
∫
∇ψ(x) ρ(x)dx, (A.5)

where ∇xψ means the gradient of ψ . Then β(ψ) belongs to I . Moreover if (A.4) is not
fulfilled, then there is a β ∈ I such that

‖β(ψ)− β‖2 ≤ ε

where ε is the uniform error bound:

ε =
∥∥∥Σ−1

∫
xψ(x)ρ(x) dx

∥∥∥
2
. (A.6)

Hence the distance between β(ψ) and the non-Gaussian subspace I is uniformly bounded
as given by (A.6).

Proof. The structural assumption (A.2) and the identity

∇x log
[
φµ,Σ(x)

]
= −Σ−1(x− µ)

imply

−
∫
ψ(x)

[
∇ log(ρ(x))

]
ρ(x) dx =

−
∫
ψ(x)

[
∇ log(q(Tx))

]
ρ(x) dx−

∫
ψ(x)

[
∇ log(φµ,Σ(x))

]
ρ(x) dx =

−
∫
ψ(x)T>q′(Tx)φµ,Σx dx+

∫
ψ(x)Σ−1(x− µ)ρ(x) dx

where q′(x) denotes the gradient of q(x) . The vector β(ψ) with

β(ψ) def= −T>
∫
ψ(x)q′(Tx)φµ,Σ(x) dx

obviously belongs to I . Suppose now the condition (A.4) is fulfilled. Then it holds that

Σ−1

[∫
xψ(x)ρ(x) dx− µ

∫
ψ(x)ρ(x) dx

]
= 0

Thus we know that β(ψ) ∈ I . Otherwise if the condition (A.4) is not fulfilled, it follows
from from (A.7) that there is a β ∈ I such that

‖β(ψ)− β‖2 =
∥∥∥Σ−1

∫
(x− µ)ψ(x)ρ(x) dx

∥∥∥
2
. (A.7)
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Let u ∈ Rd . Then it holds that∫
ψ(x+ u)ρ(x) dx =

∫
ψ(x)ρ(x− u) dx (A.8)

Using the regularity conditions on ψ and ρ , we differentiate (A.8) with respect to u
and use the identity

∇ log(ρ(x)) =
[
∇ρ(x)

]
ρ(x)

This yields: ∫
ρ(x)∇ψ(x) dx = −

∫
ψ(x)

[
∇ log(ρ(x))

]
ρ(x) dx

From this consideration we get an equivalent expression for β(ψ) :

β(ψ) =
∫

[∇ψ(x)]ρ(x) dx

A.3 Proof of Theorem 4

Theorem 4. Suppose that f is continuously differentiable in w and for some fixed con-
stant f∗1 and any ω ∈ Bd, x ∈ Rd

Var
[
Xj f(X,ω)

]
≤ f∗1 , Cov

[
Xj ∇ωf(X,ω)

]
≤ f∗1 I,

Var
[
∂

∂xj
f(X,ω)

]
≤ f∗1 , Cov

[
∇ω

∂

∂xj
f(X,ω)

]
≤ f∗1 I,

Consider the (random) set

C =
{
c ∈ RL : ‖c‖1 ≤ 1, γ̂(c) = 0

}
. (A.9)

Then for any ε > 0 there is a set A ⊂ Ω of probability at least 1− ε such that on A for
all c ∈ C , ∥∥(I −Π∗)β̂(c)

∥∥
2
≤
√
d δN

(
1 + ‖Σ−1‖2

)
,

where

δN = N−1/2 inf
λ≤λ∗1N1/2

{
5n0f

∗
1λ+ 2λ−1

[
ed + log(2d/ε)

]}
and ed = 4d log 2 .

We use the following result from the empirical process theory (similar statements under
slightly different assumptions can be found e.g. in [226]). Let B stand for the unit
Euclidean ball, centered at the origin. Similarly, B(µ, ω◦) = {ω : ‖ω − ω◦‖2 ≤ µ}
is a ball of radius µ centered at ω◦ . For a function q(ω, x) , denote IEN [q(ω,X)] =
N−1

∑N
i=1 q(ω,Xi) .

Lemma 3. Let q(ω, x) be a continuously differentiable function of ω ∈ Bd and x ∈ Rd

such that for every ω ∈ Bd

Var
[
q(ω,X)

]
≤ q∗, Cov

[
∇ωq(ω,X)

]
≤ q∗I, (A.10)
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with some q∗, q∗ > 0 . Define

ζ(ω) = N1/2
{
IEN [q(ω,X)]− IE[q(ω,X)]

}
and ζ(ω, ω′) = ζ(ω) − ζ(ω′) . Then for any n0 > 1 , there is λ∗1 = λ∗1(n0) > 0 such that
for any ω◦ ∈ Bd , µ ≤ 1 , and λ ≤ λ∗1N1/2

log IE exp
[
λζ(ω◦)

]
≤ n0q

∗λ2/2, (A.11)

log IE exp
[λ
µ

sup
ω∈B(µ,ω◦)

ζ(ω, ω◦)
]
≤ 2n0q

∗λ2 + ed , (A.12)

where ed =
∑∞

k=1 2−k log(2kd) = 4d log 2 . Moreover, define

z(λ) = n0

(
q∗/2 + 2q∗

)
λ2 + ed.

Then for any ε > 0

IP

(
sup
ω∈Bd

ζ(ω) ≥ 2λ−1
[
z(λ) + log ε−1

])
≤ ε.

Proof. Define for ω ∈ Bd

g0(λ;ω) = log IE exp
[ λ√

n0q∗
{
q(ω,X1)− IE[q(ω,X1)]

}]
.

Then g0(λ;ω) is analytic in λ and satisfies g0(0;ω) = g′0(0;ω) = 0 . Moreover, the
condition (A.10) implies g′′0(0;ω) < 1 . Therefore, there is some λ∗1 > 0 such that for
any λ1 ≤ λ∗1 and any unit vector ω , it holds g0(λ1;ω) ≤ λ2

1/2 . Independence of the
Xi ’s implies (A.11) for λ ≤ λ∗1N

1/2(n0q
∗)−1/2 . In the same way, for ω, u ∈ Bd define

ζ(ω,X) = ∇ωq(ω,X1)− IE[∇ωq(ω,X1)] and

g(λ;ω, u) = log IE exp
[ 2λu>√

n0q∗
ζ(ω,X1)

]
.

Then similarly to the above, the function g(λ;ω, u) is analytic in λ and satisfies with
some λ∗1 > 0 , any λ1 ≤ λ∗1 and any unit vectors u and ω

g(λ1;ω, u) ≤ 2λ2
1.

The bound (A.12) is derived from [211], Lemma 5.1. Independence of the Xi ’s yields for
λ ≤ λ∗1N1/2(n0q

∗)−1/2

log IE exp
{

2λ√
n0q∗

u>∇ζ(ω)
}
≤ 2λ2.

This means that the condition (ED) of [211] is verified and the result (A.12) follows from
[211], Lemma 5.1. Introduce a random set A = {(λ/2) supω ζ(ω) > z(λ) + log ε−1} . and
Ac is its complement. By the Cauchy-Schwartz inequality

IP (Ac) ≤ IE exp
{
λ

2
sup
ω
ζ(ω)− z(λ)− log ε−1

}
≤ εIE1/2 exp

{
λζ(ω◦)− n0q

∗λ2/2
}

× IE1/2 exp
{
λ sup

ω
ζ(ω, ω◦)− 2n0q

∗λ2 − ed
}
≤ ε
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and the last result follows.

The result of Lemma 3 can be easily extended to the case of a vector function q(ω, x) ∈ Rd :

IP

(
sup
ω∈Bd

‖ζ(ω)‖∞ ≥ 2λ−1
[
z(λ) + log(d/ε)

])
≤ ε.

This fact can be obtained by applying Lemma 3 to each component of the vector ζ(ω) .
The term log(d/ε) is responsible for the overall deviation probability.

Let now f(x, ω) be a twice continuously differentiable function of ω ∈ Bd and x ∈ Rd

such that for every j ≤ d , ω ∈ Bd , and x ∈ Rd , it holds

Var
[
Xj f(X,ω)

]
≤ f∗1 , Cov

[
Xj ∇ωf(X,ω)

]
≤ f∗1 I,

Var
[
∂

∂xj
f(X,ω)

]
≤ f∗1 , Cov

[
∇ω

∂

∂xj
f(X,ω)

]
≤ f∗1 I,

Then for any n0 > 1 , there is λ∗1 = λ∗1(n0) > 0 and for any ε > 0 , a random set A with
IP (A) ≥ 1− ε such that on A it holds by Lemma 3

sup
ω∈Bd

∥∥IEN [Xf(X,ω)]− IE[Xf(X,ω)]
∥∥
∞ ≤ δN ,

sup
ω∈Bd

∥∥IEN [∇xf(X,ω)]− IE[∇xf(X,ω)]
∥∥
∞ ≤ δN ,

where

δN = N−1/2 inf
λ≤λ∗1N1/2

{
5n0f

∗
1λ+ 2λ−1

[
ed + log(2d/ε)

]}
.

By construction of vectors γ̂l and η̂l , it holds on A

max
1≤l≤L

‖γ̂l − γl‖∞ ≤ δN , max
1≤l≤L

‖η̂l − ηl‖∞ ≤ δN .

This implies for any ‖c‖1 ≤ 1

‖γ̂(c)− γ(c)‖∞ ≤ δN , ‖η̂(c)− η(c)‖∞ ≤ δN .

The constraint γ̂(ĉ) = 0 implies ‖γ(ĉ)‖∞ ≤ δN , thus

‖γ(ĉ)‖2 ≤
√
d δN ,

and by (A.6) ∥∥(I −Π∗)η̂(ĉ)
∥∥

2

≤
∥∥(I −Π∗){η̂(ĉ)− η(ĉ)}

∥∥
2

+
∥∥(I −Π∗)η(ĉ)

∥∥
2

≤
∥∥η̂(ĉ)− η(ĉ)

∥∥
2

+
∥∥Σ−1γ(ĉ)

∥∥
2

≤
√
d
(
δN +

∥∥Σ−1
∥∥

2
δN
)
.

A.4 Proof of Theorem 6

Theorem 6. 1. Let S be the convex envelope of the set {±β̂j}, j = 1, ..., J , and let
E1(B) be an ellipsoid inscribed into S , such that E√d(B) is

√
d -rounding ellipsoid for
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S . Then for any unit vector v ⊥ I ,

v>B−1v ≤ %2.

2. If there is µ ∈ RJ with µj ≥ 0 and
∑

j µj = 1 such that

λm

(∑
j

µjβjβ
>
j

)
≥ λ∗ > 2%2,

where λm(A) stands for the m -th principal eigenvalue of A , then

λm(B−1) ≥ λ∗ − 2%2

2
√
d

. (A.13)

3. Moreover, let Π̂ def= Γ̂mΓ̂>m where Γm is the matrix of m principal eigenvectors of
B−1 . Then

‖Π̂−Π∗‖22 ≤
4%2d
√
d

λ∗ − 2%2
.

Proof. Let S stand for the convex envelope of {±β̂j}Jj=1 . As E1(B) is inscribed in S ,
its support function ξE1(B)(x) = maxs∈E1(B) s

>x is majorated by that of S :

ξE1(B)(v) ≤ ξS (v) = max
j=1,...,J

|v>β̂j |, for any v ∈ Rd.

Next, the support function of the ellipsoid E1(B) is

ξE1(B)(v) = (v>B−1v)1/2,

so that the condition ‖β̂j − βj‖2 ≤ % implies

v>B−1v ≤ max
j=1,...,J

|v>β̂j |2 ≤ %2,

for any v ⊥ I .

Let us prove the second claim of the proposition. Let Π∗ be a projector onto I . By the
assumption of the proposition there exist coefficients µj with

∑
j µj ≤ 1 such that

S
def=

1
2

[∑
j

µjβjβ
>
j − 2%2Π∗

]
� 0.

This implies (A.13). Now, for any such S and its pseudo-inverse S+ , the ellipsoid,
E f

1 (S+) with
E f

1 (S+) = {x ∈ I | x>S+x ≤ 1}
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is inscribed into S . Indeed, the support function ξ
E f1 (S+)

(x) = (x>Sx)1/2 of this ellipsoid
fulfills for x ∈ Bd

ξ
E f1 (S+)

(x) ≤
(∑

j

µj

[1
2

(x>βj)2 − %2
])1/2

≤
(∑

j

µj
∣∣x>β̂j∣∣2)1/2

≤ max
1≤j≤J

|x>β̂j | = ξS (x),

Now we are done: as the ellipsoid E f
1 (S+) is inscribed into S , it is contained in the

concentric to E1(B) ellipsoid E√d(B) which covers S .

To show the last statement of the theorem, observe that

Tr
[
(Π̂−Π∗)2

]
= 2(m− Tr[Π∗Π̂]) = 2Tr

[
(I −Π∗)Π̂

]
.

On the other hand, using the second claim one gets

Tr
[
(I −Π∗)Π̂

]
≤ (d−m) sup

v⊥I
v>Π̂v

≤ (d−m) sup
v⊥I

v>B−1v

λm(B−1)

≤ 2d3/2%2

λ∗ − 2%2
.

A.5 Proof of Theorem 7

Theorem 7. Let Aε be a random set on which

max
l
‖γl − γ̂l‖2 ≤ ε, max

l
‖ηl − η̂l‖2 ≤ ε.

and let β∗ denote the ”ideal aggregation” β∗ =
∑

l c
∗
l ηl . Then it holds:

‖ξ − β̂‖2 ≤ ‖ξ − β∗‖2 + ε,

‖ΠI(ξ − β̂)‖2 ≤ ‖ΠI(ξ − β∗)‖2 + (1 + C1)ε.

Proof. Observe that on Aε the solution c∗ = {c∗l } of the “ideal” optimization problem
fulfills the constraint of the empirical one. Indeed,∥∥∥∑

l

c∗l γ̂l

∥∥∥
2

=
∥∥∥∑

l

c∗l (γ̂l − γl)
∥∥∥

2
≤ ε.

Therefore, ∥∥∥ξ −∑
l

ĉl η̂l

∥∥∥
2
≤
∥∥∥ξ −∑

l

c∗l η̂l

∥∥∥
2
.
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because ĉ is the minimizer of such norm. It remains to mention that on Aε∥∥∥ξ −∑
l

c∗l η̂l

∥∥∥
2
−
∥∥∥ξ −∑

l

c∗l ηl

∥∥∥
2
≤
∥∥∥∑

l

c∗l (η̂l − ηl)
∥∥∥

2
≤ ε

and hence, for β̂ =
∑

l ĉl η̂l ∥∥ξ − β̂∥∥
2
≤
∥∥ξ − β∗∥∥

2
+ ε

and the first assertion follows. For second one use additionally that (I − ΠI)β∗ = 0 and
‖(I −ΠI)β̂‖2 ≤ C1ε on Aε , see the proof of Theorem 4.

A.6 Proof of Theorem 9

Assumption 8. Suppose that there are vectors c1, ..., cm, m ≤ m ≤ L such that ‖ck‖1 ≤ 1
and Gck = 0, k = 1, ...,m, and non-negative constants µ1, . . . , µm such that

Π∗ �
m∑
k=1

µkUckc
T
kU

T . (A.14)

We denote µ∗ = µ1 + . . .+ µm.

Theorem 9. Let Assumption 8 hold. Then an optimal solution P̂ of (5.9) satisfies

Tr
[

(I − P̂ )Π∗
]
≤ 4µ∗δ2(λ−1

min(Σ) + 1)2. (A.15)

Further, if Π̂ is the projector onto the subspace spanned by m principal eigenvectors of P̂ ,
then

‖Π̂−Π∗‖22 ≤
8µ∗δ2(λ−1

min(Σ) + 1)2

1− 4µ∗δ2(λ−1
min(Σ) + 1)2

(A.16)

(here ‖A‖2 =
(∑

i,j A
2
ij

)1/2
=
(
Tr[ATA]

)1/2 is the Frobenius norm of A).

Proof. Let X ∈ RL×L be positive semidefinite with |X|1 ≤ 1 and let Y be a symmetric
square root of X, so that X = Y 2. If we denote yi, i = 1, .., L the columns of Y , the fact
that |X|1 ≤ 1 implies that ∑

1≤i,j≤L
|yTi yj | ≤ 1.

We make here one trivial though useful observation: for any matrix A ∈ Rd×L, when
denoting as above ai the columns of A, we have

Tr[ATAX] = ‖AY ‖22 =
L∑
j=1

∣∣∣∣∣
L∑
i=1

aiYij

∣∣∣∣∣
2

=
L∑
j=1

[
L∑
i=1

L∑
k=1

aTi akYijYjk

]

=
L∑
i=1

L∑
k=1

aTi ak

 L∑
j=1

YijYjk

 ≤ |A|22 L∑
i=1

L∑
k=1

|yTi yk| ≤ |A|22. (A.17)

where for a matrix A ∈ Rd×L with columns ai, i = 1, ..., L, |A|2 stands for the maximal
column norm:

|A|2 = max
1≤i≤L

‖ai‖2.
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We can rewrite the problem (5.9) using Y = X1/2, so that the objective function f̂(X,P )
of (5.9) becomes

ĝ(Y, P ) = ‖(I − P )1/2ÛY ‖22.

Let now (X̂, P̂ ) be the saddle point of (5.9). If f̂(X,P ) is the objective of (5.9) then

f̂(X, P̂ ) ≤ [f̂∗ ≡ f̂(X̂, P̂ )] ≤ f̂(X̂, P ),

for any feasible P and X. We denote Ŷ = X̂1/2.

Lemma 4. Let P̂ be an optimal solution to (5.9), then

max
c

{
‖(I − P̂ )1/2Uc‖2 | ‖c‖1 ≤ 1, Gc = 0

}
≤ 2(λ−1

min(Σ) + 1)δ. (A.18)

Proof. To show (A.18) we write

max
c

{
‖(I − P̂ )1/2Uc‖2 | ‖c‖1 ≤ 1, Gc = 0

}
≤ max

Y

{
‖(I − P̂ )1/2UY ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

≤ max
Y

{
‖(I − P̂ )1/2ÛY ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

+ max
Y

{
‖(I − P̂ )1/2(Û − U)Y ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

≤ max
Y

{
‖(I − P̂ )1/2ÛY ‖2

∣∣∣ |Y 2|1 ≤ 1, ‖ĜY ‖2 ≤ δ
}

+ δ

= ‖(I − P̂ )1/2Û Ŷ ‖2 + δ ≤ ‖(I −Π∗)1/2Û Ŷ ‖2 + δ

≤ ‖(I −Π∗)1/2UŶ ‖2 + 2δ.

On the other hand, as ‖ĜŶ ‖2 ≤ δ, we get

‖GŶ ‖2 ≤ ‖ĜŶ ‖2 + ‖(Ĝ−G)Ŷ ‖2 ≤ δ + |Ĝ−G|2 ≤ 2δ,

and by A.6,
‖(I −Π∗)UŶ ‖2 ≤ 2λ−1

min(Σ)δ.

This implies (A.18).

Proof of theorem 9. We have due to (A.14) and (A.18):

Tr
[
(I − P̂ )Π∗

]
= Tr

[
(I − P̂ )1/2Π∗(I − P̂ )1/2

]
≤

m∑
k=1

µkTr
[
(I − P̂ )1/2Uckc

T
kU

T (I − P̂ )1/2
]

=
m∑
k=1

µk‖(I − P̂ )1/2Uck‖22

≤
m∑
k=1

µk max
c

{
‖(I − P̂ )1/2Uc‖22 | ‖c‖1 ≤ 1, Gc = 0

}
= 4µ∗δ2(λ−1

min(Σ) + 1)2,

what is (A.15).

Now let λ̂j and θ̂j , j = 1, . . . , d be respectively the eigenvalues and the eigenvectors of P̂ .
Assume that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d. Then P̂ =

∑d
j=1 λ̂j θ̂j θ̂

>
j and Π̂ =

∑m
j=1 θ̂j θ̂

>
j . Therefore,
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on the one hand,

Tr[P̂Π∗] ≤
∑
j≤m

λ̂jTr[θ̂j θ̂>j Π∗] + λ̂m
∑
j≤m

Tr[θ̂j θ̂>j Π∗]

=
∑
j≤m

λ̂jTr[θ̂j θ̂>j Π∗] + λ̂mTr[(I − Π̂)Π∗]

=
∑
j≤m

(λ̂j − λ̂m)Tr[θ̂j θ̂>j Π∗] +mλ̂m.

Since Tr[θ̂j θ̂>j Π∗] = |Π∗θ̂j |2 ≤ 1, we get Tr[P̂Π∗] ≤
∑

j≤m λ̂j . Taking into account the
relations

∑
j≤d λ̂j ≤ m, Tr[Π∗] = m and (1− λ̂m+1)(I − Π̂) � I − P̂ , we get

λm+1 ≤ m−
∑
j≤m

λ̂j ≤ Tr[(I − P̂ )Π∗] ≤ 4µ∗δ2(λ−1
min(Σ) + 1)2,

and, therefore,

Tr[(I − Π̂)Π∗] ≤
4µ∗δ2(λ−1

min(Σ) + 1)2

1− 4µ∗δ2(λ−1
min(Σ) + 1)2

.

Now we are done, because due to Tr[Π̂] = Tr[Π∗] = m,

‖Π̂−Π∗‖22 = Tr[Π̂2 − 2Π̂Π∗ + (Π∗)2] = 2m− 2Tr[Π̂Π∗] = 2Tr[(I − Π̂)Π∗],

and we arrive at (A.16).
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Statistical Tests

In this section we shortly report the statistical tests on normality used the dimension
reduction step of the convex-projection approach to SNGCA.

In order to detect a significant asymmetry in the distribution of the original data pro-
jected on the semi-axis of the numerical approximation of the rounding ellipsoid E√d
we use the K2 -test according to D’Agostino-Pearson [244]. The D’Agostino-Pearson test
computes how far the empirical skewness and kurtosis of the given data distribution differs
from the value expected with a Gaussian distribution. The test statistic is approximately
distributed according to the χ2

2 -distribution and its empirical data counterpart is given
by

K̂2 = Z2(
√
b1) + Z2(b2)

√
b1 = 1

N

∑N
i=1

(
Xi−µ
σ

)3

b2 = 1
N

∑N
i=1

(
Xi−µ
σ

)4

Here µ denotes the empirical mean, σ the empirical standard deviation of the data and
Z(·) denotes a normalizing transformations of skewness and kurtosis. The test is more
powerful with respect to an asymmetry of a distribution.

Furthermore we use the EDF-test according to Anderson-Darling [8] with the modification
of Stephens [215]: Let FN be the empirical cumulative distribution function and F the
assumed theoretical cumulative distribution function. The test statistics T measures the
quadratic deviations between FN and F :

T =
∫

R
[FN (x)− F (x)]2ν(x) dF

where ν(x) is the weighting function ν(x) = [FN (x)(1 − FN (x))]−1 . In sum the data
counterpart of T is given by

T̂ = c

(
−N −

∑N
i=1

[2i−1]
N

[
log(F

(
Xi−µ
σ

)
+ log(1− F

(
XN−i+1−µ

σ

)])

c =

(
1 + 0.75

N + 2.25
N2

)

129
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Again µ is the empirical mean and σ the empirical standard deviation of the data. We
compute T̂ to detect deviations from normality in the tails of the projected distributions.
The test is rejected if T̂ exceeds a critical value cv specific for a given level of significance:

α : 0.10 0.05 0.025 0.01 0.005
cv : 0.631 0.752 0.873 1.035 1.159

The last test, applied to the projected data is the Shapiro-Wilks test [204] based on a
regression strategy in the version given by Royston [189; 190]:

W =

([
1− b2

σ2(N−1)

]λ
− µ

)
σ

∼ N (0, 1)

b =
N/2∑
i=1

aN−i+1(XN−i+1 − xi)

(a1, . . . , aN ) =
m>Σ−1

(m>Σ−1>Σ−1m)1/2

In this test m = (m1, . . . ,mn) denote the expected values of standard normal order
statistics for a sample of size N and Σ is the corresponding covariance matrix.
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