Kapitel 10

Zusammenfassung

Kupfer-Sauerstoff-Ebenen sind die "Träger" der Supraleitung in Hoch-T_C-Kuprat-Supraleitern. Ziel der vorliegenden Arbeit war es, mittels der Untersuchung der Temperaturabhängigkeit der Cu-NQR-Spektren sowie des Relaxationsverhaltens des Cu-Spin-Systems von Hoch-T_C-Supraleitern des HgBaCaCuO-Systems zu einem Verständnis der elektronischen Zustände der CuO-Ebenen in diesen Hoch-T_C-Supraleitern zu gelangen.

Zur Messung der Temperaturabhängigkeit der Cu-NQR-Spektren in Supraleitern des HgBaCuO-Systems war eine extreme Erhöhung des Signal-zu-Rausch-Verhältnisses der Messungen erforderlich. Hierzu wurde ein Hf-Vorverstärker, der mit flüssigem Helium auf 4,2 K gekühlt wird, entwickelt, dessen Eingangsrauschspannung den extrem niedrigen Wert von 50 pv/ $\sqrt{\text{Hz}}$ aufweist, bei einer Verstärkung von 17 dB. Mit der Entwicklung dieses Hf-Vorverstärkers ist es erstmals gelungen, die Temperaturabhängigkeit der Cu-NQR-Spektren in Hg-Kupratsupraleitern bis 140 K ($T_C = 134$ K) zu untersuchen.

Die Verbindung $HgBa_2Ca_2Cu_3O_{8+\delta}$ des 1993 entdeckten Hoch- T_C -Supraleiter-HgBaCaCuO-Systems besitzt mit 134 K die höchste Übergangstemperatur aller bisher bekannten Hoch- T_C -Supraleiter. Das System zeigt bei 4,2 K ferner die breitesten Cu-NQR-Spektren aller bekannten Hoch- T_C -Supraleiter. Weiterhin sind die Verbindungen des HgBaCaCuO-System dadurch gekennzeichnet, daß sie die geringsten Verzerrungen in den CuO-Ebenen der bisher entdeckten Hoch- T_C -Supraleiter besitzen.

Aktuelle Theorien, die sich mit den Zuständen der CuO-Ebenen und insbesondere der Ladungsverteilung in den CuO-Ebenen der Kupratsupraleiter befassen, sind die "d-density-wave"-Theorie und die "Stripes"-Theorie. Die "d-density-wave"-Theorie versucht die Dotierungsabhängigkeit der Übergangstemperatur zur Supraleitung mit der Annahme eines weiteren Ordnungsparameters, der "d-density-wave" zu verstehen. Dieser Ordnungsparameter steht zur Supraleitung in Konkurrenz und führt zu der charakteristischen, parabolischen Form der Dotierungsabhängigkeit der Übergangstemperatur in den Hoch-Tc-Supraleitern. Eine Folge des "d-density-wave"-Zustandes wären orbitale Ströme in den CuO-Ebenen, die zu magnetischen Momenten am Cu-Kern führen können, mit einer Größenordnung von 100 G. Diese magnetischen Momente würden die Entartung der Quadrupolniveaus der Cu-Spins aufheben und zu einer

Linienaufspaltung der Cu-NQR-Linien führen. Die longitudinale Relaxation der Cu-Spins erfolgt unter diesen Bedingungen mehrfach-exponentiell, mit eine Abhängigkeit von den Anfangsbedingungen (Anzahl der Sättigungspulse).

Die "Stripes"-Theorie versucht das hohe T_C der Hoch-T_C-Supraleiter mittels Vorgängen zu verstehen, die zu einer mesoskopischen Phasentrennung in den Hoch-T_C-Supraleitern führen. Bei einer "Stripes"-Formation in einem Hoch-T_C-Supraleiter bilden sich in den CuO-Ebenen Bereiche, die unterschiedliche Ladungsträgerdichten besitzen. Die unterschiedlichen Bereiche sollten zu unterschiedlichen Quadrupolfrequenzen führen, wobei die Entartung der Quadrupolniveaus der Cu-Spins bestehen bleibt. Die longitudinale Relaxation des Cu-Spin-Systems erfolgt dabei einfach-exponentiell.

Beide Modelle führen zu Phasenübergängen, die sich in der Temperaturabhängigkeit der Cu-NQR-Spektren als starke Verbreiterungen der Spektren widerspiegeln. Eine Unterscheidung zwischen beiden Modellen kann aus dem Relaxationsverhalten des Spins-Systems getroffen werden.

Gemessen wurde die Temperaturabhängigkeit der Cu-NQR-Spektren zweier unterschiedlich dotierter HgBaCaCuO-Kupratsupraleiter im Temperaturbereich von 4,2 K bis 140 K, ohne externe magnetische Felder. Die eine Probe besitzt eine optimale Sauerstoffdotierung und hat die Zusammensetzung $Hg_{0,8}Cu_{0,2}Ba_2Ca_2Cu_3O_{8+\delta}$ mit einem T_c von 134 K, während die andere Probe die Zusammensetzung $Hg_{0,5}Cu_{0,5}Ba_2Ca_2Cu_3O_8F_{\delta}$ besitzt und ebenfalls eine optimale Dotierung mit einem T_c von 134 K, jedoch fast vollständig mit Fluor statt mit Sauerstoff dotiert wurde.

Die Kristallstruktur des HgBaCaCuO-Systems besitzt 3 CuO-Ebenen mit zwei inäquivalenten Gitterplätzen für das Kupfer der CuO-Ebenen. Bei 140 K zeigen beide Proben ein Cu-NQR-Spektrum bestehend aus zwei ^{63,65}Cu-Linienpaaren entsprechend den inäquivalenten Gitterplätzen. In der ersten Probe zeigt sich jedoch unterhalb von 120 K eine starke Verbreiterung des Spektrums, mit einer ausgeprägten Peakstruktur, aufgrund einer Aufspaltung der beiden ^{63,65}Cu-Linienpaare. In der zweiten Probe zeigt sich die Verbreiterung des Spektrums unterhalb von 100 K. Die beiden -bei 140 K sichtbaren ^{63,65}Cu-Linienpaare- zeigen in der supraleitenden Phase in beiden Proben eine Aufspaltung in insgesamt sechs ^{63,65}Cu-Linienpaare.

Das longitudinale Relaxationsverhalten des Cu-Spin-Systems weist bei vorhandener Linienaufspaltung ein mehrfach-exponentielles Relaxationsverhalten auf, mit Relaxationszeiten im Bereich von 5 ms und 100 ms, wobei die Länge der einzelnen Relaxationszeiten von den Anfangsbedingungen abhängt. Ebenso wurde ein Übergang von einem zweifach-exponentiellen Relaxationsverhalten zu einem dreifach-exponentiellen Relaxationsverhalten bei Veränderung der Anfangsbedingungen festgestellt. Das transversale Relaxationsverhalten hingegen zeigte sich im gesamten Cu-NQR-Spektrum einfach-exponentiell, mit Relaxationszeiten in der Größenordnung von 50 μ s in der 1. Probe und 70 μ s in der 2. Probe.

Die Linienaufspaltung erwies sich als unabhängig von den Präparationsbedingungen und Art der Dotierung der Proben, ist also eine Eigenschaft der CuO-Ebenen.

Das Vorhandensein einer temperaturabhängigen Linienaufspaltung, zusammen mit der Abhängigkeit des longitudinalen Relaxationsverhalten von den Anfangsbedingungen, bedeutet eindeutig ein temperaturabhängiges Erscheinen magnetischer Momente am Cu-Kern. Eine "Stripes"-Formation erscheint aufgrund

des mehrfach-exponentiellen longitudinalen Relaxationsverhaltens als unwahrscheinlich. Das Maximum der magnetischen Feldstärke am Cu-Kern beträgt 785 G bei 4,2 K in der 1. Probe und 1480 G in der 2. Probe und liegt damit ausserhalb der Größenordnung der Voraussage der DDW-Theorie.

Im Gegensatz zu der bisher gefundenen Koexsistenz von Supraleitung und Antiferromagnetismus, insbesondere in den LaSrCuO-Verbindungen, liegt das gefundene magnetische Moment parallel zur c-Achse, wie es die "DDW"-Theorie vorhersagt.

Zur Klärung der mikroskopischen Ursache des gefundenen antiferromagnetischen Zustandes, müssen daher weitere, intensive Untersuchungen erfolgen.

Ausblick

Die NQR ist eine Methode, mit der die Eigenschaften dieses antiferromagnetischen Zustandes direkt Untersucht werden können. Bis jetzt konnte die Temperaturabhängigkeit der Cu-NQR-Spektren in Hg-Kupratsupraleitern aufgrund des ungünstigen Signal-zu-Rausch-Verhältnisses nicht untersucht werden. Durch die Überwindung der experimentellen Probleme mit der Entwicklung des heliumgekühlten Hf-Vorverstärkers ist es jetzt möglich geworden, die Eigenschaften dieses dieses antiferromagnetischen Zustandes durch die Temperaturabhängigkeit der Cu-NQR-Spektren in Hg-Kupratsupraleitern zu untersuchen. Insbesondere ist hierbei die Dotierungsabhängigkeit der Übergangstemperatur in den antiferromagnetischen Zustand sowie die Dotierungsabhängigkeit der magnetischen Feldstärke am Cu-Kern von großem Interesse für die Theorie der Hoch-T_C-Supraleitung.