dc.contributor.author
Teng, Yanting
dc.contributor.author
Samajdar, Rhine
dc.contributor.author
Van Kirk, Katherine
dc.contributor.author
Wilde, Frederik
dc.contributor.author
Sachdev, Subir
dc.contributor.author
Eisert, Jens
dc.contributor.author
Sweke, Ryan
dc.contributor.author
Najafi, Khadijeh
dc.date.accessioned
2025-11-10T10:50:40Z
dc.date.available
2025-11-10T10:50:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50256
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49982
dc.description.abstract
Learning faithful representations of quantum states is crucial to fully characterizing the variety of many-body states created on quantum processors. While various tomographic methods, such as classical shadow and matrix product state (MPS) tomography have shown promise in characterizing a wide class of quantum states, they face unique limitations in detecting topologically ordered two-dimensional states. To address this problem, we implement and study a heuristic tomographic method that combines variational optimization on tensor networks with randomized measurement techniques. Using this approach, we demonstrate its ability to learn the ground state of the surface-code Hamiltonian as well as an experimentally realizable quantum spin liquid state. In particular, we perform numerical experiments using MPS ansätze and systematically investigate the sample complexity required to achieve high fidelities for systems with sizes of up to 48 qubits. In addition, we provide theoretical insights into the scaling of our learning algorithm by analyzing the statistical properties of maximum-likelihood estimation. Notably, our method is sample-efficient and experimentally friendly, only requiring snapshots of the quantum state measured randomly in the 𝑋 or 𝑍 bases. Using this subset of measurements, our approach can effectively learn any real pure states represented by tensor networks, and we rigorously prove that random-𝑋𝑍 measurements are tomographically complete for such states.
en
dc.format.extent
38 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum tomography
en
dc.subject
Topological order
en
dc.subject
Machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Learning Topological States from Randomized Measurements Using Variational Tensor-Network Tomography
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
040303
dcterms.bibliographicCitation.doi
10.1103/qm7q-w9qj
dcterms.bibliographicCitation.journaltitle
PRX Quantum
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1103/qm7q-w9qj
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3399
refubium.resourceType.provider
WoS-Alert