dc.contributor.author
Li, Chaohui
dc.contributor.author
Vincze, Andrej
dc.contributor.author
Park, Hyoungwon
dc.contributor.author
Streller, Fabian
dc.contributor.author
Götz, Klaus
dc.contributor.author
Qiu, Shudi
dc.contributor.author
Byun, Jiwon
dc.contributor.author
Shang, Ying
dc.contributor.author
Yuan, Zhangyu
dc.contributor.author
Dong, Lirong
dc.contributor.author
Tian, Jingjing
dc.contributor.author
Peng, Zijian
dc.contributor.author
Liu, Chao
dc.contributor.author
Yang, Fu
dc.contributor.author
Wang, Yanxue
dc.contributor.author
Späth, Andreas
dc.contributor.author
Osvet, Andres
dc.contributor.author
Forberich, Karen
dc.contributor.author
Heumueller, Thomas
dc.contributor.author
Christiansen, Silke H.
dc.contributor.author
Halik, Marcus
dc.contributor.author
Fink, Rainer H.
dc.contributor.author
Unruh, Tobias
dc.contributor.author
Li, Ning
dc.contributor.author
Lüer, Larry
dc.contributor.author
Brabec, Christoph J.
dc.date.accessioned
2025-08-05T06:49:36Z
dc.date.available
2025-08-05T06:49:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48554
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48278
dc.description.abstract
Ligand engineering is an effective method to reduce defects in perovskite solar cells (PSCs) and to enhance efficiency. Likewise, enhancing device stability through ligand engineering is currently emerging as a key focus to suppress the bidirectional migration of halides and silver ions, which otherwise can cause irreversible chemical corrosion to the electrode and perovskite layer. Here, triphenylphosphine oxide (TPPO) is demonstrated to improve the long-term operational stability of PSCs when introduced at the interface between the perovskite and the electron transport layer (ETL). TPPO effectively eliminates uncoordinated Pb2+ and thus reduces surface defects. Accordingly, the target solar cell yields a hero power conversion efficiency (PCE) of 26.01% and a maximum open-circuit voltage (VOC) of 1.23 V, representing the minimum voltage deficit (0.32 V) reported for methylammonium-free (MA-free) PSCs. Moreover, long-term operational analysis reveals that the bidirectional migration of halides and silver ions is significantly suppressed, resulting in enhanced device stability. TPPO-modified PSCs retain 90% of the initial PCE after 1200 hours of operation in maximum power point tracking. Ligand engineering with TPPO marks a significant advancement in enhancing the stability of PSCs and is fully compatible to upscaling scenarios.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Ligand engineering
en
dc.subject
perovskite solar cells
en
dc.subject
reduce defects
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Anchoring ligand engineering enables highly stable MA-free perovskite solar cells with a minimal VOC deficit of 0.32 V
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-07-30T00:17:28Z
dcterms.bibliographicCitation.doi
10.1039/d5ee03162a
dcterms.bibliographicCitation.journaltitle
Energy & Environmental Science
dcterms.bibliographicCitation.number
15
dcterms.bibliographicCitation.pagestart
7660
dcterms.bibliographicCitation.pageend
7668
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.1039/d5ee03162a
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1754-5692
dcterms.isPartOf.eissn
1754-5706
refubium.resourceType.provider
DeepGreen