The Islamic conquest of the seventh century marked the beginning of a process that pulled the Far and Central Maghreb into the emerging Islamic world. This process was, however, not straightforward. Step by step, commercial, political and intellectual bonds linked the Maghreb with the Middle Eastern centers, while religious missionaries and political dissidents arrived there and sought for adepts amongst the newly converted population. Umayyads and Fatimids used this territory to fight their battles. The conflicts between these rival regional macro-powers forced the Berber imamates to increase their dependence on the Western Umayyads in Al-Andalus. Economically the Maghreb had become part of a transregional commercial network (slave- trade) and eventually became part of the Islamicate world sharing legal practices, religious doctrines and globally connected scholarly elites. The growing influence of Maliki scholars and practices prepared the terrain for the adoption of the Maliki legal school and the marginalization of local forms of Islam. Finally, the Maghreb became part of a “Sunni” mainstream Islam throughout the tenth and eleventh centuries.
Weniger anzeigenEmpirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5∘ × 0.5∘ global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
Weniger anzeigenEBLM J0113+31 is a moderately bright (V = 10.1), metal-poor ([Fe/H] ≈−0.3) G0V star with a much fainter M dwarf companion on a wide, eccentric orbit (= 14.3 d). We have used near-infrared spectroscopy obtained with the SPIRou spectrograph to measure the semi-amplitude of the M dwarf’s spectroscopic orbit, and high-precision photometry of the eclipse and transit from the CHEOPS and TESS space missions to measure the geometry of this binary system. From the combined analysis of these data together with previously published observations, we obtain the following model-independent masses and radii: M1 = 1.029 ± 0.025 M⊙, M2 = 0.197 ± 0.003 M⊙, R1 = 1.417 ± 0.014 R⊙, R2 = 0.215 ± 0.002 R⊙. Using R1 and the parallax from Gaia EDR3 we find that this star’s angular diameter is θ = 0.0745 ± 0.0007 mas. The apparent bolometric flux of the G0V star corrected for both extinction and the contribution from the M dwarf (<0.2 per cent) is F⊕,0=(2.62±0.05)×10−9 erg cm−2 s−1. Hence, this G0V star has an effective temperature Teff,1=6124K±40K(rnd.)±10K(sys.). EBLM J0113+31 is an ideal benchmark star that can be used for ‘end-to-end’ tests of the stellar parameters measured by large-scale spectroscopic surveys, or stellar parameters derived from asteroseismology with PLATO. The techniques developed here can be applied to many other eclipsing binaries in order to create a network of such benchmark stars.
Weniger anzeigenBackground
Little is known about changes of mental health during the COVID-19 pandemic in potentially disadvantaged groups. We investigated changes in anxiety and depression symptoms during the first year of the pandemic in six European countries and Australia by prior mental disorders and migration status.
Methods
Overall, 4674 adults answered a web-based survey in May–June 2020 and were followed by three repeated surveys up to February 2021. Information on psychosocial, financial and demographic, living conditions, prior mental disorders, depression and anxiety symptoms during the pandemic and migration status was collected. Weighted general estimation equations modelling was used to investigate the association between prior mental disorders, migration status, and symptoms over time.
Results
Most participants were <40 years old (48%), women (78%) and highly educated (62%). The baseline prevalence of depressive and anxiety symptoms ranged between 19%–45% and 13%–35%, respectively. In most countries, prevalence rates remained unchanged throughout the pandemic and were higher among people with prior mental disorders than without even after adjustment for several factors. We observed interactions between previous mental disorders and symptoms of anxiety or depression over time in two countries. No difference by migration status was noted.
Limitations
Convenience sampling limits generalizability. Self-assessed symptoms of depression and anxiety might involve some misclassification.
Conclusions
Depression and anxiety symptoms were worse among individuals with prior mental disorders than without, but there was no clear trend of worsening mental health in the observed groups during the observed period.
Weniger anzeigenKlassische Autonomiekonzepte, die Kunst als selbstbestimmt und selbstzweckhaft denken, werden einer in ökonomische, politische, soziale und ökologische Zusammenhänge verwickelten künstlerischen Praxis der Gegenwart kaum gerecht – und bleiben doch für ein Verständnis dieser Kunst unerlässlich. Aus verschiedenen disziplinären Perspektiven gehen die Beiträger*innen des Bandes den Widersprüchlichkeiten einer falschen Gegenüberstellung von Autonomie und Engagement nach und bestimmen gegen Tendenzen einer einseitigen Funktionalisierung differenzielle Strategien und heteronome Verflechtungen künstlerischer Praxis neu.
Weniger anzeigenSie ist die Heldin der heimlichen Nationalhymne und das hiesige Äquivalent zum Waffenwahn der USA. Schon in ihren Anfängen war sie ein rechter Raum für die vom Futurismus besungene neue Männlichkeit: die Autobahn. Mussolini und Hitler machten sie nicht zufällig zu Staatsprojekten ersten Ranges und ihre Propaganda überdauert versteckt bis heute – und zeigt sich zunehmend wieder ganz offen. Mit dem drohenden Klimakollaps ist überdeutlich, dass Auto und Autobahn historische Fehler waren. Conrad Kunze liefert eine Handreichung für alle, die davon träumen, diese Form der fossilen Moderne zugunsten einer Moderne von Klimaschutz und Emanzipation zu überwinden.
Weniger anzeigenGermany's debate on nuclear energy is characterized by a potential for conflict. With the Repository Site Selection Act, a new strategy was adopted for a participatory search process for the best possible repository site for high-level radioactive waste in Germany. To gain insights into how a Public Participatory GIS application (PPGIS) can contribute to this strategy, a transdisciplinary approach was adopted. By involving a citizen group to take part in the research process, we co-designed and addressed three research questions regarding the role of the PPGIS, its usability and ability to enable dialogue. Key findings include the need for guidance on how to interpret the data provided. Although the potential of a PPGIS to support dialogue is recognized, the need for content moderation emerged as a significant challenge. The transdisciplinary approach was useful in capturing multiple viewpoints and providing new insights into how a PPGIS should be designed to maximize its usefulness.
Weniger anzeigenQuantum channels breaking entanglement, incompatibility, or nonlocality are defined as such because they are not useful for entanglement-based, one-sided device-independent, or device-independent quantum-information processing, respectively. Here, we show that such breaking channels are related to complementary tests of macrorealism, i.e., temporal separability, channel unsteerability, temporal unsteerability, and the temporal Bell inequality. To demonstrate this we first define a steerability-breaking channel, which is conceptually similar to entanglement and nonlocality-breaking channels and prove that it is identical to an incompatibility-breaking channel. A hierarchy of quantum nonbreaking channels is derived, akin to the existing hierarchy relations for temporal and spatial quantum correlations. We then introduce the concept of channels that break temporal correlations, explain how they are related to the standard breaking channels, and prove the following results. (1) A robustness-based measure for non-entanglement-breaking channels can be probed by temporal nonseparability. (2) A non-steerability-breaking channel can be quantified by channel steering. (3) Temporal steerability and nonmacrorealism can be used for, respectively, distinguishing unital steerability-breaking channels and nonlocality-breaking channels for a maximally entangled state. Finally, a two-dimensional depolarizing channel is experimentally implemented as a proof-of-principle example to demonstrate the hierarchy relation of nonbreaking channels using temporal quantum correlations.
Weniger anzeigenEmerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.
Weniger anzeigenIn vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is associated with an increased risk of preterm (33rd–37th gestational week) and early preterm birth (20th–32nd gestational week). The underlying general and procedure related risk factors are not well understood so far. 4328 infertile women undergoing IVF/ICSI were entered into this study. The study population was divided into three groups: (a) early preterm birth group (n = 66), (b) preterm birth group (n = 675) and (c) full-term birth group (n = 3653). Odds for preterm birth were calculated by stepwise multivariate logistic regression analysis. We identified seven independent risk factors for preterm birth and four independent risk factors for early preterm birth. Older (> 39) or younger (< 25) maternal age (OR: 1.504, 95% CI 1.108–2.042, P = 0.009; OR: 2.125, 95% CI 1.049–4.304, P = 0.036, respectively), multiple pregnancy (OR: 9.780, 95% CI 8.014–11.935, P < 0.001; OR: 8.588, 95% CI 4.866–15.157, P < 0.001, respectively), placenta previa (OR: 14.954, 95% CI 8.053–27.767, P < 0.001; OR: 16.479, 95% CI 4.381–61.976, P < 0.001, respectively), and embryo reduction (OR: 3.547, 95% CI 1.736–7.249, P = 0.001; OR: 7.145, 95% CI 1.990–25.663, P = 0.003, respectively) were associated with preterm birth and early preterm birth, whereas gestational hypertension (OR: 2.494, 95% CI 1.770–3.514, P < 0.001), elevated triglycerides (OR: 1.120, 95% CI 1.011–1.240, P = 0.030) and shorter activated partial thromboplastin time (OR: 0.967, 95% CI 0.949–0.985, P < 0.001) were associated only with preterm birth. In conclusion, preterm and early preterm birth risk factors in patients undergoing assisted IVF/ICSI are in general similar to those in natural pregnancy. The lack of some associations in the early preterm group was most likely due to the lower number of early preterm birth cases. Only embryo reduction represents an IVF/ICSI specific risk factor.
Weniger anzeigenHigh-altitude wetlands of the Central Andes, locally known as bofedales, provide important ecosystem services, particularly carbon storage, forage provisioning, and water regulation. Local communities have artificially expanded bofedales by irrigating surrounding grasslands to maximise areas for alpaca grazing. Despite their importance, biophysical processes of both natural and artificial bofedales are still poorly studied, which hinders the development of adequate management and conservation strategies. We analyse and compare the vegetation composition, hydrological variables, groundwater chemistry, and soil characteristics of a natural and an artificial bofedal of at least 10 years old in southern Peru, to understand their interrelations and the consequences for ecosystem service provisioning. We do not find statistically significant differences in the soil, water, and vegetation characteristics. Soil organic carbon (SOC) content, which we use as a proxy for carbon storage, is negatively correlated to dissolved oxygen, pH, and soil water temperature. In addition, Non-Metric Multidimensional Scaling analysis shows a positive relation between plant community composition, SOC content, and water electric conductivity. Our results suggest a three-way interaction between hydrological, soil, and vegetation characteristics in the natural bofedal, which also holds for the artificial bofedal. Vegetation cover of two of the most highly nutritious species for alpaca, Lachemilla diplophylla and Lilaeopsis macloviana with 19–22% of crude protein, are weakly or not correlated to environmental variables, suggesting grazing might be obscuring these potential relationships. Given the high economic importance of alpaca breeding for local communities, expanding bofedales artificially appears an effective strategy to enhance their ecosystem services with minimal impact on the ecohydrological properties of bofedales.
Weniger anzeigenMetallic spintronic terahertz (THz) emitters have become well-established for offering ultra-broadband, gapless THz emission in a variety of excitation regimes, in combination with reliable fabrication and excellent scalability. However, so far, their potential for high-average-power excitation to reach strong THz fields at high repetition rates has not been thoroughly investigated. In this article, we explore the power scaling behavior of tri-layer spintronic emitters using an Yb-fiber excitation source, delivering an average power of 18.5 W (7 W incident on the emitter after chopping) at 400 kHz repetition rate, temporally compressed to a pulse duration of 27 fs. We confirm that a reflection geometry with back-side cooling is ideally suited for these emitters in the high-average-power excitation regime. In order to understand limiting mechanisms, we disentangle the effects on THz power generation by average power and pulse energy by varying the repetition rate of the laser. Our results show that the conversion efficiency is predominantly determined by the incident fluence in this high-average-power, high-repetition-rate excitation regime if the emitters are efficiently cooled. Using these findings, we optimize the conversion efficiency and reach highest excitation powers in the back-cooled reflection geometry. Our findings provide guidelines for scaling the power of THz radiation emitted by spintronic emitters to the milliwatt-level by using state-of-the-art femtosecond sources with multi-hundred-Watt average power to reach ultra-broadband, strong-field THz sources with high repetition rate.
Weniger anzeigenBackground: Numerous studies have shown that infiltrating eosinophils play a key role in the tumor progression of bladder urothelial carcinoma (BLCA). However, the roles of eosinophils and associated hub genes in clinical outcomes and immunotherapy are not well known.
Methods: BLCA patient data were extracted from the TCGA database. The tumor immune microenvironment (TIME) was revealed by the CIBERSORT algorithm. Candidate modules and hub genes associated with eosinophils were identified by weighted gene co-expression network analysis (WGCNA). The external GEO database was applied to validate the above results. TIME-related genes with prognostic significance were screened by univariate Cox regression analysis, lasso regression, and multivariate Cox regression analysis. The patient’s risk score (RS) was calculated and divided subjects into high-risk group (HRG) and low-risk group (LRG). The nomogram was developed based on the risk signature. Models were validated via receiver operating characteristic (ROC) curves and calibration curves. Differences between HRG and LRG in clinical features and tumor mutational burden (TMB) were compared. The Immune Phenomenon Score (IPS) was calculated to estimate the immunotherapeutic significance of RS. Half-maximal inhibitory concentrations (IC50s) of chemotherapeutic drugs were predicted by the pRRophetic algorithm.
Results: 313 eosinophil-related genes were identified by WGCNA. Subsequently, a risk signature containing 9 eosinophil-related genes (AGXT, B3GALT2, CCDC62, CLEC1B, CLEC2D, CYP19A1, DNM3, SLC5A9, SLC26A8) was finally developed via multiplex analysis and screening. Age (p < 0.001), grade (p < 0.001), and RS (p < 0.001) were independent predictors of survival in BLCA patients. Based on the calibration curve, our risk signature nomogram was confirmed as a good predictor of BLCA patients’ prognosis at 1, 3, and 5 years. The association analysis of RS and immunotherapy indicated that low-risk patients were more credible for novel immune checkpoint inhibitors (ICI) immunotherapy. The chemotherapeutic drug model suggests that RS has an effect on the drug sensitivity of patients.
Conclusions: In conclusion, the eosinophil-based RS can be used as a reliable clinical predictor and provide insights into the precise treatment of BLCA.
Weniger anzeigenA global quantum repeater network involving satellite-based links is likely to have advantages over fiber-based networks in terms of long-distance communication, since the photon losses in vacuum scale only polynomially with the distance – compared to the exponential losses in optical fibers. To simulate the performance of such networks, we have introduced a scheme of large-scale event-based Monte Carlo simulation of quantum repeaters with multiple memories that can faithfully represent loss and imperfections in these memories. In this work, we identify the quantum key distribution rates achievable in various satellite and ground station geometries for feasible experimental parameters. The power and flexibility of the simulation toolbox allows us to explore various strategies and parameters, some of which only arise in these more complex, multi-satellite repeater scenarios. As a primary result, we conclude that key rates in the kHz range are reasonably attainable for intercontinental quantum communication with three satellites, only one of which carries a quantum memory.
Weniger anzeigenNanoparticles that modulate innate immunity can act as vaccine adjuvants and antigen carriers and are promising alternatives to conventional anticancer therapy. Nanoparticles might, upon contact with serum, activate the complement system that might in turn result in clearance and allergic reactions. Herein, we report that ultrasmall glyconanoparticles decorated with nonimmunogenic α-(1–6)-oligomannans trigger an innate immune response without drastically affecting the complement system. These negatively charged glyconanoparticles (10–15 nm) are stable in water and secrete proinflammatory cytokines from macrophages via the NF-κB signaling pathway. The glyconanoparticles can be used as immunomodulators for monotherapy or in combination with drugs and vaccines.
Weniger anzeigenFocal segmental glomerulosclerosis (FSGS) is a chronic glomerular disease associated with podocyte injury which is named after the pathologic features of the kidney. The aim of this study is to decode the key changes in gene expression and regulatory network involved in the formation of FSGS. Integrated network analysis included Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between FSGS patients and healthy donors. Bioinformatics analysis was used to identify the roles of the DEGs and included the development of protein-protein interaction (PPI) networks, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the key modules were assured. The expression levels of DEGs were validated using the additional dataset. Eventually, transcription factors and ceRNA networks were established to illuminate the regulatory relationships in the formation of FSGS. 1130 DEGs including 475 upregulated genes and 655 downregulated genes with functional enrichment analysis were determined. Further analysis uncovered that the validated hub genes were defined as candidate genes, including Complement C3a Receptor 1 (C3AR1), C-C Motif Chemokine Receptor 1(CCR1), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Melatonin Receptor 1A (MTNR1A), and Purinergic Receptor P2Y13 (P2RY13). More importantly, we identified transcription factors and mRNA-miRNA-lncRNA regulatory networks associated with the candidate genes. The candidate genes and regulatory networks discovered in this study can help to comprehend the molecular mechanism of FSGS and supply potential targets for the diagnosis and therapy of FSGS.
Weniger anzeigenDetecting viral and vector integration events is a key step when investigating interactions between viral and host genomes. This is relevant in several fields, including virology, cancer research and gene therapy. For example, investigating integrations of wild-type viruses such as human papillomavirus and hepatitis B virus has proven to be crucial for understanding the role of these integrations in cancer. Furthermore, identifying the extent of vector integration is vital for determining the potential for genotoxicity in gene therapies. To address these questions, we developed isling, the first tool specifically designed for identifying viral integrations in both wild-type and vector from next-generation sequencing data. Isling addresses complexities in integration behaviour including integration of fragmented genomes and integration junctions with ambiguous locations in a host or vector genome, and can also flag possible vector recombinations. We show that isling is up to 1.6-fold faster and up to 170% more accurate than other viral integration tools, and performs well on both simulated and real datasets. Isling is therefore an efficient and application-agnostic tool that will enable a broad range of investigations into viral and vector integration. These include comparisons between integrations of wild-type viruses and gene therapy vectors, as well as assessing the genotoxicity of vectors and understanding the role of viruses in cancer.
Weniger anzeigenMethyl acrylate (MA) and ethyl acrylate (EA) had previously tested positive for mutagenicity in vitro, but in vivo studies were negative. One of the metabolism pathways of alkyl acrylates is conjugation with glutathione. The glutathione availability is restricted in standard in vitro test systems so that they do not reflect the in vivo metabolism in this respect. We investigated whether the addition of glutathione to the in vitro L5178Y/TK+/− mouse lymphoma mutagenicity test prevents alkyl acrylate’s mutagenicity in vitro. We also investigated whether the quantitative relationships support the notion that the GSH supplemented in vitro systems reflect the true in vivo activity. Indeed, glutathione concentrations as low as 1 mM completely negate the mutagenicity of MA and EA in the L5178Y/TK+/− mouse lymphoma mutagenicity test up to the highest concentrations of the two acrylates tested, 35 µg/ml, a higher concentration than that previously found to be mutagenic in this test (14 µg MA/ml and 20 µg EA/ml). 1 mM Glutathione reduced the residual MA and EA at the end of the exposure period in the mutagenicity tests by 96–97%, but in vivo up to 100 mg/kg body weight MA and EA left the glutathione levels in the mouse liver and forestomach completely intact. It is concluded that the in-situ levels of glutathione, 7.55 ± 0.57 and 2.84 ± 0.22 µmol/g mouse liver and forestomach, respectively, can efficiently protect against MA and EA-induced mutagenicity up to the high concentration of 100 mg MA and EA/kg body weight and that the negative in vivo mutagenicity tests on MA and EA reflect the true in vivo situation.
Weniger anzeigenThe derivation of ultimate limits to communication over certain quantum repeater networks have provided extremely valuable benchmarks for assessing near-term quantum communication protocols. However, these bounds are usually derived in the limit of ideal devices and leave questions about the performance of practical implementations unanswered. To address this challenge, we quantify how the presence of loss in repeater stations affect the maximum attainable rates for quantum communication over linear repeater chains and more complex quantum networks. Extending the framework of node splitting, we model the loss introduced at the repeater stations and then prove the corresponding limits. In the linear chain scenario we show that, by increasing the number of repeater stations, the maximum rate cannot overcome a quantity, which solely depends on the loss of a single station. We introduce a way of adapting the standard machinery for obtaining bounds to this realistic scenario. The difference is that whilst ultimate limits for any strategy can be derived given a fixed channel, when the repeaters introduce additional decoherence, then the effective overall channel is itself a function of the chosen repeater strategy (e.g., one-way versus two-way classical communication). Classes of repeater strategies can be analysed using additional modeling and the subsequent bounds can be interpreted as the optimal rate within that class.
Weniger anzeigen