id,collection,dc.contributor.author,dc.contributor.firstReferee,dc.contributor.furtherReferee,dc.contributor.gender,dc.date.accepted,dc.date.accessioned,dc.date.available,dc.date.embargoEnd,dc.date.issued,dc.description,dc.description.abstract[de],dc.identifier.uri,dc.identifier.urn,dc.language,dc.rights.uri,dc.subject,dc.subject.ddc,dc.title,dc.title.translated[de],dc.type,dcterms.accessRights.dnb,dcterms.accessRights.openaire,dcterms.format[de],refubium.affiliation[de],refubium.mycore.derivateId,refubium.mycore.fudocsId,refubium.mycore.transfer "701e203f-2304-438d-a9b3-0a1a590c75ad","fub188/14","Fußeis, Florian Clemens","Prof. Dr. Mark Richard Handy","Prof. Dr. Onno Oncken","n","2006-12-19","2018-06-07T20:26:53Z","2007-01-29T00:00:00.649Z","2007-02-15","2007","#### 0 #### Title page and table of contents #### 1 #### Preamble 1 1.1 What is the dissertation about? 1 1.2 Structure of the work 2 1.3 Scientific manuscripts 2 #### 2 #### Introduction 5 2.1 Abstract 5 2.2 Kurzfassung 7 2.3 Introduction 9 2.3.1 Scientific framework of this thesis 11 #### 3 #### Networking of shear zones at the brittle-viscous transition (Cap de Creus, NE Spain) 15 3.1 Abstract 15 3.2 Introduction 16 3.3 Geological setting 17 3.4 Shear zone nucleation and growth 20 3.4.1 Strain localization within fractures 20 3.4.2 Shear zone nucleation and propagation 23 3.4.3 Shear zone interconnection and strain homoganization 27 3.5 Discussion and interpretation 33 3.5.1 Evidence for a strain-dependent BVT 33 3.5.2 A model for the formation, propagation and networking of shear zones at the BVT 35 3.5.3 Bulk kinematics and scales of strain localization 39 3.5.4 Implications for crustal strength at the BVT 41 3.6 Conclusions 42 3.7 Acknowledgements 43 #### 4 #### Strain localization at the brittle-viscous transition (Cap de Creus, NE Spain) 45 4.1 Abstract 45 4.2 Introduction 46 4.3 Geological background 48 4.4 Isolated mylonitic shear zones 49 4.4.1 Fabrics in unsheared rocks 50 4.4.2 Distributed deformation 53 4.4.3 Intragranular strain localization 55 4.4.4. Strain localization in the transgranular scale 57 4.5 Discussion 59 4.5.1 Combined fracturing and mylonitic shearing 59 4.5.2 Fracture propagation and the role of S1/2 64 4.5.3 A model for the strength evolution of a mylonitic shear zone at the BVT 67 4.6 Conclusions 69 4.7 Acknowledgements 71 #### 5 #### Interconnecting Shear Zones 73 5.1 Abstract 73 5.2 Introduction 74 5.3 Macroscale observations 76 5.3.1 F-type shear zones 76 5.3.2 UM-type shear zones 77 5.3.3 M-type shear zones 79 5.4 Microscale observations 82 5.4.1 Microscale observations from UM-type shear zones 82 5.4.2 Geothermometry of UM-type shear zones 91 5.4.3 Microscale observations from M-type shear zones 93 5.4.4 Paleopiezometric data from M-type shear zones 97 5.5 Discussion 100 5.5.1 Deformation in UM-type shear zones 100 5.5.2 Grain size-sensitive creep in step-over shear zones 102 5.6 Summary and Conclusions 107 5.7 Acknowledgements 108 #### 6 #### Multiscaling of Shear zones 109 6.1 Abstract 109 6.2 Introduction 110 6.3 Scaling parameters of shear zones 113 6.3.1 The Strain Localization Factor (LfRA) 113 6.3.2 The Strain Intensity Factor (Iloc) 115 6.4 Scaling of Cap the Creus shear zones 119 6.4.1 Geology of the shear zones 119 6.4.2 Determination of LfRA for different scales 121 6.5 Interpretation and discussion 124 6.5.1 The role of mechanical anisotropies 125 6.5.2 The effects of strain and kinematics 130 6.5.3 Do shear zones soften or harden during upscaling 134 6.6 Summary and Conclusions 136 6.7 Acknowledgements 138 #### 7 #### Summary and Implications 139 7.1 Summary 139 7.1.1 Strain Localization 139 7.1.2 The formation of decameter-wide shear zones 142 7.1.3 Multiscaling of shear zones 144 7.2 Scientific implications 146 #### 8 #### References 151 #### 9 #### Appendix 173 9.1 Terminology 173 9.2 Quantifying γmax in shear zone centers 176 9.3 Sample descriptions 178 9.4 Element distribution maps to Fig. 4.11 180 9.5 Figure- and sample locations 181 9.6 Measurement of shear zones 182 9.7 Determination of the representative area (RA) 182 9.8 Determining Φmi with ACF 183 9.9 Thresholding of ACF data 186 9.10 Robustness of RA determinations 187 9.11 Thermometry of UM-type shear zones 191 #### Danksagung 195","Modes and scales of strain localization at the brittle-viscous transition were investigated in the Northern Shear Belt, Cap de Creus, NE Spain. Field and microstructural investigations revealed that the formation of decametre-wide mylonitic shear zones involved pressure- and temperature-sensitive deformation mechanisms. On the meter-scale, the formation and growth of mylonitic shear zone were characterized by precursory brittle fracturing and a strain- dependent brittle-viscous transition. Where shear zones interconnected and formed decameter-wide networks, fracturing was transitional to grain-size sensitive creep. As the shear zones that constitute these networks widened, the strain distribution was homogenized within the initial limits of the networks. Thereby decameter-wide shear zones formed, whose deformation was governed by a combination of viscous deformation mechanisms involving dislocation and diffusion creep. Multiscale analyses proofed that the scale- dependence of deformation mechanisms in combination with the scaling of pre- existing mechanical anisotropies, that characterize the country rock, control the spatial evolution of shear zones as they grow from millimeter- to kilometer scales.||Diese Untersuchung beschäftigt sich mit der Art und den Maßstäben von Verformungslokalisierung innerhalb des Northern Shear Belt am Cap de Creus in NE Spanien. Feld- und mikrostrukturelle Untersuchungen haben gezeigt, dass die Entstehung von mächtigen mylonitischen Scherzonen, die den Northern Shear Belt bilden, eng mit Übergängen zwischen druck- und temperatursensitiven Verformungsmechanismen zusammenhängt. Die Entstehung und das Größenwachstum von mylonitischen Scherzonen auf dem Metermaßstab waren von initialem spröden Brechen und einem verformungsbedingten Übergang hin zu mylonitischer Scherung gekennzeichnet. Spröde Brüche stellten dort, wo sich Scherzonen verbanden und Netzwerke bildeten, Vorläufer zu Scherzonen dar, in denen Verformung von viskosem Korngrenzgleiten dominiert wurde. Mit zunehmendem Breitenwachstum der vernetzten Scherzonen homogenisierte sich die Verformungsverteilung innerhalb der initialen Grenzen des Netzwerkes. Die Deformation in den dadurch gebildeten zehnermetermächtigen Scherzonen wurde von kombiniertem Dislokations- und Diffusionskriechen kontrolliert. Multiskalenanalysen haben gezeigt, dass die räumliche Entwicklung von Scherzonen während ihres Wachstums vom Millimeter- zum Kilometermaßstab von der Maßstabsgebundenheit der Verformungsmechanismen und den Maßstäben von präexistierenden mechanischen Anisotropien im Gestein kontrolliert wurde.","https://refubium.fu-berlin.de/handle/fub188/6853||http://dx.doi.org/10.17169/refubium-11052","urn:nbn:de:kobv:188-fudissthesis000000002656-8","eng","http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen","Shear zone formation||brittle-viscous transition","500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften","Strain localization and shear zone formation at the brittle-viscous transition, Cap de Creus, Spain","Verformungslokalisierung und Scherzonenbildung am spröd-viskosen Übergang, Cap de Creus, Spanien","Dissertation","free","open access","Text","Geowissenschaften","FUDISS_derivate_000000002656","FUDISS_thesis_000000002656","http://www.diss.fu-berlin.de/2007/67/"