id,collection,dc.contributor.author,dc.date.accessioned,dc.date.available,dc.date.issued,dc.description.abstract[en],dc.format.extent,dc.identifier.uri,dc.language,dc.rights.uri,dc.subject.ddc,dc.subject[en],dc.title,dc.type,dcterms.accessRights.openaire,dcterms.bibliographicCitation.articlenumber,dcterms.bibliographicCitation.doi,dcterms.bibliographicCitation.journaltitle,dcterms.bibliographicCitation.number,dcterms.bibliographicCitation.url,dcterms.bibliographicCitation.volume,dcterms.isPartOf.eissn,refubium.affiliation,refubium.affiliation.other,refubium.funding[],refubium.note.author[],refubium.resourceType.isindependentpub,refubium.resourceType.provider "d4b617a1-30f5-4969-8510-3e2f99ad9713","fub188/16","Sparaciari, Carlo||Goihl, Marcel||Boes, Paul||Eisert, Jens||Ng, Nelly Huei Ying","2021-03-15T07:24:50Z","2021-03-15T07:24:50Z","2021","Understanding under which conditions physical systems thermalize is a long-standing question in many-body physics. While generic quantum systems thermalize, there are known instances where thermalization is hindered, for example in many-body localized (MBL) systems. Here we introduce a class of stochastic collision models coupling a many-body system out of thermal equilibrium to an external heat bath. We derive upper and lower bounds on the size of the bath required to thermalize the system via such models, under certain assumptions on the Hamiltonian. We use these bounds, expressed in terms of the max-relative entropy, to characterize the robustness of MBL systems against externally-induced thermalization. Our bounds are derived within the framework of resource theories using the convex split lemma, a recent tool developed in quantum information. We apply our results to the disordered Heisenberg chain, and numerically study the robustness of its MBL phase in terms of the required bath size. The thermalization of many-body localization phases poses a number of open questions related to our understanding of thermalization in quantum systems. Here, the authors aim to demonstrate that a quantum information approach can be used to investigate the mechanisms of thermalization in a quantum many-body system when coupled to an external system.","8 Seiten","https://refubium.fu-berlin.de/handle/fub188/29934||http://dx.doi.org/10.17169/refubium-29676","eng","https://creativecommons.org/licenses/by/4.0/","500 Naturwissenschaften und Mathematik::530 Physik::530 Physik","entanglement||entropies||laws","Bounding the resources for thermalizing many-body localized systems","Wissenschaftlicher Artikel","open access","3","10.1038/s42005-020-00503-1","Communications Physics","1","https://doi.org/10.1038/s42005-020-00503-1","4","2399-3650","Physik","Institut für Theoretische Physik:::9b3f150d-3d53-491f-8fad-e2dc9be7d978:::600","Springer Nature DEAL","Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.","no","WoS-Alert"