id,collection,dc.contributor.author,dc.date.accessioned,dc.date.available,dc.date.issued,dc.description.abstract[en],dc.format.extent,dc.identifier.sepid,dc.identifier.uri,dc.language,dc.rights.uri,dc.subject.ddc,dc.title,dc.type,dcterms.accessRights.openaire,dcterms.bibliographicCitation,dcterms.bibliographicCitation.doi,dcterms.bibliographicCitation.url,dcterms.isPartOf.issn,refubium.affiliation.other,refubium.affiliation[de],refubium.mycore.derivateId,refubium.mycore.fudocsId,refubium.resourceType.isindependentpub "28840d68-1970-4c5e-b94f-b047692b99f8","fub188/16","Ivchenko, Olga||Bachert, Peter||Imhof, Petra","2018-06-08T04:08:09Z","2015-02-04T09:14:48.834Z","2014","Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first- principles umbrella sampling simulations (View the MathML sourceEaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is “transferred back” from the nearest water molecule to the deprotonated nitrogen atom of creatine.","5 S.","41117","https://refubium.fu-berlin.de/handle/fub188/16651||http://dx.doi.org/10.17169/refubium-20832","eng","http://creativecommons.org/licenses/by-nc-sa/3.0/","500 Naturwissenschaften und Mathematik::530 Physik","Umbrella sampling of proton transfer in a creatine–water system","Wissenschaftlicher Artikel","open access","Chemical Physics Letters. - 600 (2014), S.51-55","10.1016/j.cplett.2014.03.045","http://dx.doi.org/10.1016/j.cplett.2014.03.045","00092614","Institut für Theoretische Physik:::9b3f150d-3d53-491f-8fad-e2dc9be7d978:::600","Physik","FUDOCS_derivate_000000004475","FUDOCS_document_000000021758","no"