2 Material und Methoden

2.1 Materialien

2.1.1 Chemikalien, Reagenzien und Reagenziensätze

Die verwendeten Chemikalien und Reagenzien, wie z.B. Puffer, Salze, Säuren, Basen und organische Lösungen wurden von den in Tab. 2.1 aufgeführten Firmen bezogen. Alle Chemikalien hatten den Reinheitsgrad z.A..

Tab. 2.1: Chemikalien und Reagenzien

Chemikalien und Reagenzien	Bezug
β-Mercaptoethanol	Sigma, Deisenhofen
$[\alpha^{32}P]ATP$	Amersham Biosciences,
	Freiburg
0,24 -9,5 kb RNA-Leiter	Life Technologies,
	Karlsruhe
1 kb DNA-Leiter	Life Technologies,
	Karlsruhe
10 kDa Proteinleiter	Life Technologies,
	Karlsruhe
17β-Estradiol (E ₂)	Sigma, Deisenhofen
Acrylamide/bisacrylamid (29:1; DNA sequencing)	BioRad, München
Agar	Life Technologies,
	Karlsruhe
Agarose (ultra pure, electrophoresis grade)	Gibco BRL, Eggenstein
Ampicillin	Sigma, Deisenhofen
AmpliTaq Gold®DNA Polymerase	Applied Biosystems, Foster
	City, USA
Aprotinin	Sigma, Deisenhofen
APS	Carl Roth GmbH, Karlsruhe
Aquasafe 300 Plus-Szintillationslösung	Zinsser Analytic, Frankfurt
	a. M.

ATP	Sigma, Deisenhofen
BenchMark TM Protein Ladder	Invitrogen Life Tech.,
	Breda, Niederlande
Benzamidin	Sigma, Deisenhofen
Blue Dextran	Sigma, Deisenhofen
Bromphenolblau	Sigma, Deisenhofen
BSA	Sigma, Deisenhofen
Cacodylsäure Natriumsalz-3-hydrat	Carl Roth GmbH, Karlsruhe
cAMP	Calbiochem, Schwalbach
Coomassie brillant Blue G-250	Carl Roth GmbH, Karlsruhe
DEPC	Sigma, Deisenhofen
DMEM	Sigma, Deisenhofen
DMSO	Sigma, Deisenhofen
DNase (RNase free)	Roche Mol. Diagnostics,
	Mannheim
dNTPs (dATP, dCTP, dGTP, dTTP)	Applied Biosystems, Foster
	City, USA
DTT	Sigma, Deisenhofen
Ethidiumbromid	Carl Roth GmbH, Karlsruhe
Ethanol	J.T. Baker, Deventin,
	Niederlande
Fötales Kälber Serum	Biochrom AG, Berlin
Forskolin	Sigma, Deisenhofen
Gelatine (aus Kaltwasserfisch-Haut)	Merck, Darmstadt
GeneRuler TM 1 kb DNA Ladder	Fermentas, St. Leon-Rot
Glukose	Carl Roth GmbH, Karlsruhe
Glyzerin	Sigma, Deisenhofen
Glyzin	Carl Roth GmbH, Karlsruhe
Harnstoff	Sigma, Deisenhofen
Hefeextrakt	Gibco BRL, Eggenstein
IBMX	Sigma, Deisenhofen
Imidazol	Carl Roth GmbH, Karlsruhe
Immumount	Shandon, Pittsbourgh, USA

Isopropanol	Merck, Darmstadt	
Kanamycin	Sigma, Deisenhofen	
Katalytische PKA-Untereinheiten	Sigma, Deisenhofen	
Magermilchpulver	Sucofin®, Trade Service	
	Int., Zeven	
Methanol	J.T. Baker, Deventin,	
	Niederlande	
Nitrozellulose Membran	Schleicher & Schuell,	
	Dassel	
EDTA	Carl Roth GmbH, Karlsruhe	
Nuklease-freies Wasser	Promega, Mannheim	
Ovalbumin	Sigma, Deisenhofen	
Penicillin	Biochrom AG, Berlin	
Pepton 140	Gibco BRL, Eggenstein	
PfuTurbo® DNA Polymerase	Stratagene, La Jolla, USA	
PMSF	Carl Roth GmbH, Karlsruhe	
PNGase F	New England BioLabs Inc.,	
	Schwalbach	
Poly L-Lysine Hydrobromid	Sigma, Deisenhofen	
Ponceau S	Carl Roth GmbH, Karlsruhe	
Prestained Proteinleiter, broad range	New England BioLabs Inc.,	
	Schwalbach	
Protein A Sepharose Cl-4B beads	Sigma, Deisenhofen	
Proteinase K	Roche Mol. Diagnostics,	
	Mannheim	
PVDF-Membran	Millipore, Schwalbach	
Restriktionsnukleasen	New England BioLabs Inc.,	
	Schwalbach	
RPMI-1640	Sigma, Deisenhofen	
RNA molecular weight standard, 0.24-9.5 kb	Invitrogen Life Tech.,	
	Breda, Niederlande	
Rotiphorese [®] Gel 30	Carl Roth GmbH, Karlsruhe	
SDS	Carl Roth GmbH, Karlsruhe	

Select agar	Gibco BRL, Eggenstein
Sepharose G 50	Amersham Biosciences,
	Freiburg
Streptomycin	Biochrom AG, Berlin
Saccherose	Carl Roth GmbH, Karlsruhe
T4-Ligase	New England BioLabs Inc.,
	Schwalbach
TEMED	Sigma, Deisenhofen
TransFast	Promega, Mannheim
Tris-Base, (DNA sequencing)	BioRad, München
Triton X-100 [®]	Carl Roth GmbH, Karlsruhe
TRIzol® Reagenz	Invitrogen Life Tech.,
	Breda, Niederlande
Trypan blue	Seromed Biochrom KG,
	Wien, Österreich
Trypsin (Zell Kultur)	Biochrom AG, Berlin
Trypsin Inhibitor	Sigma, Deisenhofen
Tween 20	Sigma, Deisenhofen

Tab. 2.2: Reagenziensätze

Reagenziensätze	Bezugsquelle
ABI PRISM™ Dye Terminator Cycle Sequencing Ready	Perkin Elmer, Weiterstadt
Reaction Reagenziensatz	
Advantage™ 2 Polymerase Mix	Clontech, Heidelberg
DNase I, Amplification Grade Reagenziensatz	Life Technologies,
	Karlsruhe
FuGene®	Roche Mol. Diagnostics,
	Mannheim
Geneclean® II Reagenziensatz	Transduction Laboratories
	(Dianova), Hamburg
LigaFast™ Rapid DNA Ligation System	Promega, Mannheim
LipofectAMINE [®]	Invitrogen Life Tech., Breda,
	Niederlande
Lumi-Light Western Blotting Substrate	Roche Mol. Diagnostics,
	Mannheim
humane Nieren Marathon Ready™ cDNA Bank	Clontech, Heidelberg
NucleoBond AX	Macherey-Nagel, Düren
NucleoBond PC EF (Endotoxin-frei)	Macherey-Nagel, Düren
NucleoSpin Extract	Macherey-Nagel, Düren
Nucleofection™	Amaxa Biosystems, Köln
pGEM®-T/pGEM®-T Easy Vector Systems	Promega, Mannheim
QIAGEN Plasmid Mini, Midi und Maxi Reagenziensatz	QIAGEN, Hilden
QIAGEN Plasmid Maxi EF Reagenziensatz,	QIAGEN, Hilden
QIAGEN Plasmid Roboter Reagenziensatz	QIAGEN, Hilden
QuickChange™ Site-Directed Mutagenesis	Stratagene, La Jolla, USA
Reagenziensatz	
TOPO®XL PCR Cloning Reagenziensatz	Invitrogen Life Tech., Breda,
	Niederlande
Ultra Clean™ Purification Reagenziensatz	MO BIO Laboratories, Carlsbad,
	USA
<u>.</u>	

2.1.2 DNA Klonierungsvektoren

Tab. 2.3: DNA Klonierungsvektoren

Vektoren	Bezugsquelle
pEGFP-N1	Clontech, Heidelberg
pECFP-N1	Clontech, Heidelberg
PEYFP-N1	Clontech, Heidelberg
pGEM®-T/pGEM®-T Easy	Promega, Mannheim
TOPO® XL	Invitrogen Life Tech., Breda, Niederlande

2.1.3 PCR- und Sequenzierungs-Primer

Primer wurden von der Firma Biotez, Berlin bezogen.

Tab. 2.4: 5'-PCR-Primer

		Position in	
Bezeichnung	Sequenz $(5' \rightarrow 3')$	der cDNA-	Schnitt-
		Sequenz von	stelle
		AKAP-Ht31	
Ht-st-gsp1	cgg ccg cct att gtc ttt ctc cgc ggc	-9265	k. S.
Ht-st-gsp2	cet att gte ttt ete ege gge gaa gg	-8665	k. S.
NtermfwX	gcg aca ctc gag ctg ggt cat gaa act taa tcc	-7 - 14	XhoI
NtermfwB	ccg cgt gga tcc ctg ggt cat gaa act taa tcc	-7 - 14	BamHI
RII-EndfwS	ccc age gte gae etc ect etc tae ett gea tg	3680-3699	SalI
RIIfwNot	ccc age geg gee gee eet ete tae ett gea tg	3680-3699	NotI
RII-EndfwB	ccg cgt gga tcc ctc cct ctc tac ctt gca tg	3680-3699	BamHI
RSRIIfwX	ccc agc ctc gag ctc cct ctc tac ctt gca tg	3680-3699	XhoI
2.RII-EndfwS	aca ata gtc gac atg tga gaa ctt cct gga tgt	4239-4259	SalI
2.RIIfwX	aca ata ctc gag atg tga gaa ctt cct gga tgt	4239-4259	XhoI
2.RIIfwB	ccg cgt gga tcc atg tga gaa ctt cct gga tgt	4239-4259	BamHI
PD-EndfwS	gtt ccc gtc gac tgg agt tgg caa tga tga gaa	5733-5753	SalI
PD-EndfwB	ccg cgt gga tcc tgg agt tgg caa tga tga gaa	5733-5753	BamHI
5' EndfwS	aaa gaa gtc gac gga cac cag agc ccg aga att	7062-7082	SalI

Tab. 2.5: 3'-PCR-Primer

Bezeichnung	Sequenz (5′ → 3′)	Position in der cDNA-Sequenz von	Schnitt- stelle
TV 2 5210 5226		AKAP-Ht31	1 0
Ht-3-5310-5336	tte ttt get ett ett get get aga eat	5266-5292	k. S.
Ht-3-5225-5251	tet tte ttg gag ggg eta tgt gge aag	5181-5207	k. S.
Nterm1rX	age tgt etc gag etc eet eea get tee ett tet e	3472-3493	XhoI
Nterm2rX	gag gac ctc gag cag ggc tgg aca gtg aca tg	3831-3850	XhoI
Nterm3rX	tag aat ete gag eet tet eet taa tet tat et	5307-5326	XhoI
Nterm4rX	tga agt ctc gag cca aca aga gta gga ttt ttt	7108-7129	XhoI
Nterm1rBam	cac gat gga tee eet eea get tee ett tet e	3472-3493	BamHI
Nterm2rBam	cac gat gga tcc cag ggc tgg aca gtg aca tg	3831-3850	BamHI
Nterm3rXma	cac gat ccc ggg acc ttc tcc tta atc tta tct	5307-5326	XmaI
Nterm4rBam	cac gat gga tcc cca aca aga gta gga ttt ttt	7108-7129	BamHI
Endre1S	gga ctt gtc gac ccc acc tat ccc gcc gcg att	8822-8842	SalI
Endre2S	gcg att gtc gac ccg ata cag ggg gcg tcc att	8795-8815	SalI
EndrevNX	geg gee gee egg atg eat ete gag eae geg ggg	8493-8537	NsiI,
LiidiCviVX	aca gca gga gag	0 1 /3-033/	XhoI

Tab. 2.6: 5'-Sequenzierungsprimer für den N-Terminus von AKAP-Ht31

Bezeichnung	Sequenz $(5' \rightarrow 3')$	Position in der cDNA-Sequenz von AKAP-Ht31
Ht-st-gsp2	cct att gtc ttt ctc cgc ggc gaa gg	-8660
5-Ht31FC14-35	gga gcc ccg gga gcc aca cgt g	14-35
232-52	ggc ctt ccc gtg ttt gtg gtg	232-252
1412f	caa atg tca gta ccc cag a	1412-1421
1868f	ttg ggc tgg aag aag atg t	1868-1886
F1944-1966	ate etc ace eat ttg tte tae	1944-1966
2304f	aat gga gaa aga act ggt g	2304-2322
F2448-2468	tga act aca tac agc tac aga	2448-2468

Bezeichnung	Sequenz $(5' \rightarrow 3')$	Position in der cDNA-Sequenz von AKAP-Ht31
F2861-2881	cac ctc ctg gac aag ata ctc	2861-2881
F3008-3027	cac aag tet eac tge tga et	3008-3027
F3395-3406	gcc agt ggc tct aca gga caa	3395-3406
3681f	tcc ctc tct acc ttg ctc g	3681-3699
F4000	aag atc att tta cct gtc	4000-4017
4460f	ggt gca gtg atg tgt gtc ctc t	4460-4478
F4518	aag cct tga tgg att cta	4518-4535
F4663-4683	atg ege tet ett tet eee tte	4663-4683
F5071-5091	aat cca tct cat taa tga caa	5071-5091

Tab. 2.7: 3'-Sequenzierungsprimer für den N-Terminus von AKAP-Ht31

Bezeichnung	Sequenz $(5' \rightarrow 3')$	Position in der cDNA-Sequenz von AKAP-Ht31
Ht-st-gsp1	egg eeg eet att gte ttt ete ege gge	-9265
Ht-st-gsp2	cct att gtc ttt ctc cgc ggc gaa gg	-8660
NtermfwX	gcg aca ctc gag ctg ggt cat gaa act taa tcc	-7 - 14
NtermfwB	ccg cgt gga tcc ctg ggt cat gaa act taa tcc	-7 - 14
R207-26	tgg aag cac aga gct gca cc	207-226
R451-71	act ctg atc tgt ccc caa tac	451-471
R749-769	agg tta atg tat aga tgt cca	749-769
R1222-1242	gee tet egt gee ett tae tee	1222-1242
R1634-1654	aag act cag cag gtt tgt tac	1634-1654
R1962-1982	agt tta tcg tct cca gtt gta	1962-1982
R2463-2483	ggg cca tct cta taa tct gta	2463-2483
R2980-3000	ttc ctt gtt atg ctc agt ttc	2980-3000
Nterm1rX	age tgt etc gag etc eet eea get tee ett tet e	3472-3493
Nterm2rX	gag gac ctc gag cag ggc tgg aca gtg aca tg	3831-3850
R4238-4258	cat cca gga agt tct cac att	4238-4258

Bezeichnung	Sequenz $(5' \rightarrow 3')$	Position in der cDNA-Sequenz von AKAP-Ht31
R4736-4756	ctc gca ttg aac tcc ggt ggt	4736-4756
5099-119	aca cct tcc cgg cac tta aca	5099-5119
Ht-3-5225-5251	tct ttc ttg gag ggg cta tgt ggc aag	5181-5207

2.1.4 Bakterienkulturen

Tab. 2.8: Bakterienstämme

Bezeichnung	Herkunft
E. coli BL21	Novagene, Bad Soden
E. coli DH10β	Life Technologies, Karlsruhe
E. coli DH5α	Life Technologies, Karlsruhe
E. coli XL1-Blue MRF'	Stratagene, Heidelberg

2.1.5 Flüssigmedien und Agarplatten für E. coli

Die Flüssigmedien und die Medien mit Agarzusatz wurden bei 120 °C 15 min autoklaviert. Für das Gießen der Agarplatten wurden pro Petrischale (Ø 100 mm) ca. 25 ml des auf 55 °C abgekühlten flüssigen Agars verwendet.

Tab. 2.9: Flüssigmedien und Agarplatten

Luria Bertani (LB)-Medium	Pepton	10 g
	Hefeextrakt	5 g
	NaCl	5 g
	H_2O	ad 11 pH 7,0
LB-Agarplatten	wie LB-Medium; vor dem	Autoklavieren wurden
	zusätzlich 12,5 g Agar hinz	zugefügt

2.1.6 Antibiotika und andere Medienzusätze für Bakterienkulturen

Allen Agarplatten, und den Flüssigmedien bei Bedarf, wurden nach dem Autoklavieren und Abkühlen auf ca. 55 °C Antibiotika und andere hitzeempfindliche Komponenten zugesetzt.

Tab. 2.10: Antibiotika und andere Medienzusätze

Medienzusatz	Konzentration		
	Stammlösung Flüssigmedium Agarplatten		
Ampicillin	100 mg/ml H ₂ O	100 μg/ml	100 μg/ml
Kanamycin	30 mg/ml H ₂ O	30 μg/ml	30 μg/ml
Tetracyclin	10 mg/ml Ethanol	10 μg/ml	10 μg/ml
IPTG	100 mM	1 mM	0,1 mM
X-Gal	40 mg/ml DMFA	_	40 μg/ml

2.2 Allgemeine molekularbiologischen Methoden

Die Durchführung von molekularbiologischen Standardtechniken wie z.B. PCR, Transformation, Ligation, Kultivierung von Bakterien, Klonierungen, Restriktionsanalysen und weiteren Techniken erfolgten nach Sambrook und Russel (2002).

2.2.1 Puffer

Zusammensetzung der verwendeten allgemeinen molekularbiologischen Puffer.

50 x Tris-Acetat-EDTA (TAE-) Puffer

Tris-Base	54 g
Acetat	57,1 ml
0,5 M EDTA (pH 8,0)	100 ml
H_2O	ad 11

5 x Probenpuffer

Bromphenolblau 0.2 % (w/v)

EDTA (pH 8,0) 1 mM

Glyzerin 50 % (v/v)

Tris-EDTA (TE) Puffer

Tris-HCl (pH7,4) 10 mM EDTA 1 mM

1M Kaliumphosphatpuffer, pH 7.0

 K_2HPO_4 174,18 g/l KH_2PO_4 136,09 g/l H_2O ad 1 l

2.2.2 Herstellung kompetenter Zellen

LB-Medium (100 ml) wurden mit einer Übernachtkultur (1 ml) des betreffenden *E. coli*-Stammes angeimpft und in einem Erlenmeyerkolben bei 37 °C geschüttelt bis eine Absorption bei 600 nm von 0,5 erreicht war. Die Suspension wurde zentrifugiert (7000 x g, 10 min, 4 °C, Heraeus Biofuge 28 RS) und der Überstand verworfen. Die Zellen wurden in CaCl₂ (100 mM, eiskalt) resuspendiert und für mindestes 30 min auf Eis inkubiert. Die Bakterien wurden anschließend erneut zentrifugiert (1500 x g, 15 min, 4 °C, Heraeus Biofuge 28 RS) und das Sediment in CaCl₂ (1,6 ml, 100 mM) aufgenommen. Nach Zugabe von 400 μl Glyzerin wurde die Suspension aliquotiert (100 μl Aliquots). Die kompetenten Zellen wurden direkt für die Transformation eingesetzt oder bei -70 °C bis zu 6 Monaten gelagert.

2.2.3 Plasmid-DNA-Isolierungen

Plasmid-DNA-Präparationen wurden im Anschluss an Klonierungen und Transformationen in kleinem Maßstab (Minipräperation) durchgeführt. Die Minipräparation erfolgte mit Hilfe des

Qiagen Biorobot 9600 mit dem entsprechenden Programm (Qiagen, Hilden). Dafür wurden Reagenzien und Säulen von Qiagen verwendet.

Größere Mengen an Plasmid-DNA für weitere Analysen (Sequenzierungen, Restriktionsanalysen und Transfektionen) wurden entweder mit dem Qiagen Midi bzw. Maxi Reagenziensatz oder mit NucleoBond AX Reagenziensatz (Macherey-Nagel, Düren) isoliert. Die Durchführung der Isolierung erfolgte nach dem Protokoll der Hersteller. DNA-Plasmide, die mittels Elektroporation in humane Zelllinien transfiziert wurden (siehe 1.4.3), wurden mit dem Endotoxin-freien NucleoBond PC EF Reagenziensatz von Macherey-Nagel aufgereinigt.

2.2.4 DNA-Spaltung mit Hilfe von Restriktionsenzymen

Im Anschluss an die Klonierung von DNA-Fragmenten in Plasmidvektoren, zur Überprüfung der Größe von DNA-*inserts* und zum Linearisieren von Plasmidvektoren wurden Restriktionsenzyme eingesetzt (New England Biolabs, Schwalbach). Die Restriktionsansätze wurden entsprechend den Angaben des Herstellers angesetzt.

2.2.5 Extraktion von DNA-Fragmenten aus Agarosegelen

Die nach dem Restriktionsverdau erhaltenen DNA-Fragmente, DNA-*inserts* und Vektoren wurden für weitere Klonierungen in TAE-Agarosegelen aufgetrennt und anschließend aus dem Gel extrahiert. Dazu wurde das Gel auf einem UV-Transilluminator bei UV-Licht von 245 nm Wellenlänge gelegt. Die Fragmente mit korrekter Größe wurden ausgeschnitten. Die Reinigung der DNA-Fragmenten aus den TAE-Agarosegelen wurde für Fragmente kleiner 250 bp mit Hilfe des *Geneclean* II Reagenziensatz (Dianova, Hamburg) und für Fragmente größer 250 bp mit NucleoSpin *Extract* (Macherey-Nagel, Düren) nach den Angaben der Hersteller durchgeführt.

2.2.6 Sequenzierung von DNA

Für den Sequenzierungsansatz wurde das ABI PRISM *Dye Terminator Cycle Sequencing Ready Reaction* Reagenziensatz benutzt (Perkin Elmer, Weiterstadt). Dabei wurde das Protokoll des Herstellers angewendet.

2.2.7 Datenbankrecherche

DNA-Sequenz-Daten wurden mittels Programmen des *Baylor College of Medicine (BCM)-Search-Launchers* (searchlauncher.bcm.tmc.edu) und des *National Center of Biotechnology Information (NCBI) Blast* (www.ncbi.nlm.nih.gov), die im Internet verfügbar sind, translatiert und auf Homologien zu bekannten Proteinen überprüft.

2.2.8 Klonierung des N-Terminus von AKAP-Ht31

Um den N-Terminus von AKAP-Ht31 zu erhalten wurde eine RACE- (Rapid Amplification of <u>c</u>DNA <u>E</u>nds) PCR mit dem Advantage™ 2 Polymerase Mix (Clontech, Heidelberg) entsprechend den Vorgaben des Herstellers durchgeführt. Dafür wurde die Marathon-Ready cDNA Bibliothek als Matrize verwendet, aus der bereits der C-Terminus von AKAP-Ht31 amplifiziert worden war. Die 5' Primer wurden anhand der Sequenzvorhersagen aus den Datenbanken des National Center for Biotechnology Information und des Baylor College of Medicine (BCM)-Search-Launchers für AKAP-Ht31 ausgewählt. Die 3' Primer wurden aus dem Bereich des 5' Endes des bereits vorhandenen 3' Klons von AKAP-Ht31 (Klussmann et al., 2001b) gewählt. Es wurde zunächst eine RACE-PCR mit dem 5'-Primer Ht31-ST-gsp1 und dem 3'-Primer Ht-3-5310-5336 durchgeführt. Die erhaltene Bande wurde wie in 1.3.5 beschrieben aufgereinigt und in einer zweiten RACE-PCR, der sogenannten nested PCR, mit dem 5'-Primer NtermfwX und dem 3'-Primer Ht-3-5225-5251 amplifiziert. Der Erfolg der PCR wurde in einer Agarosegelelektrophorese überprüft. Die anschließende Extraktion, Klonierung und Transformation des PCR Produktes wurde mit dem TOPO® XL PCR Cloning Reagenziensatz (Invitrogen Life Tech., Breda, Niederlande) nach den Angaben des Herstellers durchgeführt. Das Fragment wurde über TA-Überhänge in den Vector pTOPO® XL insertiert, in kompetente JM109 E. coli Bakterien transformiert und auf LB-Agarplatten ausgestrichen. Nach einer Plasmid-DNA-Minipräparation aus Übernachtkulturen der gewachsenen Kolonien wurde die isolierte DNA mit den Enzymen BspEI und BamHI gespalten, um den Erfolg der Klonierung zu überprüfen. Die Klone mit einem DNA-insert wurden zunächst mit den 5'- und 3'-Primern M13 aus dem TOPO® XL PCR Cloning Reagenziensatz sequenziert. Positive Klone wurden anschließend mit speziell erstellten Primern (s. Tab 2.6 und 2.7) durchsequenziert.

2.2.9 Klonierung von AKAP-Ht31/AKAP-Lbc Domänen

Aus der DNA von AKAP-Lbc wurden drei unterschiedliche Domänen in pECFP-N1 und pEYFP-N1 Vektoren kloniert. Dabei handelt es sich um die klassische Bindedomäne der PKA-RII-Untereinheiten (Ht-RII), die nicht-kanonische (zweite) Bindedomäne der PKA-RII-Untereinheiten (Ht-2.RII) und die Pleckstrin- und Dbl-homology (DHPH) Domänen. Die Amplifizierung der Fragmente erfolgte unter PCR-Standardbedingungen; Fragmentgröße und verwendete Primer sind in Tab. 2.11 angegeben. Die folgenden Arbeitsschritte Überprüfung und Extraktion der DNA-Fragmente aus dem TAE-Agarosegel, Verdau der Vektoren und der DNA-Fragmente mit Restriktionsenzymen, Reinigung der Restriktionsprodukte mittels TAE-Agarosegele und anschließende Extraktion, Ligation und Transformation wurde wie oben beschrieben durchgeführt.

Tab. 2.11: AKAP-Ht31/AKAP-Lbc Domänen

Konstrukte	Ht-RII-CFP-N1	Ht-2.RII-CFP-N1	DHPH-CFP-N1
	Ht-RII-YFP-N1	Ht-2.RII-YFP-N1	DHPH-YFP-N1
Position in der			
AKAP-Ht31-	3682-3850	4239-5326	5733-7129
Sequenz [bp]			
Größe [bp]	168	1087	1396
5'-Primer	RIIfwS	2.RIIfwS	DHPHfwS
3'-Primer	Nterm2rBam	Nterm3rXma	Nterm4rBam
Schnittstellen	SalI / BamHI	SalI / XmaI	SalI / BamHI

2.3 Zellkultur der humane Zelllinien

Die verwendeten epithelialen Brustdrüsenkrebszellen wurden bis zur Konfluenz in Zellkulturflaschen (25 cm² oder 75 cm², Techno Plastic Products AG, Trasadingen, Schweiz) oder Zellkulturschalen (40 mm oder 60 mm Durchmesser, Techno Plastic Products AG, Trasadingen, Schweiz) kultiviert. Nach dem Erreichen der Konfluenz wurden die Zellen zur weiteren Vermehrung in neue Zellkulturflaschen oder -schalen umgesetzt oder geerntet, um in

Immunpräzipitations- und Immunfluoreszensexperimenten eingesetzt zu werden. Die Zellen wurden nach dem Ausfrieren bis zum ersten Mediumwechsel nach dem ersten Umsetzen in Medium mit Phenolrot und normalem Fetalem Kälberserum (FKS) angezogen. Anschließend wurden die Zellen in Phenolrot-freiem Medium mit *charcoal-stripped* FKS (CS-FKS) kultiviert (Tab. 2.13), um die Verteilung des Östrogenrezeptors nicht zu beeinflussen. Die Medien wurden nach den Vorgaben der Hersteller angesetzt und wie alle anderen Lösungen auch vor Gebrauch auf 37 °C vorgewärmt.

Tab. 2.13: Zellkultur der humanen Zelllinien

Zelllinie	Medium	Fetales	Antibiotika	Zellen teilen
		Kälberserum		
MCF-7	DMEM	20 % FKS	1%	1:6
	Phenolrot-	20 % CS-FKS	Penicillin	
	freies DMEM		und	
ZR-75-1	RPMI	10 % FKS	1%	1:3
	Phenolrot-	10 % CS-FKS	Streptomycin	
	freies RPMI			

Alle permanenten Zelllinien wurden von ATTC, USA bezogen.

Umsetzen der Zellen

Zuerst wurde das alte Medium entfernt und die Zellen mit DPBS zweimal gewaschen. Danach wurden 0,5 bis 2 ml Trypsin/EDTA (Endkonzentration 0,05%/0,02%) auf die Zellen geträufelt. Nach circa 15 sec wurde die Lösung so weit abgesaugt, dass die Zellen noch mit einem Flüssigkeitsfilm bedeckt waren. In diesem Zustand wurden die Zellen 10 bis 20 min im Brutschrank inkubiert. Dadurch lösen sich die Zellen von der Oberfläche und konnten anschießend in einer adäquaten Menge Medium aufgenommen und auf neue Zellkulturflaschen oder -schalen verteilt werden.

Stimulation der epithelialen Brustdrüsenkrebszellen

Die Zellen wurden mindestens 16 h vor der Stimulation in Medium ohne Serum überführt. Die Aktivierung des Östrogenrezeptors α (ERα) und damit seine Translokation in den Kern, erfolgte mit 10 bis 100 nM 17β-Estradiol (Sigma, Deisenhofen) in DMSO gelöst für 30 bis 45 min. Anschließend wurden die Zellen zweimal mit DPBS gewaschen und dann weiterverarbeitet.

2.3.1 Transfektion der Brustkrebszelllinien mit pEGFP-Konstrukten

Die epithelialen Brustdrüsenkrebszellen wurden für Immunfluoreszenz- und Immunpräzipitationsstudien mit Konstrukten des AKAP-Ht31/AKAP-Lbc in pEGFP transfiziert. Dazu wurden drei unterschiedliche Methoden verwendet: chemische Transfektion mit FuGene (Roche Mol. Diagnostics, Mannheim) oder LipofectAMINE (Invitrogen Life Tech., Breda, Niederlande) und Elektroporation mit NucleofectionTM (Amaxa Biosystems, Köln). Die Durchführung erfolgte nach den Protokollen der Hersteller. Die eingesetzte DNA-Menge des Konstrukts AKAP-Lbc-wt variierte wegen der Größe (>13 kb) in Konzentrationen zwischen 1 μg und 20 μg pro Ansatz.

2.4 Proteinbiochemische Methoden

2.4.1 SDS-Polyacylamid Gelelektrophorese (SDS-PAGE)

Mit Hilfe der SDS-PAGE (Laemmli et al. 1970) wurden Proteine entsprechend ihrer Größe getrennt. Die Elektrophorese erfolgt in einer vertikalen Mini-Gel-Apparatur. Nach dem Zusammenbau der Gelplatten (eine Glasplatte wurde durch zwei Abstandhalter von einer weiteren Glasplatte getrennt) wurden diese in die Gießvorrichtung eingesetzt. Zunächst wurde das Trenngel gegossen und nach dessen Polymerisation das Sammelgel.

Trenngel (8 %):	Acrylamid (30 % mit 0,8 % Bisacrylamid)	3,0 ml
	Trenngelpuffer (0,75 M Tris-HCl, pH 8,8)	5,625 ml
	SDS-Lösung (20 %)	56,65 μl
	TEMED	5,65 μl
	H_2O	2,5 ml
	APS-Lösung. (1mg/ml H ₂ 0)	79 µl

Um eine glatte Oberkante des Trenngels zu erhalten, wurde das Trenngel nach dem Gießen mit Isopropanol (70 %) überschichtet. Nach der Polymerisation wurde das Isopropanol entfernt.

Sammelgel (5 %):	Acrylamid	835 µl
	Sammelgelpuffer (0,625 M Tris-HCl, pH 6,8)	625 µl
	SDS-Lösung	25 μ1
	TEMED	5 μ1
	H_2O	3,5 ml
	APS-Lösung. (1mg/ml H ₂ 0)	25 μl

Nach dem Gießen des Sammelgels wurde der Kamm für die Geltaschen vorsichtig in das noch flüssige Sammelgel eingefügt.

Nach der Polymerisation des Sammelgels wurde der Kamm entfernt und das Gel in die Elektrophoreseapparatur eingebaut. Die Kammern der Elektrophoreseapparatur wurden mit Laufpuffer, pH 8,4 (3 g Tris, 14,4 g Glyzin, 1 g SDS, ad 11 H₂O) aufgefüllt. Die Proteine wurden mit 4 x Laemmli-Probenpuffer (2ml Glyzerin, 1,5 ml 10 % SDS (w/v), 1 ml 2 M Tris-HCl (pH 6,8), 375 μl β-Mercaptoethanol, 5 mg Bromphenolblau) versetzt, 5 min bei 95°C denaturiert und in die Geltaschen pipettiert. Als Protein-Molekulargewichtsstandard wurden BenchmarkTM Protein Ladder (Invitrogen Life Tech., Breda, Niederlande) oder Prestained Broad Range Protein Standard (Biorad, München) aufgetragen. Das Gel lief bei 20 mA/Gel für 1,5-2 h, bis die Lauffront aus dem Trenngel ausgelaufen war. Zur Analyse der aufgetrennten Proteine in Western Blots oder RII-overlays wurden sie auf eine PVDF-Membran (Millipore, Schwalbach) transferiert.

2.4.2 Western Blot

Puffer und Reagenzien

Tab. 2.14: Puffer und Reagenzien für den Westernblot

Semi-dry-Transferpuffer	Tris-HCl	48 mM	
	Glyzin	39 mM	
	SDS	0,0375 % (w/v)	
TBS	Tris-HCl	10 mM	
	NaCl	150 mM	pH 7,4
TBST	TBS	1 x	
	Tween 20	0,05 % (v/v)	
Ponceau S-Färbelösung	Ponceau S	0,1 % (w/v)	
	Essigsäure	5 % (v/v)	

Durchführung

Mit Hilfe der SDS-PAGE wurden Proteine entsprechend ihrer Größe getrennt. Für Western Blots wurden die Proteine nach einer SDS-PAGE mittels Elektrotransfer im *Semi-dry*-Verfahren mit Hilfe des Trans-Blot SD Semi-Dry Transfer Cell (BioRad, München) auf eine PVDF-Membran (Millipore, Schwalbach) transferiert. Der Transfer erfolgte nach den Vorgaben von BioRad. Nach dem Transfer wurde die Membran mit Ponceau S-Lösung gefärbt, die Proteinbanden des Markers markiert und die Membran in TBST entfärbt. Die Membran wurde über Nacht bei 4° C in Blotto (25 ml, 1x TBST und 5% (w/v) Magermilchpulver (Sucofin®, Trade Service Int., Zeven)) inkubiert und anschließend für die Detektion von immunreaktiven Proteinen mit Antikörpern gegen AKAP-Ht31/AKAP-Lbc und ERα für 1 h bei Raumtemperatur inkubiert. Die Antikörper wurden in den in Tab. 2.15 angegebenen Verdünnungen eingesetzt. Die nicht-kommerziellen AKAP-Ht31/AKAP-Lbc-Antikörper wurden von der Biogenes GmbH (Berlin) generiert. Ihre Epitope sind in Tab. 2.16 dargestellt.

Als Zweitantikörper wurden Meerrettichperoxidase-konjugierte anti-Kaninchen, anti-Maus und anti-Ziege F(ab)₂ Fragmente (Verdünnung 1:2000; Dianova) verwendet. Als Chemilumineszenzsubstrat wurde *Lumi-Light Western Blotting Substrate* (Roche Diagnostics, Mannheim) verwendet. Die Signale wurden am Lumi-Imager F1TM (Roche Diagnostics) detektiert.

 Tab. 2.15: Primär- und Sekundärantikörper

Primärantikörper /	Verdünnung	Sekundärantikörper /	Verdünnung
Herkunft		Herkunft	
mAk ER-10 /	1:200	POD-anti-Maus /	1:2000
NeoMarkers		Dianova	
mAk ER-15 /	1:200	POD-anti-Maus /	1:2000
NeoMarkers		Dianova	
mAk ER-1D5 /	1:200	POD-anti-Maus /	1:2000
Zymed Laboratories		Dianova	
Inc.			
mAk Brx /	1:100	POD-anti-Ziege /	1:2000
NeoMarkers		Dianova	
pAk VO95 /	1:2000	POD-anti-Kaninchen /	1:2000
J. D. Scott (Vollum		Dianova	
Institute, Portland,			
USA)			
pAk 1965 /	1:200	POD-anti-Kaninchen /	1:2000
Biogenes		Dianova	
pAk 3060 /	1:200	POD-anti-Kaninchen /	1:2000
Biogenes		Dianova	
pAk DH /	1:200	POD-anti-Kaninchen /	1:2000
Biogenes		Dianova	
pAk N4 /	1:200	POD-anti-Kaninchen /	1:2000
Biogenes		Dianova	
mAk α-Actinin /	1:2000	POD-anti-Maus /	1:2000
Sigma		Dianova	

Tab. 2.16: Epitope der AKAP-Ht31/AKAP-Lbc-Antikörper

	Epitop
Antikörper	(Position in der Aminosäuresequenz von AKAP-Ht31)
N4	216-230
3060	690-710
VO95	769-1168
1965	1556-1570
DH	2056-2070

2.4.3 Immunpräzipitation und cAMP-Agarose-Präzipitation

Für Immunpräzipitationen wurden die Brustkrebszelllinien MCF-7 und ZR-75-1 und die Gebärmutterkrebszelllinie HeLa in 75 ml Kulturflaschen bis zur Konfluenz kultiviert. Zur Herstellung der Lysate wurden die Zellen zunächst zwei mal mit DPBS (Dulbecco's Phosphate-Buffered Saline: 8 g/l NaCl, 0,2 g/l KCl, 0,2 g/l KH₂PO₄, 1,15 g/l Na₂HPO₄x2H₂O; pH 7,4) gewaschen und anschließend mit standard lysis buffer (1 ml, SLB: 10 mM K₂HPO₄, 150 mM NaCl, 5 mM EDTA, 5 mM EGTA, 1 % Triton X-100, 0,2 % Deoxycholate, 1 mM Benzamidine, 0.5 mM Phenylmethanesulfonyl Fluoride (PMSF), 3.2 μg/ml Trypsin Inhibitor I-S, 1.4 μg/ml Aprotinin) versetzt und mit einem Schaber von dem Flaschenboden gelöst. Anschließend wurden die Lysate im Homogenisator Potter S (B. Braun Biotech Int., Bethlehem, USA) homogenisiert. Das Homogenat wurde anschließend zentrifugiert (12000 x g, 30 min). Der Überstand wurde dann mit einem der in Tab. 2.15 angegebenen Antikörper bzw. mit dem entsprechenden Präimmunserum in Gegenwart von Protein-A-Agarose (Sigma, Deisenhofen) über Nacht bei 4°C rotierend inkubiert. Die Protein-A-Agarose wurde anschließend viermal mit SLB gewaschen. Gebundene Proteine wurden in Laemmli-Puffer eluiert (5 min, 95 °C), in einer SDS-PAGE aufgetrennt und im semi-dry Verfahren auf eine PVDF-Membran transferiert. Als Kontrolle wurden die Antikörper entweder mit ihrem entsprechenden Peptid 30 min vorinkubiert, oder es wurde ein Präimmunserum zu den Proben gegeben.

Bei der cAMP-Agarose-Präzipitation wurden die Proben wie oben beschrieben behandelt. Die Homogenate wurden allerdings nicht mit einem Antikörper sondern mit cAMP-Agarose inkubiert (4°C, 2-4 h rotierend). Gebundene Proteine wurden in Laemmli-Puffer eluiert (5 min, 95 °C) in einer SDS-PAGE aufgetrennt und auf eine PVDF-Membran transferiert. Als

Kontrolle wurde die Probe für 30 min mit 50 nM cAMP vorinkubiert und anschließend die cAMP-Agarose dazugegeben.

2.4.4 Immunfluoreszenz

Immunfluoreszenzstudien wurden mit den Zelllinien MCF-7 und ZR-75-1 durchgeführt. Dazu wurden die Zellen in 35 mm Gewebekulturschalen (Greiner bio-one; Frickenhausen) auf 30er Deckgläsern angezogen. Die Zelllinien MCF-7 und ZR-75-1 wurden 16 h vor der Stimulation mit 10 nM 17β-Estradiol in serumfreies Medium gegeben. Die Stimulation erfolgte für 5 bis 45 min. Danach wurden die Deckgläser zwei mal mit PBS gewaschen. Anschließend wurden die Zellen 20 min in Fixierbuffer (100 mM Cacodylat, 100 mM Saccherose, 10 % PFA, 0,2 M NaOH, pH 7.4 - 7.6) inkubiert.

Anschließend wurden die Zellen zwei mal mit PBS gewaschen und für 20 min in PBS mit 50 mM NH₄-Acetat in inkubiert, um möglicherweise verbliebenes PFA zu quenschen. Die Zellen wurden erneut zweimal mit PBS gewaschen und in PBS mit 0,1 % Triton für 5 min permeabilisiert. Es folgte ein zweimaliges Waschen mit PBS. Anschließend wurden die Deckgläser zweimal 15 min in PBS gewaschen. Das Blocken der Zellen erfolgte für 20 min in PBS mit 0,3 % *fishskin*-Gelatine bei 37 °C auf einem Schüttler.

Die Inkubation der Zellen mit den Antikörpern erfolgte in mehreren Schritten: Inkubation mit dem Primär-Antikörper, 3 x Waschen mit PBS, Inkubation mit dem Sekundär-Antikörper, 3 x Waschen mit PBS. Die Antikörper wurden in PBS mit 0,3 % *fishskin*-Gelatine in den in Tab. 2.15 angegeben Antikörperverdünnungen eingesetzt. Die Inkubation erfolgte bei 37 °C für 45 Minuten. Nach dem letzten Waschen wurden die Deckgläser kurz in H₂O-bidest getaucht und die überschüssige Flüssigkeit entfernt. Die Deckgläser wurden mit einem Tropfen Immu-Mount™ mit einem weiteren Deckglas eingebettet.

Die Quantifizierung der Signalintensität wurde am LSM510-META Mikroskop mit dem Programm Zeiss KS 400, Version 3.0 (Carl Zeiss, Jena) durchgeführt.

2.4.5 RII-overlay

Der RII-*overlay* basiert auf der Autophosphorylierung der regulatorischen Untereinheiten der PKA durch die katalytischen Untereinheiten. Mit der RII-*overlay* Methode wurde mittels radioaktiv markierten RII-Untereinheiten geprüft, ob bei der Immunpräzipitation mit

Antikörpern gegen AKAP-Ht31/AKAP-Lbc und bei der cAMP-Agarose-Präzipitation AKAP-Proteine in den Präzipitaten vorhanden sind. Der RII-*overlay* wurde wie folgt durchgeführt:

Markierung der RII-Untereinheiten

Die Markierung der RII-Untereinheiten wurde auf Eis durchgeführt.

Tab. 2.17: Reaktionsansatz für die radioaktive Markierung der RII-Untereinheiten

	Stammlsg.	Menge im Ansatz	Endkonzen-
			tration
RII_{β}	2,7 μg/μl	20 μl	15 μg/500 ml
Katalytische PKA-Untereinheiten	0,9 μg/μl	2 μ1	1,8 μg/500 ml
Kaliumphosphatpuffer, pH 7.0	1 M	12,5 μl	25 mM
Zyklisches AMP	1 mM	5 μ1	10 nM
MgCl ₂	0,5 M	10 μl	10 mM
DTT	50 mM	5 μl	0,5 mM
$[\gamma^{32}P]ATP = 3.3 \times 10^{8} \text{ cpm/ml}$	5 μCi/μl	7,5 µl	75 μCi
(spez. Aktivität 18,5 MBq)			
ATP	10 μΜ	5 μl	100 pM
[γ ³² P]ATP/ATP			0,1 μΜ
H ₂ O		428 μl	
Endvolumen		500 μl	

 $[\gamma^{32}P]$ ATP wurde von der Firma Amersham Biosciences (Freiburg) bezogen.

Der Ansatz wurde für 10 min auf Eis inkubiert. Die ATP-Konzentration wurde durch Zugabe von 5 μ l einer 1 mM Lösung auf 10 μ M eingestellt. Anschließend wurde der Ansatz für weitere 50 min auf Eis inkubiert. Dem Ansatz wurde Dextranblau (70 μ l) zugegeben.

Abtrennung der radioaktiv markierten RII-Untereinheiten

Nicht eingebaute Nukleotide wurden durch Fraktionierung über eine Sephadex G50-Säulenchromatographie von den radioaktiv markierten RII-Untereinheiten getrennt.

- 20 g Sephadex G50 Material wurden über Nacht in 400 ml PBS bei Raumtemperatur gequollen. Mit einer Pasteurpipette wurde nicht abgesetztes Material entfernt. Das gequollene Material wurde entgast, in 50 ml Falcon-Röhrchen aliquotiert und bei 4°C gelagert. Zur Konservierung wurde Natriumazid in einer Endkonzentration von 0,01 % zugesetzt.
- 2. Das G50 Material wurde in eine sterile, mit einer Glaskugel verschlossene 10 ml Einmalpipette gegossen. Bis zum Setzen des Säulenbettes liefen ca. 50 ml PBS, dem 1 mg/ml BSA zugesetzt waren, durch die Säule.
- 3. Vom Markierungsansatz wurde 1% (5,7 µl) zur Bestimmung der eingesetzten Radioaktivität abgenommen.
- 4. Die Probe wurde auf die Säule aufgetragen. Nachdem sie in die Matrix eingewandert war, wurde mit PBS aufgefüllt.
- 5. Aufgrund der Eigenschaft des Säulenmaterials wandern die radioaktiv markierten RII-Untereinheiten mit dem Dextranblau. Als erste Fraktion wurde darum die blaue Fraktion gesammelt. Über die Säule wurden 2-3 ml PBS gegeben und eine weitere Fraktion wurde gesammelt bis die Säule trocken war.
- 6. Die Volumina der beiden Fraktionen wurde bestimmt und 3 μl jeder Fraktion und 5,7 μl vom Reaktionsansatz wurden mit 2 ml Aquasafe 300 Plus Szintillationslösung in Szintillationsröhrchen überführt. Die Radioaktivität wurde mit dem Wallac 1409 Liquid Scintillitation Counter bestimmt.
- 7. Die Einbaurate wurde berechnet und die spezifische Aktivität bestimmt.

Hybridisierung

Bei der Hybridisierung der Proteine auf Nitrozellulosefilter wurde die gesamte markierte Probe eingesetzt. Für die Bestimmung der RII-Bindungsdomänen wurden 10 x 10⁶ cpm/Nitrozellulosefilter eingesetzt.

- Den Nitrozellulosefiltern wurden nach der Inkubation das Blotto/BSA (Blotto plus 0,1 % BSA) durch frisches ersetzt, die markierte RII-Untereinheiten dazugegeben und bei Raumtemperatur für 4-6 h inkubiert.
- 2. Anschließend wurden die Nitrozellulosefilter 4 x 15 min in Blotto/BSA und 2 x 10 min in 10 mM Kaliumphosphatpuffer, pH 7,4, 0,15 M NaCl (PBS) gewaschen.
- 3. Die Nitrozellulosefilter wurden getrocknet und auf 3MM Whatman-Papier fixiert. Zur Orientierung wurden Glogos-Marker (Stratagene) auf dem 3MM Whatman Papier aufgeklebt.
- 4. Durch Exposition auf einem Röntgenfilm wurden die RII-Untereinheiten-bindende Proteine mittels Autoradiographie am Phosphoimager Storm 840 (Amersham Bioscience, Freiburg) detektiert.