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Notation

Variables and Symbols
a.pB,. .. In algorithms, a lower case Greek letter denotes a tuning pa-
rameter.
@ (050 6 Lower case letter denotes a scalar.
p.q,... or Lower bold letter denotes a pixel. I use sub-indexes in a pixel
Pipij--- if the pixel position is referred.
5% Vot Sans Serif Font and italic shape denotes a random variable.

Estimator of -.

Sets

AB,... Upper case “calligraphic” letters denote sets. _

AUSB Union of two sets. That is, the set containing all elements in
either A or 8.

ANB Intersection of two sets. That is, the set containing all ele-
ments that are in both A or B.

|A| The cardinality of set A. !

A Approximation set of A. That is, |[A| = Al ~ |ANA

PEA p is an element of A.

pEA p is not an element of A.

Reserved Set Names
N Set of natural numbers. That is, N = {0, 1,2, ...}
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Chapter 1

Introduction
/ Z— What is essential is invisible to the eye.
L, %
‘/) : : ‘ N The Fox in The Little Prince
e X by Antoine de Saint-Exupéry
¥ ""?“'*-u...-? “ French writer (1900-1944)

Libraries such as the General Archive of the Nation (México) [52], the Li-
brary of Congress (United States of America) [63], and the National Archives
of Egypt [64] have been digitalizing historical printed documents like ancient
codices, maps, newspapers and books to preserve and spread their cultural her-
itage.

While digitization in itself is enough to preserve the contents of documents, a
primordial benefit of digitization is the extraction of information from the digital-
ized images, and the access to this information through digital libraries.

A digital library is a portal site wherein the public can remotely search,
visualize and download digitalized images of documents. Moreover, user may
have access to historical and ancient documents whose physical consultation is
unavailable due to security or preservation reasons.

The main problem in the construction of digital libraries lies in the extraction
of information from hundreds of thousands of ancient documents. For example,
since the establishment of the National Archives of Egypt (NAE), the number
of documents without indexing or classification accumulated in its stores has ex-
ceeded one hundred million. Because of this, the access to a certain document in

1

digital library
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4 CHAPTER 1. INTRODUCTION

the researchers transform an image from color to gray intensities before applying
binarization algorithms. For example:

1. Chou et al. [13] developed a binarization system for images produced by
cameras which deals with uneven illuminated images. They divide a gray-
intensity image into several regions and decide how to binarize each region
further.

2. Caron et al. [7] detect regions of interest characterizing each pixel with a
template of gray intensities of 3 x 3, the frequency of which appears to obey
a power law distribution. ;

3. Milewski and Govindaraju [53] presented a methodology for separating
handwritten letters from background in carbon—copied medical forms. They
compare the mean of gray intensities of small neighborhoods around the
pixel of interest.

4. Both Chen et al. [11] and Mello et al. [50] binarize documents using gray-
intensity images as input. Whereas Chen et al. generate the binary image
from the edge image of the gray-intensity image, Mello et al. compute a
threshold based on a weighted entropy equation.

I follow the approach of the previous examples. That is, my method takes a
gray image [ as input and returns a binary image B as output, wherein pixels in
white represent the background approximation and pixels in black represent the
foreground approximation.

1.2 Overview of binarization techniques

Several authors [79], [80] [87] have categorized the binarization algoﬂtﬁms ac-
cording to where the information to compute the pixel threshold came from. In
this manner, global algorithms label each pixel using information from the whole
image while local algorithms rely on information from the pixel neighborhood.
Hybrid algorithms combine inférmation from the whole image and pixel neigh-
borhood. Notice, however, that both global and hybrid algorithms can be trans-
formed into local versions by restricting the analysis to the pixel neighborhood.

With the aim of overcoming composite foreground and background areas, all
algorithms considered in this thesis were implemented as local algorithms even
though some of them were originally global or hybrid algorithms.
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Thresholding algorithms are a particular type of binarization where a pixel is
classified as foreground if the gray intensity of the pixel is darker than a threshold.

I categorized some thresholding algorithms related to my approach, based on
which features of gray intensities the algorithm manipulates. Hence, a binariza-
tion algorithm may fit into two or more categories.

Histogram cluster binarization algorithms assume that the foreground can
be estimated by those pixel whose gray intensity is lower than or equal to some
threshold. They take as input the histogram of gray intensities. Classical examples
of these algorithms are Kittler’s, Otsu’s, and Portes’s thresholding.

The minimum error thresholding [40] (Kittler’s threshold) maximizes the
likelihood of the joint distribution of gray intensities assuming that foreground
and background are normally distributed with different means and variances®. In
contrast, Otsu’s threshold [66], without assuming an a priori distribution, mini-
mizes the sum of the variance of gray intensities of foreground and background.
Portes’s threshold [67] maximizes the nonextensive entropy, also called Tsallis
entropy [88], of both foreground and background.

Statistical binarization algorithms are another class of binarization algo-
rithms, which rely on information from statistics of gray intensities. These algo-
rithms usually compute the mean and variance of gray intensities in the pixel
neighborhood. I compared my approach specifically with four of these algo-
rithms: Kavallieratou’s algorithm [36], [37]; Niblack’s [61]; Sauvola’s [80];
and Wolf’s [90] algorithms.

Kavallieratou’s algorithm sets to white the pixels with a gray intensity above
the local mean while the rest of the pixels are normalized. The process is iterated
until a stopping criterion is satisfied. Sauvola’s algorithm is a modified version
of Niblack’s algorithm; both algorithms assume that the gray intensities of the
background are approximately normally distributed and select a threshold as the
lower limit of an interval centered in the local mean of gray intensities. Wolf and
Jolion modified the equation of Sauvola’s threshold by adding the minimum gray
intensity of the pixel neighborhood and the maximum standard deviation of gray
intensities of all neighborhoods, which act as dynamic variance-normalization fac-
tors.

Edge-Contrast binarization algorithms exploit edge information and local
contrast of gray intensities. These algorithms assume that there is a large dif-

2 Sezgin and Sankur [82] present an exhaustive categorization of thresholding. They affirm that
the minimum error thresholding and Sauvola’s threshold are the best-scored algorithms binarizing
documents uniformly illuminated and degraded with noise and blur.

histogram cluster
binarization

Statistical
binarization

edge-contrast
binarization
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ference between the gray intensity of foreground and background while the gray
intensities within each set do not differ significantly. Indeed, the foreground and
background may correspond to those pixels whose gray intensities are the mini-
mum and maximum in the neighborhood, respectively, in the ideal situation. Some
examples of this kind of binarization algorithms are Bersen’s, Kamel’s, Oh’s, Li’s,
and Chen’s algorithms.

Bersen’s algorithm [3] computes a threshold which lies between the maxi-
mum and minimum gray intensity in the neighborhood. More sophisticated edge-
contrast algorithms have been proposed by Kamel [34], and Oh [65]. These bina-
rization methods use the contrast of gray intensities between small neighborhoods
around the pixel of interest. '

Li’s algorithm [44] uses the Laplace operator and a covariance matrix of
gray intensities to compute a threshold. Chen’s method [11] applies the Canny
edge detector [6] to generate the edge image. Several morphological operators
subsequently help to generate an enhanced binary image. Both algorithms apply
a criterion for selecting pixels with high information content.

Remark 1.1: In this thesis, I refer as “method” to those algorithms whose sub-
tasks can be performed with different algorithms such that the election of any of
these “sub-algorithms” in a step may lead to different binarization results. For
example, suppose that a binarization algorithm requires edge detection. This task
can be performed by Canny’s, Prewitt’s [47], or Robert’s Cross algorithms, to
mention some; since the output of these algorithms may differ from each other,
the binarization results may change according to which algorithm performs the
edge detection.

Spatial binarization algorithms gather information from spatial relationship
between gray intensities. Some edge-contrast binarization algorithms, like Kaval-
lieratou’s, Oh’s and Kamel’s algorithms, could be classified as spatial binarization
algorithms because they analyze relationships of gray intensities between small
neighborhoods. Lu’s and Yanowitz’s algorithms also fall within this category.

Lu’s algorithm [46] computes a polynomial surface for modeling shading
fluctuations of gray intensities. Likewise, Yanowitz and Bruckstein [5] (Yanowitz’s
method) proposed an adaptive threshold surface, determined by interpolation of
the image gray intensities at pixels where the image gradient is high.
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1.3 Overview of this thesis

Chapter 2 introduces and formalizes preliminary concepts of digital images (pixel,
image and neighborhood). It also introduces some morphological operators that I
will use later on. Readers who are not interested in such a meticulous formalism
can skip this chapter. However, I advise not to skip Section 2.2 where the concept
and notation of neighborhoods are defined.

The purpose of Chapter 3 is to examine the local implementation, assump-
tions and variants of several binarization algorithms which are either related: to
my method or considered reference algorithms in the binarization literature.

The first main contribution of my thesis is enclosed in Chapter 4, where I
propose and describe the concept of t-transition pixel from which I derived a
novel approach for binarization, edge detection and detection of region of interest.
The theory of transition set, transition functions, and transition values is also
introduced and developed in this chapter. Specifically, I describe the transition
function maxmin. :

The second main contribution of my thesis is in Chapter 5. I mathematically
describe the transition method in gray images for binarization, and to a minor
degree, for edge detection, and for detection of regions of interest. Several bina-
rization methods based on the transition method are proposed. Additional to these
binarization methods, I describe a simple method for edge detection and a simple
method for detection of regions of interest.

In Chapter 6, I address the problem of parameter selection of binarization al-
gorithms. I review several unsupervised evaluation methods to assess the quality
of a segmentation, and propose a several novel measures based on the normal
and lognormal distribution. I also statistically analyze each of the reviewed mea-
sures and ascertain whether a measure is suitable or not to assess a binarization
algorithm.

I summarize the results of my publications [72], [73], and [70] in Chapter 7
where I propose a mechanism for systematic comparison of the the efficiency
of unsupervised evaluation methods for parameter selection of binarization algo-
rithms in optical character recognition (OCR). I also analyze and compare bina-
rization algorithms based on the transition method with several top-ranked bina-
rization algorithms.

Finally, Chapter 8 introduces a novel estimator for the slope parameter in a
simple linear regression. This estimator is unbiased and efficient. Moreover, I
show that it has a low computational cost.

Two appendixes are to be noted: Chapter A extends the integral image con-
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14 - CHAPTER 2. DIGITAL IMAGES

Definition 2.10: Given two integers x and y, a pixel p, ; is in a general position
if and only if p,, € P for all pair of integers h and k such that |h — i| <y and
k—jl < x.

Definition 2.11: A rectangular neighborhood P, «(p) is in a general position if
and only if p is in a general position.

Notation:
For simplicity, the intersection set of A with P,(p) is denoted as A,(p). For ex-
ample, ¥.(p) = F N P:(p), B.(p) = BN P,(p), and so on.

Figure 2.1 — From left to right: cross neighborhood, diagonal neighborhood and
square neighborhood. Pixels in the neighborhood of p; ; are shown in gray.

2.3 Morphological operators

The basis of mathematical morphology is given by set theory and, more specifi-
cally, by Minkowski algebra. I attempt to introduce some basic morphological
operators which I use to remove noise in binary images. For further details on the
field of mathematical morphology and a formal introduction of the operators be-
low, the interested reader is referred to [26], [48], [61], and [81]. For the purpose
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3.2. HISTOGRAM CLUSTER BINARIZATION ALGORITHMS 25

Cho et al. [12] argue that Kittler’s algorithm models the gray intensities of
both foreground and background as normally distributed, but the parameters of
such distributions are estimated with bias. Indeed, y; 7, and a’f’ﬁ () 3T¢ My(t) and
o&(#) which come from a distribution whose tails are truncated by the threshold.
However, this bias becomes noticeable only when the histogram of gray intensities
shows vague bimodality.

3.2.4 Kapur, Sahoo and Wong’s algorithm

Kapur, Sahoo and Wong’s algorithm (Kapur’s algorithm) [35] is a global al-
gorithm, which maximizes the sum of the entropy of gray intensities in F and 8.
The local optimal threshold is derived as

1 b
’””‘zafiéﬂ)i“{ ZZ[F(:) (F(t))]} el

i=0 j=a

and F;(?), a, and b are defined as in Otsu’s threshold.

3.2.5 Tsallis entropy’s algorithm

Tsallis entropy’s algorithm (Portes’s algorithm) [67] is a global algorithm pro-
posed by Portes de Albuquerque, which maximizes the information measure be-
tween background and foreground. Locally, it derives the optimal threshold from
Tsallis entropy [88] as

topr = arg(gn?x {Co() + C1(0) + (1 — @) - Co(®) - CL (1)}, (3.19)
1€(0,g

where

b h] @
ot Z [F i(t)]
C(H) = ————, (3.20)

a-1
where Fi(?), a, and b are defined as in Otsu’s threshold, and « is a parameter whose
influence on the threshold was not determined in the original publication. Notice

that Tsallis entropy reduces to Boltzmann-Gibbs entropy if @ — 1. That is,

-l a@—~1

1-3.x%
lim—iL: in-lnx,-, where Zx,:l. (3.21)
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3.3. STATISTICAL ALGORITHMS 27

3.3.2 Sauvola and Pietikiinen’s algorithm

Sauvola and Pietikiinen’s algorithm (Sauvola’s algorithm) [80] is a local al-
gorithm, which computes a threshold similar to Niblack’s threshold, but it incor-
porates a second parameter 8 > 0,

T(p)=fi—a-p+ a%ﬁ, (3.24)
where a behaves as in Niblack’s threshold. The influence of 6- on T'(p) is regulated
byBsothat T(p) » fi—a-faif & — 0; T(p) — fif & — B. Neighborhoods that
are completely contained in the background may have a low &, which implies that
T'(p) = it — @ - i1 and, consequently, I(p) > T(p) with high probability.

Sauvola and Pietikdinen suggest & = 0.5 and 8 = 128 assuming that g = 255.

3.3.3 Wolf and Jolion’s algorithm

Wolf and Jolion’s algorithm (Wolf’s algorithm) [90] is a hybrid algorithm,
which replaces the parameter B of Sauvola’s algorithm with the maximum stan-
dard deviation of gray intensities of neighborhoods of radius r so that the influence
of & on T(p) is normalized. It also replaces the mean of gray intensities in the last
two terms of (3.24) with the difference between the mean and minimum of gray
intensities in the neighborhood. Wolf and Jolian reflect thus the idea that the op-
timal threshold should lie between such an interval. Wolf’s threshold is given
. by

A

T(p)=,a—a'[ﬁ—m]+af%[,&—m],

m= min {I(q)}, §s= max {0r1p.p(»
5, U@ qem(p){ w40

where P,-(p) is a secondary neighborhood of radius r* > r and @ < 1. The higher
a, the lower T'(p). Wolf and Jolion suggest the parameter = 0.5.

(3.25)

3.3.4 [Iterative global thresholding

The iterative global thresholding is a hybrid and iterative method, which was
originally proposed in [36] and subsequently improved in [37]. \
In each iteration i, the gray intensities are linearly transformed from [m, ,ug)]

to [0,g], where m and /,zg). are the minimum and mean of the gray intensities at the

iteration i, respectively, setting gray intensities greater than ,u;',) to g.



S " B mnﬂ-ﬂﬁ.‘l‘l&‘-#&*ﬂiﬂ‘l *-.r'\u '_ Mﬂw o i

pETg T Y D ¢ ST i Im WL Yo arrs et

bl L e ALy :.._':--. LT N b W'BM‘ ’ :
sl A e ] , -
o &l B - Y g . .
- .
_.‘l . i
K
: hy
il =3 ) . 3 oy ' " & o ;
e -|:mw Tuwtryis el Ly ,luh'* gk HMN,"&I: Hﬂh SrimaR Y
”*__ MT - ,titl, e |r." ikl I"f"i: ﬁE‘BF' o F:u'fp't?mqirlhrh ]
'!ﬂ ‘1 e -? "'"" "’14 Urﬁ." Ty _* il 4 "'! b ".lil "P ""“III‘IF -lm* -,"
'ﬁ ”‘ El.’lil !E-‘-I' #‘1“.'1'":. ":1\ Ay "”'n"l""" ”*'-U-; f 7-;-:""' '.” 3 i '111 '“
e T mu;h;‘- :]ﬂ..‘l-ai-?-liu-r‘,:.q ER b :Q'.L..w pu.nrl Ayt
| i _ - g -
- :
’ R 3 a M 4
o - - . A ." - -,J.q' .
hlf' 1L Ealy I - —’ f 'h_: i :









iy 1 “

ks p(






> ] > N -y : : [ I
T oy - N = L e

IETN e R 10 Qe Mgy o PR
] "'"l '

i Mg = Gt *{1?’.&-@5 Mw.}wl o kel

. il : 5
e o' s
] u;_:_%;r- Lf!l‘“"“».ﬂ'm_ @‘ {5&[@1 l.;ﬁ"wﬁ " :.. .

|—"1"

MMJ Al 4 mﬁm&%&%ﬁ@!{@w‘t@ W






TRAN.

ure

IN

S thé z
PDo you know d
Frengh Itali

40 80 120 160 200



36 CHAPTER 4. TRANSITION PIXELS

o vou know
French and Iral

o you know

1":1'11'4.'51 and frad French and Iral

Figure 4.6 — Binary images from the example in Fig. 4.5. All binarized imaged
were computed with neighborhoods of radius r = 30. At the top, Otsu’s method
(left) with contrast ¢ = 15 and Kavallieratou’s method (right) with parameters
a = 5;. On the bottom, Sauvola’s method (left) with parameters o = 0.5 and
B = 128. Wolf’s method (right) with parameters @ = 0.5.

‘borhoods of type 2 (N72) have their central pixels in the background and have

foreground pixels. Conversely, N773 and N7 4 correspond to N7 2 and NT1,
respectively. Formally,

Definition 4.6: A neighborhood P,(p) € NT 1 if for any q € P,(p) = g € B.

Definition 4.7: A neighborhood P,(p) € NT 2 if p € B and there exists q € P,(p)
such that q € F.

Definition 4.8: A neighborhood P(p) € NT 3 if p € F and there exists q € P.(p)
such that q € 8.

Definition 4.9: A neighborhood P,(p) € NT 4 if for any q € P,(p) = g € F.

The most outstanding feature of transition pixels is easy to appreciate in a
binary image. The difference of binary values between two pixels within neigh-

borhoods type 1 or type 4 is always zero because the binary value of both pixels
are the same, either both one, or both zero:

P(p) € NT1UNT 4= B(p)- B(g) =0V q € P,(p). @.7)
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4.3 Transition function

A transition function F is a discriminant function taking extreme values only
when a transition pixel is evaluated: positive for foreground pixels and negative
for background pixels. Moreover, pixels in ,#° (complement set of transition set)
take values close to zero. In terms of conditional probabilities:

Definition 4.10: A function F is a transition function if it satisfies the following
relations:

Pr(pic  F | E@) =t > l—ey (4.15)
Pi(pe ;6| E(p)=—12) = -, (4.16)
Pr(pe P| -t <F(p)<t,) = l-g, (4.17)

where €., e_, € < 0.5.

Definition 4.10 restricts €., £, and £ to [0, 0.5), but the closer they are to zero,
the better. Equations (4.15) and (4.16) mean p is pre-classified as foreground when
F(p) is greater than ¢, while p is pre-classified as background when F(p) is lower
than —7_. Note that there is no information to pre-classify p if —1_ < F(p) < 1,.

I suggested in [72] some functions to measure a transition value:

Maxmin

V(p) = max {I(g)}+ min {l(q)}—2I(p). (4.18)
qeP,ip) gePslp)
Discrete Laplace
] .
L(p;;) = a1 l[(pf—],j) + 1Py )+ 1(pjoy) + ”P;‘,;+L)| —I(p; ;) (4.19)
Linear kernel
Gp)=| ), w@) I@)|~1p) (4.20)
qeP(p) :
where
Z w(g) = 1. (421)
qePi(p)
Remark 4.2: Notice that
e (pllepe RIS = =2 gl (4.22)
L P (pllipeRls=i=2. 2l (4.23)

G: {Pp) | peP) — [-g.2gl, (4.24)
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o
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Figure 4.8 — On the left, original image. In the center-left, G(p) with Gaussian
weights (o2 = 1 in Pa(p)). In the center-right, Laplace operator. On the right
maxmin with neighborhoods of radius 2.

Table 4.2 — Lower and upper bounds of maxmin function according the neighbor-
hood type.

~ Neighborhood Bounds

_/\{-{T’] _d.\'md < V{P) < d.\'nm
N Tz V(P) < _dmn aF d.\'mn
NT3 V(P) > dr-.-rn =l
NTLI’ _'d.mm < V(P) < d.\-mn

Figure 4.8 shows 3 images, each of which was computed with a different tran-
sition functions. Pixels with negative transition values are shown in red, a pixel
with a —x transition value is associated with a x-red intensity. The pixels with
positive transition values are shown in blue.

4.4 Maxmin function

Table 4.2 was derived from Table 4.1. This table indicates that maxmin function is
a transition function in ideal images, where 7, and ¢_ (Definition 4.10) correspond
to d,,, and —d,,,. However, Theorem 4.1 extends this result to gray images. Fig-
ure 4.9, for instance, shows how the histogram of transition values is constituted:
in this example, (4.15) and (4.16) are satisfied with /. = 10 and ¢_ = 10.

Theorem 4.1. Given a gray image [, suppose that their random variables of back-
ground differences x, foreground differences y and contrast differences z are ap-
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0.09 r
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Transition Value

Figure 4.9 — Histogram of transition values calculated by maxmin function with
neighborhoods of radius 2.

proximately Gaussian distributed in P ,(p) such that pi. > 150, where
o = max [o‘_\-, Ty, o‘,_]. (4.25)

Then maxmin function is a transition function in neighborhoods of radius t < s.
Proof. To prove the theorem is sufficient to find 7~ and 7, such that

o Pr(V(p) < -t )= lifpe NT2,

e Pr(V(p) > —t.)~ lif pe (NT2),

e Pr(V(p)>t,)~ lifpe NT3and

o Pr(V(p)<t,) ~ 1if pe (NT3)".

where (N7 i)" represents pixels in all type of neighborhoods, except neighborhood
of type NTi.

We know that practically all the observations drawn from x are within (z, —
30, e + 307). Explicitly:

P8 <<= 3a0 = —¢
Pr(-30, <y <30y) =1 — ¢, and (4.26)
Pr(—30; <z<30;)=1-¢,



42 CHAPTER 4. TRANSITION PIXELS

where &,, &,, and &. are close to zero. Then there are four cases to prove, one for
each type of neighborhood (Fig. 4.7).

Neighborhood type 1: All pixels within #,(p) are background. (4.18) can be
rewritten as

Vip) =

S {1(q)) - f(p)} = [l(p) - {f(q)}] : (4.27)

ajy az

Observe that

Pr(a; < 60) = Pr (] max {I(g)}| < 3c.,|I(p)| < 3cr,‘-) =[1'—&]
(,\'E.’BJ[,U}

(4.28)
> 1 -2¢g,
and
Pr(a; < 60,) > | — 2¢,. (4.29)
Then
Pr(—6c, < V(p) < 6a,) = | —4e, (4.30)

Neighborhood type 2: There are both foreground and background pixels within
#,(p) and p is background. Regardless of outliers, we can assume that the pixel
with the maximum gray intensity is background and the pixel with the minimum
gray intensity is foreground. Rewriting (4.18) as:

V(p) = | max {I(q)} - I(p) —|r’(p)— min il(q)}_‘
_'?t-gr(P] qeB,(p)
_ “ i (4.31)
B ‘. B e
.qggrfr:ﬂ {1} (q) ilL { }(q}l L@}%] ()} iy {I(q)}]
Thus,

Pr(a; < 60,) > 1-4e,, (4.32)
Pr(a; >20) = 1, (4.33)
Pr(a; > y. —30,) > 1-¢, and (4.34)
Bi(ags 0)=mil} (4.35)
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Therefore,
Pr(V(p) < —i. + 60 + 30:.) > 1 —4e, — ¢.. (4.36)

Replacing p- > 150 in (4.36)
Pr(V(p) < —60) > | —4e, —¢.. (4.37)

From (4.30) and (4.37) there exists 1. < 60 that satisfies (4.16). The proof of
cases three and four are analogous to the proof of cases one and two.
m]

4.5 Summary

To develop the transition method, I postulated Definition 4.1 in which the gray
intensities are modeled in small neighborhoods as random variables (independent
and identically distributed). The histogram of gray intensities is then modeled as
a linear combination of the density functions of two normal distributions; as in
[14] and [40]. However, I suggested the lognormal distribution as an alternative
for the distribution of gray intensities; the strength of the lognormal model will be
shown in Chapter 5 and Chapter 7.

I proposed three desirable properties that an ideal image must fulfill in bina-
rization context: local tendency, local smoothness, and local contrast. In particu-
lar, local smoothness ensures an upper bound in the differences of gray intensities
of two foreground (background) pixels: see Definition 4.2. Similarly, local con-
trast determines a lower bound between the differences of gray intensities of a
foreground pixel and a background pixel; see Definition 4.3. Afterward, I statis-
tically expressed these bounds for non ideal images with three random variables:
background differences, foreground differences, and contrast differences.

The concept of t-transition pixel introduced in Definition 4.4 and Definition 4.5
is the first main contribution of my thesis. A pixel is a t-transition pixel if its neigh-
borhood contains foreground and background pixels. Subsequently, the transition
set (set of transition pixels) is divided into two subsets: positive transition set
(intersection between foreground and transition set) and negative transition set
(intersection between background and transition set).

Later on, transition pixel’s properties are analyzed in binary images and in
ideal images, providing the mathematical foundations for deriving discriminant
functions, which I named transition functions; see Section 4.3 and Definition 4.10.
Transition functions are functions that take extreme values only when a transition
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pixel is evaluated: positive for foreground pixels and negative for background
pixels.

A minor contribution of this thesis is given in Section 4.4, where I proved that
maxmin function is a transition function in ideal images. All transition values
in further experiments are computed with this function using neighborhoods of
radius 2.



Chapter 5

The transition method

Each life sparks changes of tone so gradually
that we believe we are in the same place.

The second main contribution of my thesis is enclosed in this chapter. I de-
scribe mathematically the transition method in gray images for binarization, and
to a minor degree, for edge detection, and for detection of regions of interest.

The success of this novel approach depends on the definition of the t-transition
pixel, previously defined in Chapter 4. In this chapter, I will show that the positive
transition set (intersection of foreground and transition set) is approximated by
the set of pixels with high positive transition values, and that the negative transi-
tion set (intersection of background and transition set) is approximated by the set
of pixels with high negative transition values.

Several binarization methods based on the transition set are proposed. In ad-
dition to these binarization methods, I describe two simple methods for edge de-
tection and detection of region of interest.

Even though the transition method has the potential to deal with uneven il-
lumination, this chapter will focus only on images without sudden illumination
changes in small neighborhoods.

45
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5.1 Overview of the transition method

Figure 5.1 shows that the histogram of gray intensities of the highlighted neigh-

borhood of radius r (H;gp,) is bimodal; the left peak of Hyp,(p) 18 mainly formed

by foreground pixels, while the right peak is mainly formed by background pixels.
If we knew the class-conditional density

Pr(I(q) | g € F:(p)) and Pr(I(q) | g € B,(p)). (5.1)

we could consider the maximum likelihood estimation or Bayesian estimation
approach to solve the binarization problem; see Fig. 5.2. Unfortunately, we rarely
know the class-conditional densities. However, we can reasonably assume that the
gray intensities of both foreground and background are approximately normally
distributed; see (4.1). In consequence, T(p) is quickly computed when there is an
analytic intersection between

(Fr (D) - s 17090 T ) (5.2)

and the correspondent background function
|B,(D) - (i 41.8,p)> T 5, ) (5.3)
We can approximate Pr(I(g) | ¢ € F(p)) by drawing a representative sam-

ple of F,.(p): see Fig. 5.3. Since ,F.(p) is a representative sample of F.(p), the
following equation holds in neighborhoods of radius r :

Pr(I(q) | ¢ € F.(p)) = Pr(I(q) | q € F.(p)), (5.4)

Although the transition sets are also unknown, my method provides ,(f'r(p),
which is an accurate estimate of ,#,(p), see Fig. 5.4. Thus, (5.4) changes to

Pr(I(q) | g € F:(p) ~ Pr(I(q) | g € F(p)). (5.5)

We are now able to compute the gray threshold with the usual classification
procedures. In Table 5.1, for instance, we computed a threshold with the mini-
mum symmetric values: see Section 5.5.3.

The complete method consists of the following steps:

I. Compute the transition values for each pixel with a transition function. I
suggest the maxmin function with neighborhoods of radius 2; see Fig. 5.5 (b).
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Density
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Gray Intensity

Figure 5.1 — Histogram of gray intensities of the highlighted neighborhood.
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Figure 5.2 — Binary ground truth, and histograms of gray infensities of both fore-
ground and background. I have manually fitted a normal probability density dis-
tribution function to each histogran.
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Figure 5.3 — Transition sets. In blue, pixels within the positive transition set, and

pixels within the negative transition set are shown in red. In P,(p), the distribu-

tion of gray intensities in F.(p) and B,(p) approximate the distribution of gray

intensities in F and B, respectively.

35T
N1, 7.m) H

I ,f.ér- (p) /"\

@{*s»“.'.r}'.-m]'-Jf,,_ai‘..(p]} / \
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=

0.7 F

0.0 - 2 T = > . q.
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Figure 5.4 — Approximation of the transition sets. We use the approximation of
positive and negative transition sets as foreground and background samples.
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Table 5.1 — Estimated threshold by minimum symmetric value with k = 10.

a b T(p) = 4t
Ground truth SM(k. F,(p)) = 98 SM(k, B,(p)) = 207 15557,
Transition set SM(k, F(p)) =99 SM(k, B.(p)) = 205 152

Transition set approximation SM(k, ,?A",(p)) =98 SM(k, B.(p) =207 152.5

2. Calculate the thresholds #, and ¢_. Take # = {p | V(p) > t.} and B = (p |
V(p) < —t_} (Section 5.2); see Fig. 5.5 (b).

3. Restore ,TA and ,B (Section 5.3); see Fig. 5.5 (f)-(g).
4. Calculate the region of interest R (Section 5.4): see Fig. 5.5 (h).
5. Label p as background if p ¢ R. Otherwise:

e If binarization, compute T'(p) (Section 5.5); see Fig. 5.5 (i).

e If edge detection, compute simple edge transition operator (Section 5.6);

see Fig. 5.5 (j).

6. Restore ¥ and B with standard algorithms.

5.2 Transition threshold

I known through experience that maxmin function characterizes the transition pix-
els better than Laplace or Linear Kernel functions. So, I assume in this section that
transition values are calculated with maxmin function.

Transition values calculated with maxmin appear to obey a Gumbel distri-
bution rather than obeying a normal distribution or lognormal distribution; see
Fig. 4.9. As a manner of fact, these transition values can be modeled by the ith
order statistic of a sample of random variables drawn from a normal distribution.
However, I did not explore in detail this line of research.

I describe three methods based on histogram cluster thresholds. The aim of all
three methods is to choose a threshold for either (5.6), or (5.8) such that the chosen
threshold divides the histogram in question into two groups: The first group may
be mostly constituted by non-transition pixels; the second group may be mostly
constituted by transition; see Fig. 5.6.

Given a sample of n variables
Fr o e dy. reorder them so that
by <...< by, Then b is called

the ith order statistic.
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Figure 5.5 — (a) Original image. (b) Transition image by function maxmin with
neighborhoods of radius 2. (c¢) Transition image. In blue, pixels with transition
value higher than zero; in red, pixels with transition value lower than zero. (d) The
transition image after filtering by t, = 14 and t- = 15. (e) Transition image after
removing isolated pixels. (f) Transition image after incidence transition operators.
(g) Transition image after dilation transition operators. (h) Region-of-interest im-
age. (i) Binary image by modeling the gray intensities as lognormally distributed.
(j) Edge image.
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e Empirical scaled density function

]
up = EHV,P(!'). (5.6)

where
k = max {Hyg(i)}. (5.7)
ig[1,2]

See Fig. 5.6 (top-right).

o Empirical complementary cumulative distribution function (CCD)

1 & _
vi= jZ Hyp()), (5.8)
where ]
t=" Hyp(j). (5.9)
i=1

See Fig. 5.6 (bottom-right).

Since ;¥ and ,B are dual sets, I will explain only the method for ,%, leaving
out the details for , 8.

5.2.1 Quantile transition threshold

In [69] and [72], I suggested the quantile transition threshold, which I derived
from P-tile method [19].

The quantile transition threshold discards the lowest @, percent of positive
transition values in order to approximate ;% without considering transition values
equal to zero, see Fig. 5.7. It implies that a 1 — @, percentage of the highest
transition values remain in % .

Given a value . and Hygp, t* is chosen as the minimum value that satisfies

o 1
= Z. Hyp(i) > oy, (5.10)
where
8
k=) HypD). (5.11)
=i

Unfortunately, the main drawback of this method is the necessity of two pa-
rameters (a, and a_).
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Figure 5.6 — On the lefi-top, a gray image and on the right-top, its correspond-
ing transition image (equalized image) by maxmin function with neighborhoods or
radius 2. On the bottom, the empirical scaled density function of positive transi-
tion values (left) and empirical complementary cumulative distribution function of
positive transition values (right).

5.2.2 Rosin’s threshold for transition values

I point out in [71] that the behavior of (5.6) and (5.8) is ideal for Rosin’s thresh-
old [76], which proposes a threshold for unimodal histograms.

Rosin’s method [76] (Rosin’s threshold) is a global algorithm, which assumes
that one of the two classes produces one dominant peak located at one of the sides
of the histogram. The non-dominant class may or may not produce a discernible
peak, but needs to be reasonably well separated from the large peak to avoid being
swamped by it.

Let w; be values computed either with (5.6), or with (5.8). A straight line L
is drawn from the peak to the high end of w;’s graph. Then, the threshold point
is selected as the histogram index i which maximizes the perpendicular distance
between L and the point (i, w;); see Fig. 5.8.
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Figure 5.7 — The positive transition threshold is calculated as the . quantile of
the empirical complementary cumulative distribution (CCD) function of positive
transition values.

Let 0 < x;, x; < g be two indexes such that w,, > w;fori=1,...,g, and

Wy, Wi :

—~>§>— fori>x, 12
Wy Wy

where § > 0 is a parameter; I suggest 6 = 0.01. The line L is defined by the points

(x1, wy,) and (x2, wy,). The distance function and threshold are defined as

e — x0)(w, = wi) = (61 = Dwy = wiy)|

J(XE — X )2 hr (1'"”.\'_\ =l )2

(B:l3)

D(i) =

and the threshold is given by

t, = arg max {D(i)} . (5.14)

i€[xy,x2]

5.2.3 Double-linear threshold for transition values

The behavior of the positive transition values, see Fig. 5.6 (bottom-left), will ap-
pear to have a heavy right tail. The power law distribution has been discarded
because the log-log plot (Fig. 5.9) of the empirical complementary cumulative
distribution function does not follow the characteristic straight-line form of the
power law distribution [57].
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Figure 5.8 — Rosin's threshold for positive transition values.

A close look at Fig. 5.6 (bottom-left) shows two linear zones. The first linear
relation mostly corresponds to non-transition set 2 having positive transition
value. The second linear part is mainly formed by transition pixels. Indeed, the
histogram of positive transition values is a combination of three histograms, as is
shown in Fig. 5.6 (bottom-left). Thus, a criterion to select the transition threshold
t, 15 to take the value ¢ that divides the graph, into approximately two lines, using
linear-linear or linear-log scales.

The double-linear threshold approximates the positive side of the transition
graphs (i, w;) by joining two linear functions; see Fig. 5.10 (left), where w; is com-
puted either with (5.6), or with (5.8). However, the transition graph is truncated
between the bounds x,,;, and x,,. in order to reduce noise in the first and last
values of the graph. The value x,,;, is the minimum index i that satisfies

Wi > Wisl 2 Wiz 24000, 2 Wy, (5.15)

and x,,,, 1s the maximum index 7 that satisfies

W i

>6 (5.16)

W Konrint

such that 6 > 0 is small (I suggest 6 = 0.01).
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Figure 5.9 — The log-log plot of the empirical complementary cumulative distri-
bution functions of the positive transition pixels does not follow the characteristic
straight-line form of the power-law distribution.
For mathematical convenience, I re-label w; as
V=W fori = 0! l's vy Xpax — Xmin = 1 {5 I ?)
and postulate that y; satisfies (5.18) and (5.19).

yizmy-i+th ifi=0,1,2,...,¢ (5.18)

yixmy-i+by, ifi=tt+1,....n (5.19)

I use the differences-rate estimator (Section 8.3) to compute si7,. For this
particular problem, it is simplified to

6 [
e M S N 2
e r(:+1)(r+2);“ 0y, (0:20)

However, the slope can be computed by regression methods [1] and [75].
Unfortunately, there is no differences-rate estimator for the intercept term b;
therefore I use the least-square estimator

= B e i
by = mZ‘-"f — iy -). (5.21)

i=0
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Figure 5.10 — The scaled density function (left) is approximated by the joining of
two lines Ly and La. On the right, plot of Errory(1) + Errors(t) between Xpmin = 3

and Xy = 30.

A natural error function for (5.18) can be defined as

1

Error(t) = Z (y,- -y i— 51)2,

i=0

In the same way, an error function for (5.19) is defined as

n

Error(t) = Z (y; — Ty — Xl — 53)2,

i=r
where
£ 6 Sl
e S A
and

) l n
T e e
i s

Finally, r, is computed as

t, = argmin {Error(t) + Errory(t)} + xpin + 2.
1€ 1.n]

Figure 5.10 (right) is a plot of (5.26).

(5.22)

(5.23)

(5.24)

(5:25)

(5.26)
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5.3 Restoration of transition set

The restoration of the transition set ,# is the process of adding and removing
pixels from P with the aim of increasing the cardinality while reducing the noise.

Morphological operators, like erosion and dilation [48], could be adapted to
enhance If). However, these operators will add or remove pixels without consid-
ering either gray intensities, or transition values. These operators in their original
form will alter the trusty foreground sample F, losing confidence in the transition
set approximation. I based this chapter on two of my publications, namely [72]
and [73], where I proposed morphological operators that preserve confidence in
the transition set approximation.

5.3.1 Isolation transition operator

Isolate transition operators are derived from isolate operators in Section 2.3.1.
In particular, the cross isolate operator and diagonal isolate operator were suc-
cessfully used in [71], [72], and [73] for removing false positives of transition set
approximations.

Cross isolate transition operator

F < | F ar.p) (5.27)

PET

See Definition 2.12.
Diagonal isolate transition operator

F < | Furo (5.28)

peiF
See Definition 2.12.
Rectangular isolate transition operator
n e
F | Pulp) BP0, (5.29)
p&,?f'

See Definition 2.14.
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Transition | Expansion

Threshold

Expansion

Figure 5.11 — Two different transition set approximations. Above, an accurate
transition set approximation which was previously filtered by transition operators.
Below, a raw transition set approximation (t, = t— = 10). Blue pixels depict pixels
in the positive transition set. In red, those pixels in the negative transition set.

5.3.2 Simple expansion transition operator

The cardinality of F can be incremented by adding those pixels that are sur-
rounded by positive transition pixels to F . Assume, for instance, that p € P is
a pixel such that u = If(p)l is a large number and v = |, B, (p)| is small or zero.
Then, intuitively, p may belong to F with high probability. Extending this idea
to neighborhoods of radius k :

Definition 5.1: The simple expansion transition operator

FeFulpef | 1F@I2u and 1Bpl<v). (530
which is equivalent to
£ ~ Pe(p) .
R F B 8B (5.31)
pe‘r?”' i,y

See Definition 2.16.

The simple expansion transition operator is sensitive to noise, and it can easily
lead to mistrustful approximations because it does not consider either gray inten-
sifies or transition values. Nonetheless, it is useful when the boundaries between
F and B are well defined and there are no scattered noise spots; see Fig. 5.11.
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Figure 5.12 — On the left, original image. In the center, filtered image using t, = 14
and t_- = 16. On the right, Restored image by isolation transition operators and
expansion transition operators. Blue pixels depict pixels in the positive transition
set. In red, those pixels in the negative transition set below .

I did not determine a practical rule to “fune” the simple expansion transition
operator. In most of the cases, this operator is only helpful through no-trivial com-
binations of transition operators. For example, Figure 5.12 (right) was computed
with seven transition operators in the following order:

I. Expansion transition operator (k =2 and u = v = 3).

2. Cross isolate transition operator.

3. Expansion transition operator (k = 2 and u = 3, v = 13).
4. Diagonal isolate transition operator.

5. Cross isolate transition operator.

6. Expansion transition operator (k = 1, # = 5, and v = 5).

7. Expansion transition operator (k = 2, u = 13, and v = 2).

5.3.3 Incidence transition operator

The blue pixels in Fig. 5.13 depict pixels with high positive transition values. In
red, those pixels with high negative transition values. In the same figure, whereas
the isolated blue pixel ¢ (right bottom corner) is an outlier and easily removed by
cross, diagonal, or rectangular transition operators, the red pixels around ¢ form a
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Figure 5.13 — The transition values were computed using maxmin width radius 2.
The pixels with high positive vm"ues are shown in blue, in red the pixels with high
negative values.

large “isolated” connected component (24 pixels) that cannot be removed by those
operators.

By definition, a background r-transition pixel p contains at least one fore-
ground #-transition pixel in P,(p). That is [ F(p)| = 1, if p € ,P. Moreover,
| Fa(p)| > | F,(p)| in most of the transition pixels. Thus, the neighborhood #2,(p)
of a pixel with a high positive transition value may contain several pixels with
high positive transition values. For example, Fig. 5.13 depicts |2%(p)| = 1 and
|_ﬂ(p)| = 8. In opposition to p, the pixel ¢ and all the red pixels around it only
contain one blue pixel in P4(q).

To deal with pixels like ¢, I proposed in [73] the following definition:

Definition 5.2: A pixel p is an isolated transition pixel if
[FnPupl<f or [[BOPuUp)l<b (5.32)

where f and b are two positive integers. An alternative form of (5.32) is

(f 2 ﬂ-(m) n(Bare)=o. (533)

This alternative expression is helpful to calculate this operator with integral im-
ages; see Definition 2.15 and Chapter A.
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Figure 5.14 — On the left, the gray-intensity of e blue pixel in P2(p) is lower or
equal to I(p). On the right, the approximation of the transition balance of p.

Therefore, isolated transition pixels can be removed from the transition set ap-
proximation with the incidence transition operator (Definition 2.15) as follows:

S ~ Pr(p) o
= U;}-" ,%T B, (5.34)

peF
where k is a positive integer. I recommend setting k = 2f, f =b=1+1.

Remark 5.1: The incidence operator does not remove dense random-valued
noise. Thus, it has to be applied after isolate transition operators.

5.3.4 Dilation transition operator

Suppose that p and g € P,(p) are two foreground pixels such that ¢ € # and
p & F, thus V(q) > t, and V(p) < t.. This implies that p is excluded from ,%.
However, we can assume

Pr(I(q) = I(p)) = Pr(I(q) < I(p)) if p,q € F NP(p) (5.35)
because
I(q) ~ I(p) forall g € ¥ NP(p). (5.36)
So,
Pr(I(q) > I(p)) = Pr(I(q) < I(p)) if p,q € Fu(p). (5.37)

In other words, about half of the pixels in F.(p) have a gray intensity equal or
lower than /(p); see Fig. 5.14. In addition, the gray intensities of the background
are strictly higher than I(p) in the ideal case. Therefore, the number of pixels

Given a partiion P and an
image function F, random-
valued noise is a set of pixels
A © P whose spatial position
are uniformly distributed, and
whose values can take any ran-

dom value of F [9], [23].
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Table 5.2 — The probability of the inequality are approximated given p and q &
Pr(p)

Pr(I(p) = I(q)) Pr(/(p) < I(q))

geBligedi Qe BiNgel
peEB =05 =1 ~ 0.5 =0
plefs 001 =~ ~ 0.5

that are equal or lower in gray intensity than /(p) may be zero or close to zero.
Table 5.2 is constructed following the same reasoning, although a formal proof of
the probabilities is beyond the scope of this thesis.

Using the conditional probabilities of Table 5.2, a large number of pixels in
F.(p) that are equal or lower in gray intensity than /(p) is strong evidence that p
belongs to the foreground. We derived a similar argument for background pixels.
To measure these conditional probabilities, we define:

Definition 5.3: The t-transition balance:

TB(p) =g € Fp) | I(q) = I(p}l — g € Bp) | I(g) < I(p)}].  (5.38)

So, TB(p) = %Lf(p)] if p is foreground, and 7'B,(p) ~ —%E,B,{_p)] if p is back-

ground. Hence. 7' B,(p) is approximated with }FE’,(p), which uses ,9'3,(;;) instead of
P(p).

Definition 5.4: Given p ¢ P, the dilation transition operator set

F — FUlp) if TB(p)= f, (5.39)
and »ill
B — . BUlp) if TB(p) < b, (5.40)

where f and b are two positive integers.

I recommend setting f = b =1 + ¢.

5.4 Detection of regions of interest

For a human observer, detecting a perceptually important region in an image is
a natural task which is done instantaneously, but for a machine it is far more
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Figure 5.15 — Detection of region of interest by transition set. The ROl image on
the top is computed with the rough transition set approximation (without transition
operators). The ROI image on the bottom is computed with the restored transition
set.

difficult. The machine lacks the cultural references and knowledge to identify the
content of the scene.

One of the causes for this difficulty is the subjective nature of the notion of
region of interest (ROI). In the most general sense, a region of interest is a part
of the image for which the observer of the image shows interest. For example, in
medical images, a definition of region of interest is based on anatomical markers
[62]: in computer vision, Caron et al. [ 7] assume that the region of interest to be
detected is a single connected region in the image: it must be both significant in
size and different from the background in structural complexity.

The interest shown by the observer in viewing the image is determined not
only by the image itself, but also by the observer’s own sensitivity. For a given im-
age, different people could find different regions of interest. However, regions of
interest generally have distinctive features (contrast, color, region size and shape,
distribution of contours or texture pattern) which make it possible to distinguish
regions of interest from the rest of the images. Then, these structural charac-
teristics can be used to detect regions of interest of an image without making
hypotheses about the semantic content of the picture.

In document analysis context, a region of interest can be defined as the set region of interest
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Figure 5.16 — On the left, binary image which contains a simple line. On the right,
its corresponding transition image (1=2).

of pixels R such that the neighborhood of radius » of each pixel contains both
foreground and background. Indeed, this is the definition of t-transition set for
¢ = r. Therefore, under this definition, . = R.

The properties of smoothness (Definition 4.2) and local contrast (Definition 4.3)
do not hold for the radius r > s (recalling s from Definition 4.2 and Definition 4.3)
so that transition values cannot characterize the r-transition pixels. Nevertheless,
P is fairly estimated by

R~R=P={p| |FP|=n. and |B,(p) = n_} (5.41)
where n, and n_ are two positive integers. An alternative expression is given by
R~ JF = 8 (5.42)
FE:D =

The values n. and n_ depend on r and objects of interest: the larger n, and n_,
the larger the objects that can be removed from the foreground. Figure 5.16 (left),
for instance, depicts a simple horizontal line with height 1 as foreground. The line
extremes are evaluated if n, < r + 1. Otherwise, the line extremes are labeled as
background without even computing 7'(p): see Figure 5.16 (right). In [72] and
[73] I suggested n, = n_ =5 for detecting small foreground objects.

A second criterion to discard outliers uses the difference between the mean of
gray intensities of transition sets. The pixel p is labeled as background if

Hi, 8,0 — M1, 7 < 6 (5.43)
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Figure 5.17 — Hyp,(p) and H; ) of Fig. 5.6 (top-left) on the left and right, re-
spectively.

where c¢ is an integer, which depicts the minimum contrast expected between the
foreground and background. In [72] and [73], I suggested ¢ = 15.

5.5 Binarization by transition sets

At this point, I assume that p € R (region of interest). Otherwise, the pixel is
directly classified as background.

For some algorithms, like Otsu’s and Kittler’s thresholds, the better the his-
togram of gray intensities approximates a bimodal curve, the better their accuracy.
Those algorithms compute 7'(p) with data from H; g, ). I propose H, 4 ., instead;
see Fig. 5.17. Moreover, keeping track of H, » , and H; g . I propose several
classification functions.

5.5.1 Linear mean-variance threshold

I introduced the linear mean-variance threshold in [69]; it follows the same
idea of Niblack’s threshold because it resorts to intervals based on mean and
variance of gray intensities. It assumes that the gray intensities of the foreground
are clustered such that most of them are contained in the interval p; 5, + @ -
O 7.p (foreground interval). In a similar manner, most of the gray intensities
of the background are within 1 g, + B - 015, (background interval) and, as
a consequence, the optimal threshold must lie between ;7 p + @ - 017, and
His,p) — B 018, in an ideal image. Hence, the linear mean-variance threshold
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Figure 5.18 — H‘,_!.ﬁr(m and thr{p) of Fig. 5.6 (top-left) filtered by t. = 9 and
I_i=-9,

is given by

Mg T X g Y M8, —B- 050
o .

Figure 5.18, for instance, shows the optimal threshold with @ = 8 = 1.

The main disadvantage of the linear mean-variance threshold is that suitable
parameters may change significantly between two different images.

A second disadvantage is that both foreground and background intervals may
be overlapped, in which case 7(p) may be lower than p; gz, or greater than
My, Which contradicts the assumptions of smoothness (Definition 4.2) and
local contrast (Definition 4.3). Figure 5.19 exemplifies this problem with

I(p)

(5.44)

Hr ) = Fr.7.00 F O 15 + P18 (5.45)
T8 = 2. 1.4 (p):
Then
ILF @ +3 - 28]
2

T(p) = iy 7,0 +

Therefore, T(p) < y; 7, if @ +3 < 28.

In [69], the linear mean-variance threshold yielded good binarization results
witha=g=1.

(5.46)
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Figure 5.19 — Considering the values in this diagram, the linear mean-variance
threshold may lead to an unsuitable threshold if & + 3 < 28.
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Figure 5.20 — The autolinear threshold is a point between the segment with ex-
tremes i and j, B(p) which divides in a proportion related to the standard
deviation of gray intensities.

5.5.2 Autolinear threshold

I introduced the autolinear threshold in [72] to overcome the shortcoming of the
linear mean-variance threshold [69], which needs two parameters.

As I point out in Section 5.5.1, the optimal threshold must lie between the
interval fi;.# ) and /i1 g, (. With this assumption, the autolinear threshold chooses
a threshold between such means as

o TER "
T(p) =t 7.0 + e M8 — M1 50 ) - (5:47)
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where

o, = max (f?;_,-ﬁ,(pr 1) (5.48)
o = max (5'.:_,1‘3,[_;1}* 1)’

see Fig. 5.20.

In this manner, if o-. = o, then the threshold is chosen as the middle point
between the means of gray intensities. Furthermore, it ensure that 7'(p) is always
greater than 1, », and lower than f; g ;).

5.5.3 Minimum symmetric threshold

In [73], I proposed the minimum symmetric value (SM) which attempts to mea-
sure the symmetry of a histogram of gray intensities. It is defined as

k
SM(k, A) =  argmin L5 ZlH,,_.H(f+j)-Hm(f—_,f)| . (5.49)
ali) =

ielk.g—k]. Hyaliy>0 H;.

where A is a set of pixels and k < /2 is an integer.

In general, SM(k, % (p)) and SM(k. ,B,(p)) can substitute y; ., and p1; 4 ),
respectively, in any threshold. For example, the autolinear threshold can be rede-
fined as

T(p) = SM(k, F(p)) + ——

[SM(k. 7.(p)) — SM(k. B.(p))|  (5.50)
oy + 0. :

where o, and o are computed as (5.48).

5.5.4 Minimume-error-rate

According to Bayesian decision theory, the probability of misclassifying a pixel
is minimized with the Bayes decision rule:

foreground if Pr(p € 7 (p) | I(p) = i) = Pr(p € B.(p) | I(p) = i)
background if Pr(p e F.(p) | I(p) = i) < Pr(pe B.(p) | I(p) = i)

(5.51)
where the notation Pr(p € A | I(p) = i) denotes Pr(p € A) given that the gray
intensity of p is i.

classify p as {
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Figure 5.21 — Empirical density functions of gray intensities from Fig. 5.1. The
probability of error in light green.

Under this criterion, the probability of error in P (p) is given by

min {Pr(/(p) = i, p € F:(p)), Pr(l(p) =i, p€ B(p)}. (5.52)

Mn

EF‘I'OJ‘”"'" =

D

=

The probabilities in (5.52) can be replaced by their estimators as

Error, ~ wpn Z min {H7.(0) , Hig,(D) : (5.53)

see Fig. 5.21. Note that the factor m is a scale factor. Therefore, given that

I(p) = i, the Bayes decision rule becomes:
foreground  if w: Hyz (i) 2 w - Hy5,p)(0)

- : : (5.54)
background if w - Hy g ,(i) < w - Hjg5,p(0)

classify p as [

where w > 0 is a scale factor.
According to Section 4.1, the gray intensities in 7,(p) are approximately nor-
mally (lognormally) distributed. Therefore, there must exist #,,, € [0, g] such that

H.‘.'ﬂ-{p}(f) = Hf.ﬂrtp}(i) ifi < I,,!,,;,

. LA (5:55)
H.".’]}{p}“) S H!,iﬁrtp]('!) if i > rnpf-

However, the frequency of gray intensities randomly fluctuate and, as a conse-
quence, a value that satisfies (5.55) may not exist. Nevertheless,

: H!.ix’,-{m{*:) s ‘L[L’f",-['pJ(.i)
=+ .

7, (p)lZ;m'“lH’“‘”“) Hig (D) ~ min {Zn Pl 2 P
(5.56)
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Thus, by (5.53),

: S Higp) s Higp@)
- (@ : (5.57)
Err OFin f?{lfigi {; |¢)r(p)l f;l l@,(ﬂ)l .

Recalling that the density function of gray intensities in ¥,(p) is approximated
by the density function of gray intensities in ,%,(p), we obtain that

H; (D) = |F(p)| - Pr(l(p) = i | p € F(p))
~ |F(p)l - Pr(I(p) = i | p € F(p))

(5.58)
] o HI J’,(,m )
~ |F(p)| - Pr(l(p) =i | p € F()) = IF:(D)| - ————
o (p)]
This implies that
Errory, = rr[}}'n] {Error(t)} = Error(f,y) (5.539)
1ell,g
where o
(i) ’ £l
Error(t) = [1 —wy] Z it 5/p) + Wy Z ﬂ._) (5.60)
= 8.(p) &0 L FAp)l
o Fo(p)
P
e = ; 5.61
Y= ) o

The value w/ is known as the foreground proportion in P,(p).

Figure 5.22 shows that the error function (Error(t)) for the “true foreground
and bac kgm:md () is similar to the error function for both the transition set
approximation () and the “true transition set” (£*). In this example, 1, exists and
coincides with the minimum value of #*, Furthermore, the minimum probability
of error is & 0.0038 while the probability of error at level 7,,, = 144 is ~ 0.0066.
So, ?,,r,,, is an accurate estimator of the minimum error.

In our previous example, all MER graphs were computed assuming the true
value of wy because |¥,(p)| and |P,(p)| are known for this example. However, usu-
ally w is unknown and may be estimated in some manner. Unfortunately, |, %,(p)|
cannot be taken as a proportional estimator of |F,(p)| since the w is usually dif-
ferent to the ratio

L FA(p)|
L P(p)

(5.62)
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Figure 5.22 — MER functions of Fig. 5.1: { (thick black solid line) is computed from
Hig.(p and Hyg,p); € (red dotted line) is computed from Hy iz, p and Hy,s,p):
and  (blue dashed line) is computed from Htr'f}(pl and HL;B,(,::'J' In this example,

tope = 151, rapi has two minimum values in 151 and 152, and f,)f,, = 144.

This is because positive and negative transition pixels customarily come in pairs
while w; depends on r and the spatial position of p.

The minimum-error-rate threshold based on transition sets is then defined
as

H (i) S 2 8 e 1)
f = argmin {[1 — /] Z LB, + Wy Z & _ (5.63)
1€[0.g] =0 | B (P)| i=r+1 |r}_—r(p)|
€ €

where W, denotes an estimate of w/ (either given as parameter, or calculated by
some method).

If w; < 1, the minimum-error-rate threshold tends to overestimate ,,,. Con-
versely, if w; > 1, the minimum-error-rate threshold tends to underestimate 7, .
However, Pr(I(p) =i | p € F,(p)) decreases exponentially so that the difference
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Figure 523 - H, ¢, and H; 4, of Fig. 5.6 (top-left) filtered by t. = 9 and
t. = —9. The area on blue (red) represents €. (e-) which is the approximation of
the probability of misclassifying foreground (background) pixels.

between 1, and 7 is approximately logarithmically proportional to the ratio wy to
y,.! Taking advantage of this property, ¥, can be chosen as the upper bound of
w:f without losing confidence that 7 approximates f, . Figure 5.24, for instance,
shows that, even when the positive transition set is considerably overestimated
and the negative transition set is considerably underestimated, MER estimates a
similar threshold to 7,,, (threshold by MER taking a complete form).

Remark 5.2: We say that the minimum-error-rate takes a complete form when
Wy = :;j}i: 1' We say that the minimum-error-rate takes a simple form when W, =
0.5. Figure 5.23, for instance, shows the minimum-error-rate threshold (simple

form) of Fig. 5.6.

In historical documents, r is usually chosen such that any character is com-
pletely contained in one or more neighborhood of radius r because, intuitively, the
neighborhood of a character may preserve smoothness and high contrast. With
such a radius, the foreground proportion is almost always less than 0.5 because
letters, symbols, and lines are commonly printed with fine strokes. For exam-
ple, Fig. 5.25 shows the cumulative distribution of the foreground proportion of

ISee Section 5.5.5 for details of this argument.
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Figure 5.24 — ., and {_ correspond to the densities of \F.(p) and B.(p), respec-
tively. The line £ overestimates €, in the proportion 2:1. Conversely, {” underes-
timates €_ in the proportion 1:2.

14 images from historical documents; according to Gatos et al. [24], such images
contain representative degradations which appear frequently (variable background
intensity, shadows, smears, smudges, low contrast, and bleed-through) in histor-
ical documents.” In eleven images, any letter is completely contained in neigh-
borhoods of radius » = 50, and 99.9% of those neighborhoods have a foreground
proportion less than 0.5. In three images, however, there are letters which are only
completely contained in neighborhoods of radius r > 140. Nevertheless, all three
have foreground of proportions less than 0.5 in neighborhoods of radius r > 140.
Hence, w} = 0.50 can be considered as the upper bound of w in historical docu-
ments for neighborhoods of radius r such that any letter in the image is completely
contained in at least one neighborhood of radius 7.

% This benchmark along with its groundtruth images can be found in
http:/fusers.iit.demokritos.gr/ bgat/DIBCO2009/benchmark/
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Figure 5.25 — At the top, some images from the DIBCO 2009 benchmark. Fore-
ground proportion (r = 50) of 14 images from historical documents. Curves of
those cumulative distributed functions F(x) such that F(0.2) > 0.999 are in green;
those such that F(0.3) > 0.999 are in blue. Lines in orange, red and dark red corre-
spond to the cumulative distribution functions of top, middle-left, and middle-right
images, respectively.
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Figure 5.26 — Both H, ; and H, 4 of Fig. 5.6 (top-left) are modeled with the
normal distribution.

5.5.5 Normal threshold

[ proposed the normal threshold in [72]; it assumes that the gray intensities of

foreground obey a normal distribution; see Fig. 5.26. Thus,
H g, p)(0) C+¢(f;#+,0’i)
Hi5,(0) o< - (is i o)

where ¢(x; i, %) denotes the probability density function of the normal distribu-
tion with mean g and variance o2. Therefore, the intersection of these curves is

given by the solution of the system
cup (s %) = c-p(ispr 02). (5.65)
In the general case, (5.65) is a quadratic equation, and the threshold is the root
py < < p_ of the quadratic equation with coeflicients @, b and ¢ given by
1 1

(5.64)

a=———
a2 02
20 w2

bh=—— ;
=5 P (5.66)

2 2

My HC - " Cx

= — —2In

3 (025 o (o:, -c_)
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where 0 < ¢, < 1 is a parameter,

Hie = #!.,'ﬁr(p)’

o> = max (o |
ST L) )
c.=1-c,, (5.67)
H— = Hp 8.1
o> = max (o’z I)
=47 I‘rﬂr'{f’], i

The parameter c. is equivalent to W, in the minimum-error-rate threshold.
It may estimate the foreground proportion in #,.(p), thatis ¢, = %:'{'—’;;ll.

Readers may notice that o> and o are taken in such a manner that they are
greater than 1. If o is equal or lower than 1, then the gray intensities in the
foreground are within u. + 4 since 99.99% of the values of the normal standard
are within [—4,4][. Then, the optimal threshold is g, + 4. A similar argument is
given for o2,

u

Remark 5.3: We say that the normal threshold takes a complete form when ¢,

% we say that the normal threshold takes a simple form when ¢, = 0.5.

Besides the general case in (5.65), there is a special case to solve when o, =
o = o > 0, which implies that @ = 0. Thus, (5.65) has a unique solution given
by
gt on(s)
2 (=g
Numerical error can arise if o, ~ o_. Therefore, I also use (5.68) if o, —o_| <

f=

(5.68)

Assuming a # 0, the influence of ¢, on T(p) can be analyzed with the sym-
metry of the quadratic equation. Let

(5.69)

n k
F(x;e)=a-x*+b-x+h—k

be the quadratic equation for the normal threshold with parameter ¢,. Thus,
F(xic,) has a vertical symmetry axis in x = —f; for all ¢,, as Fig. 5.27 shows.
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Figure 5.27 — The normal threshold with parameter fi; is one root of F(x;fis). In
blue solid line, F(x; u}’.) which is the graph for the upper bound of ji; = fx} =
0.5; in black solid line, F(x;uy) which is the graph for fiy equal to foreground
proportion. F(x;0.25) and F(x;0.1) are show in dark-red dashed and red dotted
lines, respectively.

Without loss of generality, assume ¢, < 0.5, and o, > o > | suchthato, —o_ >
1.

In Fig. 5.28 (left), ¢, is the normal threshold in its complete form, ¢, the normal
threshold in its simple form, and the point (0, n) is the intersection between the
axis x and the segment with extremes (0, m) and (¢, —k). The convexity of F(x: ¢, ),
guarantees that n < f,. Then, by similarity of triangles

m - n

ks t-—n

m Iy (570
k  tf.—1 40)

=St — 1, < — 1
m

where

b b* (- =, J? o
o= —_—— _L = —_—— { :7—21 —_— 5_7]
TS 2a M) 4a i o — g2 . o, ( )
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Figure 5.28 — On the left, graphs of F(x:0.5) in blue solid line, and graphs of
F(x; uy) in black solid line. The value m+k is the maximum Q;"F(.r;p}'.) = F(x:0.5).

namely m + k = F(—%:O.S); and the point (n,0) is the intersection between the
axis x and the segment with extremes (0, m) and (t.. —k). On the right, graph of k’s
values.

is the maximum of F(x;u7) = F(x;0.5).

The magnitude of k can be seen in Fig. 5.28 (right), which shows that k < 15
for ¢, = 0.01 and k < 5 for ¢, = 0.1. The magnitude of m, however, depends on
the contrast of the image, and it can be calculated only if a, b, and / are known.
Figure 5.29 shows F(x;c,) for the histogram of Fig. 5.21, where m ~ 595, and
|ty —t.| < 1.1 for all ¢, €[0.1,0.5].

Note that the difference between E},I,, and t. (or f,) cannot be known since it
depends on how well the distribution of gray intensities in ;Tf,(p) and ,8,(p) ap-
proximate the distribution of gray intensities of %,(p) and B,(p), respectively. In
our example of Fig. 5.1, this difference is less than 8 gray levels which represents
that the probability of error is = 0.0066 at level ¢, (the minimum probability of
error is ~ 0.0038). In fact, in this example, the minimum-error-rate threshold in
simple form coincides with the normal threshold in simple form.

5.5.6 Lognormal threshold

I proposed the lognormal threshold in [72]; it assumes that the gray intensities
of both foreground and background obey a lognormal distribution; see Fig. 5.30.



5.6. EDGE DETECTION 79

threshold

136 ; £ A
0.0 0.2 0.4 0.6 0.8 1.0
Ci

Figure 5.29 — Graph of F(x: c..) computed from the transition set approximation of
Fig. 5.1. t. = 145 is the normal threshold in complete form, t; ~ 144 is the normal
threshold in simple form, and t,,, ~ 152 is the optimal threshold.

That is,

Hy (i) o< A (i3 iy, 02 (572)

Hys,p(0) < ¢ A(is i, )

where A (i; [, 5—3) denotes the lognormal probability density function with param-
eters y and o> which are the mean and variance of the variables natural logarithm,
respectively.

The intersection of these curves is exp(7), where 7 is the root of the quadratic
equation with coefficients given by (5.66), but replacing y, and o with ji, and
&~ which are estimated using the relations:

2

= Je ) LA+ (p)

e =In(pppm) = 507 and % =Inf1+—=225 1 (5.73)

K17 p) ’

Likewise, fi_ and 6 are estimated.

5.6 Edge detection

In a binarization context, an edge pixel p can be defined as a foreground pixel
that contains background pixels within #;(p). Therefore, ;% is the set of edge
pixels. Notice that an edge pixel p can be defined as the pixel that contains both
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Figure 5.30 — Both H, » and H 1.8 of Fig. 5.6 (top-left) are modeled with the
lognormal distribution.

foreground and background pixels within #(p), or as those background pixels

that contain foreground pixels in the neighborhood of radius 1. Nevertheless, 1
will use the former definition.

Figure 5.31 — On the left, original image; in the center, transition set approxima-
tion; on the right, edge image by transition operator.

We can approximate |7 by

F ={p|peF and|B (p) > 0. (5.74)

The pixel p in Fig. 5.31 (Center). which belongs to P*, can be considered an edge

pixel since it is exactly between pixels in F and ,B. Hence, I defined in [73] the
simple edge transition operator as

F =1{p|0<|Fi(p)and |, B, (p) > 0). (5.75)
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Figures 5.32 (b)-(d) were computed on MatLab [49] using Canny [6], Prewitt
[47] and Roberts Cross methods *, respectively. Figure 5.32 (f) was computed
following steps 1 and 2 of the transition method (Fig. 5.32 (e)) and applying the
simple edge transition operator. The raw transition set approximation (without
restoration process) generates many false positives. In contrast, Fig. 5.32 (h),
which follows the transition method with a restored transition set, reports a lower
number of false negatives than Fig. 5.32 (f). Unfortunately, the combination of
transition operators used in Fig. 5.32 (e) includes more than one cross, diagonal,
and incidence transition operator in a non-trivial order:

e isolation transition operator (cross neighborhood),

e isolation transition operator (diagonal neighborhood),

e isolation transition operator (cross neighborhood),

e incidence transition operator (k = 2, a = b = 2),

e dilation transition operator (a = b = 3),

e isolation transition operator (cross neighborhood),

e isolation transition operator (diagonal neighborhood),

e isolation transition operator (cross neighborhood),

e rectangular isolation transition operator (x = y = 2), and

e incidence transition operator (k = 2, a = b = 2).

5.7 Summary

The second main contribution of my thesis is enclosed in this chapter. I described
mathematically the transition method for binarization, and to a minor degree, for
edge detection, and for detection of regions of interest.

Section 5.1 presents an overview of the transition method, where I pointed out
that the positive transition set (intersection of foreground and transition set) and

IThe default parameters of MatLab are chosen heuristically in a way that depends on the input
data
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Figure 5.32 — (a) Original image; (b) Edge image by Canny method. (c) Edge
image by Prewitt method. (d) Edge image by Roberts method. (e) Raw transition
image. (f) Edge image of (e) computed by the simple edge transition operator. (g)

Restored transition image of (a). (h) Edge image of ( g) computed by the simple
edge transition operator.
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negative transition set (intersection of background and transition set) are repre-
sentative samples of the foreground and background, respectively. Furthermore, |
proposed that the transition set can be accurately approximated from pixels with
high positive and negative transition values (transition values are computed with
maxmin function).

The transition method is roughly divided into five parts: calculation of tran-
sition values, calculation of transition thresholds, restoration of transition sets,
detection of regions of interest, and binarization (or edge detection).

In Section 5.2, I proposed three methods to compute transition thresholds
based on the empirical complementary cumulative function of transition values:
quantile transition threshold (Section 5.2.1). Rosin’s transition threshold (Sec-
tion 5.2.2), and double-linear transition threshold (Section 5.2.3). While the quan-
tile transition threshold requires setting a parameter, both Rosin’s and double-
linear transition threshold have no parameters to set. In particular, the perfor-
mance of both double-linear and Rosin’s transition threshold are tested in Sec-
tion 7.6 and in [71], respectively, showing comparable performance.

The restoration of the transition set is addressed in Section 5.3. It is defined
as the process of adding and removing pixels from the transition set with the aim
of increasing the cardinality while reducing the noise. Besides well-known mor-
phological operators detailed in that section, I proposed two novel operators for
restoring transition sets: incidence and dilation transition operators. The former
removes pixels from the transition set, which cannot be removed with well-known
morphological operators; see Section 5.3.3. The latter adds pixels without losing
confidence in the transition set approximation, unlike the standard dilation mor-
phological operator, which decreases confidence: see Section 5.3.4.

In Section 5.4, I proposed two simple criteria to detect regions of interest.
The first criterion is based on the cardinality of the positive and negative transi-
tion set. Pixels whose neighborhood contains few positive and negative transition
pixels are classified as background. The second criterion to discard outliers uses
the difference between the means of gray intensities of the positive and negative
transition set approximations.

I proposed five novel thresholdings based on transition sets in Section 5.5: lin-
ear mean-variance threshold (Section 5.5.1), autolinear threshold (Section 5.5.2).
minimum-error-rate (Section 5.5.4), normal threshold (Section 5.5.5), and lognor-
mal threshold (Section 5.5.6).

Although the lognormal, normal, and autolinear threshold outperform top-
ranked algorithms, the lognormal threshold has performed the best: see Section 7.5,
Section 7.6, and [71]. Such results strongly suggest that the positive and negative
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transition approximations are lognormally distributed rather than normally dis-
tributed.

In Section 5.5.3, I proposed the minimum symmetric value, which attempts to
measure the symmetry of a histogram. Minimum symmetric values can substitute
the means in any threshold. Unfortunately, I did not explore the performance of
binarization algorithms using this alternative technique.

The potential of the transition method for edge detection is shown in Sec-
tion 5.6. In this section, I proposed a simple algorithm for edge detection based
on pairs of transition pixels (one positive and one negative). The performance of
this edge detector is closely related with the performance of the process of restora-
tion of transition sets: The better the transition set approximation, the better the
performance of the edge detector.



Chapter 6

Unsupervised evaluation measures

I do not know it for sure, I suppose it.

Jaimes Sabines Gutiérrez
Mexican poet (1926-1999)

Historical documents usually present several challenges and kinds of degrada-
tions, such as non-standard fonts, ink stains, weak ink strokes and wide variations
in the background, to mention some. Because of this, the parameters of binariza-
tion algorithms have to be tuned for each kind of degradation. For a large set of
images, however, the manual tuning of parameters is time-consuming and costly,
and the use of general parameters may lead to a low binarization performance.
Hence, the selection of binarization algorithms and their parameters play the most
important role in the accuracy of recognition.

To address the problem of parameter selection in segmentation, unsupervised
evaluation methods have been proposed to assess the quality of a segmentation
[91], [92]. Such methods allow for evaluation of many algorithms over large
parameter spaces and on diverse images without the need for human intervention.

85
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Consequently, they enable an objective comparison of both different segmentation
methods and the different parameters of a single method. Moreover, they can be
used for automatic parameter choice of binarization algorithms.

Evaluation measures based on the variance of gray intensities have been used
to assess binarization performance [72], [73]. [79]. [82]. Specially in document
images, both foreground and background are intuitively thought of as uniform and
homogeneous regions. Unfortunately, few authors have analyzed the mathemat-
ical and experimental behavior of these measures [8], [91], hence my interest to
address the interaction between binarization methods and these evaluation mea-
sures. This interaction is analyzed under my proposed model of simple images,
which are images where the contrast of gray intensities between foreground and
background pixels is bounded in small neighborhoods. Ideal images provide the
mathematical basis to prove whether the optimal value of each evaluation measure
leads to the estimation of an accurate foreground.

6.1 Simple images

In general, the probability that a pixel with a certain intensity belongs to the fore-
ground or background depends on their distributions, as I pointed out in Sec-
tion 5, especially stressed by the pixels with intensities between 117, ) and p;.3,()-
Thus, to minimize misclassification when using a threshold, it is better when these
means are far apart and their variances are small, that is, when the contrast be-
tween foreground and background is large. This is illustrated in Fig. 6.1, where
an image with good contrast is shown, and its histogram is compared with a hy-
pothetical histogram that only differs in contrast (distance between means). The
shaded region in green represents the probability of misclassified pixels according
the Bayes rule.

In Section 4.1, I introduced the concept of ideal image. I also indicated that
the contrast between the foreground and background in a neighborhood of interest
not only depends on the variances, but also depends on the means of the gray
intensities, more specifically, in the difference between such means. The smaller
this difference. the higher the minimum probability of error; see Section 5.5.4.

Given that contrast is crucial for an accurate segmentation, certain bounds are
required for it. I formalized this requirement with the following definition.

Definition 6.1: Assuming Model 1 (Definition 4.1), an image is an r-simple im-
age if all neighborhoods with radius r such that |F,(p)| > | and |B(p)| > 1 satisfy
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Figure 6.1 — Example of “good” contrast in a neighborhood. In dash lines, hy-
pothetical examples of “bad” contrast. Area filled in light (dark) green represents
the minimum error given the dotted (dashed) histograms.

the inequality:
”NL‘B,-(PJ 2 #!.-ﬂ{p;” = \[2— - Max(o .8, (p) O17, ['p}) (6.1)

where || - || denotes the absolute value.

I consider that the gray intensities of the foreground are darker than those in
the background. That is, (2, > H1.7.p)-

6.2 Unsupervised binarization measures

A measure is useful if the better the binarization obtained, the smaller (larger)
the measure on to which the segmented image evaluates. In particular, we would
desire the minimum (maximum) of the measure to be attained only at the perfect
segmentation & = 7.

In the following subsections, I will introduce local implementations of unsu-
pervised measures. Because of that, the binarization performance over a whole
image is the accumulation of the binarization performances over all neighbor-
hoods with radius r in terms of a measure M,. I denote this evaluation by Eval(M,, 'f").
That is,

Eval(M,,F) = ) M,(p) (6.2)

peP
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6.2.1 Uniformity measure

To evaluate binarized images, Levine and Nazif [42] stated that the uniformity of a
feature (in our case, the pixel feature is the gray intensity) over a region is inversely
proportional to the variance of the values of that feature evaluated at every pixel
belonging to that region. Adjusting their original measure to binarization context,
the uniformity measure is defined as

+ W) ST (6.3)

|
U=1- = Wit () ° S 13.)

2
IF+(p)
where the notation S fﬁ,ﬁ refers to the biased sample variance of gray intensities

(Appendix B), w, and wj, are the weights associated to ﬁ‘(p) and ﬁ,‘(p), respec-
tively, and w is a normalization factor designed to limit the maximum value of the
measure to one
l : Umﬂ.r & qu'frlz
2

where 1, and [, are the maximum and minimum gray intensities in 7.

Sahoo et al. [79] used a particular case of U with w; = w;, = 1 to evaluate bi-
narization methods. I simplified this particular case of U with the gray-intensity
uniformity measure (GU)

W= {""‘f + Wp

(6.4)

GlP= S.:,-f - S;B (6.5)
which is linearly equivalent to Sahoo et. al.’s evaluation measure.

Proposition 6.1. Let P be an r-simple image. Then, the minimum of the expected
value of GU,(p) is not necessarily reached for F,(p) = F.(p) or "f’,(p) = B.(p)
(proof in Section 6.3.1).

Proposition 6.1 indicates that GU, does not lead to the best binarization for all
r-simple images. What is more, if one wanted to minimize the expected value of
GU,(p), then it could happen that the estimated background would swallow the
foreground.

6.2.2 Region non-uniformity measure

Another measure derived from U is the region non-uniformity measure (NU),
which was proposed by Sezgin and Sankur [82] as

. IT]'S;J_;
1P| - 82

1

(6.6)
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NU can be transformed in the local measure NU,(p) by replacing %, and s
with P,.(p) and T (p). respectwely Unfortunately, NU,(p) lacks desirable proper-
ties: NU,(p) is zero 1f‘}_(p) =

6.2.3 Weighted variance measure

Otsu [66] proposed several discriminant measures in order to evaluate the “good-
ness” of the threshold (at level 7). One of these global measures is the weighted
variance measure (WV), defined as

e (18152 2+ 17182 (6.7)

Remark 6.1: Ng and Lee [60] proved that WV is equivalent to U if w; = val
wp, = |B], and w = |P).

Let WV, be the measure which replaces F and B with ﬁ(p) and @,.{p) in WV.
Then,

Proposition 6.2. In an r-simple image, the minimum of the expected value of
WV, is not necessarily reached for ?'(p) =F=(p)lor ‘77(;}) = B,(p) (proof in
Section 6.3.2).

6.2.4 Uniform variance measure

I proposed the uniform variance measure (UV) in [72], which is defined with
the local standard deviation of gray intensities as

UV,(p) = 1B G130y + 1B 61| (6.8)

|?Dr( )l

where the notation & 4 refers to the sample standard error of gray intensities;
see Appendix B.
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6.2.5 Unbiased measures

To overcome the statistical bias of WV,, 1 propose the unbiased weighted vari-
ance measure in Ramirez-Ortegdn et al. [70], which is defined as

1B.(p)| - 62, +|FAp)| - &

L5, (p) ;ﬂ(p) s o
WV, (p) = if 18,(p)| = 2 and |F(p)| = 2.
R P, -
&isv,fp) otherwise

(6.9)

Theorem 6.1. In an r-simple image, the expected value of the unbiased weighted
variance measure is minimal if & = F or F = B; see proof in Section 6.3.3.

Corollary 6.1. In an r-simple image, if r is such that |B.(p)|, |F(p)l = | and

Ol 8.5y ”w>0fm all p € P, then

Eval (WV,,F) < Eval (WV,.7) (6.10)
for all F + Band F + F; see proof in Section 6.3.4.

6.2.6 Measures based on logarithms

Assuming that the gray intensities of both foreground and background are lognor-
mally distributed, we derived the measures WV (p) and UV (p) from WV {p) and

1 = L
UV,(p). These measures replace gr — and cr; B with O'f i and & ui,( g re

spectively, which are the unbiased sample variance of gray-intensity logarithm
of the foreground and background, see Appendix B.

6.3 Proof of theorems and propositions

I list some basic propositions that are useful in the subsequent discussion. Some
of these proofs use standard techniques and are omitted.

Proposition 6.3. Let A = {ay,..., a,} be a sample of n independent and iden-

tically distributed random variables with finite variance o*. Then the estimators

+ 72 ’\‘2 . e

S 7 and &7 satisfy

[Al=1
=

E(S_':F{) = K

(6.11)

and

EGa)=lo5 (6.12)
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Proposition 6.4. A random variable a with finite expected value and variance
satisfies

E(a®) = Var(a) + [E(a)]*. (6.13)

Proposition 6.5. Let x; ~ N(Ju_l-,of)ﬁ)ri =1,...,n—mandy; ~ N{p_\.‘af)ﬁ)r
f = l,...,m. be independent random variables. Consider Z = X U Y, where
= {x; }” " and Y = {y;}",. Then,

~ m
E(iiz) = pe + — |1y — ] (6.14)
n
and
0 50 120 (1 5
Var(fiz) = ;cr‘ e - [a‘ — @l (6.15)

Lemma 6.1. In an r-simple image, if |A.(p)l = n > 1, [A(p) NF| = h and
n = 2h, then

—~ D h j
E(0y a,p) 2 ‘Tm‘ ) + T 7(p) (6.16)

Likewise, if |A(p)l = m > 1, |A(p) N B| = k and m = 2k, then

%o

E(O'f A pr) = 0'; i T 18, (6.17)

m

Proof. By mathematical convenience, we prove Lemma 6.1 for (6.17). Denote
X=A,(p)NF and Y = A,(p) N B, then

ZE(!‘(p))JrZ (Pp) = m - E(] )|

pE(\' peY

E(U’J, "I(FJ [ Z:’ (p) + Z[ (p)—m- »“f )

e (6.18)

1

m— 1
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Due Proposition 6.4 and Proposition 6.5

) [m—kl 5 2 k [ 5 5
E(0Tam) = =1 |73 * M| + =1 L7180 T Hi8,p)
m

m— 1 [Vw(ﬁ”-f’"rlﬂ’) X |E(ﬁ"-5’“-’”)]2]

o LI 2
E ((r ;‘.._'."(,[p}) i e ‘_‘Tf:mm +P!.’f’,tp}1

T [”'f.:is,-{pz ~ T gum T 8. ~ HiF ()
m 1 5 3 k I ) 2 I
— — | =T e || B R =
m—11m LFAp) g2 1.B.(p) LT (p)
2
m o k I '
= IF — |HI.8.(p) — HI.F; l :
m—1 R1F:p) m H1.5,(p \P)
Reducing terms, we yield
5 P ki a 2 K .2 2 ]
E(‘r!_:ﬂrtp}) = Trgp T 5 [U-f.ﬁ,—(p} 5 ‘T.f.'mp)] i e [P"I,Br(m ~HiFp)
2 2 (6.20)
2k - prgp) [ i | k= [p " ]-
= i fd = 3 '-r S e I~Bi — M r
| HEB,(p) = H1.F(p)) mim— 1] ! (p) Fr(p)
Observe that
2 ) s . v
Hisp) — Higm = |[HL8m — HiLFp | [H18,() T HiF(p)
= I_,U!.ﬁr(p) "',UL'F,-(p]I [JULB,im — ML F(p) + 24"‘1.’;’?(1?)] (6-21)

= I_#;.f,ﬁ-,{_p} = m:r,(w]h + 2#::;-;.(;;1 Lu.f.za,.[p: i :Uf.'f',LpJ] »
replacing (6.21) in (6.20)

k ks klm — k]

) LN L s ey
E("'r..-f{,u,-))—‘Tf.ff,1_p1+ Tr8.(p) m"'r:r,[p}‘L

2
" IP-‘,B,fp'J_FI,'E(p'J] s 1(6:22)

mfm— 1]

We have the following inequality using (6.1) and 2= > 1

m-1 =

klm — k] k

2 e i | 3 ke
Jﬂ[ﬁ".‘. i l] |#Li‘)’r(ﬂ] = #-’,TJ—(F}’ = ;? & 5 [ ‘\/E o O-f.'r,-f_p)J = .,_?;Uf.?r(m (6.23)

We conclude our proof by replacing (6.23) in (6.22)

k k k
-2 a 2 2 2
E (Jf.:f{.rt.;rn] 20T ml 180 ~ R OiEe T O F ey (6.24)

O



6.3. PROOF OF THEOREMS AND PROPOSITIONS 93

6.3.1 Proof of Proposition 6.1

By mathematical convenience, I prove Proposition 6.1 using unbiased variance
instead of the biased variance (these proofs differ only by factors); I will show an
example where the background “swallows” the foreground.

Assume that there are more background pixels than foreground pixels in P.(p).
That is, h = |F,(p)l, n = |P,(p)|, and 2h < n. Also assume that rﬁ'?‘,ﬂ_w > 62

1.8,.(p)?
and that
2 n—-1 ,
[#.’.TB,{P} _ﬂf,fmml = 2m0'5_3,(m, (6.25)

Then, we can derive from Lemma 6.1

h 5 h

~2 e a n o
E (OHLPA.;:}) =915, 29w T =918, 0) (6.26)
E(62p0) = P+ 20y + 7 [ <iog b (6.27)
Tip.p) = 918.p) nt 1FHp) T1.8,(p) 1.8.(p) LFA(p) s
Therefore,
A2 0 A2 :
E(‘TLP.-U:}) <E (O'.*.-f,fm + O-J’.‘B,{p})ﬂ (6.28)

which means that GU, evaluates better f.(p) = () than (}A_,.(p) = F,(p) when
G'ifr.(p; > o‘fﬁ (p» half or fewer pixels are foreground in the neighborhood of in-
terest and (6.25) holds.

6.3.2 Proof of Proposition 6.2

To prove Proposition 6.2, it is enough to show a counterexample. Assume that
B,(p) = P,(p). If B,(p) = B,(p), by Proposition 6.3 we yield

I8P E(S}sp) 1B.mI-1 ,

E(WV,) = = s (6.29)
e 1B,(p)l 1B,(p)l 7150
but if !é,(p) = B,(p)\lgq} where g € B,(p), then
(I8.(p)l- DE(S?,, B.(p)|-1] ,
st DE(Sisp) _[154p) ‘ &
1B,.(p)| 1B, (p) (6.30)

_1BmI-1
Bl
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6.3.3 Proof of Theorem 6.1

We need to prove

iﬂ(p)l-aisﬂmWiw)i-crif,w5E(|f§.-(p)|»c*ri +|Fp)l - 67 )(6.31)

B,(p) LF(p)
for all p.
The proofis divided into several cases which depend on how the neighborhood
P.(p), ‘j’_:,(p) and fg,.(p) are constituted:
m Case A: |F.(p) = 0.
o AL |[Fi(p) = 1.
o Symmetric case of A.L: Iﬂ(p}l =l
o AIl: |7:',-(p)| >2and |B,(p)| = 2.
O Symmetric case of A: [B,(p)| = 0.
m Case B: 0 < [F,(p)| < |B(p)I.
e BIL: |[F(p)l=1.
o Symmetric case of B.I: Iﬁ,{p)[ =3
e B.IL: [F,(p)| = 2 and |B,(p)| = 2.
— Case B.ILL: [#,(p) N F| > [.(p) N Bl and |B,(p) N F| < |B,(p) N Bl.
- Symmetric case of B.IL1.
— Case BIL2: [F(p) N F| < [F,(p) N B and |B,(p) N F| < |B,(p) N BI.
O Symmetric case of B: 0 < |B,(p)| < |F.(p)l.
Case A: |F.(p)| = 0.1 will prove that E’(Wr(p)) = (T?_Br(p} for any partition
B,(p) and 7(p).
Case A.I: |.f_p;,.(p)| > 2 and lfi’f",,(p)l > 2. Thence,

= 8P 75,0 + TP 0
Al 70 ;

—ery 5 (6.32)

Case A.IL: If |F,(p)| < 1 (or |B,(p)| < 1), then (6.9) is defined as
E\WVip)) =5 =i (6.33)
Case B: |B,(p)l. |F.(p)| = 1. There are two symmetrical cases: |B,(p)| > |F.(p)|

and |B,(p)| > |F.(p)|l. We will only prove the former case.
Case B.I: |F(p)l < 1 (or |B,(p)] < 1). Based on Lemma 6.1, direct calculus
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Table 6.1 — The case B.II is divided into three sub-cases according tom, n, k and
h, where |F(p)| = m, |B,(p)| = n, |F,(p) 0 B| = k, and |B,(p) N F| = h.

m > 2k m < 2k
n>2h CaseB.Il.l CaseB.II.2
n<2h CaseB.IL3 -

yields

— 2 > |7 (p)|
E(WVr(P)) =2, 2918 t mgi'ﬁ(p)

g 34
~ 1B:(P)| - 07 5, + TP T - ) e
= Pr(p)l

Case B.1I: I_'E?,(p)l > 2 and Iﬁ.(p)l > 2. We have three sub-cases summarized in
Table 6.1. Observe that case B.IL.3 is the symmetrical case of B.IL.2.

Case BILI: n>2-handm > 2 k. It follows that E (&iﬁ {m) satisfies (6.16),

while E({j"2 A ) satisfies (6.17). Therefore,
LF:(p)

— n 2 h , m 5 k
E(WV.(p)) = {0' 180 T ;o'f.-'f-';(m] el {‘7 170+ - T18,(p)
[n+ k]o? + [m + h]o? ©:22)
1B (p) L (p)

n+m
The number of background and foreground pixels can be computed in terms of
n, h, mand k as: |B,(p)| =n — h + k and |F,(p)| = m — k + h. Then,

[n+Kloj g, 2 [n+ k= hlog g

_‘fﬁr(p'] a (6‘36)
[m + h}orj_,f-r[m >[m+h-— k]cr;‘.ﬁ[m
Case B.IL.2: n > 2h and m < 2k. Hence, both E(cﬁ‘fﬂ_[m) and E ((}i'f"rpl) satisfy
(6.16).
— n 2 Jhs 2 m 5 C
E(WV.(p)) 2” | B -’.'}"_,lp}j e | 218, () e O )
[1 + m]o-if?,(m + [k + f‘i]O‘;_mm (6.37)

n+m
[n+m—h— k-]o",?,ﬂ,.:p; + [k + hlo?

Fp)

n+m
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We conclude (6.31) holds because, in this case. |B.(p)] = n +m — h — k and
IFA(p)| = k + h.

6.3.4 Proof of Corollary 6.1

The premises |B,.(p)l, |F,(p)| = | restrict our analysis to case B of Theorem 6.1°s
proof (without considering permutations). Moreov;r, (6.34), (6.35) and (6.37)
are strict inequalities if [B.(p) N F| = h > 0 or |F.(p) N B| = k > 0 because

: : el 2
Corollary 6.1 assumes Tig Tip > 0.

6.4 Summary

The third main contribution of my thesis is the mathematical analysis for all unsu-
pervised measures described in this chapter. Given that contrast is crucial for an
accurate segmentation, I introduced in Section 6.1 the concept of simple images
(Definition 6.1). Such images satisfy a certain lower inequality between contrast
and variance of gray intensities. Simple images are used throughout this chapter
to analyze the optimality of unsupervised measures based on gray variances.

In Section 6.2, local implementations of three well-known unsupervised mea-
sures are discussed and analyzed: uniformity measure (Section 6.2.1), region
non uniformity measure (Section 6.2.2), and weighted variance measure (Sec-
tion 6.2.3). Later on, I proposed four novel unsupervised measures: the uniform
variance measure (Section 6.2.4), based on the standard deviation of gray inten-
sities; the unbiased weighted variance measure (Section 6.2.5), which overcomes
the statistical bias of the weighted variance measure; and two measures based on
logarithms of gray intensities (Section 6.2.6).

Theorem 6.1 is to be noted because it ensures that the expected value of the
unbiased weighted variance measure is minimum in a perfect binarization, unlike
the rest of the examined measures, which lack this property.



Chapter 7

Experimental comparison studies

The good Christian should beware of
mathematicians, and all those who make
empty prophecies. The danger already exists
that the mathematicians have made a
covenant with the devil to darken the spirit
and to confine man in the bonds of Hell.

DeGenesi ad Litteram, Book II, xviii, 37 by
Aurelius Augustinus Hipponensis (St.
Augustine)

Bishop of Hippo Regius (354 — 430)

In this chapter, I summarize the results of my experiments, in which I used
the same test images. Most of my conclusions are based on pairwise compar-
isons since the uncertainty test can ascertain which binarization algorithm is
better given an intuitive triad of possible results: better, worse or comparable
performance. A full explanation of the use of pairwise comparison is given in
Appendix C.
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Dots per inch (dpi) is a mea-
sure of spatial printing or
video dot density, in particu-
lar, the number of individual
dots that can be placed in a line
within the span of 1 inch (2.54

cm).

Accuracy of an algo-
rithm
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7.1 Test Images

Figure 7.1 — Example of map which contains a header, label and comment.

Historical documents usually present several challenges and varied forms of degra-
dation, such as ink stains, smears, weak ink strokes and wide variations in the
background. Because of this, the binarization algorithms were tested with digital-
ized images of the historical atlas Theatrum orbis terrarum, sive, Atlas novus

(Blaeu Atlas)" at 150 dpi resolution.
I report the results of n = 86 color images randomly extracted from 61 maps.

These images are mainly composed of map headers. map comments and region
labels without stylized handwriting characters: see Fig. 7.1. Each color image i is
transformed to a gray image I; with the transformation defined in (2.7).

7.2 OCR measures

The accuracy of an algorithm is intuitively defined as how close the algorithm’s
output is from the desirable result. In OCRs, the desirable result is the text con-

tained in the tested image.

'This images can be found in: http://www.library.ucla.edu/yrl/reference/maps/blacu
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Definition 7.1: The accuracy measure(AC) of an binary image is defined as

#Tmrm'h
N

AC(F) = =

(7.1)

where F is the estimated foreground of the evaluated image, T, is the original
text in the image and T g0 15 the maximum matching string, and the notation #:-
refers to the number of characters in the string -.

Junker et al. [33] introduced several definitions of maximum matching string
C of two strings A and B. In this thesis, however, I define maximum matching
string as follows.

Definition 7.2: Given two strings A and B, we say that A is substring of B (A <
B) if B can be transformed to A by removing characters from it; a maximum
matching string C of A and B is a string of maximum length such that C < A and
W=

The maximum matching string can be computed with the Needleman and
Wauntsh [56] algorithm. This algorithm was originally developed for finding sim-
ilarities in the amino acid sequences of two proteins.

AC measure is an important measure for OCR engines, because the higher
the AC measurement, the greater the possibility to extract. by further algorithms.
relevant information from the recognized text.

Observe that AC measure does not penalize “extra characters’™ in the output.
Then, two different images may lead to the same accuracy but with different num-
ber of “extra characters”. In that case, I judge that an image is better than another
one if its OCR output has fewer “extra characters”. The following measure quan-
tifies number of the “extra characters™

Definition 7.3: The precision measure (AC) is defined as

- #Tman.' T
PR(F) = 2, (72)

where T, is recognized text from the image.



A software is payware soft-
ware if it is distributed for
maoney

A command-line interface is
a mechanism for interacting
with a computer operating sys-
tem or software by typing
commands to perform specific

tasks.
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Table 7.1 — Pairwise comparison of OCR accuracy. Each cell (y-row,x-column)
of the pairwise tables contains two values, nyy and py. The number ny, represents
the times that the algorithm y has a higher score than the algorithm x, while py, =

L5 yepresents the conditional probability of y's score being higher than x’s

Hyx+igy K 2
score. I ascertain that algorithm x is better than algorithm y if 0.75nyy = nyy,
which is equivalent to py, = 0.57; see Appendix C.

FineReader OneNote

Rank ﬂ_\'.\ p_\‘.l’ ”_\'J p\'l‘ “\'A P_\‘.( ”\'.\ P\'.i ”\'l p\';\ "\'.l‘ Iji'.l
FineReader STy T 40 059 59 078 56 0.97 63 082 68 085
OneNote 2 28 0.41 - 53 065 45 0.64 56 0.77 61 0.77
TopOCR 3 17 022 28 035 : 40 052 49 0.63 62 0.77
FreeOCR 3 17 023 25 036 37 048 : 47 0.69 59 0.71
MoreDataFast 4 14 018 17 023 29 037 21 031 B 47 06
SimpleOCR 5 12 0.15 18 023 19 023 24 029 3l 04 :

7.3 OCR comparison

I compared six OCR engines: ABBYY FineReader 10 Professional (FineReader),
OneNote 2010 (OneNote)*, TopOCR v3.1, FreeOCR 3.0°, MoreDataOCR v3.0,
and SimpleOCR v3.1.

I ranked the OCRs by the uncertainty test, see Appendix C, from pairwise
tables of AC measurements, see Table 7.1.

With an e-uncertainty less than 0.9, FineReader is the best, followed by OneNote
in second: both TopOCR and FreeOCR rank third. Unfortunately, both FineReader
and OneNote are payware software, which is an inconvenience for academic
software, and both lack command-line interface which is essential for my com-
parison studies. TopOCR is better than FreeOCR with an a-uncertainty around
0.37, which is too high to rank TopOCR over FreeOCR. Nevertheless, I elected
TopOCR to carry on with the comparative studies.

TopOCR was tested with four parameter sets, some of which include despeck-

led filters. The program tester reports the maximum AC measurement for each
image.

*Microsoft OCR Engine Microsoft included in Office Professional Plus 2010,
‘FreeOCR uses Tesseract v2.04 as OCR engine
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Table 7.2 — Each parameter is sampled according the increments of the third col-
umn between the range specified in the second column.

Parameter
Algorithm From/To Increment
Johannsen’s, Kapur’s, Kittler’s and Otsu’s r: 10/50 oL
Kavallieratou’s a: 120, r: 10/50 ol S
Niblack’s a:0/6, r: 10/50 a0 s
Portes’s a: 0/5, r:10/50 a0, res
Sauvola’s a0 a2 196 F 10/50 e\ 0I0LB 55275
Wolf’s @ 0/1, r: 10/50, r* 50 a: 001, r:5

7.4 Experiment I

This section reports the results in [70] where I proposed a mechanism for system-
atic comparison of the efficiency of unsupervised evaluation methods for parame-
ter selection of binarization algorithms in OCRs.

[ performed an extensive comparison of unsupervised evaluation measures,
binarization algorithms and OCRs, and I used it to show the strengths of the un-
biased WV measure (normal distribution).

7.4.1 Binarization algorithms

1 compare the performance of nine binarization algorithms in OCRs: Johannsen’s,
Kapur, Kavallieratou’s, Kittler’s, Niblack’s, Otsu’s, Portes’s, Sauvola’s, and
Wolf’s. Authors like Sezgin and Sankur [82], Stathis et al. [84], and Trier and
Jain [87] ranked Kittler’s, Niblack’s, Otsu’s and Sauvola’s among the best bina-
rization algorithms.

Table 7.2 presents the range and increments of the parameter sampling for
each binarization algorithm. I denote € the parameter combination k of the
binarization algorithm j, which is constructed by combining the sampled parame-
ters. Sauvola’s threshold, for instance, has 5,454 Q;,’s considering that «, 8 and
r are sampled with 101, 6, and 9 different values. respectively.

7.4.2 Evaluation measures

I define the following values in order to evaluate the OCR performance:
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Definition 7.4: The absolute potential AC measure of an image 1; is defined as

wi = max {AC(F: 0} (7.3)
Jk

where F; ;. denotes the estimated foreground of I; by the binarization algorithm j
with parameters .

The value w; approximates the maximum accuracy that the OCR (TopOCR)
can compute for /; in combination with any of the nine binarization methods.
Similarly, we can compute w; ; which approximates the maximum accuracy with
the binarization algorithm j as:

Definition 7.5: Given an image I;, the relative potential AC measure of a bina-
rization algorithm j is defined as

wij = max {AC(Fi4)} . (7.4)

The absolute and relative potential AC may change if the number of sampled
parameters or tested algorithms is incremented: nevertheless, I consider such val-
ues as the groundtruth.

We cannot infer from w; ; the “goodness™ of the binarization method j to max-
imize the OCR accuracy because w; ; highly depends on w}. For example, suppose
that whichever binarization method is used. the OCR accuracy is equal or lower
than 0.5 (w; < 0.5). Then, if w;; = 0.45 for some j, this could be interpreted
either as a low OCR performance, or as a low binarization method performance.
However, the ratio of w; to w; ; is 0.90, which means that the binarization method
J 1s highly efficient to maximize the OCR accuracy despite the intrinsic low OCR
performance in /;. Hence, our observations are mainly based on pairwise tables
and statistics of the following ratios.

Definition 7.6: Given an image I, the potential AC efficiency measure of a bi-
narization algorithm j is defined as the ratio of the relative potential AC measure
to the absolute potential AC measure. That is,

Wi

Xi, i

. (7.5)

W,

I

[ also tested the efficiency of unsupervised evaluation measures for the param-

eter selection of binarization algorithms. For that, I selected the best binarized

image in term of each measure and compared their accuracy. The following defi-
nition formalizes this concept.
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Definition 7.7: The AC efficiency measure is defined as

(1) Ac(f_f(;”)
where
# 4 = argmin [Eua; (M©, F i)} (7.7)
Fi ik

Eval(-,-) is defined as in (6.2), and M\ denotes the measure u.

The ratio x;; approximates the potential efficiency of the binarization algo-
rithm j to maximize the accuracy in /;. The ratio y}.'_”;.’ approximates the efficiency
of measure « to tune the parameters of algorithm j in order to maximize the accu-
racy in /;.

In this experiment, I tested the measures:

e local gray-intensity uniformity measure (GU,),
o local region non-uniformity measure (NU,).

unbiased uniform variance measure with normal distribution (UV,),

unbiased uniform variance measure with lognormal distribution {_ET/,.).
e unbiased weighted variance measure with normal distribution (WV,), and
e weighted variance measure with lognormal distribution (‘;W,').

The radius of all measures was set to » = 50 because it is approximately the
minimum radius that entirely contains any character in the tested images.

7.4.3 Results and conclusions

The absolute potential AC is greater than 0.60 in all test images: see Fig. 7.2.
Indeed, 93% of them are equal or greater than 0.80, which indicates that the
OCR (TopOCR) is capable of recognizing most of the characters in our test im-
ages. In the same figure, the corresponding relative potential AC measurements
of Niblack’s and Kavallieratou’s algorithms fluctuate irregularly. A visual com-
parison between Niblack’s and Kavallieratou’s graphs is consequently difficult.
Because of that, all the following graphs are in decreasing order to make the vi-
sual inspection easier.
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Table 7.3 — Pairwise comparison of absolute efficiency. Both Wolf’s and Portes’s
methods marked with (%) are ranked fourth because their py.'s values differ from
each other slightly. See Table 7.1 for a description of values nyy and pyy.

] Rank | Joh. Kap. Kav.  Kit.  Nib.  Otsu

Ty Py Ty fPor My [l My fPyq Ryy Py Myx [y

Johannsen | 9 | ~ - 2003 0000 13018 0 000 2 003
Kapur 7 78 098 - 1 001 57 089 0 000 18 031 A 0 0
Kavallieratou 3 |85 100 73 099 . 80 099 10 032 57092 30 070 4 011 28 0.60
Kittler 5 ' 39 082 7 0.11 1 0.0l - 0 000 5 008 O 000 0 000 O 000
Niblack 2 85 1.00 73 LOO 21 0.68 80 1.00 - 62 098 33 037 7 017 31 065
Otsu 6 |77 087 40 069 5 008 61 092 1 002 - 4 007 1 001 5 008
Portes 4% 184 1.00 71 100 13 030 79 1.00 10 023 52 093 - 4 0.08 19 048
Sauvola 1 |85 1.00 77 1.00 34 0.89 81 1.00 34 0.83 69 099 46 0.92 - 40 0.83

Wolf 4% 185 1.00. 70 097 19 040 76 1.00 17 035 57 092 21 053 8 017 =

Table 7.4 — Mean () and standard deviation (o) of the AC efficiency for each
binarization algorithm and unsupervised evaluation method. For each algorithm,

Sl .
the best values of _\-‘,:‘? are shown in bold.
=3 Potential o _}.U? T
GU, NU, uv, v WV, WV,
M o H o M o M o M & M o H o
~ Johannsen 0.600 0.239 0.483 0253 0487 0.258 0496 0250 0.403 0256 0486 0257 0496 0252
Kapur 0.845 0.168 0750 0201 0756 0.197 0756 0.199 0751 0.198 0751 0200 0750 0.200
Kavallieratou 0963 0.048 0601 0220 0517 0227 0763 0224 0728 0222 0715 0.195 0763 0227
Kittler 0.741 0215 0.640 0244 0.658 0243 0631 0250 0629 0252 0646 0239 0651 0238
Niblack 0964 0.063 0538 0233 0.007 0.046 0767 0230 0716 0241 0711 0207 0.773 0227
Otsu 0.864 0189 0795 0217 0796 0219 0789 0217 0787 0217 0797 0217 0794 0216
Portes 0941 0122 0777 0.184 0777 0.8 0770 0220 0753 0216 0778 0.185 0.785 0.209
Sauvola 0989 0.027 0531 0229 0.058 0.17 0761 0247 0724 0244 0712 0206 0.798 0.210
Wolf 0.936 0.141 0801 0204 0804 0191 0769 0235 0740 0249 0.806 0.93 0812 0.220




7.4. EXPERIMENT I 105

The results of this experiment are shown in Figure 7.2 (graphs of absolute
and potential efficiency), Table 7.4 (mean and variances of AC efficiency), and
Table 7.3 (pairwise tables of potential AC efficiency).

Figure 7.3 shows the ranking of all six evaluation measures for each binariza-
tion method. This ranking is given by pairwise tables of AC efficiency with an
a-Uncertainty lower than 0.9.

A visual inspection of the binarized images suggests that Johannsen’s, Ka-
pur’s, Kittler’s, and Otsu’s threshold usually wrongly classify a pixel if its neigh-
borhood is completely contained in the background. In contrast, the rest of the
algorithms, which have one or two parameters more besides the radius, can suc-
cessfully binarize this kind of neighborhood by tuning their parameters. My con-
clusions are also supported for the means and standard deviations of the relative
potential AC presented in Table 7.4.

In my test images, the radius used to compute the best binarized images, in
terms of relative potential AC, range randomly between 10 and 50 independent of
the binarization algorithm. However, all six evaluation measures usually chose a
set of parameters where r = 50 whichever the binarization algorithm is present
(with an exception of Wolf’s algorithm in which usually » = 10). This behav-
ior led Otsu’s threshold to have almost the same mean and variance whichever
one of the evaluation measures adjusted the Otsu’s radius; see Table 7.4 and
Fig. 7.4 (right). For example, the histogram in Fig. 7.4 (left) shows in light gray
bars the radius’s probability of being selected by WV,. The probability of » = 50
is close to 0.90, even though the radius’s probability of being optimal in terms
of the relative potential AC of Otsu’s method is around 0.3. This unwanted effect
also appears in Johannsen’s, Kapur’s and Kittler’s methods, pointing out that all
six measures are ineffective to adjust the neighborhood radius. I conjectured that
all four binarization methods estimate the foreground in such manner that, for a
given binarization method, all six measures reach their minimum with the same 7
(the same radius). Unfortunately, my mathematical analysis is unable to explain
this pattern.

I observed that the OCR accuracy in an image depends mostly on how well
binarized the image is. In fact, the OCR accuracy of two binarized images mainly
differs due broken characters, large false positive spots, and overestimated fore-
ground boundaries.

The ranking given in Fig. 7.3 is based on pairwise tables and not in the mea-
surement magnitude. Therefore, the AC efficiency ranking for my dataset may be
similar with other OCRs, but not so the accuracy measurements.
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Figure 7.2 — At the top, graph of the absolute potential AC. On the bottom, ordered

graphs of the potential AC efficiency.
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Figure 7.4 — On the left, light gray bars represent the radius’s probability of being
optimal in terms quT/,. (r = 50), in dark gray bars, the the radius’s probability of
being optimal in terms of the relative potential AC of Otsu’s method. On the right,
efficiency graphs of Otsu's method, one for each measure.

7.4.3.1 Uniformity and region non-uniformity

I have shown in Section 6.2 that the NU, does not penalize false negatives and that
the GU, estimates the background in such manner that it tends to contain 7,(p) if
|F,(p)| is small. Therefore, NU, and GU, are unsuitable for binarization methods
whose parameters allow the generation of white images or images with degraded
text.

The threshold of Kavallieratou’s, Niblack's, and Sauvola’s methods can be in-
terpreted as the acceptable deviation from the expected gray intensity such that the
higher the parameter « is, the more pixels are classified as background. NU, led
Niblack’s and Sauvola’s algorithms to generate white images and led to Kavallier-
atou’s method to generate images with degraded characters. Likewise, Kavallier-
atou’s, Niblack’s and Sauvola’s methods yielded images with degraded characters
when their parameters were tuned by GU,; see Fig. 7.5. Table 7.4 summarizes the
low performance of NU, and GU, for these binarization methods.

7.43.2 Weighted and uniform variance

After inspecting the binarized images visually, I concluded that uv, outperforms
UV, in all binarization algorithms (Table 7.4) because 'I}‘V,. generates more false
positive spots (connected components with four or more pixels) which are scat-
tered all around the background. In addition to this noise, binarization algorithms
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Figure 7.5 — Original Image on the left. Center and right images were binarized
by Kavallieratou's threshold after being tuned with GU, and NU,, respectively.
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Figure 7.6 — Original Image on the left. center and right images were binarized by
Portes’s threshold after being tuned with UV, and UV, respectively.

which are evaluated with UV, overestimate the foreground contours occasionally;
see Fig. 7.6. In general, measures based on the lognormal distribution yielded
sharper foreground boundaries than those based on the normal distribution in this
test. This indicates that the gray intensities at the foreground boundaries are log-
normally distributed rather than normally distributed.

In this experiment, WV, and UV, were the best for the parameter selection
of those binarization methods whose potential AC efficiency is over 0.9 (Kaval-
lieratou’s, Niblack’s, Porte’ S, | Sauvola’s and Wolf’s methods); see Table 7.4 and
Fig. 7.3. Particularly since WV is better than UV, for Sauvola’s and Wolf’s meth-
ods despite observing sharper foreground contours with Uv,.1 suppose that WV,

RHAETIAE| RHAETIAE

SUBDITARUMQUE | | SUBDITARUMQUE
ei Terrarum nova ei Terrarum nova

defcriptio. | defcriptio.

=

Figure 7.7 — — Left and right images were binarized by Wolf's threshold after being
tuned with UVr and WV, respectively.
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surpasses UV, because it conserves the foreground contours fairly well and, at the
same time, generates less noise than UV,; see Fig. 7.7. Another reason for this su-
periority can be attributed to TopOCR because it classifies a character with sharp
contours occasionally wrongly; perhaps TopOCR was trained with slim charac-
ters.

In the practice, images satisfy the conditions of r-simple images partially. In
an image, the performance of Wr and ﬁfi', is directly related with the number of
neighborhoods with radius » which satisfy both Model 1 and (6.1). Figure 7.8, for
instance, shows an image where the percent of neighborhoods (r > 10) that satisfy
(6.1) is close to 1, but the gray intensities in its background are not approximately
identically distributed. The gray intensity of false positive pixels from Wolf’s
binarization, denoted by X, follows a different distribution to those pixels in Y =
B\X. As a result, WV, leads Wolf’s method to generate F = F U X since

fiy — fir < V2 - max(Gy, 67), (7.8)

and
fix — iy > V2 - max(Gx, 6y). (7.9)

7.5 Experiment I1

Although I present a conscientious analysis for the transition method in Sec-
tion 7.6, this section reports the tables from [72] for completeness.

In this experiment, I analyzed the performance and running time of the quan-
tile transition threshold in combination with the normal and lognormal transition
thresholds.

7.5.1 Binarization algorithms

I compared Otsu’s, Sauvola’s and Kavallieratou’s algorithms with three variants
of the transition method: quantile autolinear (Q-A), quantile lognormal(Q-L).
and quantile normal (Q-N) algorithms. I implemented Otsu’s in the local ver-
sion to increase the accuracy, although this implementation dramatically raised
the running-time. I implemented all the algorithms with integral images to com-
pute local values except for Otsu’s method, which uses histogram tracking as in
Fig. 7.9.
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Figure 7.9 — The histogram ()f‘P‘,.(pj_l‘].J-), and Of@rfpf_j-; 1) can be computed adding
and removing pixels from the histogram of P(p; ;).

Table 7.5 shows the parameter values used in this experiment. I post-processed
all binarized images, removing from the foreground small stains (connected com-
ponents containing four or fewer pixels) before computing any comparison mea-
sure. Only the highest measure score is reported for each pair image-algorithm.

Quantile autolinear, quantile lognormal, and quantile normal are composite
algorithms with the following operations:

e Max-min function with neighborhoods of radius r = 2.

e Quantile threshold,

Table 7.5 — Parameter's range

Algorithm ~ From/To Increment
Kavallieratou 0/9 |
Quantile Autolinear a:0.1/0.975 0.025
Quantile Lognormal a:0.1/0.975 0.025
Quantile Normal a:0.1/0.975 0.025

Sauvola a:0.025/0.68: 128 «a:0.025
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e Two isolation transition operators (¢ = b = 1). the former using cross
neighborhood, the later using diagonal neighborhood.

e Autolinear or lognormal or normal thresholds. Setting n, = n- = 5 and
G=19.

7.5.2 Results

For this experiment, I implemented the algorithms in C++ and ran the tests on
a computer with a 3.2 GHz Pentium IV Dual core processor and 2 GB in RAM.
Table 7.6 presents the 95% confidence intervals for the algorithms’ running-times
expressing the interval limits on millisecond/megapixel.

Table 7.7, Table 7.8, and Table 7.9 present the results of UV, AC and PR
measures, respectively.

7.6 Experiment I11

This section reports the experiments in [73] where I compared several variants of
the transition method with top-ranked binarization algorithms.

The purpose of this experiment was to test the efficiency of the double-linear
transition threshold along the influence of transition operators in the binariza-
tion.

7.6.1 Binarization algorithms

[ compare Kittler’s, Otsu’s, Portes’s, Sauvola’s, Wolf’s algorithms (top ranked
in [871], [82], and [84]) with four variants of the transition method. I implemented
all nine algorithms in their local versions to increase their accuracy, although local
implementations dramatically raise the running-time.

Real applications rarely use more than one parameter set. That is the main
reason why I fixed Sauvola’s @ = 0.5 and 8 = 128, Portes’s @ = 2, and Wolf’s
a = 0.5, which are the recommended parameters; see Section 3.3.

[ set the primary neighborhood radius to » = 50, local windows of 101x101
pixels, and set the secondary neighborhood radius to 100 for Wolf’s method; see
Fig. 3.2.

The transition algorithms, denoted by the prefix T, are composite methods with
the following combination of operators:
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Table 7.6 — 95% confidence intervals for binarization-running time. The intervals
are normalized with respect to Sauvola’s running-time (millisecondfmegapixel)

which is the fastest.

Raw Normalized
Kavallieratou (1718.1727) (4.0,4.0)
Otsu (265757.266908) (630.9.630.9)
Quantile Autolinear (1802,1813) (4.2.4.2)
Quantile Lognormal (2568,2580) (6.1.6.1)
Quantile Normal (2039,2051) (4.8,4.8)
Sauvola (421,423) (1.0,1.0)

Table 7.7 — Pairwise comparison of UV measure. See Table 7.1 for a description

of values ny, and py,.

Kav. Otsu Q-A Q-L Q-N Sau.

! ]'_s-.\' P ¥ n VA P Y n P ! 4 b g ! ?_\'.r P ¥X n VX P X i 1_\'.\' f 2 ¥

“Kavallieratons © 0 = AL FOEGEE 0 001 10 00l 0 0 0.00
Otsu I 0iRG SR G (7R 3 0043 S SO 600
Quantile Autolinear 82 099 77 093 - - 2 002 19 023 3 004
Quantile Lognormal 82 099 80 096 81 098 - = ES6 (67ROl
Quantile Normal 82 099 80 096 64 077 27 033 - = 005
Sauvola 83 1.00 83 1.00 80 096 75 090 79 095 - E

Table 7.8 — Pairwise comparison of AC measure. See Table 7.1 for a description

of values ny, and py.

Kav. Otsu Q-A Q-L Q-N Sau.
My  Pyx M Py M Py Mye Py Ny Pyx. Myx  Pyx
~ Kavallieratou - SRS (TS SR OE 2R O (RIS AT D06 10 06
Otsu sl E 10O S () O3 (0] o 1 001
Quantile Autolinear 58 088 70 0.99 - S= AN =0ae 130 033 35 T 016]
Quantile Lognormal 56 085 71 097 29 054 - - 17 040 31 0.58
Quantile Normal 61 094 71 099 27 068 25 060 - 2 33 0.67
Sauvola 54 0.84 69 099 21 039 22 042 16 033 - -

Table 7.9 — Pairwise comparison of PR measure. See Table 7.1 for a description

of values ny and py,.

Kayv. Otsu Q-A Q-L Q-N Sau.
My Pyx Ny Pyx Hyx Pyx My Pyx Ny Py Myx Pyx
“Kavallieratou £ D B6Y 045 °7 009 3, 004 6 003 5 006
Otsu 44 055 - - 450105 5068 0081 =31 0045 1 10:01
Quantile Autolinear 74 0.91 74 095 - - 23 036 22 044 26 0.39
Quantile Lognormal 76 096 71 092 41 064 - - 39 061 31 044
Quantile Normal 74 093 74 096 28 056 25 039 - = NS
Sauvola 75 094 76 099 41 061 39 056 39 065 - =
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e Max-min function with neighborhoods of radius r.

e Double-linear threshold for transition values using either the empirical scaled
density function denoted by DF or the empirical complementary cumulative
distribution function denoted by CCD.

e Isolate transition operators in the following order:

l. cross transition operator,
2. diagonal transition operator, and

3. frame transition operator (x = y = 2).
e Incidence transition operator (k =4, a = b = 3).
e Dilation transition operator (a = b = 3).

e Gray-intensity threshold. Setting n, = n_ = 25, ¢ = 15, and using either the
normal threshold (simple form) denoted by N or the lognormal threshold
(simple form) denoted by L.

I'named these four variants T-DF-N, T-DF-L, T-CCD-N, and T-CCD-L, depending
on how the algorithm computes the transition and gray-intensity thresholds.

[ also tested three variants of T-CCD-L in order to analyze the influence of
transition operators on the transition method: T-CCD-L-A does not include any
transition operator, T-CCD-L-B includes only the isolate transition operators, and
T-CCD-L-C includes both isolate transition operators and incidence transition op-
erators.

All binarized images were post-processed removing from the foreground small
stains (connected components containing four or fewer pixels) before computing
any evaluation measure. The following operators were applied in this order:

I. cross isolate operator,
2. diagonal isolate operator, and

3. frame isolate operator (x = y = 2).
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7.6.2 Evaluation measures

In this experiment, I used the unbiased uniform variance measure with normal
distribution (UV,) to assess the segmentation quality.

As I stated in Section 7.4, the mean and variance of AC measures are unsuit-
able to assess the performance of a binarization algorithm in OCRs. Hence, for
the purpose of this experiment, I redefined the AC efficiency measure as:

Definition 7.8: Given an image I; and an binarization algorithm j,

_ACF:p)

Yij = (7.10)

W :

where w? is the absolute potential AC measure (Definition 7.4), and ?A! j is the
estimated foreground of I; by the binarization algorithm j.

Remark 7.1: The values w; in this experiment are the same as those values w; in
experiment I (Section 7.4).

7.6.3 Results and conclusions

[ arranged the test images such that the graph of AC accuracy is decreasing for an
easier visual comparison; see Section 7.4.3 for details.

UV, measure penalizes eroded and overestimated foreground boundaries, but
it also penalizes stains (ink stains and dark background spots) that are classified
as background so that algorithms that compute foreground boundaries correctly
and classify stains as foreground are highly scored, like Wolf’s algorithm which
is the best in terms UV, measure; see Table 7.10. However, scattered stains and
a slight overestimation of the foreground contour lead Wolf’s algorithm to a low
OCR performance; see Table 7.11, Table 7.12, and Table 7.13.

Kitller’s algorithm also classifies stains as foreground but, contrary to Wolf’s
algorithm, it overestimates the foreground boundaries greatly. In consequence,
Kittler’s algorithm is a medium rank in terms of UV measure and reports the low-
est AC efficiency because of the overestimated foreground boundary; see Fig. 7.10.

Sauvola’s algorithm computes low thresholds, which discard stains from the
foreground, but low thresholds also produce eroded foreground boundaries that
are strongly penalized by UV measure; see Table 7.10. As a result, Sauvola’s
algorithm was the worst in terms of UV. What is more, this also affects the OCR
performance badly; see Table 7.10.
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Table 7.10 — UV pairwise comparison. See Table 7.1 for a description of values
ny. and py. The highest values are shown in bold.

Kit. Otsu Por. Sau. Wolf  T-CCD-L. T-CCD-N T-DF-L  T-DF-N
J'il-. fJn ﬂ“ p,., H“ p\ N ]I_\ q p“ ﬂ‘.. p\-, fl\-, p‘ ¥ Ry ;J',-, H_\-, pl-, Nyy p\.. il
Kittler S - 72 084 35 041 8 100 29 034 30 035 36 065 32 037 58 067
Otsu 14 016 - - 12 014 85 099 7 008 4 005 8 0.09 4 005 6 007
Portes SI 059 74 086 - - 86 1.00 36 042 46 053 61 071 44 051 60 070
Sauvola B 000 10001 0 000 - - 0 0000 0 000 0 000 0 000 0 000
Wolf 57 066 79 092 50 058 8 L0 - 50 058 66 077 52 0.60 68 0.79

T-CCD-L 56 0.65 82 095 40 047 86 100 36 042 - n 83 097 44 052 79 092
T-CCD-N 30 035 78 091 25 029 8 100 20 023 3 003 - - 4 0.05 47 036
T-DF-L 54 063 82 095 42 049 86 1.00 34 040 40 048 82 095 - - 81 094
T-DF-N 28 033 80 093 26 030 86 L00 18 021 7 008 37 044 5 006 - =

Portes’s algorithm classifies stains as foreground frequently and overesti-
mates the foreground contour slightly. In combination, this reduces the OCR
performance but increases the UV measurements.

Otsu’s and transition algorithms determine sharp foreground contours. How-
ever, Otsu’s generated a great deal of stains in neighborhoods that are completely
contained in the background despite the restriction of (3.5).

Transition algorithms differ as a product of two factors: the function that com-
putes the transition thresholds and the function that computes the gray-intensity
thresholds. Transition algorithms based on the complementary cumulative distri-
bution resist more noise than those based on the density distribution so that both
T-CCD-L and T-CCD-N generate fewer stains (penalized UV measurements) than
T-DF-L and T-DF-N. Therefore, they have the highest AC efficiency; see means
and variances in Fig. 7.11. On the other hand, transition algorithms based on
lognormal threshold have a sharper foreground contour than those based on the
normal threshold. Although these differences are visually minimal, they are re-
flected on the UV measurements. -

[ only present the influence of transition operator in T-CCD-L and variants A,
B and C because the rest of transition methods are influenced in a similar manner.

The relative high variance of T-CCD-L-A and the graph behavior of the AC
efficiency, see Fig. 7.12 and Table 7.14, suggest that T-CCD-L-A resists moderate
noise.

Incidence and isolate transition operators increase the AC efficiency in images
with high noise level at the cost of dropping the cardinality of transition set and,
in consequence, the AC efficiency decreases in images whose foreground contains
small connected components like punctuation marks and small characters. Note
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Table 7.11 — AC pairwise comparison. See Table 7.1 for a description of values

nyy and pyy. The highest values are shown in bold.

Kit. Otsu Por. Sau. ‘Wolf  T-CCD-L. T-CCD-N T-DF-L. T-DE-N

My Pyx Mix Py Ny Pex Mye Pyx Hyr Py My Pox Myx Pyx Hyy Pux iy i

Kittler - I5 021 18 025 26 035 20 033 14 0.8 I3 0.18 17 022 I 014
Otsu 58 079 - - 44 062 55 076 52 078 20 034 23 041 20 045 22 039
Portes 53075 270 038 - - 37 051 40 06l 210 0300 27 (033 25 036 24 035
Sauvola 48 065 17 024 35 049 - - 38 054 19 026 20 027 25 032 17 025
Wolf 40 067 15 022 26 039 33 046 - - 14 020 17 023 21 028 13 020
T-CCD-L 64 082 38 0.66 49 070 54 0.74 56 0.80 - - 29 0.62 24 060 27 0.54
T-CCD-N 61 082 33 059 44 062 53 073 56 077 I8 038 - - 28 052 23 047
TDF-L 61 078 35 055 44 064 52 068 53 072 16 040 26 048 - - 25 042
T-DF-N 66 0.86 34 0.61 45 065 52 075 53 080 23 046 26 053 34 058 -

Table 7.12 — PR pairwise comparison for text. See Table
values ny, and py.. The highest values are shown in bold.

7.1 for a description of

Kit. Otsu Por. Sau. Wolf  T-CCD-L. T-CCD-N T-DF-L. T-DF-N

Mye Py M Pyd My Py Wie Py M Py B Pyx My Pyx Ty Pyx My Py

Kittler - 20 024 32 039 44 052 32 041 20 024 21 025 21 025 21 025
Otsu 65 076 - - 52 063 39 073 51 064 32 042 31 042 37 049 30 043
Portes 51 061 31 037 - - 53 064 45 056 23 034 31 ‘038 26 031 33 040
Sauvola 41 048 22 027 30 036 - - 34 041 19 023 20 025 24 029 20 024
Wolf 46 “0.59129 036" 350 044 d9F 10590 - o asigals 27 T i0.33 277033 26 033
T-CCD-L 62 076 44 058 55 066 64 077 55 0.69 - - 40 059 31 058 38 0.58
T-CCD-N 62 075 42 058 51 062 61 075 55 067 28 041 - - 33 049 32 052
T-DF-L,. 62 075 39 051 57 069" 59 071 54 067 22 042 35 05 - - 34 050
T-DF-N 63 075 39 057 50 060 62 076 53 067 28 042 30 048 34 050 - -

Table 7.13 — Mean, variance and quantiles of AC efficiency for each binarization
method. The best values are shown in bold.

Values i/n such that y. ; equal or greater than

mean Var 1.00 095 0.90 0.85 0.80 0.75 0.70 0.60 0.50
Kittler 0.646 0.261 0.02 0.05 0.10 021 037 050 055 0.65 0.78
Otsu 0.787 0.196 0.06 016 0.27 047 059 073 080 0.90 091
Portes 0.748 0.203 0.05 0.10 021 034 056 0.64 0.70 0.83 0.88
Sauvola  0.702 0.212 0.06 0.09 0.19 028 042 047 055 0.7 081
Wolf 0.691 0246 0.00 0.06 0.14 034 047 057 0.60 0.74 0.84
T-CCD-L  0.805 0.175 0.08 0.13 030 048 0.67 0.76 0.84 091 095
T-CCD-N 0.798 0.182 0.08 0.13 0.31 045 0.67 0.76 0.79 090 0.95
T-DF-L 0.795 0.196 0.09 0.12 031 051 065 076 079 087 0.95
T-DF-N 0.796 0.189 0.08 0.15 028 0.51 0.63 072 081 092 094
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Figure 7.12 — Ordered AC efficiency graphs of T-CCD-L and variants. The area
between Otsu's and Portes's graphs is plotted in light gray as reference.

Table 7.14 — Mean, variance and quantiles of AC efficiency for T-CCD-L and vari-
ants. The best values are shown in bold.

‘Values i/n such that y. ; equal or greater than
mean Var 100 095 090 0.85 0.80 0.75 0.70 0.60 0.50
T-CCD-L-A 0771 0213 006 009 024 044 064 073 079 087 092
T-CCD-L-B 0758 0.18 03 005 0.15 033 055 0.69 076 088 0.93
T-CCD-L-C 0.771 0.175 0.5 006 0.16 036 0.59 070 073 093 0095
T-CCD-L 0.805 0.175 0.08 0.13 030 048 0.67 0.76 0.85 091 095
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that the incidence operator does not remove dense salt and pepper noise. Thus, it
has to be applied after isolate transition operators.

The dilation transition operator counterbalances the unwanted effect of the in-
cidence and isolate transition operators by increasing the cardinality of diminished
transition sets. I should remark that this operator has to be applied in images with
low noise level, or after isolate and incidence transition operators. Otherwise, the
noise is magnified.

7.7 Summary

In this chapter, I presented the four main contributions of my thesis: an analy-
sis of the performance of binarization algorithms and unsupervised measures. In
concrete, I proposed two mechanisms for systematic comparison of the efficacy
of algorithms using OCR’s and historical documents (Blaeu maps).

The data set used in all tests is described in Section 7.1. Later on, OCR’s
measures based on the maximum matching string (Definition 7.2) are discussed
in Section 7.2.

Six commercial OCRs are evaluated in Section 7.3. TopOCR is chosen to carry
on with all comparative studies since it has performed the best among freeware
software and has command-line mode (essential tool for massive evaluations).

In Section 7.4, I proposed a mechanism for systematic comparison of the ef-
ficacy of unsupervised evaluation methods for parameter selection of binariza-
tion algorithms in optical character recognition (OCR). The comparison process
is streamlined in several steps. Given an unsupervised measure and a binarization
algorithm, I:

(1) find the best parameter combination for the algorithm in terms of the measure,
(ii) use the best binarization of an image on an OCR, and
(iii) evaluate the accuracy of the characters detected.

The performance of the transition method is evaluated in Section 7.5 and Sec-
tion 7.6. The running-time of three variants of the transition method is determined
under a normalization by the running-time of Sauvola’s algorithm. It turns out that
the transition method is between 4.2 and 6.1 times slower than Sauvola’s methods,
which is one of the fastest algorithms. However, it is between 100 and 150 times
faster than Otsu’s methods, which is considered as one of the best binarization
algorithms.

Results presented in Table 7.8 and Table 7.13 indicate that the transition method
outperforms top-ranked binarization algorithms, namely Otsu’s, Wolf’s, Sauvola’s,
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and Kittler’s methods. Table 7.13 also indicates that:

(i) the transition method resists highest levels of noise,

(i) the complementary cumulative distribution function decreases the impact of
outliers on the double-linear threshold, and

(ii1) the lognormal threshold generates sharper foreground contours than both nor-
mal and autolinear threshold.

Since all variants are influenced by transition operators in a similar manner,
Table 7.14 presents the influence of transition operator in a particular variant of
the transition method. The incidence transition operator can remove noise that
isolated operators cannot, and the dilation transition operator can improve the
performance of normal and lognormal thresholds.



Chapter 8

Slope estimators (chapter n+1)

Always strive to win, because in so doing even
when you lose, you still win!

Salomé Angulo Romero
Mexican professor of mathematics (1949-2010)

I wrote “‘chapter n+1” in the title of this chapter because I introduce the
differences-rate estimator for the slope in a linear regression model, which
is apparently unrelated to binarization and the general topics of my thesis. How-
ever, I developed this novel estimator for the double-linear threshold in which
the slope of two lines from a histogram are estimated.

In this chapter, I prove that this novel estimator is an unbiased estimator with
low computational cost. Although the breakdown point of differences-rate es-
timator is zero, it can accurately estimate the slope on histograms of empirical
complementary cumulative distribution functions where the effect of outliers is
faded. Moreover, the alternative form of this estimator is linearly computed in the
number of samples and, in consequence, it is suitable for estimating the slope of
lines in large histograms with extreme values, and for time-consuming algorithms.
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I describe a potential application of this estimator to estimate the exponent
parameters in overestimated measurements drawn from a power-law distribution.

8.1 Simple Linear regression model
Consider the simple linear regression model
Yi= X -Bt+a+e, forl <i<n (8.1)

where f € R is the slope parameter, @ € R is the intercept parameter, the
observations are of the form z; = (x;,¥;) € R?, and ¢ is arandom variable depicting
the error from the observed data.

An estimator is a measure calculated from a sample of data that is used to
infer the value of an unknown parameter in a statistical model. In the simple linear
regression model, B and a are the parameters to be estimated. Four concepts are
usually employed to evaluate an estimator: unbiasedness, asymptotic efficiency,
breakdown point. and run-time complexity.

Definition 8.1: Assume that the parameter of a model is defined in (a,b). For an
estimator @ to be unbiased, we mean that on the average the estimator will yield
the true value for all 8 € (a, b). That is, the estimator is unbiased if

E (f)) =0 forall8. (8.2)

The theorem of the Cramer-Rao lower bound — (simple linear model) states
that if 6 is an unbiased estimator of 6, then there exists LB(6) such that

Var(f) > LB(9), (8.3)

which is known as Cramer-Rho lower bound. The calculation of the Cramer-Rho
lower bound depends on the distribution of €s, and it is derived from the inverse
of a Fisher information matrix.'

Given an estimator f of an unknown parameter 6, the efficiency is a measure
of how close Var(@') is to Cramer-Rho lower bound. It is defined by

LB(6)

Efficiency(f) = ———=,
Var(0)

(8.4)

I Readers interested in further pursuing the Cramer-Rao lower bound and related topics are
encouraged to consult the book by Kay [38].
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where LB(6) is the Cramer-Rho lower bound for Var{?)). An estimator with effi-
ciency 1.0 is said to be an efficient estimator.

The efficiency is usually computed for independent observations such that ¢ ~
N(0, o). Hence, for the simple linear model, the Cramer-Rao lower bound is
given by

2
H o

nZin % = [Zi %]

Var(B) > - = LB(B) forallp. (8.5)

For histograms, (8.5) is simplified to

1262

x2-n=1]-n-[n+1]

Var() > = LB(B) forall 8. (8.6)

where the observations have the form (i - x,y;) fori = 1,2,...,n.

The asymptotic efficiency of an estimator is then defined as the estimator asymptotic efficiency
efficiency for n — oo. For example, in the presence of Gaussian noise, the mean
estimator has an asymptotic (large sample) efficiency of 1.0 (achieving the lower
bound) while the median estimator’s efficiency is only % ~ (0.64.

The notion of breakdown point was coined, defined, and discussed by Ham- breakdown point
pel [28]. The breakdown point of an estimator is informally defined as the smallest
percentage of contaminated data that may cause an estimator to take misleading
values. For example, the breakdown point of the sample mean is ﬁ since a single
large outlier can corrupt the result. The median remains reliable if less than half
of the data are contaminated. Indeed, 50% is the best that can be expected; for
larger amounts of contamination, it becomes impossible to distinguish between
the “good” and the “bad” parts of the sample.

For the run-time complexity, we use the conventional Big — O notation O(:).

8.2 Estimators

The following estimators of both slope and intercept parameters are defined in
terms of the simple linear regression model. In the same manner, their complexity
analysis is simplified. Their generalization for higher dimensions can be found in
their references.



I refer as arithmetic form
to those equations with close
form such that only arithmetic
operations (addition, subtrac-
tion, multiplication, and divi-

sion) are involved.
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The least square estimator” proposed around 1795 (LSS) is defined as

(Biss» @rss) = arg min Z (B a), (8.7)
Bl =
where
riB,a)=yi—xi-p —a. (8.8)

The values r;(8’,@’) are known as residuals. A more complete name for this
estimator would be least sum of squares estimator, which I adopt for the rest of
this chapter.

If s are independent and identically distributed, such that E(e;) is finite,

then ”.Z Z w Z

Biss = = (8.9)
lZ‘*]

is unbiased. The efficiency of ﬁ.f,ss at Gaussian noise is 1.0. Moreover, (8.9)
has the mathematical beauty of being an arithmetic form and the computational
beauty of being linear on the number of observations. However, a single outlier
can lead B, to misleading values. Therefore, its breakdown point is zero.
In 1887, Edgeworth [21] [22] proposed the least sum of absolute errors esti-
mator (LSAE), improving a proposal by Boscovich:

(Brsar» &sax) = arg min Z I8, @), (8.10)
Bigty =
where || - || denotes the absolute value. This estimator is less sensitive to outliers

than the least sum of squares estimator, but even so, its breakdown point is zero.

Another drawback is that B¢ 4 depends on & ¢4 .. The estimator [3, ¢ar 18 unbiased

only if E(¢;) = 0 where ¢ are independent and identically distributed. Narula and

Wellington [55] presented a survey of algorithms to calculate this estimator.
Huber [30] introduced the M-estimators in 1973, which is defined as

(By» @p) = arg min
M Qpr gx’m ;ﬁi (B, a)), (8.11)

% This estimator is attributed to Carl Friedrich Gauss. Adrien- Marie was the first to publish the
method, however. See Stigler [85] for historical discussion.
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where p(x) is not monotone with one minimum in zero such that ¢(x) = (di«i)p(x} is
continuous and bounded. If p(x) is convex, Huber proved that (8.11) is equivalent
to solve the system

Y (@) =0

o (8.12)
Z e (rig,a’))-a =0.

=1

B is unbiased only if E(¢(e)) = 0 and the s are independent and approximately
identically distributed. Choosing an adequate 1(x), M-estimators are statistically
more efficient than the least sum of absolute errors estimator at central model and
Gaussian error; M-estimators, however, cannot cope with grossly aberrant values
in x;’s, namely leverage points, which have a large influence in (8.12). Further-
more, solving (8.12) may need numerical optimization algorithms. Subsequent
variants of M-estimators achieved around 30% of the breakdown point; see [77]
for more references of these estimators.

The repeated medians estimator, proposed by Siegel [83] in 1982, can resist
the effects of outliers having the best breakdown point (50%). For the simple
linear regression model, this estimator is defined as

o =Y
Bry = median {med{aﬂ {} — }} ; (8.13)

J# Xi — Xj

Although By has no close form, it can be calculated in a deterministic manner
with a running-time of O(n” In(n)); see [68], Chapter 8.5. This estimator is unbi-
ased assuming that ¢s are independent and approximately identically distributed
and E(g) exists. It is robust against a high percentage of outliers. The Gaus-
sian efficiency of the repeated median method was found experimentally as being
around 0.60.
Two years later, in 1984, Rousseeuw [77] proposed the least median of squares

estimator defined as

Buns: Grus) = i {meq’fan {rf(ﬁ’,a'}}}. (8.14)

ﬁg,m depends on @ s, and its Gaussian asymptotic efficiency is 0%. Another
drawback is that [?LM,\- is unbiased only if the ¢’s are independent and identi-
cally distributed such that E(e;) = 0 and finite E(¢/). In addition, the best algo-
rithm known to compute Bius, by Edelsbrunner and Souvaine [20], has a run-time

A point (x,y) whose x; is
outlying is called a leverage

point.
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O(n?). In the same publication, Rousseeuw also proposed the least trimmed of
squares estimator; Rousseeuw said that he has “In press” a publication about
the least trimmed of squares estimator, however, I was unsuccessful in tracking
such a publication. (LTSS) which minimizes the sum of squares of the smallest &
residuals. That is

k
(Brrss, Qurss) = glirﬂ {Z (B, G")u}}, (8.15)

i=

where ;'e(ﬁ’.a’)t_,-, denotes the smallest i value from the set
{;-f(ﬁ*,a/) |“fordi=il < onl (8.16)

Brrss is unbiased with the same assumptions of By, and it has a Gaussian
asymptotic efficiency of 8%. Moreover, it also reaches a 50% breakdown point
for k = % However, known algorithms for its calculation have a run-time of
O(n*In(n)) or higher; see Li [43].

Rousseeuw et al. [78] proposed, in 1993, the least quartile difference esti-
mator (LQAD), which is defined as

Broan = min {lIrB) ) (8.17)
where ||7(8')ll) denotes the k-smallest element from (;) elements of the set

{Irn@.a) = riB.a); 0< j<ifori=1,...,n

(8.18)
={li=B-xi—y;+f x5 0< j<ifori=1,...,n).

This estimator has a breakdown point of 50% if

k =( : ] (8.19)

Furthermore, E;‘Q_,m does not depend on @;p4p, and it is unbiased if the €’s are
independent and approximately identically distributed such that E(e) exists. Its
asymptotic efficiency at Gaussian noise is 0.67. However, known algorithms for
the exact solution ofﬁ,-_g,w have a run-time of O(n? In* n) or higher, see [2].
Croux et al. [17] proposed the generalization of this estimator, namely gen-
eralized S-estimator (GS-Estimator). Berrendero [4] studied the GS-estimators



8.3. DIFFERENCES-RATE ESTIMATOR 129

robustness and Roelant et al. [75] introduced the GS-estimators for the multivari-
ate regression model.

The least trimmed differences (LTSSD), proposed by Stromberg et al. [86]
in 2000, also exploits the pairwise differences minimizing the sum of the smallest
quartile of the squared differences of the residual pairs.

k
Brrssp = ) (B o (8.20)
i=1

where r%(8)y) denotes the k-smallest element from ( ) elements of the set

{[-’1(«B~Q’) J,r(ﬁsa)l s03.1<-’£”] 821)

= {I_}-,- B xi—y;+B xF; 0<j<i< n}.
It is unbiased if the ¢’s are independent and approximately identically distributed
such that E(g) and E(ez) exist. The breakdown of this point is 50% if k is de-
fined as (8.19) with asymptotic efficiency of 0.66 at Gaussian noise. However, it
is computationally expenqwe )8“5”) has a run-time complexity O(n* In’(n)) by
adapting algorithms for ﬁ” p. Nevertheless, for k = n, the (8.20) (no trimmed) is

equivalent to
Z Lyj = yil - [x; — xi]

a~ I<i<j<n

JB.",.\'S.’) = 2
Z [,l’j = X,']'

I<i<j<n

(8.22)

which is an arithmetic form and quadratic in the number of observations, but then
its breakdown point is 0%.

8.3 Differences-rate estimator

Let me introduce a definition used in the assumptions of the differences-rate esti-
mator.

Definition 8.2: A set of values x; < x| < ... < x, are in n-general position if
there exists a pair of values x; and x; in the set such that x; # x; for some indexes
(Bt
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Definition 8.3: Assume the simple linear regression model with n > 2 obser-
vations such that x; < x» < ... £ x, are in n-general position. Define the
differences-rate estimator as

r8.’)R ==
n

n j=1
2, 2=
=
_ (8.23)
J=1
[x; — xil
j=2 =1
Proposition 8.1. The differences-rate estimator for simple linear regression model

is equivalent to
n

Y2-i—n=1]-y,

i=1

Bor = = (8.24)
Z[Zw"—n— 1] x;
i=1

Proof. 1 prove (8.1) by induction on the number n. Since the numerator and de-
nominator of (8.24) are dual, I will prove the identity for the denomiator. That
is,

n+l j=1 n+1

ZZL\,—H_ZQ i—[n+1]-1]-x (8.25)

' 2

Trivially, (8.24) holds for n = 2. Suppose that it holds for

ZZ[x,—xi_Z{ R (8.26)

j=2 i=1
Now consider
n+l j=1 J=1
ZZIIJ— Xil —ZZ[J;— Xi I+Z|—A!H] = X
= = =2 =1
i (8.27)
ZZ =X+ x 1~Zr,
J=2 i=
By grouping the first term with the third term, we obtain
n+l j=1 n
Z [x; —x] = Z [x;-[2-i=n—1] = x]| +n- x5 (8.28)
j=2 i=l i=1
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The proof is concluded by rewriting
neXpy =2 [n+1]=[n+1]=1] x,: (8.29)
which is the n + 1 term of (8.25). m}

Theorem 8.1. Assume the simple linear regression model such that x, < x, <
... £ x, are in n-general position, and €,,. .., € are random variables indepen-
dent and identically distributed with finite E(e;). Then,

EBpr) = B. (8.30)
Therefore, ,f?m is an unbiased estimator of 5.

Proof. The expected value of (8.23) is given by

n j-1 n j-1
Z Z[yj = )’;] / / E (JJ’ = J":‘)
E(Bor) = E| = - == j'_l . (8.31)
> >l - xil [x; — ]
=2 =1 =2 i=l

Observe that
E(}’j —y,-) = E(ﬁ =Xt e I0 S —ar = ef-)
= E(ﬁ TXjidEr =3 — e;)

for all pair i and j. Since ¢ and ¢; are independent observations, (8.32) is equiva-
lent to

(8.32)

E(y; - yi) =B+ [x; — xi] + E(€;) — (). (8.33)
For identically distributed observations, E(e;) = E(€;). Therefore,
E(y; =) =B [x;~ xl. (8.34)
Thus, we conclude that
n j=l1 n. . j-1
DE(yi-y) BY, D= x]
- j=2 =] =2 i=I
E(ﬁm{) = - S = :i o =8 (8.35)
by=xl D, D x=x]
j=2 i=1 J=2 i=l
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Theorem 8.2. Assume the simple linear regression model such that x; < x, <
. < x, are in n-general position, and €, ..., €, are random variables indepen-
dent and identically distributed with finite Var(g;) = o?. Then,

[n=1]-n:[n+1]-0>

Var(Bpr) = — > (8.36)
3{2[25 A
=1
Proof. Observe that
Var(y;) = Var(B - x; + @ + &) = Var(e) = o2, (8.37)

and

Z[Zf —n=11-y | Y[2i—n—1P-Var(y)
Var(Bpr) = Var |2 S . (8.38)

n

[ n 2
[2i—n—1]-x; —n s
; ‘;“[; n ] x‘

Simplifying the summatory in the numerator

n n

Z[Zf—rf— 17? =4’252 —4[n+ 1] il +n-[n+1]
i=1 i=1 _ i=1 (8.39)
» =1l
= - ]
where we have used the identities
= . n-ln+l]
e = (8.40)

and

Zfz=”.[n+l]6.|2”+” 841)

Therefore, we conclude the proof using (8.39) in (8.38). O
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Theorem 8.3. The efficiency of Bpr at Gaussian noise is given by

3 -i[Zi —n—1] -.r,-_lJ“
i=1
[n—=1] [n+1]- ‘n ixf - ‘i ).',-l_

=1

Efficiency(Bpr) =

Proof. The efficiency of B derives directly from the ratio (8.5) to (8.42) O

Corollary 8.1. Assume a simple linear regression model where the observations
have the form (x,y1),(2-x,y2), ...(n-x,y,), such that the &’s are independent and
identically distributed with finite E (&) . Then, B is unbiased estimated by

6-2[2-5—91—1_]-)-‘,-

Ao NE
Pok = xn—=1]-n-[n+1] ° (8:43)

Proof. Corollary 8.1 is derived from (8.24) and the identity

n

Z[Zi—n—l]-i'xzx-

i=1

1n

ZPJ—[H]J D

Sl
i=1 i=1 1 (8.44)

X-[n=11-n-[n+1]
6

O

Corollary 8.2. Assume a simple linear regression model where the observations
have the form (x,y,), (2-x, ), ...(n- x,y,). such that the s are independent and
identically distributed with finite E(€;) and Var(e). Then,

(8.45)

Vm-(ﬁ )_ 12072
. ”""—_x3‘[ﬁ—”'”'|”+ll’

which is identical to the Cramer-Rho lower bound at Gaussian noise. Therefore,
Bor is an efficient estimator of B.
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Proof. Direct calculus yields
n

6- > [2-i-n—11-y

1=
x-[n=1]-n-[n+1]

Var (BUR] = Var

(8.46)
6° - i[z ci—n— 11+ Var(y)
=]
T L
To simplify (8.46) I used the identity (8.39). O

Unfortunately, the breakdown point of Differences-Rate estimator is zero be-
cause y — oo if any y; — co.

8.4 Complexity and computational stored cost

The complexity of Bmg computed with (8.24) is O(n), where n is the number of
observations.

Since a single variable overflow in running-time could crash the whole system,
the computational stored cost of variables is an important matter for applications
where values are computed from a large amount of data. For instance, in the
standard programming language of C++, if two variables x and y are integers of
32 bits, then the sum x + y may result in an integer higher than 32 bits, in which
case, a variable overflow will happen if x + y is assigned to a variable of 32 bits
or less and, as a result, the calculation of any variable which depends on this sum
will fail.

The following definitions formalize the stored cost of variable.

Definition 8.4: The precision of A(x) is defined as the number of bits used to
store the value x.

Proposition 8.2. A(x) fulfills the following properties for x, y integers:
1. A(x+y) < max{A(x), A(y)} + 1.

2. A(—x) < A(x) + 1.
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n

3. Alx-y) < Alx) + A®y).

Proof. Without losing generality, assume x > y > 0 such that A(x) = n and
A(y) = m.
1)Let n = m. Then,

x<2"—1 and y<2'-1=>x+y<2™"' -2 (8.47)

2) Computationally, a variable needs an extra bit to store the number sign when
it can be either plus or minus.
3) Assume A(x) = n and A(y) = m. Then,

x<2"-1 and y<2"—-1=>x-y<2""-2"-2"+1, (8.48)
O
Definition 8.5: Define R(f) = max{A(x), A(y)} as the maximum number of bits
stored in x and y in order to compute =
A computational advantage 01’[?;_;,{ over Bug is that K{B,,,f) < ﬂ([?;,g_\-).

Proposition 8.3. Suppose that A(x;), A(y;) < afori=1,...n, An) < b, and Bpr
is computed by (8.24). Then, ﬁ(fi’m) <a+2b+ 1.

Proof. Note that

e i el S on =l n (8.49)
then
A2:i—-n—-1)<A-n)<b+ 1. (8.50)
Without losing generality assume A(¥) > A(X). Let
z=arg rlnax {A()) (8.51)

be the variable with the maximum stored cost from the sample. Thus

ABpr) = max {AF), A(D)} = AG)
<A (Z{—n] 7] =AM [-n]-220An)+A(—n)+Alz)=b+ b+ 1)+a.
I

(8.52)
m]

Similarly, I calculated A(B.ss) = A(Brssp) < 2a + 2b + 1 according (8.9) and
(8.22).
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8.5 Application in power-law distributions

The populations of cities, the intensities of earthquakes, and the sizes of power
outages, for example, are all thought to have power-law distributions [57]. Quan-
tities such as these are not well characterized by their typical or average values.
For instance, according to the Mexican Census (1995) [31], the average popula-
tion of a city, town, or village in Mexico is around 453. But this statement is not
a useful one for most purposes because a significant fraction of the total popula-
tion lives in cities whose population is larger by several orders of magnitude, like
Mexico City, in which more than 8.84 million people live.

Power-law distributions is a family of statistical distributions, such as Pareto
and Zipf distribution, where values with extreme deviation of the median have a
significant probability of being observed. Such distributions lead to much heavier
tails than other common models, such as exponential distributions. Mathemati-
cally, a quantity x > x,,;, > 0 obeys a power law if it is drawn from a probability
distribution function

BrXi=a)={x)=c ", (8.53)

where @ > 0 is a constant parameter of the distribution known as the exponent or
scaling parameter and ¢ > 0 is the normalization constant.

Power-law distributions occur in diverse models of pattern recogmtlon and
computer vision [7], [25], [74]. However, the estimation of the parameters of a
power law distribution from observed data is a serious challenge if the measured
quantities are noisy. Hence the importance of using robust estimators.

8.5.1 Estimators for the exponenent of a power-law distribu-
tion

The maximum likelihood estimator of & gives an accurate parameter estimate in
the limit of large sample size. For the continuous case, this estimator is given by

iln( i )‘ : (8.54)

= Xiin

a=1+n:

where x;....,x, are drawn from a power law distribution such that x; > x,,;,. An
estimate of the standard error & on & is

(8.55)
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I strongly recommend the publications by Clauset et al. [15], and Newman [58]
for a useful discussion of these and related points.
An alternative method to estimate « is based on the linearity of the comple-
mentary cumulative distribution function on logarithmic scales. That is,
Pr(X >0 = ()= f cEESdyi= . yen (8.56)
(@—1)
In(Y(x)) = —(a—1)-In(x)+ constant. (8.57)

Thus, the parameter @ can be estimated from the absolute slope of the empirical
complementary cumulative distribution function on a doubly logarithmic plot,
which is an estimate of (8.57). However, such a graph should be truncated in order
to avoid the noise introduced by fluctuations in its right tail. Then. the truncated
empirical complementary cumulative distribution function is given by

W) = o | 2 < o}, for FE(x) > i (8.58)

where x; < x; < ... < x, are the observed measurements, and y,,;, is a parameter.
Experimentally, I computed good results with y,,;, = 0.01.

The simple linear regression model for (8.56) can potentially lead us to esti-
mates with large bias. The noise, for instance, could obey a distribution whose
expected value is different to zero or does not exist, like the Cauchy distribution
or for some parameters of the Pareto distribution.’

Clauset et al. [15] pointed out that the assumptions to calculate the standard
error on the slope of a regression line, which include independent and Gaussian
noise in the dependent variable at each value of the independent variable, do not
hold for (8.56). In fact, assuming a Gaussian noise in the observed samples x;, <

.., < X W4(x;) will have a Gaussian noise but the noise in the logarithm is not
Gaussian. Furthermore, the assumption of independence fails because ¥(x;) =
‘i’"(x,—.,.|) + Y(x;) for x; < x;.1, wWhere W(x;) is the empirical probability density
function, and hence adjacent values of the empirical complementary cumulative
distribution function are strongly correlated. However, I will show that estimators
based on linear regression are more robust than the maximum likelihood estimator
when the data has been contaminated. For that, I tested the ability of the least sum
of squares, the least sum of squared differences, and the differences-rate estimator
to extract a known exponent parameter from noisy synthetic power-law distributed
data. I also addressed the maximum likelihood estimator as a reference point.

IThe probability density function of the Pareto distribution is flxikoa) = a- k% - x7!, where
@,k > 0 are parameters. The Pareto distribution has infinite variance if 0 < o < 2. If @ < 1, also
has infinite mean,

The standard error is an al-
ternative name of the muestral

standard deviation



The net wealth of an individ-
ual is the total of his or her as-
sets minus the total his or her

debts.
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8.5.2 Noisy measurements from power-law distributed data

Noisy measurements of the true quantities of the phenomenon come in three ba-
sic flavors: all are underestimated values (noise type left), all are overestimated
values (noise type right), and there are both underestimated and overestimated
values (noise type left-right). In this context, “underestimated value” means that
at most the value equals the true value; “overestimated value” means that at least
the value equals the true value

I model underestimated and overestimated measurements as follows:

Xi= [] A Hf] ~ Vi (859)

where x; is the /-observed measurement, u; is a random variable uniformly dis-
tributed in [a, b], and v; is the true i-quantity of the phenomenon which obeys a
power-law distribution.

The factor [1 + u] in (8.59) models a complete ignorance of the noise distri-
bution in the measurements. However, this model restricts x; between the lower
bound [1 + a] - v; and the upper bound [1 + b] - v;. Therefore, a and b determine
which kind of noisy measurements there are in the observations. For example, all
our measurements are overestimated if 0 < a. b.

In the following paragraphs I state some real and hypothetical examples where
the measurements are underestimated and overestimated.

The net wealth in US dollars of the richest individuals in the wold is an exam-
ple where noisy measurements are both underestimated and overestimated values.
Forbes Magazine, for instance, publishes a ranking of the world’s billionaires
annually. This ranking is based on the net wealth of each individual. The comple-
mentary cumulative histogram of the 24th edition of this ranking* appears to obey
a power-law distribution; see Fig. 8.1. However, these data are biased. Forbes
Magazine says that there are billionaires that may not be in the list since some
billionaires were not detected by their reporters. Another reason for this bias is
that some billionaires cooperate to assess their fortune, but others do not.”> There-
fore, for those billionaires who cooperated, their fortune is underestimated since
they may not (be able to) report all that they own. However, the fortune of those
billionaires that did not cooperate may be either underestimated, or overestimated.

* This ranking can be found in: http://www.forbes.com/2010/03/10/worlds-richest-people-
slim-gates-buffett-billionaires-2010_land.html Readers interested in this data can mail me.

*Forbes’s methodology can be found in: http://www.forbes.com/forbes/2010/0329/billionaires-
2010-wealth-estates-stocks-yachts-fortunes-methodology.html
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Figure 8.1 — On the left, histogram of the number of billionaires that have a net
worth equal or higher than x according to the list of the world'’s billionaires (Febru-
ary 2010, Forbe’s 24th ranking). On the right, histogram of the same data, but
plotted on logarithmic scales

Underestimated measurements may occur in phenomena where the quantity is
the number of existing “things” of “something”. For example, as first observed
by de Solla [18], the numbers of citations received by scientific papers appear to
have a power-law distribution. These data are strictly underestimated because,
in the practice, a significant number of publications is not indexed and not all
citations can be extracted from a manuscript because of inconsistent references
and digitalization problems (low OCR accuracy, wrong text extraction, to mention
some).

Overestimated measurements may occur in phenomena where their quantities
are measurable only after they take place, for example, hypothetically speaking,
the time for detecting the presence of a disease. Overestimated measurements
may also occur in measuring techniques which intrinsically overestimate the phe-
nomenon quantities. For example, the area of a bacterium may be approximated
for a convex hull that contains the whole bacterium.

8.5.3 Simulations of noisy measurements

For each estimator method, I computed several simulations with different types
and levels of noise. A simulation consists of m = 1,000 data sets. Each data set
has the form

X = {-"':'.1 2 Xi2s e v s -\'i.n]

(8.60)
= “l £y v [ Uizl “Vigyooos [1 gy - ":',u}
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for n = 10,000 and i = 1,...,m, where u; ; is uniformly distributed, and v;;
follows a Pareto distribution.

The value v; ; is artificially generated with the transformation method: If we
can generate a random real number r uniformly distributed in the range 0 < r < 1,
then

Vi er'n(] = -’}ﬁ (86])

is Pareto-distributed in the range v,,;, < x with exponent . For the simulations, I
set @ = 2.5, and x,,;, = 1.

The noise u; ; is uniformly distributed between [a, b] for all data set in a simu-
lation, where a and b depend on the type of noise that the simulation performs:

e Noise type left: u;; ~ U(=6,0)
e Noise type right: u; ; ~ U(0,6)
e Noise type left-right: u; ; ~ U(=06,0)

where ¢ is the noise level in the simulation.
In each simulation, the absolute error ¢; = ||&; — a|| fori = 1,2,...m, was
computed, where @; 1s the estimated value of the exponent parameter from X/.
The mean and standard deviation of ¢;’s of each simulation are show in Fig. 8.2,
Fig. 8.3, and Fig. 8.4.
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Figure 8.2 — At the top, mean of absolute error from samples with noise type left.
On the bottom, standard deviation of absolute error from samples with noise type

left.
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8.6 Summary

After I reviewed preliminary concepts (Section 8.1) and the state of the art (Sec-
tion 8.2) of the simple linear regression model, I proposed (Section 8.3) the differ-
ences - rate estimator for simple linear regression models, which is the fifth main
contribution of my thesis.

The differences-rate estimator is an unbiased estimator (Theorem 8.1), and is
efficient for histogram samples (Corollary 8.2 ) under Gaussian noise, even when
such efficiency does not stand for all samples in n-general position (Theorem 8.3).

The computational efficiency of the difference-rate estimator is its most no-
table advantage over other estimators. It is linearly computed with a number of
samples. Furthermore, in practice, its implementation involves few arithmetic op-
erations and its running-time is better than the running-time of the least square
estimator.

In Section 8.4, I defined the computational stored cost of a variable in terms
of the number of bits to be stored. I discussed the relevance of these definitions,
which arises in applications with massive numerical elements. Subsequently, I
proved that the differences-rate estimator stands one of the lower stored costs al-
lowing the calculations of large histograms from large numeric elements.

I showed two applications of the differences-rate estimator:

(1) In Section 5.2.3, the histogram of transition values is approximated by two
lines whose slopes are estimated by the differences-rate estimator.

(ii) In Section 8.5, the exponent of power-law distributions is computed by lin-
ear regression methods. Simulations showed that the performance of difference-
rate estimator under moderate noise is comparable with the repeated medians esti-
mator (a robust estimator with a breakdown point of 50%), but hundreds of times
faster; see Section 8.5.3. It considerably outperforms the least square estimator if
the noise level is less than 20%.
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Pretty and beloved Mexico
If 1 die far from you
Say that [ am asleep
And bring me back to here.

By Jests Monge Ramirez
(Chucho Monge)
Mexican composer (1910 — 1964)

In this thesis, I proposed a novel framework, which I named transition method,
capable of binarizing historical documents more efficiently than other top-ranked
binarization methods. The transition method assumes that both the background
and the foreground vary smoothly, exhibiting high contrast at the boundary. The
key idea of this method is a criterion to select pixels which will be taken as rep-
resentative samples of the foreground and background. It is roughly divided into

five steps:

(1) calculation of transition values.

(ii) calculation of transition thresholds,
(iii) restoration of transition sets,

(iv) detection of regions of interest, and

(v) calculation of thresholds of gray intensities.

In Chapter 4, I mathematically modeled the distribution of gray intensities.
As first suggested by Chow and Kaneko [14], gray intensities appear to obey a
normal distribution. Indeed, experimental observations in historical documents
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confirm such a conjecture but are restricted to small neighborhoods. Following
this line, contrast and smoothness play the most important role in my approach
rather than spatial relationships between pixels. Even though spatial relationships
are ignored, my proposed model is capable of determining certain bounds and
properties which led me to propose the transition method.

The strength of the transition method stems not only in its images modeling,
but also in its capacity of “plugging” different models in each method’s stages.
For example, to compute transition thresholds, I first proposed the quantile tran-
sition method, which has a crucial parameter. However, in further publications, I
proposed the double linear and Rosin’s transition thresholds, both of which lack
parameters and, as a consequence, are suitable methods for unsupervised applica-
tions.

I concluded that the restoration of transition sets is critical in images with high
levels of noise. In particular, isolated, incidence, and dilation transition operators
may be applied (in that order) to enhance the transition sets. This combination
tends to improve our transition set approximation. Moreover, it is robust for dif-
ferent levels of noise.

I derived the dilation transion operator from the concept of transition balance
(Definition 5.3). However. such a concept was not fully justified, and further
techniques may be developed from it, like a direct binarization and edge detection
method.

Comparative studies in Chapter 7 strongly indicate that the transition method
performs better with the lognormal threshold than with the normal threshold, even
when the transition thresholds were computed with different methods. Hence, I
conjectured in [72], [73], and [71] that the gray intensities of transition pixels are
lognormally distributed rather than normally distributed. However, this conjecture
is contrary to empirical observations (gray intensities are normally distributed). I
suspect that this pattern could be due to maxmin function, and/or due to sampling
process in the very boundary between the foreground and background. The gray
intensities of pixels along boundaries may obey a distribution that is not Gaussian.

Although the transition method has promising results in historical documents,
it cannot cope with sudden illumination changes, and with large isolated bleed-
through artifacts. But in fact, none of the binarization methods described in this
thesis can cope with such problems. The transition method has the potential of
overcoming such problems by developing extended techniques in the transition
set restoration, region of interest detection, and gray intensities thresholds.

In this thesis, I also studied unsupervised measures for segmentation quality
based on variances of gray intensities. Technical conclusions are widely discussed
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in Section 6.2 and Section 7.4.3. Nevertheless, I would like to remark that val-
ues of unsupervised measures may be used to compare the performance of two
different parameterizations of a single algorithm rather than comparing the per-
formance of two different algorithms. An unsupervised measure may not “share”
the same assumptions as the evaluated binarization method. As I showed in Sec-
tion 7.4, certain unsupervised measures are unsuitable to evaluate the performance
of certain binarization methods.

In Chapter 8, I proposed the differences-rate estimator, which is an unbiased
estimator for the slope in simple linear regression models. It can accurately esti-
mate the slope on histograms of empirical complementary cumulative distribution
functions where the effect of outliers had faded. Moreover, its alternative form
is linearly computed in the number of samples and, hence, it is suitable for esti-
mating the slope of lines in large histograms with extreme values, and for time-
consuming algorithms.
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Chapter 10

Summary of contributions

When you want something, all the
universe conspires in helping you to
achieve it.

The Alchemist by Paulo Coelho
Brazilian lyricist and novelist (1947 — )

In this thesis, I proposed a novel approach for binarization, edge detection, and
the detection of region of interest. Additionally, I proposed novel unsupervised
measures to evaluate the binarization performance, a novel slope estimator, and a
novel statistical test for pairwise comparisons. In concrete terms:

I. Iproposed the t-transition pixels, a generalization of edge pixels; see Def-
inition 4.4 and Definition 4.5.

2. I proposed the term ideal image based on smooth surfaces and contrast; see
Definition 4.2 and Definition 4.3.

3. I defined the transition functions and characterized the transition pixels
with extreme values for those functions; see Section 4.3 and Definition 4.10.

4. I proved that the function maxmin is a transition function in ideal images;
see Section 4.4 and Theorem 4. 1.
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CHAPTER 10. SUMMARY OF CONTRIBUTIONS

I pointed out how the statistical distribution of gray intensities of transition
sets approximate the statistical distribution of gray intensities of the fore-
ground and background; see Section 5.1.

. 1 proposed and described the transition method with five steps:

(a) calculus of transition values,
(b) selection of transition thresholds,
(c) restoration of transition set,
(d) detection of region of interest, and
(e) binarization, or edge detection.
I proposed three novel thresholding for transition values: quantile transition

threshold (Section 5.2.1), Rosin’s transition threshold (Section 5.2.2), and
double-linear transition threshold (Section 5.2.3).

. I proposed three novel transition operators: expansion (Section 5.3.2), inci-

dence (Section 5.3.3), and dilation (Section 5.3.4).

I proposed two simple criteria for detecting the region of interest; see Sec-
tion 5.4.

I proposed a simple algorithm for edge detection; see Section 5.6.

. I proposed several algorithms for binarization. Particularly, I described:

(a) linear mean-variance threshold (Section 5.5.1),
(b) autoliear threshold (Section 5.5.2),

(c) minimum-error-rate threshold (Section 5.5.4),
(d) normal threshold (Section 5.5.5), and

(e) lognormal threshold (Section 5.5.6).

I introduced in Section 6.1 the concept of simple images (Definition 6.1).

I statistically analized local implementations of three well-known unsuper-
vised measures:

(a) uniformity measure (Section 6.2.1),
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(b) region non-uniformity measure (Section 6.2.2), and

(c) weighted variance measure (Section 6.2.3).

. I proposed four novel evaluation measures for binarization:

(a) normal uniform variance (Section 6.2.4),
(b) unbiased weighted variance (Section 6.2.5),
(¢) lognormal uniform variance (Section 6.2.6), and

(d) lognormal weighted variance (Section 6.2.6).

. I proved in Theorem 6.1 that the expected value of the unbiased weighted

variance measure is minimum in a perfect binarization.

. Lanalyzed unsupervised evaluation measures by describing statistically which

of them are suitable for nine binarization methods; see Section 7.4.

. I performed an extensive comparison of several unsupervised measures, bi-

narization algorithms , and OCRs. I used it to show the strength of the WV
measure; Section 7.4.

. I performed an extensive comparison between the transition method and

several top-ranked binarization algorithms; see Section 7.5 and Section 7.6.

. I proposed and described a novel estimator (differences-rate estimator) for

the slope of the simple linear regression (Section 8.3).

I proved the computational goodness of differences-rate estimator; Sec-
tion 8.4.

I showed a suitable application of the differences-rate estimator in power-
law distributions; see Section 8.5.

I proposed a statistical test to compare measures based on an intuitive triad
of possible results: better, worse, or comparable performance; Appendix C.
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Appendix A

Integral Images

Ramirez-Ortegén et al. [72] extended the integral image [89] to compute effi-
ciently any statistical moment in subsets of pixels in neighborhoods with radius r
of an image F. This is particularly useful for the transition method, and for statis-
tical binarization methods.

Definition A.1: The integral image Fs of a subset S C P in an image F is an
image defined as

Fs@p= ), D, F.) 15, (A.1)

O<h<iO<k<j

where 15(p; ;) denotes the indicator function

0 otherwise.

| ifp..
15(p;) = { ifpij€S (A2)

The efficiency of integral images emerges from the linearity of its calculation,
see Fig. A.1, given by

, Fslp)  ifj>0
Fs(p;;)) = F(p;j) - 1s(p; ;) + Fs(piy ;) ifi>0 (A.3)
~Fs(pi_y ;) ifi>0andj>0

As an immediate result of (A.3), the sum of F(g) for ¢ € S,(p, ;) is computed
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Fs(p;;) = Z Z (Pri) - 1s(Pi ;)
0<h<i 0<k<j .

= F(p,;;) - 1s(p;;) + Fs(pi_vj) [ i
Rls(piss e is (e SR S L

Figure A.1 — Calculation of the integral image of a pixel in general position.

as

>, E@= 4] F=

qESF{Pr._I] ‘5 ‘p”
~Fs(P; j_r1) if j—r>0 (A.4)
FS(PI:.“') + _Fs(p{'-—r..l‘j) ]f.l' = = 0
+F.S(P{~r—l.j—r'—l) ffr ;JZ%
with i = max {.f + 1, n_\.}. and w = max {j + r, n,}, where n, is the number of rows
in F, and n, is the number of columns. Figure A.2 shows the calculation (A.4) of
a pixel in general position (Definition 2.10).
Remark 2.5 states that the frame isolate operator is quickly computed since

the cardinality of any subset S of a rectangular partition % is computed by integral
images in constant time. For this.

Sl = > 1s(@) = [+)1s (A5)
qeS(p) Siip)

Moreover, given any image F,

1 ¢ F

¥ Siip)
e SN A6
HES, () S, qg;m (q Ghils (A.6)

Sr(p)



pi—r—l.j—r—] p;--r—t._g+r'

Pr(p; ;)

Pigrg—r—1 P Piirjir

1 1

Figure A.2 — Calculation of (A.4) for a pixel in general position.

and

>, [F@r = [+ P (A7)

qeS;(p) Si(p)

from which 6—:‘:_._5 (p Can be computed in constant time according (B.2) as

; I A=
ol F(@I*| -2
F.5(p) ’S}(p)l — il QESEP} [ F.5:(p)
Ii'J FE - l{fj F 2 (AS)
Siip) Srlp)

S|

Sr(p) Se(p)
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Appendix B

Mean and variances in sets

Given Hp4(i) = |{p € A | F(p) = i}, denote

e The mean of F in A as

1 o s
) ~ Z F(p) ifA+0
MHrEa = pelA|

0 otherwise.

e The unbiased sample variance of F in A as

5 ﬁ}—uz F(p) -2 if|Al > 1
Opg =

peA

0 otherwise,

where /1., = [fir.a]” and F(p) = [F(p)* .

e The biased sample variance of values F in A as

4 = FAp) =, ifIAI> 0
g = pEA
0 otherwise.

e The unbiased sample variance of logarithms in A

A~
i
N A
o In[] + = ]
Hyaz
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(B.1)

(B.2)

(B.4)
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Appendix C

Uncertainty test

In [70], I developed the uncertainty test to compare measures based on an intu-
itive triad of possible results: better, worse, or comparable performance.

Given an image, suppose that we are able to compare the performance of two
methods x and y based on some criterion. In this context, performance means
how well the method performs its task. Also suppose that there are only three
possible outcomes of the method’s comparison in a single image: Method x better
than method y (E,), method y better than method x (E,), and method x as good
as method y (E3). Therefore, we ascertain that method x is better than method y
in an image population if E; occurs more frequently than E,. More formally, let
pi = Pr(E;) for i = 1,2, 3 be the probability of occurrence of E; in an image which
was randomly drawn from an image population. Then, our assessment is based on
the numerical relation between p; and p;.

Let the random variable N; indicate the number of occurrences of E; in a sam-
ple of n images which were independently and randomly drawn from a large pop-
ulation of images. Then, the triad (N, N>, N3) follows a trinomial distribution'.

Assume that (n;,n,,n3) is an observed vector of (N, N>, N3); the probability
of observing (1, 15, n3) is given by

Y(ny, no, n3sn, pr, p2, p3) = Pr(Ny = 0y, N = ny, N3 = n3)
(C.1)

n!
== ny oy oy
T P L M R I
Hy:-Ral-HAj3.

where -! denotes the factorial function. Therefore, p; can be estimated by p; = =.

ITechnically speaking, this is sampling without replacement, so the correct distribution is the
multivariate hypergeometric distribution, but the distributions converge as the population grows
large.
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Given a postive integer n, the
factorial of n is defined as n! =
n-fn—=1]-...2- 1. Factorial of

zero is defined as 0! = 1.
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Unfortunately, large samples to ensure convergence may be unavailable, and the
probability of observing p; < p, may be significant if p; — p» > 0 is small.

The problem is then to measure how unlike @ - p; > p, for @ < 1 is, given that
p1 < pa. Therefore, the upper bound of Pr(a - py = p> | pi < p») for all possible
pairs p; < ps is the maximum probability of observing @ - p; = p, while the true
probabilities p; and p;, are such that p; < p,.

I named this probability as a-uncertainty, which can be estimated by

UN(n,@) = max { Z Yy, X2, X35 1, Vs V2, ¥3) (C.2)
(¥ia2)elY
(xp.az.03)eX

where
M= {(y]._)-‘g) e R’ [0y <y, <landy +y < ]}‘ (C.3)
y3=1=y1 =y, (C4)

and

= {(X|._.X2._.I3) eN? |a-x; = xpand x4 x5 + x3 = n}. (C.5)

Table C.1 presents values of a-uncertainty for different values of n and .
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(e H

25 50 75 8 100 150 200 300 400
095[ 0500 0.444 0.409 0373 0382 0403 0362 0343 0201
0.90 | 0.345 0336 0322 0295 0309 0.284 0218 0.193 0.147
0.85 | 0.345 0240 0.244 0225 0.184 0.144 0.115 0.074 0.049
0.80 | 0.345 0240 0.178 0.166 0.136 0.082 0.052 0.028 0.012
0.75 | 0.212 0.161 0.124 0.080 0.067 0.043 0.020 0.006 0.002
0.70 | 0.212 0.101 0.053 0.053 0.044 0.014 0.007 0.001 0.000
0.65 | 0.115 0.059 0.032 0.020 0.018 0.006 0.001 0.000 -
0.60 | 0.115 0.032 0.018 0.011 0.006 0.001 0.000 - :
0.55 | 0.054 0.016 0.005 0.003 0.002 0.000 - 3 4
0.50 | 0.054 0.008 0.003 0.001 0000 - 5 - 8
0.45 | 0.022 0.003 0.001 0.000 - - ~ - >
0.40 | 0.022 0.001 0.000 - = - s E -
0.35 | 0.007 0.000 - S - - - - :
0.30 | 0.002 - : . 4 = u z i
0.25 | 0.002 - - . 2 3 X e -
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Johannsen’s algorithm, 101, 104, 105
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printing, 2
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Bayesian decision

theory. 68
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Bernholt et al. cited in, 128
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Berrendero cited in, 128
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Bersen’s algorithm, 6
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image, 12
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of gray intensities, 88
biased sample variance of values F, 157
Big -0, 125
binarization, 3
contrast binarization, 5
definition, 3, 19
histogram cluster binarization, 5, 21
spatial binarization, 6
statistical binarization, 5
binary
image, 12
bleed-through, 2
Boltzmann-Gibbs. 25
breakdown
point, 123-125
Bruckstein
Yanowitz and Bruckstein cited in, 6

Canny

Canny cited in, 6, 81

edge detector, 6
Caron

Caron et al. cited in, 4, 63, 136
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distribution, 137
Chan

Chan et al. cited in, 35, 61, 86
characters

rotated characters, 2

slanted characters, 2
Chen

Chen’s method, 6

Chen et al. cited in, 4, 6
Cheriet

Moghaddam and Cheriet cited in, 21, 23
Cho

Cho et al. cited in, 25
Chou

Chou's method, 23

Chou cited in, 21

Chou et al. cited in, 4, 23
Chow

Chow and Kaneko cited in, 31, 43, 145
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Clauset et al. cited in, 137
command-line

command-line interface, 100
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form, 76
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run-time complexity, 124
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image, 10
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contrast
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differences, 34
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€ross

neighborhood, 13, 113
cross isolate

operator, 15, 57, 115

transition operator, 57, 115
Croux

Croux et al. cited in, 128

de Solla

de Solla cited in. 139
diagonal

neighborhood, 13, 113
diagonal isolate

operator, 15, 57, 115

transition operator. 57, 115
differences

background differences, 34

contrast differences, 34

foreground differences, 34

least trimmed differences, 129
differences of gray intensity

notation, 34
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estimator, 55, 123, 130
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library, 1
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distribution
Cauchy distribution, 137
exponential distribution, 136
Gumbel distribution, 49
Pareto distribution, 136, 137
power law distribution, 53, 136
power-law distribution, 136
Zipf distribution, 136
Dots per inch, 98
double-linear
threshold double-linear, 54
threshold, 123
threshold, 115
transition threshold, 113
dpi, 98

Edelsbrunner
Edelsbrunner and Souvaine cited in, 127
edge
pixel, 79, 149
set, 29
edge detector
Canny edge detector, 6
Edgeworth
Edgeworth cited in, 126
efficiency, 124
asymptotic efficiency, 124, 125
definition, 124
efficient
estimator, 125
empirical complementary cumulative distri-
bution
function, 51, 137
empirical scaled density
function, 51
entropy
nonextensive entropy. 5
Tsallis entropy. 5
equation
quadratic equation, 76
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error
minimum probability of error, 86
probability of error, 69
error, 137
estimation
Bayesian estimation, 46
maximum likelihood estimation, 46
estimator, 124
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differences-rate estimator, 55, 123. 130
efficient estimator, 125
Generalized S- estimator, 128
least median of squares estimator, 127
least quartile difference estimator, 128
least square estimator. 126
least sum of absolute errors estimator, 126
least sum of squares estimator, 126
least trimmed sum of squares estimator, 128
least-square estimator, 55
M- estimator, 126
repeated medians estimator, 127
unbiased estimator, 124
expansion
operator, 16
exponent
parameter, 136
exponential
distribution, 136

factorial
factorial function, 159
Fisher
information, 124
Forbes
Magazine, 138
foreground
contour, 35
definition, 19
differences, 34
interval, 65
proportion, 70
surface, 33
tendency, 32
form
form, 126
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simple form, 72, 76 mean of gray intensities, 26, 30
Forsyth sample standard error of gray intensities,
Forsyth and Ponce cited in, 61 89
frame variance of gray intensities, 26, 30
isolate operator, 115 gray intensity
frame isolate notation, 22, 26, 30
operator, 15 gray-intensity
transition operator, 115 measure, 88, 103
FreeOCR gray-intensity logarithm
OCR. 100 unbiased sample variance of gray-intensity
function logarithm, 90
complementary cumulative distribution func- grid, 10
tion, 137 Gumbel
Discrete Laplace function, 39 distribution, 49
empirical complementary cumulative dis- Gupta
tribution function, 51, 137 Gupta cited in, 21
empirical scaled density function, 51
function, 159 Hampel
image function, 11 Hampel cited in, 125
linear kernel function, 39 histogram
maxmin function, 7, 39, 112, 115 of gray intensities, 22
transition function, 7, 29, 39, 149 histogram cluster
binarization, 5, 21
Gatos Huber
Gatos et al. cited in, 73 Huber cited in, 126
general position hybrid
definition, 14 algorithm, 4
notation, 14 hypheﬁaﬁﬂn
Generalized S- line-break hyphenation, 2
estimator, 128
Geusebroek ideal
Geusebroek and Smeulders cited in, 136 image, 29, 86, 149
global Illingworth
algorithm, 4 Kittler and Illingworth cited in, 24, 31, 43
thresholding, 20 image
Gonzalez bi-level image, 12
Gonzalez and Woods cited in, 10, 12, 22 binary image, 12
Gonzalez cited in, 14 continuous image, 10
Govindaraju function, 11
Milewski and Govindaraju cited in, 3, 4 gray image, 11
gray ideal image, 29, 86, 149
image, 11 integral image, 8, 26, 110, 153
gray intensities local contrast of image, 33
biased sample variance of gray intensities, r-simple image, 86

88 simple image, 86
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operator, 16
transition operator, 61, 115
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INEGI
INEGI cited in, 136

information

Fisher information, 124
integral

image, 8, 26, 110, 153
intercept

parameter, 124
interest

region of interest, 63
interface

interface, 100
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background interval, 65

foreground interval, 65
isolate

transition operator, 57, 113, 115
isolate operator

frame isolate operator, 115
isolated transition

pixel, 60

Jain

Trier and Jain cited in, 4, 22, 26, 30, 101,

113

Johannsen

Johannsen's algorithm, 101, 104, 105
Johannsen and Bille

Johannsen and Bille® algorithm, 24
Jolion

Wolf and Jolion cited in, 5
Junker

Junker et al. cited in, 99

k-isolate
operator, 15
Kamel
Kamel's algorithm, 6
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Kaneko
Chow and Kaneko cited in, 31, 43, 145
Kapur

Kapur’s algorithm, 25, 26, 101, 104, 105
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Kayallieratou
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Kavallieratou’s algorithm, 5, 28, 101, 103,

104, 110

Kavallieratou and Stathis cited in, 5
Kavallieratou cited in, 5, 27

Kay
Kay cited in, 35, 124

kerning
varying kerning, 2

Kittler
Kittler’s algorithm, 24, 101, 104, 105
algorithm, 113
Kittler and Illingworth cited in, 24, 31, 43
Kittler cited in, 5
Kittler's threshold, 5

Kittler’s
algorithm, 116

Kohmura
Kohmura and Wakahara cited in, 3

Laplace
operator, 6

leading
varying leading, 2

least median of squares
estimator, 127

least quartile difference
estimator, 128

least square
estimator, 126

least sum of absolute errors
estimator, 126

least sum of squares
estimator, 126

least trimmed
differences, 129

least trimmed sum of squares
estimator, 128
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Lee

Ng and Lee cited in, 89
leverage

leverage point, 127
Levine

Levine and Nazif cited in, 30, 88
Li

Li's algorithm, 6

Li cited in, 128

Li et al. cited in, 6
Liao

Liao et al. cited in, 23
library

digital library, 1
line-break

hyphenation, 2
linear

regression model, 123
linear kernel

function, 39
linear mean-variance

linear mean-variance threshold, 65, 67
local

algorithm, 4

thresholding. 20
local contrast

of image, 33
log-log

plot, 53
lognormal

lognormal threshold, 78

threshold, 113, 115
lower bound

Cramer-Rao lower bound, 124
Lu

Lu’s algorithm, 6

Lu and Tan cited in, 6

M-
estimator, 126
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Forbes Magazine, 138
Maini
Maini and Sohal cited in, 6, 81
Marchand-Maillet

INDEX

Marchand-Maillet cited in, 14, 57

maximum likelihood

estimation, 46
method, 136

maximum matching

string, 99

maxmin

function, 7, 39, 112, 115

mean

of gray intensities, 26, 30

mean of F, 157
measure

absolute potential AC measure. 102, 116

AC efficiency measure, 103, 116

accuracy measure. 99

gray-intensity measure, 88, 103

potential AC efficiency measure, 102

precision measure, 99

region non-uniformity measure, 88, 103

relative potential AC measure, 102

unbiased weighted variance measure, 90,
101

uniform variance measure, 89, 103, 116

uniformity measure, 88

weighted variance measure, 89, 103

Mello

Mello and Schuler cited in, 26
Mello et al. cited in, 3, 4., 26

method

maximum likelihood method, 136
regression method, 55
transformation method, 140
transition method, 7. 45

Milewski

Milewski and Govindaraju cited in, 3, 4

minimum error

thresholding, 5

minimum error thresholding, 24
minimum probability

of error, 86

minimum symmetric

value, 46, 68

minimum-error-rate

minimum-error-rate threshold, 71
threshold. 76
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Moghaddam threshold, 113, 115

Moghaddam’s method, 23
Moghaddam and Cheriet cited in, 21. 23 OCR

MoreDataOCR ABBYY FineReader OCR, 100
OCR, 100 FreeOCR OCR, 100
MoreDataOCR OCR, 100
n-general OneNote OCR, 100
position, 129 SimpleOCR OCR, 100
Narula Tesseract OCR, 100
Narula and Wellington cited in, 126 TopOCR OCR, 100
Nazif Oh
Levine and Nazif cited in, 30, 88 Oh’s algorithm, 6
Needleman Oh cited in, 6
Needleman and Wuntsh cited in. 99 OneNote
negative transition OCR, 100
set, 45 operator
neighborhood cross isolate operator, 15, 57, 115
cross neighborhood, 13, 113 diagonal isolate operator, 15, 57, 115
neighborhood cross, 15 expansion operator, 16
diagonal neighborhood. 13, 113 frame isolate operator, 15
rectangular neighborhood, 13 incidence operator, 16
square neighborhood, 13 k-isolate operator, 15
net Laplace operator, 6
net wealth, 138 rectangular isolate operator, 15
wealth, 138 simple expansion operator, 17
Newman simple isolate operator, 15
Newman cited in, 53, 136, 137 order statistic, 49
Ng Otsu
Ng's algorithm, 23 Otsu’s algorithm, 22
Ng and Lee cited in, 89 Otsu’s threshold, 36
Niblack Otsu’s algorithm, 101, 104, 105, 110, 113,
Niblack’s algorithm, 26 118
Niblack’s threshold, 27, 65 Otsu cited in, 5, 89
Niblack’s algorithm, 5, 101, 103, 104 Otsu’s threshold, 5
Niblack cited in, 5, 14
Nieto-Castanona P-tile
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noise, 61 comparison, 97
type left, 138 parameter
type left-right, 138 exponent parameter, 136
type right, 138 intercept parameter, 124
nonextensive scaling parameter, 136
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payware

payware software, 100
Pietikdinen

Sauvola and Pietikdinen cited in, 4, 5

pixel, 10
edge pixel, 79. 149
isolated transition pixel, 60
notation, 10
t-transition pixel, 149

transition pixel. 7, 29, 34, 35, 45

plot
log-log plot., 53

point
breakdown point, 123-125
point, 127

Ponce

Forsyth and Ponce cited in,
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set, 45
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rule

Bayes decision rule, 68
run-time

complexity, 124

Sahoo
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101, 113
Sauvola
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Sauvola’s threshold, 36
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Sauvola and Pietikédinen cited in, 4, 5
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Schuler
Mello and Schuler cited in, 26
Serra
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transition set, 7
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image, 86
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transition operator, 80
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operator, 17
transition operator, 58
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operator, 15
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of image, 32
software
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Maini and Sohal cited in, 6, 81
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squared neighborhood
notation, 13
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string
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Stromberg et al. cited in, 129
surface
background surface, 33
foreground surface, 33

t-transition

pixel. 149
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Lu and Tan cited in, 6
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Bayesian decision theory, 68
threshold
autolinear threshold, 113
double-linear threshold. 115
double-linear, 54
Kittler’s threshold, 5
lognormal threshold, 113, 115
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normal threshold, 113, 115
Otsu’s threshold, 5
Portes’s threshold, 5
quantile threshold, 112
thresholding
algorithm, 5
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global thresholding, 20
thresholdingiterative global, 27
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minimum error thresholding, 5
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OCR, 100
transformation
method, 140
transition
balance. 62
function, 7, 29, 39, 149
method, 7. 45
pixel, 7, 29, 34, 35, 45
set, 7
value, 7, 29
transition method, 2
transition operator
cross isolate transition operator, 57, 115
diagonal isolate transition operator, 57, 115
dilation transition operator, 62, 115
frame isolate transition operator, 115
incidence transition operator, 61, 115
isolate transition operator, 57, 113, 115
rectangular isolate transition operator, 57
simple edge transition operator, 80
simple expansion transition operator, 58
transition set
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transition threshold
double-linear transition threshold, 113
transition threshold quantile, 51
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Trier and Jain cited in, 4. 22, 26, 30, 101,
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Trier cited in, 33
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image, 12
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test, 8, 97, 100, 159
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Wakahara
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Wellington

Narula and Wellington cited in, 126
Wolf

Wolf’s threshold, 27, 36
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Yanowitz
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