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Abstract 

This thesis introduces a novel binarization method based on the concept of t
transition pixel. lt includes five main contributions. The first contribution is a 
generalization of edge pixels, namely t-transition pixel. Such pixels are charac
terized with high transition values computed with discriminant functions called 
transition functions. In particular, maxmin function is proposed and widely an
alyzed. The second contribution is the formalization of the transition method 
for binarization, and to a minor degree, for edge detection, and for detection of 
regions of interest. In this method, binarization is performed by extracting in
formation only from transition pixels . Comparison studies show that it greatly 
outperforms other top-ranked binarization methods. Furthermore, potential appli
cations in edge detection and detection of regions of interest are observed. Two 
minor contributions are derived from the transition method: unimodal thresholds 
for transition values, and morphological transition operators to extract and restore 
transition sets. The third contribution is a mathematical analysis of unsupervised 
measures for segmentation quality, in which the strengths of the weighted vari
ance measure are proved. From this analysis, the uniform variance measure and 
measures based on logarithms of gray intensities are proposed. The fourth contri
bution is a mechanism for systematic comparison of the efficacy of unsupervised 
evaluation methods for parameter selection of binarization algorithms in optical 
character recognition (OCR). Moreover, a statistical test is proposed to compare 
measures based on an intuitive triad of possible results: better, worse or compara
ble performance. The fifth contribution is addressed in a new chapter, which intro
duces a novel unbiased and efficient slope estimator for linear regression model. 
The computational cost of this estimator is considerably lower than the current 
state of the art. 
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Notation 

Variables and Symbols 

a,ß, ... 

a,b, .. . 
p,q, ... or 

P;,i, qi,i' · · · 
x,y, ... 

Sets 

3(,13, ... 
3l u 13 

In algorithms, a lower case Greek letter denotes a tuning pa
rameter. 
Lower case letter denotes a scalar. 
Lower bald letter denotes a pixel. I use sub-indexes in a pixel 
if the pixel position is referred. 
Sans Serif Font and italic shape denotes a random variable. 
Estimator of •. 

Upper case "calligraphic" letters denote sets. 
Union of two sets. That is, the set containing all elements in 
either 3{ or 13. 
Intersection of two sets. That is, the set containing all ele
ments that are in both 3{ or 13. 
The cardinality of set 3{. 

Approximation set of 3l. That is, l3ll ~ l.7ll ~ 13l n .'.1II. 
p is an element of 3{. 

p is not an element of 3l. 

Reserved Set Names 

Set of natural numbers. That is, N = {O, 1, 2, . . . } 
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XIV 

:B 
'F 
rp 
P„(p) 

/F,.(p) 

Set of integer numbers. That is, 
Z = ( ... , -2,-l,O,l,2, .. . } 
Background set. 
Foreground set. 
Union of foreground and background. 

NOTATION 

P,.(p) c rp is a squared neighborhood centered at the pixel p 

of sides with length 2r + l. 
t-transition set. That is, 
1P = {p I P1(p) n :B * 0, P1(p) n 'F * 0) 
Negativetransition set. That is , r:B = 1P n :B. 
Positive transition set. That is, 1'F = 1P n 'F. 
Transition set in the pixel neighborhood. That is, 1P ,-(p) = 
1P n P,.(p) 
Negative transition set in the pixel neighborhood. That is, 
1:ß„(p) = /13 n P„(p) 
Positive transition set the pixel neighborhood. That is, 
/T,.(p) = 1'F n P,(p) 

Functions and Images 

A,B, . .. 
Äs,Bs, ... 
F(p) 
argmax {F(x)) 

xe-7! 

arg min {F(x)) 
xe-7! 

max {F(x)} 
xe-7! 

min {F(x)} 
xe.7! 

HF,-7! 
HF,.7! (y) 

Capital letter denotes functions or images. 
Integral image. 
Value of the function or image F in the point p. 
The value of x that leads to the maximum value of F (x) in set 
3{. 

The value of x that leads to the minimum value of F (x) in set 
.JI. 
The maximum F(x) value in set .J!. 

The min im um F(x) value in set .J!. 

Histogram of F in set .J!. 
Frequency of the value y = F(x) in set .J!. This is, HF,.7!(y) = 
l{x E .JI I F(x) = y}I 



PROBABILITY AND DISTRIBUTIONS 

Reserved Image Names 

XV 

B 
I 
V 

T 

Binary image function. B : 'P - {0, 1 }. 
Gray-level image function. I : 'P - {0, 1, ... ,g- l,g). 
Transition value image. V : {'Ps(p) 1 p E 'P} - {-g, -g + 
l, ... ,g- l,g). 
Threshold image. T : {'P„(p) 1 p E 'P} - {0, 1, ... , g). 

Probability and Distributions 

µF,A 
2 

erF,A 
Jl-F,A 
~2 
er F,A 
E(x) 
Pr(-) 
Pr(p E .J{) 

Var(x) 
if;(µ, er2) 

Mean of F within a set .J{. 

variance of F within a set .J{. 

Estimator of the mean of F within a set .Jl. 
Estimator of the variance of F within a set .J{. 

Expected value of a random variable x. 
Probability. 
Probability that a pixel p belongs to .J{. 

Variance of random variable x. 
Probability density function of normal distribution mean µ 
and variance er2. 

1 ( (x - µ)
2

) q;(x;µ,er) = _r,c_ exp -
2 

• 
v2ner 2er 

Probability density function of lognormal distribution with 
parameters µ and er2

. 

. 1 ( (ln(x) - µ)2) 
Ä(x;µ, er) = . r,c_ exp -

2 2 . 

x v2ner er 
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Chapter 1 

lntroduction 

What is essential is invisible to the eye. 

The Fox in The Little Prince 
by Antoine de Saint-Exupery 

French wri ter ( 1900-1944) 

Libraries such as the General Archive of the Nation (Mexico) [52], the Li
brary of Congress (United States of America) [63] , and the National Archives 
of Egypt [64] have been digitalizing historical printed documents like ancient 
codices, maps, newspapers and books to preserve and spread their cultural her
itage. 

While digitization in itself is enough to preserve the contents of documents, a 
primordial benefit of digitization is the extraction of information from the digital
ized images, and the access to this information through digital libraries. 

A digital library is a portal site wherein the public can remotely search, digital library 

visualize and download digitalized images of documents. Moreover, user may 
have access to historical and ancient documents whose physical consultation is 
unavailable due to security or preservation reasons. 

The main problem in the construction of digital libraries lies in the extraction 
of information from hundreds of thousands of ancient documents. For example, 
since the establishment of the National Archives of Egypt (NAE), the number 
of documents without indexing or classification accumulated in its stores has ex
ceeded one hundred million. Because of this, the access to a certain document in 
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When the paper is too thin 

or the ink applied too heav

ily, the color can bleed or seep 

through to the other side. This 

is known as blced-through . 

2 
CHAPTER 1. INTRODUCTION 

a particular subject, even if bibliographic records are ~vailable,. is difficult. The 
digitalization of bibliographic records is the only feas1ble _s~lut1on to that ~rob
lem. The NAE plans to create a database with around 25 m1lhon records to mdex 
a hundred million documents. 1 This enormous labor requires the automation of 

the o-reatest possible number of processes. 
The automatic extraction of information from scanned images of historical 

documents presents several difficulties. Documents use non-standard fonts and 
have different types and degrees of degradation, such as: 

1. Artifacts due to printing: weak strokes, ink stains, smudged characters, 

bleed-through. 

2. Artifacts due to aging: dark spots (humidity or burns) and outlines of paper 

folds. 

3. Slanted characters. 

4. Rotated characters. 

5. Varying kerning (space between characters), 

6. Varying leading (space between lines). 

7. Line-break hyphenation. 

In this thesis, I tackle the problem in documents caused by artifacts due to 
aging and due to printing. My novel approach, which I have named the transition 
method, is based on a generalization of edge pixels. 

My aim in this thesis is to systematically describe the transition method for 
identifying characters and relevant strokes in documents. Nevertheless, I also su
perficially describe how the transition method can be used for edge detection, and 
the detection of regions of interest. I also dedicate an entire chapter to exploring 
unsupervised measures to assess the binarization accuracy. 

I assume that the objects of interest in a document can be distinguished by 
extracting diverse features based on the gray intensity and the spatial position 
of pixel . The transition method particularly exploits the distribution and spatial 
relationship of the difference of gray intensity between objects and background, 

1 Information about this project is available in: 
http://www.nationalarchives.gov.eg/nae/Content?id=..37 



1.1. BINARIZATION 3 

modeling the distribution of gray intensities of both objects and background in 
small neighborhoods. 

Even though the transition method has the potential to deal with uneven illumi
nation, this thesis will focus only on images without sudden illumination changes 
in small neighborhoods. 

1.1 Binarization 

Conceptually, images often have a natural partition between foreground and back- binarization 

ground. Intuitively, binarization consists of estimating such a partition, where we 
consider as foreground the set of pixels in an image containing the objects of in-
terest and the background representing the rest of the image. 

What constitutes foreground depends on the objects to be recognized. While 
OCR applications are interested in the location and extraction of ink with high 
contrast [50, 53], understanding the information tobe extracted in documents can 
depend on the objects and their relationships. Figure 1.1, for instance, shows (left) 
a triangle and (right) grid lines with similar gray intensities. Both images contain 
dark pixels which certainly belang to the foreground. However, in (left) we may 
keep the triangle in the binary image, in (right) we could possibly remove the grid. 

Figure 1.1 - The context changes the definition of foreground. 

The previous example shows that binarization is a complex problem if only 
gray intensities are considered in the binarization process. Contextual information 
is needed to solve problems similar to those in Fig. 1. 1. However, even though 
color images provide more information than those in gray intensities, few bina
rization researchers, like Kohmura and Wakahara [41] , work directly with color 
images because of the computational load and analysis complexity. The rest of 
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the researchers transform an image from color to gray intensities before applying 

binarization algorithms. For example: 

1. Chou et al. [13] developed a binarization system for images produced by 
cameras which deals with uneven illuminated images. They divide a gray
intensity image into several regions and decide how to binarize each region 
fm1her. 

2. Caron et al. [7] detect regions of interest characterizing each pixel with a 
template of gray intensities of 3 x 3, the frequency of which appears to obey 
a power law distribution . 

3. Milewski and Govindaraju [53] presented a methodology for separating 
handwritten letters from background in carbon--copied medical forms. They 
compare the mean of gray intensities of small neighborhoods around the 
pixel of interest. 

4. Both Chen et al. [11] and Mello et al. [50] binarize documents using gray
intensity images as input. Whereas Chen et al. generate the binary image 
from the edge image of the gray-intensity image, Mello et al. compute a 
threshold based on a weighted entropy equation. 

I follow the approach of the previous examples. That is, my method takes a 
gray image I as input and retums a binary image B as output, wherein pixels in 
white represent the background approximation and pixels in black represent the 
foreground approximation. 

1.2 Overview of binarization techniques 

Several authors [79] , [80] [87] have categorized the binarization algorithms ac
cording to where the information to compute the pixel threshold came from. In 
this manner, global algorithms label each pixel using information from the whole 
image while local algorithms rely on information from the pixel neighborhood. 
Hybrid algorithms combine inf<6'rmation from the whole image and pixel neigh
borhood. Notice, however, that both global and hybrid algorithms can be trans
formed into local versions by restricting the analysis to the pixel neighborhood. 

With the aim of overcoming composite foreground and background areas, all 
algorithms considered in this thesis were implemented as local algorithms even 
though some of them were originally global or hybrid algorithms. 
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Thresholding algorithms are a particular type of binarization where a pixel is 
classified as foreground if the gray intensity of the pixel is darker than a threshold. 

I categorized some thresholding algorithms related to my approach, based on 
which features of gray intensities the algorithm manipulates. Hence, a binariza
tion algorithm may fit into two or more categories. 

Histogram duster binarization algorithms assume that the foreground can histogram cluster 

be estimated by those pixel whose gray intensity is lower than or equal to some binarization 
threshold. They take as input the histogram of gray intensities. Classical examples 
of these algorithms are Kittler's, Otsu's, and Portes's thresholding. 

The minimum error thresholding [40] (Kittler's threshold) maximizes the 
likelihood of the joint distribution of gray intensities assuming that foreground 
and background are normally distributed with different means and variances2 . In 
contrast, Otsu's threshold [66] , without assuming an a priori di stribution, mini
mizes the sum of the variance of gray intensities of foreground and background . 
Portes's threshold [67] maximizes the nonextensive entropy, also called Tsallis 
entropy [88], of both foreground and background. 

Statistical binarization algorithms are another class of binarization algo- Statistical 

rithms, which rely on information from statistics of gray intensities. These algo- binarization 

rithms usually compute the mean and variance of gray intensities in the pixel 
neighborhood. I compared my approach specifically with four of these algo-
rithms: Kavallieratou's algorithm [36] , [37] ; Niblack's [61]; Sauvola's [80] ; 
and Wo1f's [90] algorithms. 

Kavallieratou's algorithm sets to white the pixels with a gray intensity above 
the local mean while the rest of the pixels are normalized. The process is iterated 
until a stopping criterion is satisfied. Sauvola 's algorithm is a modified version 
of Niblack's algorithm; both algorithms assume that the gray intensities of the 
background are approximately normally distributed and select a threshold as the 
lower limit of an interval centered in the local mean of gray intensities. Wolf and 
Jolion modified the equation of Sauvola's threshold by adding the minimum gray 
intensity of the pixel neighborhood and the maximum standard deviation of gray 
intensities of all neighborhoods, which act as dynamic variance-normalization fac
tors. 

Edge-Contrast binarization algorithms exploit edge information and local edge-contrast 

contrast of gray intensities. These algorithms assume that there is a !arge dif- binarization 

2 Sezgin and Sankur [82] present an exhaustive categorizati on of thresholding. They affi 1m thal 
the minimum error thresholding and Sauvola's threshold are the best-scored algorithms binarizing 
documents uni formly illuminated and degraded with noise and blur. 
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ference between the gray intensity of foreground and background while the gray 
intensities within each set do not differ significantly. Indeed, the foreground and 
background may correspond to those pixels whose gray intensities are the mini
mum and maximum in the neighborhood, respectively, in the ideal situation. Some 
examples of this kind of binarization algorithms are Bersen's, Kamel's, Oh's, Li's , 
and Chen's algorithms. 

Bersen's algorithm [3] computes a threshold which lies between the maxi
mum and minimum gray intensity in the neighborhood. More sophisticated edge
contrast algorithms have been proposed by Kamel [34] , and Oh [65]. These bina
rization methods use the contrast of gray intensities between small neighborhoods 
around the pixel of interest. 

Li's algorithm [44] uses the Laplace operator and a covariance matrix of 
gray intensities to compute a threshold. Chen's method [11] applies the Canny 
edge detector [6] to generate the edge image. Several morphological operators 
subsequently help to generate an enhanced binary image. Both algorithms apply 
a criterion for selecting pixels with high information content. 

Remark 1.1: In this thesis, I refer as "method" to those algorithms whose sub
tasks can be performed with different algorithms such that the election of any of 
these "sub-algorithms" in a step may lead to different binarization results . For 
example, suppose that a binarization algorithm requires edge detection. This task 
can be performed by Canny's, Prewitt's [ 47], or Robert's Cross algorithms, to 
mention some; since the output of these algorithms may differ from each other, 
the binarization results may change according to which algorithm performs the 
edge detection. 

Spatial binarization algorithms gather information from spatial relationship 
between gray intensities. Some edge-contrast binarization algorithms, like Kaval
lieratou 's, Oh's and Kamel's algorithms, could be classified as spatial binarization 
algorithms because they analyze relationships of gray intensities between small 
neighborhoods. Lu's and Yanowitz's algorithms also fall within this category. 

Lu's algorithm [46] computes a polynomial surface for modeling shading 
fluctuations of gray intensities. Likewise, Yanowitz and Bruckstein [5] (Yanowitz's 
method) proposed an adaptive threshold surface, determined by interpolation of 
the image gray intensities at pixels where the image gradient is high. 
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1.3 Overview of this thesis 

Chapter 2 introduces and formalizes preliminary concepts of digital images (pixel, 
image and neighborhood). lt also introduces some morphological operators that I 
will use later on. Readers who are not interested in such a meticulous formalism 
can skip this chapter. However, I advise not to skip Section 2.2 where the concept 
and notation of neighborhoods are defined. 

The purpose of Chapter 3 is to examine the local implementation, assump
tions and variants of several binarization algorithms which are either related to 
my method or considered reference algorithms in the binarization literature. 

The first main contribution of my thesis is enclosed in Chapter 4, where I 
propose and describe the concept of t-transition pixel from which I derived a 
novel approach for binarization, edge detection and detection of region of interest. 
The theory of transition set, transition functions, and transition values is also 
introduced and developed in this chapter. Specifically, I describe the transition 
function maxmin. 

The second main contribution of my thesis is in Chapter 5. I mathematically 
describe the transition method in gray images for binarization, and to a minor 
degree, for edge detection, and for detection of regions of interest. Several bina
rization methods based on the transition method are proposed. Additional to these 
binarization methods, I describe a simple method for edge detection and a simple 
method for detection of regions of interest. 

In Chapter 6, I address the problem of parameter selection of binarization al
gorithms. I review several unsupervised evaluation methods to assess the quality 
of a segmentation, and propose a several novel measures based on the normal 
and lognormal distribution. I also statistically analyze each of the reviewed mea
sures and ascertain whether a measure is suitable or not to assess a binarization 
algorithm. 

I summarize the results of my publications [72], [73], and [70] in Chapter 7 
where I propose a mechanism for systematic comparison of the the efficiency 
of unsupervised evaluation methods for parameter selection of binarization algo
rithms in optical character recognition (OCR). I also analyze and compare bina
rization -algorithms based on the transition method with several top-ranked bina
rization algorithms. 

Finally, Chapter 8 introduces a novel estimator for the slope parameter in a 
simple linear regression. This estimator is unbiased and efficient. Moreover, I 
show that it has a low computational cost. 

Two appendixes are to be noted: Chapter A extends the integral image con-
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cept to efficiently compute any statistical moment in subsets of pixels in neigh
borhoods of radius r. This is particularly useful for the transition method, and for 
statistical binarization methods. In Chapter C, I develop the uncertainty test to 
compare measures based on an intuitive triad of possible results: better, worse 
or comparable performance whereby I ascertain that an algorithm is better than 
another in my experiments. 



Chapter 2 

Digital images 

The journey of a thousand miles 
begins with one step. 

Lao Tse 
Philosopher of ancient China 

The aim of this chapter is threefold. Firstly, digital images are characterized 
as partitions of continuous images. Later on, the concept of neighbor and neigh
borhood of a pixel is introduced. Finally, the last section describes some morpho
logical operators which will be frequently referred to in further chapters. 

2.1 Digitalimages 

Digital images are typically given as sets of discrete points due to the discrete 
process of image acquisition, and the discrete nature of computers from which 
image processing theory develops. In fact, the acquisition of a two-dimensional 
digital image from a camera or scanner is done through a set of sensors. How that 

9 
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process is done is beyond the scope of this thesis; readers interested in pursuing 
the subject further may consult Gonzalez and Woods [26]. 

A continuous image P within [0, w] x [0, h] can be modeled as a finite parti
A partition of a set .J! is tion of the continuous plane within [0, w] X [0, h]. The term pixel is used to refer 
a ctivision of .J! into non- to each element of this partition. A pixel represents an area in two-dimensional 
overl apping and non-empty re- images. 
gions th at cover all of .J!. A 

Definition 2.1: A continuous image Pisa connected and continuous n-dimensional 
finite partition is a partition 

with a finite number of re- region. 
gions. Remark 2.1: P can have any form and, consequently, it does not necessarily take 

the form of an n-hypercube. 

Definition 2.2: A pixel p is an n-dimensional region of an n-dimensional partition 
'P in an n-dimensional image P. 

Two elements p and q of a two-dimensional partition 'P strictly satisfy p n 
q = 0. However, this definition is in conflict with some definitions in this thesis. 
Therefore I consider a softer definition of a partition for images given by the 
following definition. 

Definition 2.3: A two-dimensional image partition 'P of a continuous image Pis 
a set of reg ions p such that 

where 

denotes the area of ·. 

Notation: 

#p:f:0 VpE'P, 

UP = P, 
pE'P 

#pnq =0, 

#· 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

A grict is a panition of non- In this thesis, images are divided in a grid such that Po,o represents the element 
overl apping squares with sides 

of constant length . 
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at the top-left comer of the partition and P1z- i w- l represents the element at the 
bottom-right comer, where h and w denote the ~umber of rows and columns in the 
rectangular partition, respectively. Note the swap of the axes. The notation of a 
pixel Pi,J is simplified top if its spatial location is in-elevant. 

Definition 2.4: A two-dimensional digital image, or imagefunction (these terms 
will be used interchangeably throughout this thesis), is afunction 

F : .Jl - 'Z..d, 

where .J{ c 'P and d is a positive integer. 

(2.5) 

Image values can become negative during processing or as a result of inter
pretation. For example, in radar images, objects moving toward a radar system 
often are interpreted as having negative velocities while objects moving away are 
interpreted as having positive velocities. Thus, a velocity image might be coded 
as having both positive and negative values. 

Remark 2.2: Let 'P be a partition of a continuous image P. Then, p c P (not 
p E P) and p E 'P. 

Remark 2.3: The word image(s) refers to two dimensional digital image(s) through
out this thesis. 

A digital image from cameras and scanners is typically represented by an 
image C : 'P - N3, such that the triplet C(p) = (Cred(p), Cgree11(p), Cb1uiP)) 
represents the color intensity of p, with C,-ed : 'P - N for the red intensity, 
Cgreen : 'P - N for the green intensity, Cb1ue : 'P - N for the blue intensity. 
Bach component of this triplet can vary from zero to a defined maximum value, 
usually black for (0, 0, 0) and white for (255 , 255,255) . 

Because of the computational load, researchers usually transform a color im
age into a gray image, which is an image where only gray tones, including white 
and black, are present. Formally: 

Definition 2.5: A gray image is a two-dimensional digital image 

1: 'P-Zg+ I· (2.6) 

where Zg+ i the set of congruence classes modulo g+ l. That is Z8 + 1 = {0, 1, ... , g} . 
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Gray images are commonly stored with 8 bits per pixel, which allows 256 
(g = 255) different intensities to be recorded. The color black is then represent 
with zero, the color white with g and shades of gray are linearly represented with 
integers i such that 0 < i < g. The precision provided by this format is sufficient 
to avoid visible banding artifacts I and convenient for programming due to a pixel 
occupies a Byte (8 bits). 

As I point out in the introduction, most of the binarization thresholds use a 
gray image as input. Because of this , color images are transformed into gray 
images by a mapping y : Z - Zg+l · For simplicity, I define / as the gray image 
y o F, where F is a color image. Notice that while / depends both on the image 
F and the gray-intensity map y, this dependency will always be clear from the 
context and thus will be left implicit. The transformation y may vary according 
the applications and further methods. In this thesis, I use the transformation 

C(p) ~ I(p) 

Y 299Cred(P) + 587Cgreen(p) + l 14Cb/ue(p) (2-7) 
(Cred(p) : Cgreen(P), cblueCP)) - 1000 . 

As a result of the binarization process, each pixel is associated with either 
1 (foreground), or 0 (background), but not both. Formally, these images can be 
defined as 

Definition 2.6: A binary image is a two-dimensional digital image 

B : rp - {0, 1}. (2.8) 

Because binary images can be stored as a single bit (0 or 1), they are also 
called bi-level or two-level image. 

2.2 Neighborhoods 

Sinc'e image operators will be defined in subsets of P, the notion of neighbors of a 
pixel is defined in a similar manner to neighbors of a vertex in graph theory. That 
is, pixels could be seen as vertexes in a graph and the relation "p E rp neighbor of 
q E P" as an edge between p and q . 

The simplest definition of a neighbor of a pixel is given as those pixels whose 
areas share a common edge with the pixel of interest, namely direct neighbors. 

1 See Gonzalez and Woods [26], pages 62-65 
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Definition 2.7: Let <f> be a grid of an image; the cross neighborhood of a pixel 
pi,j is the set 

where 

,<f> +CPi.) = {Ph,k E P 1 {h, k} E C+(i, j )} , 

C+(i,j) = {{i-1 , j},{i+ 1,j),{i, j - l),{i, j+ l}}. 

(2.9) 

(2.10) 

Likewise, the diagonal neighborhood of a pixel is the set of pixels which share 
a point with the pixel in question; see Fig. 2.1. 

Definition 2.8: Let <f> be a grid of an image; the diagonal neighborhood of a 
pixel P;,j is the set 

<f>x(p;) = {Ph,k E P 1 {h, k} E Cx(i, J)}, (2. 11 ) 

where 

Cx(i, j) = {{i-1 , j-l}, {i - 1,j+ l},{i+ l , j - 1},{i+ l , j+ 1}} . (2.1 2) 

Both cross and diagonal neighborhoods are frequently used in irnage opera
tors that rernove the noise of binary irnages. However, rnost of the binarization 
algorithms and irnage operators in this thesis are defined in terms of the square 
neighborhood centered at the pixel of interest. 

Definition 2.9: Let <f> be a grid of an image; the rectangular neighborhood of a 
pixel P ;,j is the set 

<f>y,x(p;) = {Pti ,k E PI P1i,k * P;,_;, lh - il ::; Y and lk - .il ::; x}, (2. 13) 

where 1 · 1 denotes the absolute value. In particular a square neighborhood is a 
rectangle neighborhood where x = y. 

Notation: 
In the following chapters, local binarization algorithrns are defined in squared 

neighborhoods of radius r so that the notation <f>,.,,.(p;) is simplified to P„(p;)-

Finally, Jet me introduce the concept of the general position for pixels and for 
neighborhoods, which is needed for definitions in Section 2.3 and Section A. 
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Definition 2.10: Given two integers x and y, a pixel P;,J is in a general position 
if and only if P1i k E P for all pair of integers h and k such that lh - il ~ y and 
lk- JI < X. 

Definition 2.11: A rectangular neighborhood P y,x(p) is in a general position if 
and only if p is in a general position. 

Notation: 
For simplicity, the intersection set of 5{ with Pr(p) is denoted as Ylr(p). For ex

ample, 'F,.(p) = 'F n Pr(p), 13r(p) = 13 n Pr(p), and so on. 

. . . . 
' ' ' ·····•--------r···--·-•··-
' ' ' 

j ! 
' ' ' 
l P;ji l 

; : , l l 

...... ) _______ :, ...... · ....... . 

...... :.··· ·····1.·.· . ··---~---.,-·-· ... . 

... .. . ~ ....... ~ ....... . 
IP;/ . 

················---_::::r:::::r::::::: 

.•••••• •••••••❖ · ··· ···i"·······{···· · ·· ❖••·•••• ····· 

' . . . 

:::::::::::::::t:::::::~:::::::r::::::::::::: 
. : : : 
. . . . . . . . . . . 

. •••••• •••• • ••❖ ·· · ·· · ·i- ·· ·· · ··~··· · ··· ❖·•••••• ••• . . . 

Figure 2.1 - From left to right: cross neighborhood, diagonal neighborhood and 
square neighborhood. Pixels in the neighborhood of P;,J are shown in gray. 

2.3 Morphological operators 

The basis of mathematical morphology is given by set theory and, more specifi
cally, by Minkowski algebra. I attempt to introduce some basic morphological 
operators which I use to remove noise in binary images. For further details on the 
field of mathematical morphology and a formal introduction of the operators be
low, the interested reader is referred to [26], [48] , [61], and [81]. For the purpose 
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of this thesis, I describe two major morphological operations. 

2.3.1 Isolate operators 

Definition 2.12: The simple isolate operator is defined as 

if<U n P(p) t (/) and p E V 

otherwise, 

15 

(2.14) 

where <U is a subset of a partition P of a continuous image, and P(p) is a neigh
borhood of p. 

Three isolate operators can be defined with the cross neighborhood, diago
nal neighborhood and rectangular neighborhood . In this manner, cross isolate 
operator refers to the simple isolate operator with the cross neighborhood. The 
diagonal isolate operator and rectangular isolate operator are defined sirni
larly. 

I define a generalization of isolate operator as: 

Definition 2.13: The k-isolate operator is defined as 

V 8 P(p) = {{p} 
k (/) 

ifl<U n P(p)I ~ k and p E V, 

otherwise, 
(2.15) 

where <U is a subset of a partition P of a continuous image, and P(p) is a neigh
borhood of p. 

Remark 2.4: From the previous definitions: <U 8 P(p) = <U 8 P(p). 
. 1 

Applications like text recognition or fingerprint classification assume that the 
foreground consists of large connected components. These components are com
monly larger than a particular rectangular area. Therefore, connected components 
which are cornpletely contained in srnall rectangular neighborhoods rnay be re
rnoved from the foreground ; see Fig. 2.2. 

Definition 2.14: Theframe isolate operator for a pixel p is de_fined as 

if (P(p) \ P'(p)) n V t (/) and p E V 

otherwise, 
(2.16) 
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where V is a subset of a partition P of a continuous image, and both P(p) and 
P'(p) are neighborhoods of p. 

2(x + 1f+ 1 

2x+ 1 

Figure 2.2 - In this example, the gray areas denote two rectangular neighborhoods 
'Py,x(p) and 'Py+ l ,x+ 1 (p) . Then, given a set 1,,/ and these two neighborhoods, the 
frame isolate operator returns the empty set if none of the pixels within light-gray 
area belongs to 'U. 

Remark 2.5: Since the cardinality of Py,x(p) n V can be computed in constant 
time with integral images (Section A), an efficient implementation of 

(2.17) 

can be done by comparing IPy,x (p) n VI with IP11,11CP) n VI . 

2.3.2 Expansion operators 

Expansion operators add pixels to subsets of P unlike isolate operators, which 
remove pixels from a subset of P. Section 5.3 introduces several operators by 
considering two particular subsets of P. Then, I introduce the generalization of 
these operators. 

Definition 2.15: The incidence operator is defined as 

V 'P~) 'V= {{p} 
11,V (/) 

iflV n P(p)I 2: u, and l'V n P(p)I 2: v 

otherwise, 
(2.18) 
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where 'U and 'V are two subsets of a partition P of a continuous image, u and v 
are two positive integers, and P(p) denotes a neighborhood of p. 

Definition 2.16: The simple expansion operator is defined as 

'U !;:::: 'V= 
'P(p) {{p} 

ll,V 0 

if p <t. 'U, 'V, and IP(p) n 'UI ~ u, and IP(p) n 'VI ::; v 

otherwise, 
(2.19) 

where 'U and 'V are two subsets of a partition P of a continues image, u and v are 
two positive integers, and P(p) denotes a neighborhood of p. 

2.4 Summary 

In this chapter, I introduced and formalized preliminary concepts of digital im
ages: pixels, color images, gray images, neighborhoods, and morphological oper
ator. 

In Section 2.1, a pixel is defined as a region of a two-dimensional image (Def
inition 2.2), while a digital image is defined as a functi on from its set of pixel s 
to 'Z.d (Definition 2.4). In the same section, I also stated a specific transformation 
from color to gray intensities, which is used throughout this thesis ; see (2.7). 

The concept and notation of both neighbors and neighborhoods were briefly 
given in Section 2.2. In Section 2.3.1 , I proposed three morphological operators : 
the frame isolate operator (Definition 2.14 ), which removes pixels from a set; 
the incidence operator (Definition 2.15), which adds pixels to the set; and the 
simple expansion operator (Definition 2.16), which also adds pixels to a set. All 
three operators are efficiently computed through integral images; see Appendix A. 
The capability of these operators to restore sets will be shown in Section 5.3 and 
Chapter 7. · 
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Chapter 3 

Survey of binarization algorithms 

Mars 

The purpose of this chapter is to examine the local implemehtation of several 
binarization algorithms which are either related to my method or because they 
are considered reference algorithms in the binarization literature. They demand a 
small number of assumptions and are straightforward to implement. Even so, they 
provide an excellent basis to produce sophisticated methods which incorporate a 
priori information about the objects tobe recognized . 

3.1 Preliminaries 

The task of identifying pixels with relevant information is formally known as binarization 

binarization. lt divides the set of pixels P into two sets 'Tand 13 with the aim of 
estimating the foreground 'F and background :/3, where 'F represents the set of 
pixels containing the objects of interest and :13 represents the complement of 'F in 
P. 

19 
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Figure 3.1 - (Left) Original image. (Centre) Binarized image with Otsu thresh
old (global implementation). (Right) Binarized image with Otsu threshold (local 
implementation). 

Global thresholding computes a unique value topr E [O, g] and set 

B(p) = { 1 (foreground) if I(p)::; t0 p1 ( 3_1) 
0 (background) otherwise. 

However, these algorithms are unsuitable to binarize images with composite back
grounds and wide changes of illumination. Figure 3.1 (Centre), for instance, 
shows the binarized image of an image with a wide range of illumination. Otsu's 
threshold in its original implementation classifies background pixels at the image 
border as foreground pixels. This happens because these background pixels are 
darker than background pixels in the image centre. However, Fig. 3 .1 (Right), 
computed with a local implementation of Otsu's threshold (Section 3.2.1), over
comes this problem. 

Local thresholding computes a threshold su1face 

T:{P„(p) 1 pEP}-{0, 1, ... ,g} 

over the whole image, and sets 

B(p) = { 1 (foreground) 
0 (background) 

if I(p) ::; T(p) 
otherwise. 

(3.2) 

(3.3) 

A local implementation of a global algorithm is such that the global analysis 
is restricted to P,.(p). Similarly, a secondary neighborhood supplies the "global 
information" to hybrid algorithms; see Fig. 3.2. 
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Secondary Window 

Primary 
Window 

Pnm,recoooa R:i,.li!b 
Radius 

Image 

Figure 3.2 - All algorithms gather the threshold information from a prima ry neigh
borhood, although the hybrid algorithms use a secondary neighborhood to com
pute any "global information ". 

21 

I especially study two kinds of binarization methods: histogram cluster meth
ods and statistical methods. The former rely on information from the histogram 
ofgray intensities; the latter rely on information from statistics of the gray inten
sities, like the mean, variance, third moment, maximum and minimum. 

3.2 Histogram duster binarization algorithms 

Histogram duster binarization algorithms assume that the foreground and Definition 
background can be estimated by the cluster 

'T = {q E P„(p) l l(q) ~ t0 p,} and 

13 = {q E P,.(p) / J(q) > t0p1}, 
(3.4) 

respectively, where the optimal threshold t0 p, E [O, g] satisfies the algorithm crite
rion optimally. Examples of methods to obtain t0 p, include using entropy functions 
and mixture of two distributions, curvature analysis, and many more. 

In images with composite background, top, may not exist such that 'T and 13 
approximate 'T and :B accurately. Therefore, its applicability may be restricted 
to neighborhoods where the method's assumptions are satisfied. Otherwise the 
local implementation of a histogram cluster method will systematically produce 
false positives due to neighborhoods which are completely contained in the back
ground. To solve this problem, several techniques have been proposed by bina
rization researchers like Chou [13], Moghaddam and Cheriet [54] , and Gupta [27]. 
Although the analysis of these techniques is beyond the scope of this thesis, I use a 
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simple restriction that may help all these binarization algorithms without favoring 
a particular algorithm. 

T(p) = {~'' 
jf ß1,1J - µ1,rf < C 

otherwise, 
(3.5) 

where t0 P1 is the optimal algorithm's threshold restricting the global analysis to 
P„(p), and c depicts the minimum expected tontrast between the foreground and 
background. I set c = 15 in all the experiments for my thesis, since the human eye 
can approximately distinguish contrast between two. gray intensities that differ in 
15 or more levels in gray images with 256 levels ; see Gonzalez and Woods [26] , 
chapter 2. 

Notation: 
I denote H1,.'ll as the histogram of gray intensities of a set ..'.ll. For instance, 

H 1,rn'P,(p) denotes the histogram of gray intensities of foreground pixels within 
P,(p). For the sake of brevity, I simplify H,,'P,(p)(i) with h;. 

Readers may be interested in an efficient implementation to compute H 1,'P,(p) 
described in [72] and [87]. 

3.2.1 Otsu's algorithm and variants 

Otsu's algorithm [66] is a global algorithm, which minimizes the sum of the 
variance of gray intensities of 'r and :B. lt assumes that the gray intensities of 
foreground and background form two distinguishable clusters whose overlap is 
small. The local Otsu 's threshold uses the criterion 

where 

t op1 = arg max {Fo(t) · F1(t) · [,u1(t) - PoCt)]2}, 
IE(O,g) 

(3 .6) 

b l b 

F;(t) = I hj and µ ;(t) = F;(t) I j • h1 for i = 0, 1, (3.7) 
j =a 1=a 
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and the lower limit a and upper limit b depend on the index i = 0, 1. These limits 
are defined as: 

a,b ' 
{

a = 0 and b = t if i = 0 

a = t + 1 and b = g otherwise. 
(3.8) 

Liao et al. [45] have demonstrated that (3.6) is equivalent to 

t0 p1 = arg max { Fo(t) · P-6(t) + F, (t) · µf (t) - P-} 
IE(Ü.g) 

= arg max {Fo(t) · P-6(t) + F,(t) · µf(t)}, 
IE(O,g) 

(3.9) 

Ng [59] derived the valley-emphasis threshold (Ng's algorithm) from (3.9) 
given by 

t0 p1 = arg max {[n ~ h1] [Fo(t) · P-6(f) + F,(t) · µf(t)]}. 
IE(Ü,g) 

(3.10) 

Ng's algorithm attempts to ensure the selection of a value which lies at the 
valley or left bottom rim in the histogram of gray intensities. 

Ng misinterpreted the valley-emphasis threshold as the application of a weight 
(n - h1) to the calculation of Otsu 's threshold. Even though (3 .6) is equivalent to 
(3.9), (3.10) is not equivalent to 

t0 p1 = arg max {[n - h.1] • Fo(t) · F,(t) · [µ,(t) -P-o(t)J2} 
IE(O,g) 

= arg max { [n - h1] [ Fo(t) · P-6Ct) + F, (t) · µf (t) - µ]} , 
IE(O,g) 

which is indeed the application of the weight (n - h1) to (3.6). 

(3.11) 

Moghaddam and Cheriet [54], and Chou et al. [13] have proposed variants of 
Otsu 's algorithm in order to discard outliers and detect neighborhoods that are 
completely contained in the background. For each pixel , Moghaddam's method 
compares the global Otsu 's threshold (whole image) with a scaled Otsu's threshold 
which uses information from the pixel neighborhood. In contrast, Chou's method 
d ivides the image into regions and, furthermore, contextual rules decide whether 
the local Otsu 's threshold restricted in the region of interest is applied or not. 
However, the analysis of such binarization methods is beyond the scope of this 
thesis. 
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3.2.2 Johannsen and Bille's algorithm 

Johannsen and Bille's method (Johannsen' algorithm) [32] is a global algo
rithm, which rninirnizes the interdependence, in an information theoretic sense, 
between the gray intensities of the estimated foreground and background. The 
local Johannsen's algorithrn chooses fopi from the relation 

t0 p1 = arg min { Co(t) + C 1 (t)} , 
IE(Ü,g) 

J=O 

j =I 

where 
h1 

P1=--
[P,.(p)[ 

denotes the empirical probability of the gray intensity at level j in P„(p). 

3.2.3 The minimum error thresholding 

(3 .12) 

(3.13) 

(3.14) 

(3.15) 

The minimum error thresholding (Kittler's algorithm) [ 40] is a global algo
rithm, which minjmizes a criterion related to the average classification error rate 
assuming that the gray intensities of both background and foreground are nor
mally distributed with different mean and variance. The local Kittler's threshold 
is computed as 

topi = arg mm I F;(t) · In 
2 

, • { 

1 

( a}(t) )} 
IE(O,g) i=O [F;(t)] 

(3.16) 

where 

1 [ b l a-~(t) = F;(t) ka l · h1 - [µ;(t)]2, (3.17) 

and F;(t) , {l;(t), a, and bare defined as in Otsu's threshold. 
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Cho et al. [12] argue that Kittler's algorithm models the gray intensities of 
both foreground and background as normally distributed, but the parameters of 
such distributions are estimated with bias. lndeed, µ1,r,.(p) and a},r, (p) are M0(t) and 

a-5(t) which come from a distribution whose tails are truncated by the threshold. 
However, this bias becomes noticeable only when the histogram of gray intensities 
shows vague bimodality. 

3.2.4 Kapur, Sahoo and Wong's algorithm 

Kapur, Sahoo and Wong's algorithm (Kapur's algorithm) [35] is a global al
gorithm, which maximizes the sum of the entropy of gray intensities in 'Fand 13. 
The local optimal threshold is derived as 

fop, = arg min -II - 1
- · In -

1
- , 

{ 

1 

b [ h . ( h )]} 
1e(O,g) i=O j =a F;(t) F;(t) 

(3 .18) 

and F;(t), a, and bare defined as in Otsu's threshold. 

3.2.5 Tsallis entropy's algorithm 

Tsallis entropy's algorithm (Portes's algorithm) [67] is a global algorithm pro
posed by Portes de Albuquerque, which maximizes the information measure be
tween background and foreground. Locally, it derives the optimal threshold from 
Tsallis entropy [88] as 

where 

t0 p, = arg max {Co(t) + C1(t) + (1 - a) · Co(t) · C1(t)), 
IE(O,g) 

b [ h . ]a, 
l - ~ F;~t) 

C;(t)=---
a-1 

(3.19) 

(3.20) 

where F;(t), a, and bare defined as in Otsu's threshold, and a is a parameter whose 
influence on the threshold was not determined in the original publication. Notice 
that Tsallis entropy reduces to Boltzmann-Gibbs entropy if a -t 1. That is, 

1-L-x?' I 
lim ' ' = - x; · ln x;, 
a-+ I a - 1 

where Ix; = 1. (3 .21) 
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Therefore, Kapur's algorithm is a particular case of Tsallis entropy's algorithm 

for a = l. 
Tsallis entropy is also used by Mello and Schuler [51], and Mello et al. [50]. 

They proposed a linear combination 

f opr = arg max {i= w; · C;(t)} 
IE(O,g) i=O 

(3.22) 

where the weights w;'s were experimentally determined for each image type. 
However, the parameter space is enormous, considering the weights as param
eters and the fact that the their ranges were not determined. Hence, this variant of 
Tsallis's entropy method was excluded from my experiments. 

3.3 Statistical algorithms 

Statistical algorithms rely on information from statistics of gray intensities. These 
algorithms usually compute the mean and variance of gray intensities in P„(p). 
Both statistics are quickly computed with integral images [72], so statistical al~ 
gorithms have the advantage of speed over histogram duster algorithms. 

Notation: 
fl and (}2 denote the estimators of the mean and var1ance of gray intensities in 

P„(p), respectively. 

3.3.1 Niblack's algorithm 

Niblack's algorithm [61] is a local algorithm, which assumes that the gray inten
sities of the background form a dominant peak. Niblack's threshold is computed 
as 

T(p) = fl - a · (} , (3.23) 

where a is a parameter which usually is greater than zero, the higher a, the lower 
T(p). However, a could be negative if there is not a unique dominant peak or the 
dominant peak is mainly formed by foreground pixels in the histogram of gray 
intensities. Trier and Jain [87] suggested a = 0.2. 



3.3. STATISTICAL ALGORITHMS 27 

3.3.2 Sauvola and Pietikäinen's algorithm 

Sauvola and Pietikäinen's algorithm (Sauvola's algorithm) [80] is a local al
gorithm, which computes a threshold similar to Niblack's threshold, but it incor
porates a second parameter ß > 0, 

(3.24) 

where a behaves as in Niblack's threshold. The influence of {t on T(p) is regulated 

by ß so that T(p) - µ - a · µ if et - 0; T(p) - µ if et - ß. Neighborhoods that 
are completely contained in the background may have a low et, which implies that 
T(p) ~ µ - a · µ and, consequently, J(p) > T(p) with high probability. 

Sauvola and Pietikäinen suggest a = 0.5 and ß = 128 assuming that g = 255 . 

3.3.3 Wolf and Jolion's algorithm 

Wolf and Jolion's algorithm (Wolf's algorithm) [90] is a hybrid algorithm, 
which replaces the parameter ß of Sauvola's algorithm with the maximum stan
dard deviation of gray intensities of neighborhoods of radius r so that the influence 
of et on T(p) is normalized. lt also replaces the mean of gray intensities in the last 
two terms of (3.24) with the difference between the mean and minimum of gray 
intensities in the neighborhood. Wolf and Jolian reflect thus the idea that the op
timal threshold should lie between such an interval. Wolf's threshold is given 
by 

T(p) = µ - a [µ - m] + a~ [µ - m], 
s 

m = min {J(q)}, s = max {ctt ,1'r(q) } , 
qE1',(p) qE1',, (p) 

(3.25) 

where P ,-, (p) is a secondary neighborhood of radius r * ~ r and a ~ 1. The higher 
a, the lower T(p) . Wolf and Jolion suggest the parameter a = 0.5. 

3.3.4 Iterative global thresholding 

The iterative global thresholding is a hybrid and iterative method, which was 
originally proposed in [36] and subsequently improved in [37] . 

In each iteration i, the gray intensities are linearly transformed from [m,µ~ ] 

to [0,g] , where m and µ~ are the minimum and mean of the gray intensities at the 

iteration i, respectively, setting gray intensities greater than µ~ to g. 
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I propose Kavallieratous's algorithm, which is a variant of the iterative global 
thresholding. Instead of µ~, my modified version computes the mean of gray in
tensities in the pixel neighborhood of interest. Thereby 

T = { /(p) if p_(a) (p) > f (a) (p) 
(p) 0 otherwise, 

where a is the number of iterations, 1<1l (p) = J(p)- min {/(q)), and 
qE'P,(p ) 

A(i) (p) - _ 1 - ~ 1U)( ) 40 • - 1 µ - l'P (p)I LJ q 1or z - , ... , a, 
r qE'P, (p) 

1Ul(p) = min (µACi- I)(p) g. _1<_;-_1)--=(p_)) 
' p,Ci- ll (p) 

for i = 2, .. . , a 

(3.26) 

(3.27) 

(3.28) 



Chapter 4 

Transition pixels 

Happiness is like ideal situations, it 
appears only locally. 

The rnain contribution of rny thesis is enclosed in this chapter. I describe 
rnathematically the concept of t-transition pixel. I originally proposed a rough 
notion of t-transition pixels, transition functions and related concepts in [69]. 
However, I formalized these ideas in [72]. Therefore, this chapter is an extended 
version of [72]. 

In order to structure my approach mathematically, I first introduce the term 
ideal image assuming that both foreground and background vary smoothly, ex
hibiting high contrast at the boundary. Later on, the concepts of t-transition pixel 
and t-transition set are used as an extension of edge pixels and the edge set, re
spectively. 

Properties of transition pixels are analyzed in an ideal image, providing the 
mathematical bases for deriving discriminant functions, which I named transition 
functions. Each pixel is then associated with a transition value (varying from 
negative to positive) computed by a corresponding transition function. 

I propose several transition functions. In particular, I state the conditions for 
which maxmin function is a transition function. 

29 
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Figure 4.1 -An ideal image (left) and its histogram of gray intensities (right). 

4.1 Idealimage 

All binarization algorithms reported in and [82], [84], and [87] assume that fore
ground pixels can be distinguished by extracting diverse features based on their 
gray intensities. Under this assumption, authors like [42] , [79], and [82] conjec
ture that both foreground and background should be uniform and homogeneous 
regions in terms of gray intensities (Fig. 4.1). 

Although that conjecture is false for images with composite fore- or back
grounds like in Fig. 4.2, the gray intensities of both foreground and background 
appear tobe approximately normally distributed in small neighborhoods of radius 
r; see Fig. 4.2. Hence, I propose characterizing the behavior of gray intensities 
locally. 

Definition 4.1: Given r, an image follows Model 1 if the gray intensities of the 
foreground in all neighborhoods of radius r can be modeled as random variables 
which are independent and identicillly distributed (two different neighborhoods 
may follow different distributions ). Gray intensities in the background are mod
eled in a similar manner. 

Notation: 
Assuming Model 1, µ1,r,.(p) and a}r,(p) denote the mean and variance of gray 

intensities in 'F,.(p) , respectively. Analogously, µ,,t1,(p) and cr;,tl,(p) correspond to 
13,(p). In general, the mean and variance of gray intensities in a set J{ is denoted 
by µ 1_.71 and cry .71 · 
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160 170 180 190 200 

Gray In tensity 

Figure 4.2 - Two different regions form the background. Even though the gray in
tensities of the background are approximately nonnally distributed in each region, 

. the gray intensities of the entire background are not. 
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In my experience, historical documents fit Model 1 in a large percentage of 
neighborhoods if the background has no patterns deliberately printed. 

Authors like Chow and Kaneko (14] , and Kittler and Illingworth [40] pointed 
out that the gray intensities behave as (approximately) normally distributed and 
proposed a threshold based on them. The assumption of a priori distribution with 
Model 1 gives the mathematical basis to describe the behaviour of the histogram 
of gray intensities based on the probability density function . For my analysis, I 
assume that the gray intensities obey Model 1 and are normally distributed . There
fore, the histogram of gray intensities can be viewed as 

H,,'P,(pi(i) ~ l'F,-(p )1 · cp(i; µ,,r,(p), a}r,(p)) + IB,:Cp)I · cp(i; µ, ,'13,(p), cr7,'B,(p), ( 4.1) 

where cp(x;µ, cr2) denotes the probability density function of the normal distribu
tion with mean µ and variance cr2 . However, I pointed out in [72] and [73] that 
the gray intensities are lognormally distributed rather than normally distributed. 
Thus, 

Hr,'P,<PJ(i) ~ /'F,.(p)I · ;/.(i; f1r ,r,cp), 177.r,cpJ) + IB„(p)I · ;i(i; µ,,'13,(pJ, a}'ß,(pJ), ( 4.2) 

where ;i ( i; µ, 172) denotes the lognormal probability density function with param

eters µ and 172, which are the mean and variance of the variables natural logarithm, 
respectively. 
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Figure 4.3 - Example of "good" contrast in a neighborhood. In dotted lines, a 
hypothetical example of "bad" contrast. 

For both ( 4.1) and ( 4.2), the smoothness of the gray intensity surface depends 
then on the variance of gray intensities of both foreground and background. In 
addition to such variances, the contrast of gray intensity between the foreground 
and background in small neighborhoods also depends on the difference between 
their means of gray intensities. The closer µ 'F, (p) to µ 13,(p}, the higher the proba
bility of misclassifying the pixel. The highlighted neighborhood in Fig. 4.3, for 
instance, has a "good" contrast because crr,(p) and cr13,(p) are small and the differ
ence between µ 'F,(p) and µ 13,(p) is large. However, if this difference were small, as 
dash lines show, the probability of error is large (filled area), which may lead to 
misleading binarization based on gray intensities. 

Figure 4.2 also shows that the ]arger the neighborhood, the larger the vari
ance. In fact, the values of r for which (4.1) is true may be different for each 
pixel. Therefore, I postulated a generalization of (4.1) in diminutive neighbor
hoods, which does not depend on a particular statistical distribution. 

Given 'f\(p), 

• Foreground tendency: Locally, the pixel's probability of being foreground 
increases when its gray intensity gets closer to zero. Conversely, the pixel 's 
probability of being background tends to increase when its gray intensity 
gets closer to g. 

• Smoothness: The difference of gray intensity between two pixels from the 
same set is close to zero in small neighborhoods Ps(p) . 
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Definition 4.2: J is a sm.ooth image if 

max {I(q)} - min {/(q)) < d.rnw and 
qE'ß,(p) qE'ß, (p) 

max {/(q)} - min {I(q)} < d.rnw 
qE'r, (p) qE'r, (p) 
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(4.3) 

(4.4) 

with probability close to 1, where d.1•111 0 is a sm.all value with respect to g. 

• Local contrast: Locally, the difference of gray intensities between a pair 
of pixels from different set is greater than the difference of gray intensities 
between a pair of pixels from the same set. 

Definition 4.3: / is an image with local contrast if 

min {/(q)} - max {/(q)) > dem, 
qE'ß,(p) qE'r,(p) 

(4.5) 

with probability close to 1, where d con is a !arge positive number with re

spect to d .wno · 

Remark 4.1: P s(p) is a small neighborhood compared to P„(p). Typically, s < 5 
while r ranges between 15 and 100 [82], [84], [87]. 

The previous concepts can be expressed statistically. Let X s be a random vari
able with mean µx, and variance o-;, representing the gray intensity difference be
tween any pixels q E :Bs(p) and the pixel of interest p. A low mean µx, combined 
with a small variance o-; represents a smooth background surface. Likewise, a 

s 

smooth foreground surface is obtained when Ys has a low mean µy, and a small 
variance o-;., , where Ys is analogously defined to Xs considering foreground pixels; 
see Fig. 4.4 (top) . 

A third random variable Zs represents the difference between the minimum 
gray intensity of the background and the maximum gray intensity of the fore
ground in the neighborhood of the pixel of interest. If Zs is negative, the histograms 
of both foreground and background are overlapped. Therefore, a misclassification 
may occur in any thresholding method (Fig. 4.4 (Bottom)). For example, the im
age in Fig. 4.5 contains a dark and a bright area. As a result, the histogram of gray 
intensities of both foreground and background are bimodal. The first and second 
modes of foreground (background) histogram are formed by gray intensities in 
the light area and dark area, respectively. Misclassifications stem from an over
lapping of the second foreground peak with the background modes. Thus, any 
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Figure 4.4 - (Top) Representation of the random variables x, y and z into P s
(Bottom) A neighborhood Pr where z is negative. 

thresholding method misclassifies either the pixels in the first background mode 
or the pixels in the second foreground mode Fig. 4.6. 

Notation: 
We will refer to Xs, Ys and Zs as the random variable of background differences, 

foreground differences, and contrast differences, respectively. From now on, 
we will omit the sub-index s in such random variables. 

4.2 Transition pixel and transition set 

In the following paragraph, the definition of t-transition pixel is stated as it was 
fi rst introduced in [72]. 

Definition 4.4: In a rectangular partition P of an image, a pixel p is a t-transition 
pixel if there exist q, q' E P 1(p) such that q E 'Fand q' E rs. 
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Figure 4.5 - Histograms of gray intensities of bothforeground and background are 
separately drawn. 

I formulated a generalization of transition pixel as: 
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Definition 4.5: Let P(p) be the neighborhood associated with the pixel p in a 
partition rp of an image, and 

P* = {P(p) 1 p E P} (4.6) 

be the set of all neighborhoods; a pixel p E P is a transition pixel in rp• ff there 
exist q, q' E P(p) such that q E 'Fand q' E 13. 

The set of t-transition pixels is denoted 11>. This set extends along the whole 
foreground contour. In particular, a t-transition pixel is an edge pixel if t = 1. 

A neighborhood that contains a dense subset of 11> also contains a significant 
subset of the foreground contour. Furthermore, the statistical distribution of 

1'F = 'F n 1P approximates the distributions of 'F. since it is a large foreground 
sample. Analogously, the distribution of 113 = 13 n 1P approximates the distribu
tions of 131

• 

Four neighborhood types help to characterize the transition pixels. Figure 4.7 
shows neighborhoods of type 1 (N'Tl) which have only background pixels. Neigh-

1 The analysis of the sampling bias is beyond the scope of this thesis. Readers interested in 
pursuing the topic further are encouraged to consult the books by [1 O], and Kay [39] for a more 
thorough explanation. Useful discussion is also available in [J 6] and [29]. 
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Figure 4.6 - Binary images from the example in Fig. 4.5. All binarized imaged 
were computed with neighborhoods of radius r = 30. At the top, Otsu's method 
(left) with contrast c = 15 and Kavallieratou's method (right) with parameters 
o: = 5;. On the bottom, Sauvola's method (left) with parameters o: = 0.5 and 
ß = 128. Wolf's method (right) with parameters o: = 0.5. 

borhoods of type 2 (NT2) have their central pixels in the background and have 
foreground pixels. Conversely, NT3 and NT4 correspond to NT2 and NTI, 
respectively. Forrnally, 

Definition 4.6: A neighborhood P,(p) E NTl if for any q E P,(p) • q E <ß. 

Definition 4.7: A neighborhood P„(p) E NT2 if p E <ß and there exists q E P„(p) 
su.ch that q E 'T. 

Definition 4.8: A neighborhoodP,(p) E NT3 if p E 'Tand there exists q E P„(p) 
such that q E <ß. 

Definition 4.9: A neighborhood P,(p) E NT4 iffor any q E P,(p) • q E 'T. 

The most outstanding feature of transition pixels is easy to appreciate in a 
binary image. The difference of binary values between two pixels within neigh
borhoods type 1 or type 4 is always zero because the binary value of both pixels 
are the same, either both one, or both zero: 

P1(p) E NTl U NT4 • B(p) - B(q) = 0 V q E P1(p). (4 .7) 
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C 

Figure 4.7 - The schemes exemplify two no-transition pixels a and d, a negative 
transition pixel band a positive transition pixel c. We expect that V(a) ~ 0 ~ V(d), 
V(b) :S: -Land V(c) ?'.: t+, where Land t+ are approximately equal to the expected 
gray-intensity contrast betweenforeground and background pixels. 
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On the other hand, neighborhoods type 2 and 3 contain, besides pairs of pixels 
whose difference of binary values is 0, pairs of pixels whose difference of binary 
values is either -1 , or 1. The value -1 is reached in neighborhoods type 2 when the 
central pixel is compared with a foreground pixel in terms of binary value: 

f\(p) E NT2 • 3q E 'F,,(p) such that B(p) - B(q) = -1. (4.8) 

Conversaly, 1 is reached in neighborhoods type 3 when the central pixel is com
pared with a background pixel in terms of binary value: 

'P1(p) E NT3 • 3q E :8„(p) such that B(p) - B(q) = 1. (4.9) 

Extending the above argument to non-binary but ideal images, neighborhoods 
type 1 and 4 have differences close to zero, unlike neighborhoods type 2 and 3, 
in which there are pairs of pixels whose difference of gray intensities is large in 
absolute magnitude. 

Figure 4.7 exemplifies two transition pixels band c. Without considering out
liers , we expect that 

V(c) ~ max {/(p)} - I(c) > dcor, 
pEN 1(c) 

(4.10) 

and 

min {/(p)} - I(c) ~ d_,.,,10 ~ 0 
pEN 1(c ) 

( 4.11) 
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Table 4.1 - Differences in an ideal image. 

Difference NTl NT2 NT3 NT4 

max {J(q)} - l(p) < d.,·mo < dsmo > dcon < dsmo 
qE'P, (p) 

J(p) - min {I(q)} < d.,·1110 > dcon < dsmo < dsmo 
qE'P, (p) 

because the pixel with minimum gray intensity in N 1(c) is foreground and has to 
be similar to the gray intensity of c (foreground smoothness). Moreover, 

max {J(p)} - J(c) 
pEN1(c) 

(4.12) 

has to be higher than the minimum contrast expected in the image because it is the 
difference of gray intensities between foreground and background pixels. On the 
contrary, V(d) ~ 0 because both maximum and minimum gray intensities within 
Ni(d) have to be similar to d. 

Table 4.1 is constructed taking d.1•1110 and dc01 , from the ideal image definitions 
and the fact that the pixel with the maximum gray intensity in neighborhoods type 
2 is a background pixel while the pixel with minimum gray intensity in neighbor
hoods type 3 is a foreground pixel. 

Notation: 
I denote with /P„(p) the subset of t-transition pixels in P„(p) . Following the 

notation: 

/r,.(p) = 1P n 'F n P„(p) = 1P n 'F,.(p) (4.13) 

and 

113„(p) = 1P n 13 n P„(p) = 1P n 13„(p). (4.14) 
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4.3 Transition function
A transition function F is a discriminant function taking extreme values only
when a transition pixel is evaluated: positive for foreground pixels and negative
for background pixels. Moreover, pixels in ,PC (complement set of transition set)
take values close to zero. In terms of conditional probabilities:

Definition 4.10: A function F is a transition function if it satisfies the following
relations:

(4.15)
(4.16)
(4.17)

Pr(p e ,T | F{p) > t+) > 1 - s+,
Pr(p G ,S | F(p) < —tJ) > 1 - £_,

Pr(p e,pc
\
- t. < F(p) < t+) « 1 - £,

where £+, £_, s < 0.5.

Definition 4.10 restricts £+, £_, and e to [0,0.5), but the closer they are to zero,
the better. Equations (4.15) and (4.16) mean p is pre-classified as foreground when

F(p) is greater than t+ while p is pre-classified as background when F(p) is lower
than -t— Note that there is no information to pre-classify p if -t- < F{p) < t+.

I suggested in [72] some functions to measure a transition value:
Maxmin

V(p) = max (7(g)) + min {I(q)\ - 2/(/?). (4.18)
?eA(p) ?ePs (p)

Discrete Laplace

(4.19)

Linear kernel

(4.20)

where
(4.21)

qaVAp)

Remark 4.2: Notice that

V : {PS (P) I P 6 P) -» [-g, g] \
L: {P+(p)\peP} [—g, g],
G: {Pfp) \ peP] -*[-g,g],

(4.22)
(4.23)
(4.24)



40 CHAPTER 4. TRANSITION PIXELS

Figure 4.8 — On the left, original image. In the center-left, G(p) with Gaussian

weights (a2 = 1 in PfdP))- In the center-right, Laplace operator. On the right
maxmin with neighborhoods of radius 2.

Table 4.2 - Lower and upper bounds ofmaxmin function according the neighbor¬

hood type.

Neighborhood Bounds

NT\ —dsmo <'- y(.p) ^ dsmo
NT2 V(jp) ^ —dcon dsmo
NTS V(jp) ^ dcon — dsmo
NT4 —dsmo ^ V{p) < dsmo

Figure 4.8 shows 3 images, each of which was computed with a different tran¬
sition functions. Pixels with negative transition values are shown in red, a pixel
with a -x transition value is associated with a ;t-red intensity. The pixels with
positive transition values are shown in blue.

4.4 Maxmin function

Table 4.2 was derived from Table 4.1. This table indicates that maxmin function is
a transition function in ideal images, where t+ and f_ (Definition 4.10) correspond
to dcon and -dcon . However, Theorem 4.1 extends this result to gray images. Fig¬
ure 4.9, for instance, shows how the histogram of transition values is constituted;
in this example, (4.15) and (4.16) are satisfied with t+ = 10 and L = 10.

Theorem 4.1. Given a gray image /, suppose that their random variables ofback¬
ground differences x, foreground differences y and contrast differences z are ap¬
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Figure 4.9 - Histogram of transition values calculated by maxmin function with
neighborhoods of radius 2.

proximately Gaussian distributed in Ps(p) such that p~ > 15<r, where

(4.25)

Then maxmin function is a transition function in neighborhoods of radius t < s.

Proof. To prove the theorem is sufficient to find and t+ such that

• Pr(V(p) < -f_) « 1 ifp e NT2,

• Pr(V(p) > -f_) w 1 ifp e (NT2)C ,
• Pr(V(p) > t+ ) w 1 if p 6 UT3 and

• Pr(V(p) < 4 ) « 1 ifP 6 (NT3)C .
where {NTif represents pixels in all type of neighborhoods, except neighborhood
of type NTi.

We know that practically all the observations drawn from x are within (px -
3crx,px + 3crx ). Explicitly:

Pr(-3cr.v < x < 3crx ) = 1
- sx ,

Pr(-3crv < y < 3<xv ) = 1 - ey , and
Pr(-3cr; < z < 3crz ) = 1 - sz ,

(4.26)
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where sx , sy , and ez are close to zero. Then there are four cases to prove, one for
each type of neighborhood (Fig. 4.7).

Neighborhood type 1: All pixels within P,(p) are background. (4.18) can be

rewritten as

V(p) = max {I{q)}-I(p) _ lip) - min (7(9))
qeP,(p) ?€P,(p)

a i a2

(4.27)

Observe that

Pr(fl, < 6cr t) > Pr | max {/(?)} |
< 3crx , \I(p)\ < 3<tx = [1 - ex]

\ ?eS,(p)
> 1 - 2sx ,

(4.28)

and
Pr(a2 < 6cr,) > 1 - 2sx . (4.29)

Then
Pr(-6a-x < V(p) < 6a-,) > 1 - 4e, (4.30)

Neighborhood type 2: There are both foreground and background pixels within
P,(p) and p is background. Regardless of outliers, we can assume that the pixel
with the maximum gray intensity is background and the pixel with the minimum
gray intensity is foreground. Rewriting (4.18) as:

V(p) = max {Iiq))-I(p) _ Up) - min {I(q)}
q£S,(p) ?eS,(p)

ci\ d2

max {/(?)}- min {I{q)\
qeT,(p) qer,(p)

as

min {/}(?)- max {I}(q)
?e®,(p) qeF,(p)

(4.31)

Thus,

Pr(a| < 6cry) > 1 - 4sx , (4.32)
Pr(a2 > 0) = 1, (4.33)

Pr(a3 > pz
- 3crz ) > 1 - sz , and (4.34)

Pr(a4 >0) = 1. (4.35)
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Therefore,
Pr(V(p) < -/r- + 6crA. + 3crz ) >1-4sx - sz . (4.36)

Replacing > 15cr in (4.36)

Pr(V(/>) < —6cr) > 1
- 4sx - ez . (4.37)

From (4.30) and (4.37) there exists /_ < 6cr that satisfies (4.16). The proof of
cases three and four are analogous to the proof of cases one and two.

□

4.5 Summary
To develop the transition method, I postulated Definition 4.1 in which the gray
intensities are modeled in small neighborhoods as random variables (independent
and identically distributed). The histogram of gray intensities is then modeled as

a linear combination of the density functions of two normal distributions; as in

[14] and [40], However, I suggested the lognormal distribution as an alternative
for the distribution of gray intensities; the strength of the lognormal model will be
shown in Chapter 5 and Chapter 7.

I proposed three desirable properties that an ideal image must fulfill in bina-
rization context: local tendency, local smoothness, and local contrast. In particu¬

lar, local smoothness ensures an upper bound in the differences of gray intensities
of two foreground (background) pixels; see Definition 4.2. Similarly, local con¬
trast determines a lower bound between the differences of gray intensities of a
foreground pixel and a background pixel; see Definition 4.3. Afterward, I statis¬
tically expressed these bounds for non ideal images with three random variables:
background differences, foreground differences, and contrast differences.

The concept of t-transition pixel introduced in Definition 4.4 and Definition 4.5

is the first main contribution ofmy thesis. A pixel is a t-transition pixel if its neigh¬
borhood contains foreground and background pixels. Subsequently, the transition
set (set of transition pixels) is divided into two subsets: positive transition set

(intersection between foreground and transition set) and negative transition set

(intersection between background and transition set).
Later on, transition pixel’s properties are analyzed in binary images and in

ideal images, providing the mathematical foundations for deriving discriminant
functions, which I named transition functions; see Section 4.3 and Definition 4.10.
Transition functions are functions that take extreme values only when a transition
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pixel is evaluated: positive for foreground pixels and negative for background
pixels.

A minor contribution of this thesis is given in Section 4.4, where I proved that
maxmin function is a transition function in ideal images. All transition values
in further experiments are computed with this function using neighborhoods of
radius 2.



Chapter 5

The transition method

Each life sparks changes of tone so gradually
that we believe we are in the same place.

The second main contribution of my thesis is enclosed in this chapter. I de¬
scribe mathematically the transition method in gray images for binarization, and
to a minor degree, for edge detection, and for detection of regions of interest.

The success of this novel approach depends on the definition of the t-transition
pixel, previously defined in Chapter 4. In this chapter, I will show that the positive
transition set (intersection of foreground and transition set) is approximated by
the set of pixels with high positive transition values, and that the negative transi¬
tion set (intersection of background and transition set) is approximated by the set

of pixels with high negative transition values.

Several binarization methods based on the transition set are proposed. In ad¬

dition to these binarization methods, I describe two simple methods for edge de¬

tection and detection of region of interest.
Even though the transition method has the potential to deal with uneven il¬

lumination, this chapter will focus only on images without sudden illumination
changes in small neighborhoods.

45
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5.1 Overview of the transition method
Figure 5.1 shows that the histogram of gray intensities of the highlighted neigh¬

borhood of radius r (Hi pr{p) ) is bimodal; the left peak of ///.p,(p) is mainly formed
by foreground pixels, while the right peak is mainly formed by background pixels.

If we knew the class-conditional density

Pr(/(?) | q G Trip)) and Pr(I(q) \ q G Sr(p)), (5.1)

we could consider the maximum likelihood estimation or Bayesian estimation
approach to solve the binarization problem; see Fig. 5.2. Unfortunately, we rarely
know the class-conditional densities. However, we can reasonably assume that the
gray intensities of both foreground and background are approximately normally
distributed; see (4.1). In consequence, T{p) is quickly computed when there is an

analytic intersection between

\Tr(p)\ ■ (f>(v,p,,rr{p) , cr
2
, rr(p) ) (5.2)

and the correspondent background function

\sr(p)\ ■ 0(z;A£/,sr(p) , o-
2

ISr(p) ), (5.3)

We can approximate Pr(I(q) \ q G Tip)) by drawing a representative sam¬
ple of Tip)', see Fig. 5.3. Since Trip) is a representative sample of Tip), the
following equation holds in neighborhoods of radius r :

Pr(/(<7 ) | q G Tip)) * Pr(/(<jr) | q G Trip)), (5.4)

Although the transition sets are also unknown, my method provides Tip),
which is an accurate estimate ofTip), see Fig. 5.4. Thus, (5.4) changes to

Pr(/(?) | q G Tip)) » Pr(/(?) | q G Tip)). (5.5)

We are now able to compute the gray threshold with the usual classification
procedures. In Table 5.1, for instance, we computed a threshold with the mini¬
mum symmetric values; see Section 5.5.3.

The complete method consists of the following steps:

1. Compute the transition values for each pixel with a transition function. I
suggest the maxmin function with neighborhoods of radius 2; see Fig. 5.5 (b).
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Figure 5.1 - Histogram ofgray intensities of the highlighted neighborhood.

Figure 5.2 - Binary ground truth, and histograms ofgray intensities ofboth fore¬
ground and background. I have manually fitted a normal probability density dis¬

tribution function to each histogram.



Gray Intensity

Figure 5.3 - Transition sets. In blue, pixels within the positive transition set, and
pixels within the negative transition set are shown in red. In Pr (p), the distribu¬
tion of gray intensities in ,Tr(p) and ,£, {p) approximate the distribution of gray
intensities in T and S, respectively.

Figure 5.4 - Approximation of the transition sets. We use the approximation of
positive and negative transition sets as foreground and background samples.
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Table 5.1 - Estimated threshold by minimum symmetric value with k - 10.

a b Tip) = a-f
Ground truth SM(k,T,ip)) = 98 SM(k,Sr(p)} = 207 152.5
Transition set SM(k„Tr(p)) = 99 SM(k,t&r(p)) = 205 152

Transition set approximation SM(k, ,£(/>)) = 98 SM (k, ,Br{p)) = 207 152.5

2. Calculate the thresholds t+ and t— Take ,T ~ {p\ V(p) > /+) and ,S = {p \

V(p) < -L} (Section 5.2); see Fig. 5.5 (b).

3. Restore tT and ,S (Section 5.3); see Fig. 5.5 (f)-(g).

4. Calculate the region of interest R (Section 5.4); see Fig. 5.5 (h).

5. Label p as background if p g R. Otherwise:

• If binarization, compute T(p) (Section 5.5); see Fig. 5.5 (i).
• If edge detection, compute simple edge transition operator (Section 5.6);

see Fig. 5.5 (j).

6. Restore T and S with standard algorithms.

5.2 Transition threshold

Given a sample of n variables

a\,...,an , reorder them so that

b\ < ... < bn . Then bj is called

the zth order statistic.

I known through experience that maxmin function characterizes the transition pix¬

els better than Laplace or Linear Kernel functions. So, I assume in this section that
transition values are calculated with maxmin function.

Transition values calculated with maxmin appear to obey a Gumbel distri¬
bution rather than obeying a normal distribution or lognormal distribution; see

Fig. 4.9. As a manner of fact, these transition values can be modeled by the zth

order statistic of a sample of random variables drawn from a normal distribution.
However, I did not explore in detail this line of research.

I describe three methods based on histogram cluster thresholds. The aim of all
three methods is to choose a threshold for either (5.6), or (5.8) such that the chosen
threshold divides the histogram in question into two groups: The first group may

be mostly constituted by non-transition pixels; the second group may be mostly
constituted by transition; see Fig. 5.6.
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(a) (b)

D V C A T NS
YPL AlsTD I A.

(c) (d)mu . .4, ‘ ••
>.*s oITT

(e) (f)

yPI/ANDIA
1TCAXTI

VPIANB1A.
V

(g) (h)

1TMXTI W„mAVSXi.*

(i) (j)

D V CATVS
VPAAlsTDIA.

B V CATV 5

VJPLANJDIA:
Figure 5.5 - (a) Original image, (b) Transition image by function maxmin with
neighborhoods of radius 2. (c) Transition image. In blue, pixels with transition
value higher than zero; in red, pixels with transition value lower than zero, (d) The
transition image after filtering by t+ = 14 and t- = 15. (e) Transition image after
removing isolated pixels, (f) Transition image after incidence transition operators,
(g) Transition image after dilation transition operators, (h) Region-of-interest im¬
age. (i) Binary image by modeling the gray intensities as lognormally distributed,
(j) Edge image.
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• Empirical scaled density function
1

Ui = jHVp(i), (5.6)
k

where
k = max {HVP(i)}. (5.7)

See Fig. 5.6 (top-right).

• Empirical complementary cumulative distribution function (CCD)

1
^

Vi =
7Z Hv'P(j)’ (5.8)
j=i

where
8

t = YJ
HvAj). (5.9)

j= i
See Fig. 5.6 (bottom-right).

Since ,T and ,S are dual sets, I will explain only the method for ,T, leaving
out the details for ,S.

5.2.1 Quantile transition threshold

In [69] and [72], I suggested the quantile transition threshold, which I derived
from P-tile method [19].

The quantile transition threshold discards the lowest a+ percent of positive
transition values in order to approximate tT without considering transition values

equal to zero, see Fig. 5.7. It implies that a 1
- a+ percentage of the highest

transition values remain in tT.
Given a value a+ and HVp, t+ is chosen as the minimum value that satisfies

- V #v/p( i)>a+, (5.10)

where
8

k = J^Hv,p(i). (5.11)
;=1

Unfortunately, the main drawback of this method is the necessity of two pa¬

rameters (a+ and or_).
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Figure 5.6 - On the left-top, a gray image and on the right-top, its correspond¬

ing transition image (equalized image) by maxmin function with neighborhoods or
radius 2. On the bottom, the empirical scaled density function ofpositive transi¬

tion values (left) and empirical complementary cumulative distribution function of
positive transition values (right).

5.2.2 Rosin’s threshold for transition values

I point out in [71] that the behavior of (5.6) and (5.8) is ideal for Rosin’s thresh¬
old [76], which proposes a threshold for unimodal histograms.

Rosin’s method [76] (Rosin’s threshold) is a global algorithm, which assumes
that one of the two classes produces one dominant peak located at one of the sides
of the histogram. The non-dominant class may or may not produce a discernible
peak, but needs to be reasonably well separated from the large peak to avoid being
swamped by it.

Let Wj be values computed either with (5.6), or with (5.8). A straight line L
is drawn from the peak to the high end of w,’s graph. Then, the threshold point
is selected as the histogram index i which maximizes the perpendicular distance
between L and the point (i, w,); see Fig. 5.8.
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Qoo

Figure 5.7 - The positive transition threshold is calculated as the a+ quantile of
the empirical complementary cumulative distribution (CCD) function ofpositive
transition values.

Let 0 < x \, x2 < g be two indexes such that wxi > w,- for / = 1,..., g, and
W*2 ^ , Wi , .—- > 6 > — for i > X2 ,
VP, w

(5.12)
•*i

where 5 > 0 is a parameter; I suggest 8 = 0.01. The line L is defined by the points
(jci , wAl ) and (X2 , wX2 ). The distance function and threshold are defined as

D(/)
\(x2 - x x )(wXl

- Wi) - (Xj - i)(wx2
- wXl )|

and the threshold is given by

V(*2 ~Xl)2 + (WX2
- WXl )2

t+ = argmax \D(i)).
ie(x\,X2]

(5.13)

(5.14)

5.2.3 Double-linear threshold for transition values

The behavior of the positive transition values, see Fig. 5.6 (bottom-left), will ap¬
pear to have a heavy right tail. The power law distribution has been discarded
because the log-log plot (Fig. 5.9) of the empirical complementary cumulative
distribution function does not follow the characteristic straight-line form of the
power law distribution [57],
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Figure 5.8 - Rosin’s threshold for positive transition values.

A close look at Fig. 5.6 (bottom-left) shows two linear zones. The first linear
relation mostly corresponds to non-transition set ,PC having positive transition
value. The second linear part is mainly formed by transition pixels. Indeed, the
histogram of positive transition values is a combination of three histograms, as is
shown in Fig. 5.6 (bottom-left). Thus, a criterion to select the transition threshold
t+ is to take the value t that divides the graph, into approximately two lines, using
linear-linear or linear-log scales.

The double-linear threshold approximates the positive side of the transition
graphs ( i , w,) by joining two linear functions; see Fig. 5.10 (left), where w, is com¬
puted either with (5.6), or with (5.8). However, the transition graph is truncated
between the bounds xmin and xmax in order to reduce noise in the first and last
values of the graph. The value xmin is the minimum index i that satisfies

wi > w,-+1 > w i+2 wg , (5.15)

and xmax is the maximum index i that satisfies

such that 6 > 0 is small (I suggest 5 = 0.01).

(5.16)
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Figure 5.9 - The log-log plot of the empirical complementary cumulative distri¬
bution functions of the positive transition pixels does not follow the characteristic
straight-line form of the power-law distribution.

For mathematical convenience, I re-label w ;
- as

y\ — Wj+Xmln for i — 0,1,..., xmax — xmjn — n (5.17)

and postulate that y,- satisfies (5.18) and (5.19).

yi « mi • i + b\ if i = 0,1,2, ...,t (5.18)

y,-
~ m2 ■ i + b2 if i - t, t + 1, ... ,n. (5.19)

I use the differences-rate estimator (Section 8.3) to compute m\. For this
particular problem, it is simplified to

th\=-V (2i - t)yi. (5.20)
t(t+m+2)^ y

However, the slope can be computed by regression methods [ 11 and [75].
Unfortunately, there is no differences-rate estimator for the intercept term b;

therefore I use the least-square estimator

b\ = —r (yt ~ rh\ • 0-t+ 1 i=0
(5.21)
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Figure 5.10 - The scaled density function (left) is approximated by the joining of
two lines L\ and Lj. On the right, plot of Error \(t) + ErrorAt) between xmln = 3

and xmax = 30.

A natural error function for (5.18) can be defined as

/

ErrorAi) =^ (y,- - m, • i - £,) ,

i=0

In the same way, an error function for (5.19) is defined as

Error2(t) = (y, - m2
- x, • i - b2 ) ,

i=t

where

m2 (n - t)(n - t + 1 )(n - t + 2)
—g (2i- n + 0y,

and
1

"

i=t

Finally, t+ is computed as

(5.22)

(5.23)

(5.24)

(5.25)

t+ = arg min {ErrorAt) + Error2(t)\ + xmm + 2.
ie[l,n]

(5.26)

Figure 5.10 (right) is a plot of (5.26).
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5.3 Restoration of transition set

The restoration of the transition set ,P is the process of adding and removing
pixels from ,P with the aim of increasing the cardinality while reducing the noise.

Morphological operators, like erosion and dilation [48], could be adapted to
enhance ,P. However, these operators will add or remove pixels without consid¬
ering either gray intensities, or transition values. These operators in their original
form will alter the trusty foreground sample tT, losing confidence in the transition
set approximation. I based this chapter on two of my publications, namely [72]
and [73], where I proposed morphological operators that preserve confidence in
the transition set approximation.

5.3.1 Isolation transition operator

Isolate transition operators are derived from isolate operators in Section 2.3.1.
In particular, the cross isolate operator and diagonal isolate operator were suc¬

cessfully used in [71], [72], and [73] for removing false positives of transition set

approximations.
Cross isolate transition operator

tP<-\J,rnP+ (p> (5.27)
pe,f

See Definition 2.12.
Diagonal isolate transition operator

,f<- U ,fvP*{p) (5.28)
P<=-,T

See Definition 2.12.
Rectangular isolate transition operator

Puy(p) 0 Py,x(p), (5.29)
pe,f

See Definition 2.14.
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Figure 5.11 - Two different transition set approximations. Above, an accurate

transition set approximation which was previously filtered by transition operators.

Below, a raw transition set approximation (t+ = t- = 10). Blue pixels depict pixels
in the positive transition set. In red, those pixels in the negative transition set.

5.3.2 Simple expansion transition operator

The cardinality of ,T can be incremented by adding those pixels that are sur¬

rounded by positive transition pixels to ,T. Assume, for instance, that p e tPc is

a pixel such that u = \,T,(p)\ is a large number and v = \,B,(p)\ is small or zero.
Then, intuitively, p may belong to ,T with high probability. Extending this idea
to neighborhoods of radius k :

Definition 5.1: The simple expansion transition operator

tT «- iT U [p e A30
I \,Tk (p)\ > u and \,Bk {p)\ < v}, (5.30)

which is equivalent to
i | „ •pap) „,T<- \),T E> ,S. (5.31)

U,V
pe.P*

See Definition 2.16.

The simple expansion transition operator is sensitive to noise, and it can easily
lead to mistrustful approximations because it does not consider either gray inten¬
sities or transition values. Nonetheless, it is useful when the boundaries between
,T and ,B are well defined and there are no scattered noise spots; see Fig. 5.11.
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Figure 5.12 - On the left, original image. In the center, filtered image using t+ = 14

and t . = 16. On the right, Restored image by isolation transition operators and
expansion transition operators. Blue pixels depict pixels in the positive transition
set. In red, those pixels in the negative transition set below t—

I did not determine a practical rule to “tune” the simple expansion transition
operator. In most of the cases, this operator is only helpful through no-trivial com¬
binations of transition operators. For example, Figure 5.12 (right) was computed
with seven transition operators in the following order:

1. Expansion transition operator (k = 2 and it = v = 3).

2. Cross isolate transition operator.

3. Expansion transition operator (k = 2 and u = 3, v = 13).

4. Diagonal isolate transition operator.

5. Cross isolate transition operator.

6. Expansion transition operator (k = 1, u - 5, and v = 5).

7. Expansion transition operator (k = 2, u = 13, and v = 2).

5.3.3 Incidence transition operator

The blue pixels in Fig. 5.13 depict pixels with high positive transition values. In
red, those pixels with high negative transition values. In the same figure, whereas
the isolated blue pixel q (right bottom corner) is an outlier and easily removed by
cross, diagonal, or rectangular transition operators, the red pixels around q form a
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Figure 5.13 - The transition values were computed using maxmin width radius 2.

The pixels with high positive values are shown in blue, in red the pixels with high
negative values.

large “isolated” connected component (24 pixels) that cannot be removed by those
operators.

By definition, a background f-transition pixel p contains at least one fore¬

ground /-transition pixel in P,(p). That is \,Tt {p)\ > 1, if p £ ,P. Moreover,

\i?r2i(p)\ > I iT,(p)\ in most of the transition pixels. Thus, the neighborhood Pifp)
of a pixel with a high positive transition value may contain several pixels with
high positive transition values. For example, Fig. 5.13 depicts |2^2(p)| = 1 and

\iTa{p)\ = 8. In opposition to p, the pixel q and all the red pixels around it only
contain one blue pixel in Pfiq).

To deal with pixels like q, I proposed in [73] the following definition:

Definition 5.2: A pixel p is an isolated transition pixel if

\iT n Pk(p)\ < f or |,S n Pk(p)| < b (5.32)

where f and b are two positive integers. An alternative form of (5.32) is

(/f 0 Pk(p)) H 0 Pk(p)^
= 0. (5.33)

This alternative expression is helpful to calculate this operator with integral im¬
ages; see Definition 2.15 and Chapter A.
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Figure 5.14 - On the left, the gray-intensity of e blue pixel in Vilp) is lower or
equal to /(/?). On the right, the approximation of the transition balance ofp.

Therefore, isolated transition pixels can be removed from the transition set ap¬

proximation with the incidence transition operator (Definition 2.15) as follows:

A (5.34)
f,b

pe,f

where k is a positive integer. I recommend setting k = 2t, f = b = 1 + t.

Remark 5.1: The incidence operator does not remove dense random-valued
noise. Thus, it has to be applied after isolate transition operators.

5.3.4 Dilation transition operator

Suppose that p and q e P,(p) are two foreground pixels such that q € ,T and

p $. ,T, thus V(q) > t+ and V{p) < t+ . This implies that p is excluded from ,T■
However, we can assume

Pr(/(<?) > I(p)) « Pr(/(?) < I{p)) ilp.qem <P,(p) (5.35)

because
I(q) « I{p) for all q e T fl Vfp). (5.36)

So,

Pr(/(<7 ) > I(p)) a Pr(I(q) < I{p)) \Ip,qe ,T,(p). (5.37)

In other words, about half of the pixels in Afp) have a gray intensity equal or
lower than I(p)\ see Fig. 5.14. In addition, the gray intensities of the background
are strictly higher than I(p) in the ideal case. Therefore, the number of pixels

Given a partition P and an

image function F, random¬

valued noise is a set of pixels

c.P whose spatial position

are uniformly distributed, and

whose values can take any ran¬

dom value of F [9], [23].
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Table 5.2 - The probability of the inequality are approximated given p and q e

PAP)

Pr (I(P) > /(?)) Pr (/CP) < /($))
q € & q eT q eS q eT

p eS ~ 0.5 « 1 w 0.5 ^0
peT » 0 « 0.5 ~

1 « 0.5

that are equal or lower in gray intensity than I{p) may be zero or close to zero.
Table 5.2 is constructed following the same reasoning, although a formal proof of
the probabilities is beyond the scope of this thesis.

Using the conditional probabilities of Table 5.2, a large number of pixels in
,T,(p) that are equal or lower in gray intensity than I(p) is strong evidence that p
belongs to the foreground. We derived a similar argument for background pixels.
To measure these conditional probabilities, we define:

Definition 5.3: The t-transition balance:

TB,(p) = \{q e ,Tt {p) | I(q) > I(p)}\ - \{q e ,S,(p) \ I(q) < I{p)}\ . (5.38)

So, TB,{p) « \\ tTfp)\ if p is foreground, and TB,(p) « \,S,(p)\ if p is back¬
ground. Hence, TBfp) is approximated with TBfp), which uses ,P,(p) instead of

Definition 5.4: Given p £ ,'P, the dilation transition operator set

tT u {p} if TB{p) > f, (5.39)

-,SU {p} if TB(p) < -b, (5.40)
where f and b are two positive integers.

I recommend setting / = b = 1 + t.

5.4 Detection of regions of interest
For a human observer, detecting a perceptually important region in an image is
a natural task which is done instantaneously, but for a machine it is far more
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Restored Transition
Image

Figure 5.15 - Detection of region of interest by transition set. The ROI image on
the top is computed with the rough transition set approximation (without transition
operators). The ROI image on the bottom is computed with the restored transition
set.

difficult. The machine lacks the cultural references and knowledge to identify the
content of the scene.

One of the causes for this difficulty is the subjective nature of the notion of
region of interest (ROI). In the most general sense, a region of interest is a part
of the image for which the observer of the image shows interest. For example, in
medical images, a definition of region of interest is based on anatomical markers
[62]; in computer vision, Caron et al. [7] assume that the region of interest to be
detected is a single connected region in the image; it must be both significant in
size and different from the background in structural complexity.

The interest shown by the observer in viewing the image is determined not
only by the image itself, but also by the observer’s own sensitivity. For a given im¬
age, different people could find different regions of interest. However, regions of
interest generally have distinctive features (contrast, color, region size and shape,
distribution of contours or texture pattern) which make it possible to distinguish
regions of interest from the rest of the images. Then, these structural charac¬
teristics can be used to detect regions of interest of an image without making
hypotheses about the semantic content of the picture.

In document analysis context, a region of interest can be defined as the set region of interest
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Figure 5.16 - On the left, binary image which contains a simple line. On the right,
its corresponding transition hnage (t=2).

of pixels R such that the neighborhood of radius r of each pixel contains both
foreground and background. Indeed, this is the definition of /-transition set for
t = r. Therefore, under this definition, fP = R.

The properties of smoothness (Definition 4.2) and local contrast (Definition 4.3)
do not hold for the radius r > s (recalling s from Definition 4.2 and Definition 4.3)
so that transition values cannot characterize the r-transition pixels. Nevertheless,
rV is fairly estimated by

R * = rP = [p I \ tfr(p)\ > n+ and \ tSr(p)\ > «_} (5.41)

where n+ and «_ are two positive integers. An alternative expression is given by

R U f.™n+,n~
pep

,s (5.42)

The values n+ and «_ depend on r and objects of interest: the larger n+ and n_,
the larger the objects that can be removed from the foreground. Figure 5.16 (left),
for instance, depicts a simple horizontal line with height 1 as foreground. The line
extremes are evaluated if n+ < r + 1. Otherwise, the line extremes are labeled as
background without even computing T{p); see Figure 5.16 (right). In [72] and
[73] I suggested n+ = «_ = 5 for detecting small foreground objects.

A second criterion to discard outliers uses the difference between the mean of
gray intensities of transition sets. The pixel p is labeled as background if

Pl„Sr (p) Pl.,frtp) < C ’ (5.43)
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Figure 5.17 - Hi<pr(p) and H, p ^ of Fig. 5.6 (top-left) on the left and right, re¬

spectively.

where c is an integer, which depicts the minimum contrast expected between the
foreground and background. In [72] and [73], I suggested c - 15.

5.5 Binarization by transition sets

At this point, I assume that p e R (region of interest). Otherwise, the pixel is
directly classified as background.

For some algorithms, like Otsu’s and Kittler’s thresholds, the better the his¬
togram of gray intensities approximates a bimodal curve, the better their accuracy.
Those algorithms compute T(p) with data from Hr,pr (P). I propose H, pr(p) instead;
see Fig. 5.17. Moreover, keeping track of Ht fr(p) and H, 1 propose several
classification functions.

5.5.1 Linear mean-variance threshold
I introduced the linear mean-variance threshold in [69]; it follows the same
idea of Niblack’s threshold because it resorts to intervals based on mean and
variance of gray intensities. It assumes that the gray intensities of the foreground
are clustered such that most of them are contained in the interval Pi,rr ip) ± a ■

&i,Tr (p) (foreground interval). In a similar manner, most of the gray intensities
of the background are within pi.sr <j>) ± P • cr/.sr (/>) (background interval) and, as
a consequence, the optimal threshold must lie between Pi,rr (p) + a ' crt,TAp) an<^

PiSrip) ~ P ■ o'l.Srip) in an ideal image. Hence, the linear mean-variance threshold
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Figure 5.18 - Hi,fr (p) anĉ ^i„Sr(j>)
°f ^8- 5.6 (top-left) filtered by t+ - 9 and

t- = -9.

is given by

Tip) = Pl„fr(p) + a ' a i.,fr(P) + Pl,A(p) P ' ai,A(p)
2

(5.44)

Figure 5.18, for instance, shows the optimal threshold with a = (3 = 1.

The main disadvantage of the linear mean-variance threshold is that suitable
parameters may change significantly between two different images.

A second disadvantage is that both foreground and background intervals may
be overlapped, in which case T(p) may be lower than p, }

or greater than

Pi„£r(p)’ which contradicts the assumptions of smoothness (Definition 4.2) and
local contrast (Definition 4.3). Figure 5.19 exemplifies this problem with

Pl.,Sr (p) ~ Pl„fr<J>) + ^t.tfrip) + Cr/„Sr(p)
= 2 ' ai„fr(pY

(5.45)

Then

T(n\
(r//rW'[ff+3_2^]Tip) - Pufr(p) + 2 (5.46)

Therefore, T(p) < Pi,,fr(p) if a + 2 < 2(3.

In [69], the linear mean-variance threshold yielded good binarization results
with a = /3 = 1.
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Vl,,Trip) El„Sr(p)

I—-1 °7„&(/0 - 2o-, f { )
^TTrip)

Figure 5.19 - Considering the values in this diagram, the linear mean-variance
threshold may lead to an unsuitable threshold ifa + 3 <

Figure 5.20 - The autolinear threshold is a point between the segment with ex¬

tremes pj ,j- {p) and Pi (gj (/))
which divides in a proportion related to the standard

deviation ofgray intensities.

5.5.2 Autolinear threshold

I introduced the autolinear threshold in [72] to overcome the shortcoming of the
linear mean-variance threshold [69], which needs two parameters.

As I point out in Section 5.5.1, the optimal threshold must lie between the
interval fi[,rr (j>) and pi,spP)- With this assumption, the autolinear threshold chooses
a threshold between such means as

cr+
T(P) - Tl„fr (p) + cr+ + cr_

(5.47)
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where

cr+ = max [aL'fr(p) , l)
cr_ = max(o-/iA(p) , l),

(5.48)

see Fig. 5.20.
In this manner, if cr+ = cr_, then the threshold is chosen as the middle point

between the means of gray intensities. Furthermore, it ensure that T(p) is always
greater than Py tfrW and lower than

5.5.3 Minimum symmetric threshold

In [73], I proposed the minimum symmetric value (SM) which attempts to mea¬

sure the symmetry of a histogram of gray intensities. It is defined as

SM(k, 31) = arg min 1 -- 1— Y \H,^{i + j) - H,^(i - j)\ 1, (5.49)
ie[k,g-k], H,j,(i)>0 )

where 31 is a set of pixels and k < 1/2 is an integer.
In general, SM(/c, /Trip)) and SM(k,,Br(p)) can substitute

tfr(p) and p,^r{p),
respectively, in any threshold. For example, the autolinear threshold can be rede¬

fined as

T(p) = SM (k, .TAP)) +
^

I SM(fc, .trip)) - SM(*, ,S,ip))] (5-50)
cr+ + <x_ L J

where cr+ and cr_ are computed as (5.48).

5.5.4 Minimum-error-rate
According to Bayesian decision theory, the probability of misclassifying a pixel
is minimized with the Bayes decision rule:

classify p as
foreground
background

if Pr(p e Trip) I I(P) = i) > Prip e Sr (p) \ I(p) = i)
if Pr(p e Trip) I Rp) = 0 < Pr{p e (B, (p) \ I(p) = i)

(5.51)
where the notation Pr(/7 e 3\ \ I(p) = i) denotes Pr(p e 31) given that the gray
intensity of p is i.



5.5. BINARIZATION BY TRANSITION SETS 69

Figure 5.21 - Empirical density functions of gray intensities from Fig. 5.1. The
probability oferror in light green.

Under this criterion, the probability of error in Pr(p) is given by

8

Errormin = ^ min {Pr(/(/?) = i, pe Trip)), Pr{lip) = i, p£ Sr ip))}. (5.52)
;=0

The probabilities in (5.52) can be replaced by their estimators as

Errormin (5.53)

see Fig. 5.21. Note that the factor is a scale factor. Therefore, given that
lip) = i,dh& Bayes decision rule becomes:

classify p as
f° regr0Und if ' 2 w ' H'»>(0 (5.54)
[background if w ■ H!:Vt(p) {i) < w ■ HLSr(p) (i)

where w > 0 is a scale factor.
According to Section 4.1, the gray intensities in Tip) are approximately nor¬

mally (lognormally) distributed. Therefore, there must exist top, e [0, g\ such that

HirwU) ^ Ti.'BApT) if i — topti

Hi frr (p)(0 - Hi,sr(p)(0 ^ i iopt •
(5.55)

However, the frequency of gray intensities randomly fluctuate and, as a conse¬
quence, a value that satisfies (5.55) may not exist. Nevertheless,

y E/ Silp) (i) y Hipfppfi) \

VPrip)\
+
££ WriP)] ]'

(5.56)
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Thus, by (5.53),

Errormin w mm
re[0,«] 2l /=0

Hisr(P){i)
\Prip) I

(5.57)

Recalling that the density function of gray intensities in Tip) is approximated
by the density function of gray intensities in Tip), we obtain that

H,,rr{p) (i) ~ \Tip)\ ■ Pr(I(p) = i\pe Tip))
~ \T(p)\ • Pr(/(/>) = i \ p € tTr(p))

r. Hi err i TV)~ \Tip)\ ■ Pr(I{p) = i\pe ,Tr (jp)) = IT(p)\ ■ T -
\Trip)\

This implies that

where

Errormin « min {Errorft)) = Error(iopt )
<s[0,g]

i

Errorif) — [1 - wf\
f̂=0

HI„Sr(p)(0
\,&r {p)\

8 H
Z

n l— •Trip)(0

1=1+1 .TAP) I

and
,

\Tip)\Wf
\Prip) I'

(5.58)

(5.59)

(5.60)

(5.61)

The value Wy is known as the foreground proportion in P r{p).
Figure 5.22 shows that the error function iErrorit)) for the “true foreground

and background” (f) is similar to the error function for both the transition set
approximation (t) and the “true transition sef’ it). In this example, topl exists and
coincides with the minimum value of t. Furthermore, the minimum probability
of error is » 0.0038 while the probability of error at level topt = 144 is « 0.0066.
So, topt is an accurate estimator of the minimum error.

In our previous example, all MER graphs were computed assuming the true
value ofWf because \T-(p)\ and \Pr (p)\ are known for this example. However, usu¬
ally Wf is unknown and may be estimated in some manner. Unfortunately, \,Tr{p)\
cannot be taken as a proportional estimator of \T, ip)\ since the w r is usually dif¬
ferent to the ratio

\,Tip)\
\.PriP)\

(5.62)
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Figure 5.22 -MER functions ofFig. 5.1:1 (thick black solid line) is computed from
Hi,Trip) and H]<gr(p); l* (red dotted line) is computed from Hi„Tr (p) and Hr,,sr(P);
and C (blue dashed line) is computed from Ht and Ht t^py In this example,
t0pi = 151, t*pl has two minimum values in 151 and 152, and topt = 144.

This is because positive and negative transition pixels customarily come in pairs
while Wf depends on r and the spatial position of p.

The minimum-error-rate threshold based on transition sets is then defined
as

t = argmm <

/S[0,S ]

r, ~ , v1 - v H‘
[] - wf ]L^a^r + wfL Trip) (0

;'=0 \<&r(p)\ i=t+1 ,Tr(P)\
6-

(5.63)

where ny denotes an estimate of Wf (either given as parameter, or calculated by
some method).
If Wf < Wf, the minimum-error-rate threshold tends to overestimate topl . Con¬

versely, if w/- > Wf, the minimum-error-rate threshold tends to underestimate top,.
However, Pr (I(p) = i \ p e Tr(p)) decreases exponentially so that the difference
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Figure 5.23 - H, ,f-Ap) and H, of Fig. 5.6 (top-left) filtered by t+ - 9 and
t_ = -9. The area on blue (red) represents e+ (e_) which is the approximation of
the probability ofmisclassifying foreground (background) pixels.

between topl and t is approximately logarithmically proportional to the ratio Wf to
Wf .' Taking advantage of this property, Wf can be chosen as the upper bound of
Wf without losing confidence that i approximates fopr Figure 5.24, for instance,
shows that, even when the positive transition set is considerably overestimated
and the negative transition set is considerably underestimated, MER estimates a

similar threshold to top, (threshold by MER taking a complete form).

Remark 5.2: We say that the minimum-error-rate takes a complete form when
Wf ~ We say that the minimum-error-rate takes a simple form when Wf =
0.5. Figure 5.23, for instance, shows the minimum-error-rate threshold (simple
form) of Fig. 5.6.

In historical documents, r is usually chosen such that any character is com¬
pletely contained in one or more neighborhood of radius r because, intuitively, the
neighborhood of a character may preserve smoothness and high contrast. With
such a radius, the foreground proportion is almost always less than 0.5 because
letters, symbols, and lines are commonly printed with fine strokes. For exam¬
ple, Fig. 5.25 shows the cumulative distribution of the foreground proportion of

'See Section 5.5.5 for details of this argument.
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76 114 152 190 228

Figure 5.24 - C+ and N correspond to the densities of ,Tr(p) and /Br (p), respec¬
tively. The line £*+ overestimates {+ in the proportion 2:1. Conversely, (*_ underes¬
timates i- in the proportion 1:2.

14 images from historical documents; according to Gatos et al. [24], such images
contain representative degradations which appear frequently (variable background
intensity, shadows, smears, smudges, low contrast, and bleed-through) in histor¬
ical documents.2 In eleven images, any letter is completely contained in neigh¬
borhoods of radius r - 50, and 99.9% of those neighborhoods have a foreground
proportion less than 0.5. In three images, however, there are letters which are only
completely contained in neighborhoods of radius r > 140. Nevertheless, all three
have foreground of proportions less than 0.5 in neighborhoods of radius r > 140.
Hence, w| = 0.50 can be considered as the upper bound of w f in historical docu¬
ments for neighborhoods of radius r such that any letter in the image is completely
contained in at least one neighborhood of radius r.

2 This benchmark along with its groundtruth images can be found in
http://users.iit.demokritos.gr/ bgat/DIBC02009/benchmark/
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Figure 5.25 - At the top, some images from the DIBCO 2009 benchmark. Fore¬

ground proportion (r = 50) of 14 images from historical documents. Curves of
those cumulative distributedfunctions F(x) such that F(0.2) > 0.999 are in green;
those such that F(0.3) > 0.999 are in blue. Lines in orange, red and dark red corre¬
spond to the cumulative distribution functions of top, middle-left, andmiddle-right
images, respectively.
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20 40 60 80 100 120

Gray Intensity

Figure 5.26 - Both H, ^ and H t ^ of Fig. 5.6 (top-left) are modeled with the
normal distribution.

5.5.5 Normal threshold
I proposed the normal threshold in [72]; it assumes that the gray intensities of
foreground obey a normal distribution; see Fig. 5.26. Thus,

H,.rrU» x c+<t> ( ,';/,+>°"+)
t 2\ (5 -64 )

Hr,Br(p)(i) c_(p \i\p-, cr_j

where 4>(x\ p, cr2 ) denotes the probability density function of the normal distribu¬
tion with mean p and variance cr2 . Therefore, the intersection of these curves is
given by the solution of the system

c+4> (/; p+, cr2 ) = C-(p ( i\p_, cr
2

). (5.65)

In the general case, (5.65) is a quadratic equation, and the threshold is the root
p+ < t < p_ of the quadratic equation with coefficients a, b and c given by

a =

b =

1_1_
cr2 cr2

2p- _ 2p+
2 2cr_ cr+
2 2

B+ B- 0 ,— “ — -21n
cr: cr_

(5.66)
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where 0 < c+ < 1 is a parameter,

P+ ~ Pl„fr(pj’
cr\ = max

c~ - 1 - c+ ,
= Pl„8r(p)’

<j\ = max (

(5.67)

max ( >)■

The parameter c+ is equivalent to wf in the minimum-error-rate threshold.
It may estimate the foreground proportion in P r{p), that is c+ ~ p^j.

Readers may notice that a\ and <r2 are taken in such a manner that they are
greater than 1. If cr2 is equal or lower than 1, then the gray intensities in the
foreground are within p+ ± 4 since 99.99% of the values of the normal standard
are within [-4,4]. Then, the optimal threshold is fj+ + 4. A similar argument is
given for cr2 .

Remark 5.3: We say that the normal threshold takes a complete form when c+ ~
we say that the normal threshold takes a simple form when c+ = 0.5.

Besides the general case in (5.65), there is a special case to solve when <x+ =
cr_ = cr > 0, which implies that a = 0. Thus, (5.65) has a unique solution given
by

(5.68)

Numerical error can arise ifcr+ s; cr_. Therefore, I also use (5.68) if |<x+-cr_| <
1.

Assuming a + 0, the influence of c+ on T(p) can be analyzed with the sym¬
metry of the quadratic equation. Let

F(x-, c+) = a ■ x2 + b ■ x + - 2 In (— ) - 2 In (- —
pj O'-

^
1°'+/ \ 1 - c+

(5.69)
h k

F(x; c+) - a ■ x2 + b ■ x + h - k
be the quadratic equation for the normal threshold with parameter c+. Thus,
F(x; c+) has a vertical symmetry axis in x = for all c+, as Fig. 5.27 shows.
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Figure 5.27 - The normal threshold with parameter pf is one root ofF(x\pf). In
blue solid line, F(x;pt) which is the graph for the upper bound of jlf = pt =
0.5; in black solid line, F(x;p/) which is the graph for p.f equal to foreground
proportion. F(x: 0.25) and F(x: 0.1) are show in dark-red dashed and red dotted
lines, respectively.

Without loss of generality, assume c+ < 0.5, and cr+ > cr_ > 1 such that cr+ -cr_ >
1.

In Fig. 5.28 (left), tc is the normal threshold in its complete form, ts the normal
threshold in its simple form, and the point (0, n) is the intersection between the
axis x and the segment with extremes (0, m) and (tc , -k). The convexity ofF(x; c+),
guarantees that n < ts . Then, by similarity of triangles

m n

k tc - n
m ts
k tc ts

k
~^tc Is ^

m
ts

(5.70)

b2 \p~-p+\ 2
where

b cr_
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Figure 5.28 - On the left, graphs of F(x; 0.5) in blue solid line, and graphs of
F(x; pf) in black solid line. The value m+k is the maximum ofF(x\ pX) = F(x; 0.5),
namely m + k = F(—0.5); and the point («, 0) is the intersection between the

axis x and the segment with extremes (0, m) and (tc , -k). On the right, graph ofk’s
values.

is the maximum of F(x;/^) = F(x;0.5).
The magnitude of k can be seen in Fig. 5.28 (right), which shows that k < 15

for c+ = 0.01 and k < 5 for c+ = 0.1. The magnitude of m, however, depends on
the contrast of the image, and it can be calculated only if a, b, and h are known.
Figure 5.29 shows F(x;c+) for the histogram of Fig. 5.21, where m « 595, and

|F - tc \ < 1.1 for all c+ 6 [0.1,0.5],
Note that the difference between topt and tc (or ts) cannot be known since it

depends on how well the distribution of gray intensities in ,Tr{p) and ,XBr{p) ap¬

proximate the distribution of gray intensities ofTr{p) and S r(p), respectively. In
our example of Fig. 5.1, this difference is less than 8 gray levels which represents
that the probability of error is « 0.0066 at level t„ (the minimum probability of
error is « 0.0038). In fact, in this example, the minimum-error-rate threshold in
simple form coincides with the normal threshold in simple form.

5.5.6 Lognormal threshold

I proposed the lognormal threshold in [72]; it assumes that the gray intensities
of both foreground and background obey a lognormal distribution; see Fig. 5.30.
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Figure 5.29 - Graph ofF(x ; c+) computedfrom the transition set approximation of
Fig. 5.1. tc ~ 145 is the normal threshold in complete form, ts ~ 144 is the normal
threshold in simple form, and top, ~ 152 is the optimal threshold.

That is,

H/.sr(p)(Q K C-A (i\fi-, cr2 )
(5.72)

where A[i\p, cr2 ) denotes the lognormal probability density function with param¬
eters p and cr2 which are the mean and variance of the variables natural logarithm,
respectively.

The intersection of these curves is exp(f), where i is the root of the quadratic
equation with coefficients given by (5.66), but replacing p+ and cr2 with p+ and
cr2 which are estimated using the relations:

~ 1,1
I

(
-cr2 and <x2 = In

cr
1 + I„Tr (p)

(p)

(5.73)

Likewise, fi_ and cr2 are estimated.

5.6 Edge detection
In a binarization context, an edge pixel p can be defined as a foreground pixel
that contains background pixels within rP\{p). Therefore, ff is the set of edge
pixels. Notice that an edge pixel p can be defined as the pixel that contains both
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Figure 5.30 - Both Ht ^ and H, of Fig. 5.6 (top-left) are modeled with the

lognormal distribution.

foreground and background pixels within P\(p), or as those background pixels
that contain foreground pixels in the neighborhood of radius 1. Nevertheless, I
will use the former definition.

Figure 5.31 - On the left, original image; in the center, transition set approxima¬
tion; on the right, edge image by transition operator.

We can approximate \T by

\f = {P I P <= fF and \,Sfp)\ > 0}. (5.74)

The pixel p in Fig. 5.31 (Center), which belongs to fP°, can be considered an edge
pixel since it is exactly between pixels in ,T and ,!B. Hence, I defined in [73] the
simple edge transition operator as

\T = {p\0 < \,f\(p)\ and \,Sfp)\ > 0). (5.75)
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Figures 5.32 (b)-(d) were computed on MatLab [49] using Canny [6], Prewitt
[47] and Roberts Cross methods 3

, respectively. Figure 5.32 (f) was computed
following steps 1 and 2 of the transition method (Fig. 5.32 (e)) and applying the
simple edge transition operator. The raw transition set approximation (without
restoration process) generates many false positives. In contrast, Fig. 5.32 (h),
which follows the transition method with a restored transition set, reports a lower
number of false negatives than Fig. 5.32 (f). Unfortunately, the combination of
transition operators used in Fig. 5.32 (e) includes more than one cross, diagonal,
and incidence transition operator in a non-trivial order:

• isolation transition operator (cross neighborhood),

• isolation transition operator (diagonal neighborhood),

• isolation transition operator (cross neighborhood),

• incidence transition operator (k = 2, a = b = 2),

• dilation transition operator (a = b = 3),

• isolation transition operator (cross neighborhood),

• isolation transition operator (diagonal neighborhood),

• isolation transition operator (cross neighborhood),

• rectangular isolation transition operator (x = y = 2), and

• incidence transition operator (k, = 2, a = b = 2).

5.7 Summary
The second main contribution of my thesis is enclosed in this chapter. I described
mathematically the transition method for binarization, and to a minor degree, for
edge detection, and for detection of regions of interest.

Section 5.1 presents an overview of the transition method, where I pointed out
that the positive transition set (intersection of foreground and transition set) and

3The default parameters of MatLab are chosen heuristically in a way that depends on the input
data
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Figure 5.32 - (a) Original image; (b) Edge image by Canny method, (c) Edge
image by Prewitt method, (d) Edge image by Roberts method, (e) Raw transition
image, (f) Edge image of(e) computed by the simple edge transition operator, (g)
Restored transition image of (a), (h) Edge image of (g) computed by the simple
edge transition operator.
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negative transition set (intersection of background and transition set) are repre¬
sentative samples of the foreground and background, respectively. Furthermore, I
proposed that the transition set can be accurately approximated from pixels with
high positive and negative transition values (transition values are computed with
maxmin function).

The transition method is roughly divided into five parts: calculation of tran¬
sition values, calculation of transition thresholds, restoration of transition sets,
detection of regions of interest, and binarization (or edge detection).

In Section 5.2, I proposed three methods to compute transition thresholds
based on the empirical complementary cumulative function of transition values:
quantile transition threshold (Section 5.2.1), Rosin’s transition threshold (Sec¬
tion 5.2.2), and double-linear transition threshold (Section 5.2.3). While the quan¬
tile transition threshold requires setting a parameter, both Rosin’s and double-
linear transition threshold have no parameters to set. In particular, the perfor¬
mance of both double-linear and Rosin’s transition threshold are tested in Sec¬
tion 7.6 and in [71], respectively, showing comparable performance.

The restoration of the transition set is addressed in Section 5.3. It is defined
as the process of adding and removing pixels from the transition set with the aim
of increasing the cardinality while reducing the noise. Besides well-known mor¬
phological operators detailed in that section, I proposed two novel operators for
restoring transition sets: incidence and dilation transition operators. The former
removes pixels from the transition set, which cannot be removed with well-known
morphological operators; see Section 5.3.3. The latter adds pixels without losing
confidence in the transition set approximation, unlike the standard dilation mor¬
phological operator, which decreases confidence; see Section 5.3.4.

In Section 5.4, I proposed two simple criteria to detect regions of interest.
The first criterion is based on the cardinality of the positive and negative transi¬
tion set. Pixels whose neighborhood contains few positive and negative transition
pixels are classified as background. The second criterion to discard outliers uses
the difference between the means of gray intensities of the positive and negative
transition set approximations.

I proposed five novel thresholdings based on transition sets in Section 5.5: lin¬
ear mean-variance threshold (Section 5.5.1), autolinear threshold (Section 5.5.2),
minimum-error-rate (Section 5.5.4), normal threshold (Section 5.5.5), and lognor¬
mal threshold (Section 5.5.6).

Although the lognormal, normal, and autolinear threshold outperform top-
ranked algorithms, the lognormal threshold has performed the best; see Section 7.5,
Section 7.6, and [71]. Such results strongly suggest that the positive and negative
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transition approximations are lognormally distributed rather than normally dis¬
tributed.

In Section 5.5.3,1 proposed the minimum symmetric value, which attempts to
measure the symmetry of a histogram. Minimum symmetric values can substitute
the means in any threshold. Unfortunately, I did not explore the performance of
binarization algorithms using this alternative technique.

The potential of the transition method for edge detection is shown in Sec¬
tion 5.6. In this section, I proposed a simple algorithm for edge detection based
on pairs of transition pixels (one positive and one negative). The performance of
this edge detector is closely related with the performance of the process of restora¬
tion of transition sets: The better the transition set approximation, the better the
performance of the edge detector.



Chapter 6

Unsupervised evaluation measures

I do not know itfor sure, I suppose it.

Jaimes Sabines Gutierrez
Mexican poet (1926-1999)

Historical documents usually present several challenges and kinds of degrada¬
tions, such as non-standard fonts, ink stains, weak ink strokes and wide variations
in the background, to mention some. Because of this, the parameters of binariza-
tion algorithms have to be tuned for each kind of degradation. For a large set of
images, however, the manual tuning of parameters is time-consuming and costly,
and the use of general parameters may lead to a low binarization performance.
Hence, the selection of binarization algorithms and their parameters play the most
important role in the accuracy of recognition.

To address the problem of parameter selection in segmentation, unsupervised
evaluation methods have been proposed to assess the quality of a segmentation
[91], [92]. Such methods allow for evaluation of many algorithms over large
parameter spaces and on diverse images without the need for human intervention.

85
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Consequently, they enable an objective comparison of both different segmentation
methods and the different parameters of a single method. Moreover, they can be
used for automatic parameter choice of binarization algorithms.

Evaluation measures based on the variance of gray intensities have been used
to assess binarization performance [72], [73], [79], [82], Specially in document
images, both foreground and background are intuitively thought of as uniform and
homogeneous regions. Unfortunately, few authors have analyzed the mathemat¬
ical and experimental behavior of these measures [8], [91], hence my interest to
address the interaction between binarization methods and these evaluation mea¬

sures. This interaction is analyzed under my proposed model of simple images,
which are images where the contrast of gray intensities between foreground and
background pixels is bounded in small neighborhoods. Ideal images provide the
mathematical basis to prove whether the optimal value of each evaluation measure
leads to the estimation of an accurate foreground.

6.1 Simple images

In general, the probability that a pixel with a certain intensity belongs to the fore¬
ground or background depends on their distributions, as I pointed out in Sec¬
tion 5, especially stressed by the pixels with intensities between Pi,rr (p) and A6,sro>j-
Thus, to minimize misclassification when using a threshold, it is better when these
means are far apart and their variances are small, that is, when the contrast be¬
tween foreground and background is large. This is illustrated in Fig. 6.1, where
an image with good contrast is shown, and its histogram is compared with a hy¬
pothetical histogram that only differs in contrast (distance between means). The
shaded region in green represents the probability ofmisclassified pixels according
the Bayes rule.

In Section 4.1,1 introduced the concept of ideal image. I also indicated that
the contrast between the foreground and background in a neighborhood of interest
not only depends on the variances, but also depends on the means of the gray
intensities, more specifically, in the difference between such means. The smaller
this difference, the higher the minimum probability of error; see Section 5.5.4.

Given that contrast is crucial for an accurate segmentation, certain bounds are
required for it. I formalized this requirement with the following definition.

Definition 6.1: Assuming Model 1 (Definition 4.1), an image is an r-simple im¬
age ifall neighborhoods with radius r such that \Tr(p)\ > 1 and\'B,(p)\ > 1 satisfy
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Figure 6.1 - Example of “good" contrast in a neighborhood. In dash lines, hy¬
pothetical examples of “bad” contrast. Area filled in light (dark) green represents
the minimum error given the dotted (dashed) histograms.

the inequality:

IIPt.sr (p) - Pi,TAP) II > V2 • max(07 ,Sr(p) , crUTr{p) ) (6.1)

where ||
•
|| denotes the absolute value.

I consider that the gray intensities of the foreground are darker than those in
the background. That is, Pi,sr(p) > Pr,rr(p)-

6.2 Unsupervised binarization measures

A measure is useful if the better the binarization obtained, the smaller (larger)
the measure on to which the segmented image evaluates. In particular, we would
desire the minimum (maximum) of the measure to be attained only at the perfect
segmentation T - T.

In the following subsections, I will introduce local implementations of unsu¬
pervised measures. Because of that, the binarization performance over a whole
image is the accumulation of the binarization performances over all neighbor¬
hoods with radius r in terms of a measure Mr . I denote this evaluation by Eval(Mr , T).
That is,

Eval(Mr,f) = J]Mr(p) (6 .2)
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6.2.1 Uniformity measure

To evaluate binarized images, Levine and Nazif [42] stated that the uniformity of a
feature (in our case, the pixel feature is the gray intensity) over a region is inversely
proportional to the variance of the values of that feature evaluated at every pixel
belonging to that region. Adjusting their original measure to binarization context,
the uniformity measure is defined as

U= 1--
w

Wfr<J>)’ S l;tr(p) + Wer (p)
'

I£r<J>) (6.3)

where the notation S 2lyi refers to the biased sample variance of gray intensities
(Appendix B), Wj and wh are the weights associated to Trip) and Br(p), respec¬
tively, and w is a normalization factor designed to limit the maximum value of the
measure to one

t
,

t Umax "*■ hnin\ m a\W = \Wf + WhJ--- (6.4)

where Imax and lmm are the maximum and minimum gray intensities in V.
Sahoo et al. [79] used a particular case of U with Wf = wj, = 1 to evaluate bi¬

narization methods. I simplified this particular case of U with the gray-intensity
uniformity measure (GU)

GUr = S)f + S ),g (6.5)

which is linearly equivalent to Sahoo et. al.’s evaluation measure.

Proposition 6.1. Lei P be an r-simple image. Then, the minimum of the expected
value ofGUrip) is not necessarily reached for Tip) = Tip) or Tip) = Br(p)
(proof in Section 6.3.1).

Proposition 6.1 indicates that GUr does not lead to the best binarization for all
r-simple images. What is more, if one wanted to minimize the expected value of
GUfp), then it could happen that the estimated background would swallow the
foreground.

6.2.2 Region non-uniformity measure

Another measure derived from U is the region non-uniformity measure (NU),
which was proposed by Sezgin and Sankur [82] as

\t\-S 2

l.fNU =
yp\ • s 2

IP
(6.6)
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NU can be transformed in the local measure NUr(p) by replacing P, and T,
with Pr(p) and T,(p), respectively. Unfortunately, NUr(p) lacks desirable proper¬
ties: NUr(p) is zero if T,(p) = 0.

6.2.3 Weighted variance measure

Otsu [66] proposed several discriminant measures in order to evaluate the “good¬
ness” of the threshold (at level t). One of these global measures is the weighted
variance measure (WV), defined as

= + <6 -7 >

Remark 6.1: Ng and Lee [60] proved that WV is equivalent to U if Wf = \T\,
wh = \S\, and w = \P\.

Let WVr be the measure which replaces T and S with Tr(p) and &r(p) in WV.
Then,

Proposition 6.2. In an r-simple image, the minimum of the expected value of
WVr is not necessarily reached for T,-(p) = T~r(p) or Tr(p) - S, (p) (proof in
Section 6.3.2).

6.2.4 Uniform variance measure

I proposed the uniform variance measure (UV) in [72], which is defined with
the local standard deviation of gray intensities as

UVfp) = [\A(P)\ ■ ct,A(p) + I?V(P)I • <Vr (P) ] (6-8)

where the notation dy^ refers to the sample standard error of gray intensities;
see Appendix B.
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6.2.5 Unbiased measures

To overcome the statistical bias of WVr , I propose the unbiased weighted vari¬
ance measure in Ramfrez-Ortegon et al. [70], which is defined as

WVr(p) =

'I
^m-d-)A(p) + \fr{p)\-d-2lfrlrf (p)

\Pr(p) I

if \Sr(p)\ > 2 and \fr(p)\ > 2.

d2 f, otherwise
(6.9)

Theorem 6.1. In an r-simple image, the expected value of the unbiased weighted
variance measure is minimal if'F = T orT = IB; see proof in Section 6.3.3.

Corollary 6.1. In an r-simple image, if r is such that \Bfp)\, \'F,-(p)\ > 1 and
cr2l sr(p) , or] rAp) > D for all peP, then

Eval(wV r,T) < Eval(wVr,f) (6.10)

for allF 4 IB andT 4 T; see proof in Section 6.3.4.

6.2.6 Measures based on logarithms
Assuming that the gray intensities of both foreground and background are lognor-
mally distributed, we derived the measures WV, (p) and UVr{p) from WVr(p) and
UVAp). These measures replace d2 _ and &2 . with d2 - and d2 - , re-
spectively, which are the unbiased sample variance of gray-intensity logarithm
of the foreground and background, see Appendix B.

6.3 Proof of theorems and propositions
I list some basic propositions that are useful in the subsequent discussion. Some
of these proofs use standard techniques and are omitted.

Proposition 6.3. Let JK = {a\,... ,an ) be a sample of n independent and iden¬
tically distributed random variables with finite variance cr2 . Then the estimators
S I, and a2

n satisfy
, \Fl\ ~ 1 ,

and
E(Ah) = cr2 . (6.12)
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Proposition 6.4. A random variable a with finite expected value and variance
satisfies

E{a2
) = Var(a ) + [E(a)] 2 . (6.13)

Proposition 6.5. Let x, ~ N(px , of) for i = 1 ,... ,n - m and y,- ~ N(py , cr
2) for

i - l,... ,m. be independent random variables. Consider Z. = A7 U J/, where
X = {*,}£* andX = . 7/ien,

and

£(£z) = Px + — \py - Fx] ,
n 1 J

1 2 r o 9
"I

Var{pz ) = -cr
x + — \cr - crx .

n nA L J J

(6.14)

(6.15)

Lemma 6.1. In an r-simple image, if \2A,-(p)\ - n > 1, \J\r{p) H T\ - h and
n > 2h, then

E^I.J{r (p)> - rf.Mp) + n^lrrip)

Likewise, if\3\fp)\ = m > 1, \LAr(p) f) S\ = k and m > 2k, then

E^2
I,mr (P)) - rf.Trip) + m^lzirip)

(6.16)

(6.17)

Proof. By mathematical convenience, we prove Lemma 6.1 for (6.17). Denote
X = LAr(p) n T and J/ - 2Ar(p) n S, then

/ r T\

E [rf.nro>))
- E 2/2Cp) +X/2^-

peX p(=y

m ' dlair(p)
(6 . 18 )

Z E (
,2W)- Z £ ('2<">) -■ E6kw)m - 1
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Due Proposition 6.4 and Proposition 6.5

[m-k] r 2 •> i k9 \ [m — /CJ r 2 2 1 ^[2 2
E \&IMP)) = ,M _ I U I,Trip) + Pi,TAP)\ + \

cr, 'BPp) + Pimp)\

~
~^Z\ lVar {Pl,Mp)) + [E {piA^rip))]

E {&llHr(p)) ~ m -\ \ (T‘i,TAp)
+ P

2
l,Tr(p)\

k [ o 2 2 2'

Pi,SAP)
~
Pi.Trip)Jm

K- r 2

ZJ rT/-®r(p) “ ^/.TrW + 1

m

m - 1

Reducing terms, we yield

E

l k r n i
(r/,Tr0>) + ^2 r /.SrW

~
°A7>(p)J

ttfrM + — [^/.sr (P) - 4/,?y(p)]

(<3'/^Ir(p)) - Cr/,Tr (p) + m [rf#rip) Trip)] + m _ 1 [^/,®r(p)

2ifc ' Pi.Trip) k,»r0>)
~ Pi,Trip) m[m - 1]

[p/,»r (p)
-
^/,7>(p)]

Observe that

^/,®r (p)
~ p\tap) ~ \PiMp) ~ Pi,tap)] [Pi,sap) + Pi,Trip)]

~ ]pi,SAp) - Pl.TAp)] \pi,Srip) - Pi,Trip) + 2Pi,Trip)

= \pi.SAp) - Pi.Trip)] + ^Pl.Trip) [piJBrip) ~ Pi,Trip)] >

replacing (6.21) in (6.20)

k[m - k]E (*wwrt) - alrAP) + m <rf*rip) m<rf,TAp) -
-Kj r nZ—pr [P/,sr(p) - Pi,Trip)\

We have the following inequality using (6.1) and > 2 ;m-1 - 2

2 kk[m - k] r I 2 k 1 r /t- V * 2^ ■ j 1
V2 ‘"'•wl

We conclude our proof by replacing (6.23) in (6.22)

E (CrlyiAp)) ~ ‘rfi.Trip) + m °rf,IBrip)
~ -^ITAP) + ~°rf.TAPYm

(6.19)

(6 .20)

(6 .21 )

, (6 .22 )

(6.23)

(6.24)

□
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6.3.1 Proof of Proposition 6.1

By mathematical convenience, I prove Proposition 6.1 using unbiased variance
instead of the biased variance (these proofs differ only by factors); I will show an
example where the background “swallows” the foreground.

Assume that there are more background pixels than foreground pixels in P,(p).
That is, h = \Fr(p)\, n = \Pr(p)\, and 2h < n. Also assume that 6-2T{p) > ip) ,
and that

Pl.Tr(p)}
- 2

n _ll°
2
l,Sr(p)’ (6.25)

Then, we can derive from Lemma 6.1

= cr2IMp)
h h

+ -^imp) + Imp) (6.26)

2 \ 2 #2 2 2 2 2
^l,Pr(j>)] = ^IMp) + y^IMp) + °"lMp)] < °^.Sr(p) + ai:Trip)

Therefore,
E [d'j.'Prlp)) < E {^IMP) + ^/.Srip)) ’

(6.27)

(6.28)

which means that GUr evaluates better Tr(p) = 0 than T,(p) - Tr(p) when
cr2/T {p)

> cr2s {p} , half or fewer pixels are foreground in the neighborhood of in¬
terest and (6.25) holds.

6.3.2 Proof of Proposition 6.2

To prove Proposition 6.2, it is enough to show a counterexample. Assume that
Br(p) = Pr (p)- If&r(p) = B,(p), by Proposition 6.3 we yield

E(WVr ) =
\&,.(p)\-E(s 2

Sr(p) ) ^ \Sr(j,)\- 1 ^
mp)\ I

&r(p)\

but ifSr(p) = B,(p)\{q} where q 6 Br(p), then

E{WVr ) =

< °"iMpY

i.Mp)'

(\Br(p)\-l)E(s 2
SrJ \Br(p)\ - 1

\8r(p)\ \Br(p)\
o">Mp)

\Br{p)\ - 1

(6.29)

(6.30)

mP)\
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6.3.3 Proof of Theorem 6.1

We need to prove

iawi ■ <e.w + w,o»i ■ofJ, < £ (lawi •^ + rr«i •^(w)
(6.31 >

for all p.
The proof is divided into several cases which depend on how the neighborhood

Pr(p), Trip) and S,(p) are constituted:
■ Case A: \Tip)\ = 0.

• A.I: \fr{p)\ = 1.

o Symmetric case of A.I: \Br {p)\ = 1.

• A.II: \fr(p)\ > 2 and \S r(p)\ > 2.
□ Symmetric case of A: |33, (p)l = 0.

■ Case B: 0 < \Tip)\ < \S r (p)\.
• B.I: \fr(p)\=l.
o Symmetric case of B.I: \S, (p)\ = 1.

• B.II: \fr{p)\ > 2 and \&r (p)\ > 2.
- Case B.II. 1: \Tr(p) nT\> \fr(p) n 3\ and |£r(p) OT\< \Br(p) n 3\.
- Symmetric case of B.II. 1.
- Case B.II.2: \tr{p) DT\< \fr(p) n 3\ and \£r {p) <^T\< \£r(p) n S\.

□ Symmetric case of B: 0 < |S,•(/>)[ ^ \T{p)\.
Case A: \Tip)\ = 0. I will prove that E (wVr(p)j = crzrB lpi for any partition

3r(p) and Tipi-
Case A.I: \Br ip)\ > 2 and \Tip)\ > 2. Thence,

E(wVrip))
\®r(p)\-crlSr{p) + \Tip)\-cr]I'BAp)

\Frip)\
= CT

1,sap) (6.32)

Case A.II: If \Tip)\ < 1 (or \Br ip)\ < 1), then (6.9) is defined as

E{wVr(j))j = cPjpAp)
= cr2psAp) (6.33)

Case B: \Br ip)\, \Tr ip)\ > 1. There are two symmetrical cases: \Br{p)\ > \Tip)\
and \Br(p)\ > \Tip)\. We will only prove the former case.

Case B.I: \Tr ip)\ < 1 (or \Br(p)\ < 1). Based on Lemma 6.1, direct calculus
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Table 6.1 - The case B.II is divided into three sub-cases according to m, n, k and
h, where \Tr {p)\ = m, \

(Br (p)\ = n, \Tr{p) (MB\-k, and \Sr(p) DT\ = h.

m > 2k m < 2k
n >2h Case B.II. 1 Case B.II.2
n < 2h Case B.II.3 -

yields

E (WVr(p)) - crlVr(p) > cr] Br
\Tr(P)\

(P)
+

|
rp ( nW^l-Thp)\rr{p)\

\®r{p)\ ■ 0-2, Sr(p) + \Tr(p)| ' <T2ITri
(6.34)

ip)

\Pr(p)\
Case B.II: |S,-(/?)| > 2 and \T,-(p)\ > 2. We have three sub-cases summarized in
Table 6.1. Observe that case B.II.3 is the symmetrical case of B.II.2.

Case B.II. I: n > 2 ■ h and m > 2 • k. It follows that E [o2rji (/)) j satisfies (6.16),
while E satisfies (6.17). Therefore,

E(WVr(p)) > n + m
2 n 2°I$r tp) + +

m

>
[n + k]crlSr(p) + \m +h]^

n + m

n + m

ip)

2 2^I,Trip) + ~°7,®r(p)
(6.35)

The number of background and foreground pixels can be computed in terms of
n, h, m and k as: \Sr{p)\ = n - h + k and \Tr{p)\ -m- k + h. Then,

[n + k\o-2IB(p) >[n + k- h]cr2 Brlip)
(6.36)

[m + h]o-i rr{p) > [m + h - k\cFITr(p)
Case B.II.2: n > 2h and m < 2k. Hence, both E (a2 - ] and E (<r2 . ) satisfy\ (Pi/ \ I,Trip)) J

(6.16).

E(WVr(p)) > n + m
2 h 2 m 2 k 2

^t.Srip) + n
°~I,Trip) H-n + m I.Srip) + m

Cr/,Tr(p)

>
[n + m\(T2

IB(p) + [k + h]a-2IT(p)
n + m

[n + m — h - 1A”2
(6.37)

>-
^Ksr(p) + ^ + ^.Trip)

n + m
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We conclude (6.31) holds because, in this case, \Br{p)\ = n + m - h - k and

\Tr(p)\ = k + h.

6.3.4 Proof of Corollary 6.1

The premises \Sr{p)\, \Tr(p)\ > 1 restrict our analysis to case B of Theorem 6.1 ’s

proof (without considering permutations). Moreover, (6.34), (6.35) and (6.37)
are strict inequalities if |Br(p) D T\ = h > 0 or

|Trip) n S\ = k > 0 because
Corollary 6.1 assumes cr2rB (p) ,

cr2 r(p) > 0.

6.4 Summary
The third main contribution ofmy thesis is the mathematical analysis for all unsu¬
pervised measures described in this chapter. Given that contrast is crucial for an
accurate segmentation, I introduced in Section 6.1 the concept of simple images
(Definition 6.1). Such images satisfy a certain lower inequality between contrast
and variance of gray intensities. Simple images are used throughout this chapter
to analyze the optimality of unsupervised measures based on gray variances.

In Section 6.2, local implementations of three well-known unsupervised mea¬
sures are discussed and analyzed: uniformity measure (Section 6.2.1), region
non uniformity measure (Section 6.2.2), and weighted variance measure (Sec¬
tion 6.2.3). Later on, I proposed four novel unsupervised measures: the uniform
variance measure (Section 6.2.4), based on the standard deviation of gray inten¬
sities; the unbiased weighted variance measure (Section 6.2.5), which overcomes
the statistical bias of the weighted variance measure; and two measures based on
logarithms of gray intensities (Section 6.2.6).

Theorem 6.1 is to be noted because it ensures that the expected value of the
unbiased weighted variance measure is minimum in a perfect binarization, unlike
the rest of the examined measures, which lack this property.



Chapter 7

Experimental comparison studies

The good Christian should beware of
mathematicians, and all those who make

empty prophecies. The danger already exists
that the mathematicians have made a

covenant with the devil to darken the spirit
and to confine man in the bonds ofHell.

DeGenesi ad Litteram, Book II, xviii, 37 by
Aurelius Augustinus Hipponensis (St.

Augustine)
Bishop of Hippo Regius (354 - 430)

In this chapter, I summarize the results of my experiments, in which I used
the same test images. Most of my conclusions are based on pairwise compar¬
isons since the uncertainty test can ascertain which binarization algorithm is
better given an intuitive triad of possible results: better, worse or comparable
performance. A full explanation of the use of pairwise comparison is given in
Appendix C.

97
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Dots per inch (dpi) is a mea¬

sure of spatial printing or

video dot density, in particu¬

lar, the number of individual

dots that can be placed in a line

within the span of 1 inch (2.54

cm).

Accuracy of an algo¬
rithm

Label
ICVMARE , CTacito tjuod
’t AM.ALCHIVM ‘Piinto.

Header’german iAH
VETER1S,

Comment
:w. lAcono monayio silk sio
PATRICIOVRATISI.AVIENSI,VI:
PO RT XRVDIYIONEETHVMA
N1TATE ORNAT IS S IMG,ABRA
IAMVS ORTFXIVS HOC AlVTV,¥.
AMICITIAE MONVMENTVM. I.L
HEN S TX3NABAT DEHICAHATC^VE.

Figure 7.1 - Example ofmap which contains a header, label and comment.

7.1 Test Images

Historical documents usually present several challenges and varied forms of degra¬
dation, such as ink stains, smears, weak ink strokes and wide variations in the
background. Because of this, the binarization algorithms were tested with digital¬
ized images of the historical atlas Theatrum orbis terrarum, sive, Atlas novus
(Blaeu Atlas) 1 at 150 dpi resolution.

I report the results of n = 86 color images randomly extracted from 61 maps.
These images are mainly composed of map headers, map comments and region
labels without stylized handwriting characters; see Fig. 7.1. Each color image i is
transformed to a gray image /, with the transformation defined in (2.7).

7.2 OCR measures

The accuracy of an algorithm is intuitively defined as how close the algorithm’s
output is from the desirable result. In OCRs, the desirable result is the text con¬
tained in the tested image.

*

'This images can be found in: http://www.library.ucla.edu/yrl/reference/maps/blaeu
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Definition 7.1: The accuracy measure(AC) ofan binary image is defined as

AC(f) =
#T,match
m, (7.1)

where 'T is the estimated foreground of the evaluated image, Tin is the original
text in the image and Tmatch is the maximum matching string, and the notation #■

refers to the number ofcharacters in the string

Junker et al. [33] introduced several definitions of maximum matching string
C of two strings A and B. In this thesis, however, I define maximum matching
string as follows.

Definition 7.2: Given two strings A and B, we say that A is substring of B (A <
B) if B can be transformed to A by removing characters from it; a maximum
matching string C ofA and B is a string ofmaximum length such that C < A and
C <B.

The maximum matching string can be computed with the Needleman and
Wuntsh [56] algorithm. This algorithm was originally developed for finding sim¬
ilarities in the amino acid sequences of two proteins.

AC measure is an important measure for OCR engines, because the higher
the AC measurement, the greater the possibility to extract, by further algorithms,
relevant information from the recognized text.

Observe that AC measure does not penalize “extra characters” in the output.
Then, two different images may lead to the same accuracy but with different num¬
ber of “extra characters”. In that case, I judge that an image is better than another
one if its OCR output has fewer “extra characters”. The following measure quan¬
tifies number of the “extra characters”

Definition 7.3: The precision measure (AC) is defined as

PR(T) = (7.2)
out

where Toul is recognized text from the image.
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A software is payware soft¬

ware if it is distributed for

money

A command-line interface is

a mechanism for interacting

with a computer operating sys¬

tem or software by typing

commands to perform specific

tasks.

Table 7.1 - Pairwise comparison of OCR accuracy. Each cell (y-row, x-column)
of the pairwise tables contains two values, nyx and pyx . The number nyx represents
the times that the algorithm y has a higher score than the algorithm x, while pyx =
"yx represents the conditional probability ofy’s score being higher than x’s

Tlyx+tlxy

score. I ascertain that algorithm x is better than algorithm y if 0.75nyx > nxy,

which is equivalent to pyx > 0.57; see Appendix C.

FineReader OneNote TopOCR FreeOCR MoreDataFast SimpleOCR
Rank ny,t Pyx ny:t Pyx nyx Pyx ny:t Pyx tty;i Pyx nyx: Pyx

FineReader 1 - 40 0.59 59 0.78 56 0.77 63 0.82 68 0.85
OneNote 2 28 0.41 - 53 0.65 45 0.64 56 0.77 61 0.77
TopOCR 3 17 0.22 28 0.35 - 40 0.52 49 0.63 62 0.77
FreeOCR 3 17 0.23 25 0.36 37 0.48 - 47 0.69 59 0.71
MoreDataFast 4 14 0.18 17 0.23 29 0.37 21 0.31 - 47 0.6
SimpleOCR 5 12 0.15 18 0.23 19 0.23 24 0.29 31 0.4 -

7.3 OCR comparison

I compared six OCR engines: ABBYY FineReader 10 Professional (FineReader),
OneNote 2010 (OneNote)2 , TopOCR v3.1, FreeOCR 3.03

, MoreDataOCR v3.0,
and SimpleOCR v3.1.

I ranked the OCRs by the uncertainty test, see Appendix C, from pairwise
tables of AC measurements, see Table 7.1.

With an or-uncertainty less than 0.9, FineReader is the best, followed by OneNote
in second; both TopOCR and FreeOCR rank third. Unfortunately, both FineReader
and OneNote are payware software, which is an inconvenience for academic
software, and both lack command-line interface which is essential for my com¬
parison studies. TopOCR is better than FreeOCR with an a-uncertainty around
0.37, which is too high to rank TopOCR over FreeOCR. Nevertheless, I elected
TopOCR to carry on with the comparative studies.

TopOCR was tested with four parameter sets, some ofwhich include despeck-
led filters. The program tester reports the maximum AC measurement for each
image.

2Microsoft OCR Engine Microsoft included in Office Professional Plus 2010.
3FreeOCR uses Tesseract v2.04 as OCR engine
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Table 7.2 - Each parameter is sampled according the increments of the third col¬
umn between the range specified in the second column.

Algorithm
Parameter

From/To Increment
Johannsen’s, Kapur’s, Kittler’s and Otsu’s r :10/50 r : 5

Kavallieratou’s a : 1/20, r : 10/50 a : 1, r : 5
Niblack’s a : 0/6, r : 10/50 a : 0.1, r : 5
Portes’s a: 0/5, r: 10/50 a: 0.1, r : 5

Sauvola’s a : 0/1, J3: 32/196, r : 10/50 a : 0.01, yS : 32, r: 5
Wolf’s a : 0/1, r : 10/50, r' : 50 a : 0.01, r : 5

7.4 Experiment I
This section reports the results in [70] where I proposed a mechanism for system¬
atic comparison of the efficiency of unsupervised evaluation methods for parame¬
ter selection of binarization algorithms in OCRs.

I performed an extensive comparison of unsupervised evaluation measures,
binarization algorithms and OCRs, and I used it to show the strengths of the un¬
biased WV measure (normal distribution).

7.4.1 Binarization algorithms
I compare the performance of nine binarization algorithms in OCRs: Johannsen’s,
Kapur, Kavallieratou’s, Kittler’s, Niblack’s, Otsu’s, Portes’s, Sauvola’s, and
Wolf’s. Authors like Sezgin and Sankur [82], Stathis et al. [84], and Trier and
Jain [87] ranked Kittler’s, Niblack’s, Otsu’s and Sauvola’s among the best bina¬
rization algorithms.

Table 7.2 presents the range and increments of the parameter sampling for
each binarization algorithm. I denote the parameter combination k of the
binarization algorithm /, which is constructed by combining the sampled parame¬
ters. Sauvola’s threshold, for instance, has 5,454 0 /jt

’s considering that a,/3 and
r are sampled with 101,6, and 9 different values, respectively.

7.4.2 Evaluation measures

I define the following values in order to evaluate the OCR performance:
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Definition 7.4: The absolute potential ACmeasure ofan image /, is defined as

w* = max \AC{tij,k)\ (7.3)
j,k y ’

where Ti,} ,k denotes the estimated foreground off by the binarization algorithm j
with parameters D.j k .

The value w* approximates the maximum accuracy that the OCR (TopOCR)
can compute for /, in combination with any of the nine binarization methods.
Similarly, we can compute wy which approximates the maximum accuracy with
the binarization algorithm j as:
Definition 7.5: Given an image /,, the relative potential AC measure of a bina¬
rization algorithm j is defined as

Wij = max [AC{fi,j,k)). (7.4)

The absolute and relative potential AC may change if the number of sampled
parameters or tested algorithms is incremented; nevertheless, I consider such val¬
ues as the groundtruth.

We cannot infer from Wy the “goodness” of the binarization method j to max¬
imize the OCR accuracy because Wy highly depends on w*. For example, suppose
that whichever binarization method is used, the OCR accuracy is equal or lower
than 0.5 (w* < 0.5). Then, if Wy = 0.45 for some j, this could be interpreted
either as a low OCR performance, or as a low binarization method performance.
However, the ratio of w* to Wy is 0.90, which means that the binarization method
j is highly efficient to maximize the OCR accuracy despite the intrinsic low OCR
performance in /,. Hence, our observations are mainly based on pairwise tables
and statistics of the following ratios.

Definition 7.6: Given an image /,, the potential AC efficiency measure of a bi¬
narization algorithm j is defined as the ratio of the relative potential AC measure
to the absolute potential AC measure. That is,

I also tested the efficiency of unsupervised evaluation measures for the param¬
eter selection of binarization algorithms. For that, I selected the best binarized
image in term of each measure and compared their accuracy. The following defi¬
nition formalizes this concept.
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Definition 7.7: The AC efficiency measure is defined as

(7.6)

where
= argmin jEval(M^\fUj,k)), (7.7)

Eval(-, •) is defined as in (6.2), and M\u) denotes the measure u.

The ratio x,j approximates the potential efficiency of the binarization algo¬
rithm j to maximize the accuracy in /,. The ratio yfj approximates the efficiency
of measure u to tune the parameters of algorithm j in order to maximize the accu¬

racy in /,.
In this experiment, I tested the measures:

• local gray-intensity uniformity measure (GUr ),

• local region non-uniformity measure (NUr),

• unbiased uniform variance measure with normal distribution (UVr),

• unbiased uniform variance measure with lognormal distribution (UVr ),

• unbiased weighted variance measure with normal distribution (WVr ), and

• weighted variance measure with lognormal distribution (WVr).

The radius of all measures was set to r = 50 because it is approximately the
minimum radius that entirely contains any character in the tested images.

7.4.3 Results and conclusions

The absolute potential AC is greater than 0.60 in all test images; see Fig. 7.2.
Indeed, 93% of them are equal or greater than 0.80, which indicates that the
OCR (TopOCR) is capable of recognizing most of the characters in our test im¬
ages. In the same figure, the corresponding relative potential AC measurements
of Niblack’s and Kavallieratou’s algorithms fluctuate irregularly. A visual com¬
parison between Niblack’s and Kavallieratou’s graphs is consequently difficult.
Because of that, all the following graphs are in decreasing order to make the vi¬

sual inspection easier.
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Table 7.3 - Pairwise comparison of absolute efficiency. Both Wolf’s and Portes’s
methods marked with (*) are ranked fourth because their pyx

’s values differ from
each other slightly. See Table 7.1 for a description of values nyx and pyx .

Rank Joh.
nyx Pyx

Kap.
nyx Pyx

Kav.
nyx Pyx

Kit.
nyx Pyx

Nib.
Pyx Pyx

Otsu
Myx Pyx

Por.
Hyx Pyx

Sau.
nyx Pyx

Wolf
nyx Pyx

Johannsen 9 - 2 0.03 0 0.00 13 0.18 0 0.00 2 0.03 0 0.00 0 0.00 0 0.00
Kapur 7 78 0.98 - 1 0.01 57 0.89 0 0.00 18 0.31 0 0.00 0 0.00 2 0.03
Kavallieratou 3 85 1.00 73 0.99 - 80 0.99 10 0.32 57 0.92 30 0.70 4 0.11 28 0.60
Kittler 8 59 0.82 7 0.11 1 0.01 - 0 0.00 5 0.08 0 0.00 0 0.00 0 0.00
Niblack 2 85 1.00 73 1.00 21 0.68 80 1.00 - 62 0.98 33 0.77 7 0.17 31 0.65
Otsu 6 77 0.97 40 0.69 5 0.08 61 0.92 1 0.02 4 0.07 1 0.01 5 0.08
Portes 4C) 84 1.00 71 1.00 13 0.30 79 1.00 10 0.23 52 0.93 - • 4 0.08 19 0.48
Sauvola 1 85 1.00 77 1.00 34 0.89 81 1.00 34 0.83 69 0.99 46 0.92 - 40 0.83
Wolf 4w 85 1.00 70 0.97 19 0.40 76 1.00 17 0.35 57 0.92 21 0.53 8 0.17 -

Table 7.4 - Mean (p) and standard deviation (a) of the AC efficiency for each
binarization algorithm and unsupervised evaluation method. For each algorithm,
the best values ofy'. '■ are shown in bold.

Potential « .

GUr NJJr UVr UVr WVr WVr
P cr P cr P cr P cr P cr P cr P cr

Johannsen 0.600 0.239 0.483 0.253 0.487 0.258 0.496 0.250 0.493 0.256 0.486 0.257 0.496 0.252
Kapur 0.845 0.168 0.750 0.201 0.756 0.197 0.756 0.199 0.751 0.198 0.751 0.200 0.750 0.200
Kavallieratou 0.963 0.048 0.601 0.220 0.517 0.227 0.763 0.224 0.728 0.222 0.715 0.195 0.763 0.227
Kittler 0.741 0.215 0.640 0.244 0.658 0.243 0.631 0.250 0.629 0.252 0.646 0.239 0.651 0.238
Niblack 0.964 0.063 0.538 0.233 0.007 0.046 0.767 0.230 0.716 0.241 0.711 0.207 0.773 0.227
Otsu 0.864 0.189 0.795 0.217 0.796 0.219 0.789 0.217 0.787 0.217 0.797 0.217 0.794 0.216
Portes 0.941 0.122 0.777 0.184 0.777 0.184 0.770 0.220 0.753 0.216 0.778 0.185 0.785 0.209
Sauvola 0.989 0.027 0.531 0.229 0.058 0.117 0.761 0.247 0.724 0.244 0.712 0.206 0.798 0.210
Wolf 0.936 0.141 0.801 0.204 0.804 0.191 0.769 0.235 0.740 0.249 0.806 0.193 0.812 0.220



7.4. EXPERIMENTI 105

The results of this experiment are shown in Figure 7.2 (graphs of absolute
and potential efficiency), Table 7.4 (mean and variances of AC efficiency), and
Table 7.3 (pairwise tables of potential AC efficiency).

Figure 7.3 shows the ranking of all six evaluation measures for each binariza-
tion method. This ranking is given by pairwise tables of AC efficiency with an
a-Uncertainty lower than 0.9.

A visual inspection of the binarized images suggests that Johannsen’s, Ka¬
pur’s, Kittler’s, and Otsu’s threshold usually wrongly classify a pixel if its neigh¬
borhood is completely contained in the background. In contrast, the rest of the
algorithms, which have one or two parameters more besides the radius, can suc¬
cessfully binarize this kind of neighborhood by tuning their parameters. My con¬
clusions are also supported for the means and standard deviations of the relative
potential AC presented in Table 7.4.

In my test images, the radius used to compute the best binarized images, in
terms of relative potential AC, range randomly between 10 and 50 independent of
the binarization algorithm. However, all six evaluation measures usually chose a
set of parameters where r = 50 whichever the binarization algorithm is present
(with an exception of Wolf’s algorithm in which usually r = 10). This behav¬
ior led Otsu’s threshold to have almost the same mean and variance whichever
one of the evaluation measures adjusted the Otsu’s radius; see Table 7.4 and
Fig. 7.4 (right). For example, the histogram in Fig. 7.4 (left) shows in light gray
bars the radius’s probability of being selected by WVr . The probability of r = 50
is close to 0.90, even though the radius’s probability of being optimal in terms
of the relative potential AC of Otsu’s method is around 0.3. This unwanted effect
also appears in Johannsen’s, Kapur’s and Kittler’s methods, pointing out that all
six measures are ineffective to adjust the neighborhood radius. I conjectured that
all four binarization methods estimate the foreground in such manner that, for a

given binarization method, all six measures reach their minimum with the same T
(the same radius). Unfortunately, my mathematical analysis is unable to explain
this pattern.

I observed that the OCR accuracy in an image depends mostly on how well
binarized the image is. In fact, the OCR accuracy of two binarized images mainly
differs due broken characters, large false positive spots, and overestimated fore¬
ground boundaries.

The ranking given in Fig. 7.3 is based on pairwise tables and not in the mea¬
surement magnitude. Therefore, the AC efficiency ranking for my dataset may be
similar with other OCRs, but not so the accuracy measurements.
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Figure 7.2 -At the top, graph of the absolute potential AC. On the bottom, ordered
graphs of the potential AC efficiency.
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Figure 7.3 - Measure ranking for each binarization algorithm. The ranking is in
decreasing order from top to bottom. Two algorithms with the same ranking either
lie on the same level, or are linked with a dash line with double arrow.



108 CHAPTER 7. EXPERIMENTAL COMPARISON STUDIES

Figure 7.4 - On the left, light gray bars represent the radius’s probability ofbeing
optimal in terms ofWVr (r = 50), in dark gray bars, the the radius’s probability of
being optimal in terms of the relative potential AC ofOtsu’s method. On the right,
efficiency graphs ofOtsu’s method, one for each measure.

7.4.3.1 Uniformity and region non-uniformity

I have shown in Section 6.2 that the NUr does not penalize false negatives and that
the GUr estimates the background in such manner that it tends to contain Tr(p) if
\T,fp)\ is small. Therefore, NUr and GUr are unsuitable for binarization methods
whose parameters allow the generation of white images or images with degraded
text.

The threshold of Kavallieratou’s, Niblack’s, and Sauvola’s methods can be in¬
terpreted as the acceptable deviation from the expected gray intensity such that the
higher the parameter a is, the more pixels are classified as background. NUr led
Niblack’s and Sauvola’s algorithms to generate white images and led to Kavallier¬
atou’s method to generate images with degraded characters. Likewise, Kavallier¬
atou’s, Niblack’s and Sauvola’s methods yielded images with degraded characters
when their parameters were tuned by GUr \ see Fig. 7.5. Table 7.4 summarizes the
low performance ofNUr and GU, for these binarization methods.

7.4.3.2 Weighted and uniform variance

After inspecting the binarized images visually, I concluded that UVr outperforms
UVr in all binarization algorithms (Table 7.4) because UVr generates more false
positive spots (connected components with four or more pixels) which are scat¬
tered all around the background. In addition to this noise, binarization algorithms
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RHAETIAE Rf R1 [ \ i: f I A K
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Figure 7.5 - Original Image on the left. Center and right images were binarized
by Kavallieratou’s threshold after being tuned with GUr and NUr , respectively.

COMIIAT VS COMIIA.TV S COMITATVS
GLATZ GX AT Z GLATZ

Figure 7.6 - Original Image on the left, center and right images were binarized by
Portes’s threshold after being tuned with UVr and UVr , respectively.

which are evaluated with UVr overestimate the foreground contours occasionally;
see Fig. 7.6. In general, measures based on the lognormal distribution yielded
sharper foreground boundaries than those based on the normal distribution in this
test. This indicates that the gray intensities at the foreground boundaries are log-
normally distributed rather than normally distributed.

In this experiment, WVr and UVr were the best for the parameter selection
of those binarization methods whose potential AC efficiency is over 0.9 (Kaval¬
lieratou’s, Niblack’s, Porte’s, Sauvola’s and Wolf’s methods); see Table 7.4 and
Fig. 7.3. Particularly since WVr is better than UVr for Sauvola’s and Wolf’s meth¬
ods despite observing sharper foreground contours with UVr . I suppose that WV,

RHAETIAE
I SUBDITARUMQUE

ei Terrarum nova
defcriptio.

RHAETIAE
SUBDITARUMQUE
ei Terrarum nova

defcnptio.

Figure 7.7 - Left and right images were binarized by Wolf's threshold after being
tuned with UVr and WVr , respectively.
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surpasses UVr because it conserves the foreground contours fairly well and, at the
same time, generates less noise than UVr \ see Fig. 7.7. Another reason for this su¬

periority can be attributed to TopOCR because it classifies a character with sharp

contours occasionally wrongly; perhaps TopOCR was trained with slim charac¬

ters.
In the practice, images satisfy the conditions of /--simple images partially. In

an image, the performance of WVr and WVr is directly related with the number of
neighborhoods with radius r which satisfy both Model 1 and (6.1). Figure 7.8, for
instance, shows an image where the percent of neighborhoods (r > 10) that satisfy

(6.1) is close to 1, but the gray intensities in its background are not approximately
identically distributed. The gray intensity of false positive pixels from Wolf’s
binarization, denoted by X, follows a different distribution to those pixels in J/ =
S\X. As a result, WV r leads Wolf’s method to generate T = T U X since

Ay -Af < V2 • max(<xy, dy), (7-8)

and

Ay - Ay > V2 • max(d-x, Ay)- (7.9)

7.5 Experiment II
Although I present a conscientious analysis for the transition method in Sec¬

tion 7.6, this section reports the tables from [72] for completeness.
In this experiment, I analyzed the performance and running time of the quan¬

tile transition threshold in combination with the normal and lognormal transition
thresholds.

7.5.1 Binarization algorithms

I compared Otsu’s, Sauvola’s and Kavallieratou’s algorithms with three variants
of the transition method: quantile autolinear (Q-A), quantile lognormal(Q-L),
and quantile normal (Q-N) algorithms. I implemented Otsu’s in the local ver¬
sion to increase the accuracy, although this implementation dramatically raised
the running-time. I implemented all the algorithms with integral images to com¬
pute local values except for Otsu’s method, which uses histogram tracking as in
Fig. 7.9.
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Figure 7.8 -At the top, an example ofa non-ideal image (left) and its correspond¬
ing groundtruth (right). In the second row, Wolf’s binarization which was tuned
with WVr (left) and the set offalse positives (set if) generated by the Wolf’s bina¬
rization (right). In the third row, the density function of gray in tensities ofT and
IB. On the bottom, the density function of gray intensities off, X, and X, where
x = r\y.
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Removed pixels

Figure 7.9 - The histogram ofPr(pi+] j), andof'Pr (pij+l ) can be computed adding
and removing pixels from the histogram ofPr(pij).

Table 7.5 shows the parameter values used in this experiment. I post-processed
all binarized images, removing from the foreground small stains (connected com¬
ponents containing four or fewer pixels) before computing any comparison mea¬
sure. Only the highest measure score is reported for each pair image-algorithm.

Quantile autolinear, quantile lognormal, and quantile normal are composite
algorithms with the following operations:

• Max-min function with neighborhoods of radius r - 2.

• Quantile threshold,

Table 7.5 - Parameter’s range
Algorithm From/To Increment
Kavallieratou 0/9 1

Quantile Autolinear a: 0.1/0.975 0.025
Quantile Lognormal a : 0.1 /0.975 0.025
Quantile Normal a: 0.1/0.975 0.025
Sauvola a : 0.025/0.6 /? : 128 a : 0.025
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• Two isolation transition operators (a = b = 1). the former using cross
neighborhood, the later using diagonal neighborhood.

• Autolinear or lognormal or normal thresholds. Setting n+ = /j_ = 5 and
c = 15.

7.5.2 Results

For this experiment, I implemented the algorithms in C++ and ran the tests on
a computer with a 3.2 GHz Pentium IV Dual core processor and 2 GB in RAM.
Table 7.6 presents the 95% confidence intervals for the algorithms’ running-times
expressing the interval limits on millisecond/megapixel.

Table 7.7, Table 7.8, and Table 7.9 present the results of UV, AC and PR
measures, respectively.

7.6 Experiment III
This section reports the experiments in [73] where I compared several variants of
the transition method with top-ranked binarization algorithms.

The purpose of this experiment was to test the efficiency of the double-linear
transition threshold along the influence of transition operators in the binariza¬
tion.

7.6.1 Binarization algorithms
I compare Kittler’s, Otsu’s, Portes’s, Sauvola’s, Wolf’s algorithms (top ranked
in [87], [82], and [84]) with four variants of the transition method. I implemented
all nine algorithms in their local versions to increase their accuracy, although local
implementations dramatically raise the running-time.

Real applications rarely use more than one parameter set. That is the main
reason why I fixed Sauvola’s a - 0.5 and J3 = 128, Portes’s a = 2, and Wolf’s
a = 0.5, which are the recommended parameters; see Section 3.3.

I set the primary neighborhood radius to r = 50, local windows of 101x101
pixels, and set the secondary neighborhood radius to 100 for Wolf’s method; see
Fig. 3.2.

The transition algorithms, denoted by the prefix T, are composite methods with
the following combination of operators:
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Table 7.6 - 95% confidence in tervals for binarization-running time. The intervals
are normalized with respect to Sauvola’s running-time (millisecond/megapixel)
which is the fastest.

Raw Normalized
Kavallieratou (1718,1727) (4.0,4.0)
Otsu (265757,266908) (630.9.630.9)
Quantile Autolinear (1802,1813) (4.2,4.2)
Quantile Lognormal (2568,2580) (6.1,6.1)
Quantile Normal (2039,2051) (4.8,4.8)
Sauvola (421,423) (1.0,1.0)

Table 7.7 - Pairwise comparison of UV measure. See Table 7.1 for a description
of values nyx and pyx .

Kav.
ftyx Pyx

Otsu
nyx Pyx

Q-A
Wyx Pyx nyx

Q-L
Pyx

Q-N
nyX Pyx

Sau.
nyx Pyx

Kavallieratou - - 12 0.14 l 0.01 1 0.01 1 0.01 0 0.00
Otsu 71 0.86 - - 6 0.07 3 0.04 3 0.04 0 0.00
Quantile Autolinear 82 0.99 77 0.93 - - 2 0.02 19 0.23 3 0.04
Quantile Lognormal 82 0.99 80 0.96 81 0.98 - - 56 0.67 8 0.10
Quantile Normal 82 0.99 80 0.96 64 0.77 27 0.33 - - 4 0.05
Sauvola 83 1.00 83 1.00 80 0.96 75 0.90 79 0.95 - -

Table 7.8 - Pairwise comparison ofAC measure. See Table 7.1 for
of values nyx and pyx .

a description

Kav.
nyx Pyx

Otsu
nyx Pyx

Q-A
nyx Pyx

Q-L
nyx Pyx

Q-N
nyx Pyx

Sau.
Myx Pyx

Kavallieratou ~ - 55 0.75 8 0.12 10 0.15 4 0.06 10 0.16
Otsu 18 0.25 - - 1 0.01 2 0.03 1 0.01 l 0.01
Quantile Autolinear 58 0.88 70 0.99 - - 25 0.46 13 0.33 33 0.61
Quantile Lognormal 56 0.85 71 0.97 29 0.54 - - 17 0.40 31 0.58
Quantile Normal 61 0.94 71 0.99 27 0.68 25 0.60 - - 33 0.67
Sauvola 54 0.84 69 0.99 21 0.39 22 0.42 16 0.33 - -

Table 7.9 - Pairwise comparison of PR measure. See Table 7.1 for
of values nyx and pyx .

a description

Kav.
nyx Pyx

Otsu
nyx Pyx

Q-A
>hx Pyx

Q-L
nyx Pyx

Q-N
Kyx Pyx

Sau.
ftyx Pyx

Kavallieratou - - 36 0.45 7 0.09 3 0.04 6 0.08 5 0.06
Otsu 44 0.55 - - 4 0.05 6 0.08 3 0.04 1 0.01
Quantile Autolinear 74 0.91 74 0.95 - - 23 0.36 22 0.44 26 0.39
Quantile Lognormal 76 0.96 71 0.92 41 0.64 - - 39 0.61 31 0.44
Quantile Normal 74 0.93 74 0.96 28 0.56 25 0.39 - - 21 0.35
Sauvola 75 0.94 76 0.99 41 0.61 39 0.56 39 0.65 - -
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• Max-min function with neighborhoods of radius r.

• Double-linear threshold for transition values using either the empirical scaled
density function denoted by DF or the empirical complementary cumulative
distribution function denoted by CCD.

• Isolate transition operators in the following order:

1. cross transition operator,

2. diagonal transition operator, and

3. frame transition operator (x = y = 2).

• Incidence transition operator (k = 4, a = b = 3).

• Dilation transition operator (a = b = 3).

• Gray-intensity threshold. Setting n+ = = 25, c = 15, and using either the
normal threshold (simple form) denoted by N or the lognormal threshold
(simple form) denoted by L.

I named these four variants T-DF-N, T-DF-L, T-CCD-N, and T-CCD-L, depending
on how the algorithm computes the transition and gray-intensity thresholds.

I also tested three variants of T-CCD-L in order to analyze the influence of
transition operators on the transition method: T-CCD-L-A does not include any
transition operator, T-CCD-L-B includes only the isolate transition operators, and
T-CCD-L-C includes both isolate transition operators and incidence transition op¬
erators.

All binarized images were post-processed removing from the foreground small
stains (connected components containing four or fewer pixels) before computing
any evaluation measure. The following operators were applied in this order:

1. cross isolate operator,

2. diagonal isolate operator, and

3. frame isolate operator (x = y = 2).
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7.6.2 Evaluation measures

In this experiment, I used the unbiased uniform variance measure with normal
distribution (UVr ) to assess the segmentation quality.

As I stated in Section 7.4, the mean and variance of AC measures are unsuit¬
able to assess the performance of a binarization algorithm in OCRs. Hence, for
the purpose of this experiment, I redefined the AC efficiency measure as:

Definition 7.8: Given an image /, and an binarization algorithm j,

yu
AC(Tij)

W;
(7.10)

where w* is the absolute potential AC measure (Definition 7.4), and "Tij is the
estimated foreground of I, by the binarization algorithm j.

Remark 7.1: The values w* in this experiment are the same as those values w* in
experiment I (Section 7.4).

7.6.3 Results and conclusions

I arranged the test images such that the graph of AC accuracy is decreasing for an
easier visual comparison; see Section 7.4.3 for details.

UVr measure penalizes eroded and overestimated foreground boundaries, but
it also penalizes stains (ink stains and dark background spots) that are classified
as background so that algorithms that compute foreground boundaries correctly
and classify stains as foreground are highly scored, like Wolf’s algorithm which
is the best in terms UVr measure; see Table 7.10. However, scattered stains and
a slight overestimation of the foreground contour lead Wolf’s algorithm to a low
OCR performance; see Table 7.11, Table 7.12, and Table 7.13.

Kitller’s algorithm also classifies stains as foreground but, contrary toWolf’s
algorithm, it overestimates the foreground boundaries greatly. In consequence,
Kittler’s algorithm is a medium rank in terms of UV measure and reports the low¬
est AC efficiency because of the overestimated foreground boundary; see Fig. 7.10.

Sauvola’s algorithm computes low thresholds, which discard stains from the
foreground, but low thresholds also produce eroded foreground boundaries that
are strongly penalized by UV measure; see Table 7.10. As a result, Sauvola’s
algorithm was the worst in terms of UV. What is more, this also affects the OCR
performance badly; see Table 7.10.
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Figure 7.11 - At the top, ordered AC efficiency graphs of transition algorithms;
details on the bottom. Otsu’s graph is plotted as a graph of reference.
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Table 7.10 - UV pairwise comparison. See Table 7.1 for a description of values
nyx and pyx . The highest values are shown in bold.

Kit.
nyx Pyx

Otsu
nyx Pyx

Por.
nyx Pyx

Sau.
nyx Pyx

Wolf
Hyx Pyx

T-CCD-L
nyx Pyx

T-CCD-N
nyx Pyx

T-DF-L
nyx Pyx

T-DF-N
nyx Pyx

Kittler - - 72 0.84 35 0.41 86 1.00 29 0.34 30 0.35 56 0.65 32 0.37 58 0.67
Otsu 14 0.16 - - 12 0.14 85 0.99 7 0.08 4 0.05 8 0.09 4 0.05 6 0.07
Portes 51 0.59 74 0.86 - - 86 1.00 36 0.42 46 0.53 61 0.71 44 0.51 60 0.70
Sauvola 0 0.00 1 0.01 0 0.00 - - 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Wolf 57 0.66 79 0.92 50 0.58 86 1.00 - - 50 0.58 66 0.77 52 0.60 68 0.79
T-CCD-L 56 0.65 82 0.95 40 0.47 86 1.00 36 0.42 - - 83 0.97 44 0.52 79 0.92
T-CCD-N 30 0.35 78 0.91 25 0.29 86 1.00 20 0.23 3 0.03 - - 4 0.05 47 0.56
T-DF-L 54 0.63 82 0.95 42 0.49 86 1.00 34 0.40 40 0.48 82 0.95 - - 81 0.94
T-DF-N 28 0.33 80 0.93 26 0.30 86 1.00 18 0.21 7 0.08 37 0.44 5 0.06 - "

Portes’s algorithm classifies stains as foreground frequently and overesti¬
mates the foreground contour slightly. In combination, this reduces the OCR
performance but increases the UV measurements.

Otsu’s and transition algorithms determine sharp foreground contours. How¬
ever, Otsu’s generated a great deal of stains in neighborhoods that are completely
contained in the background despite the restriction of (3.5).

Transition algorithms differ as a product of two factors: the function that com¬
putes the transition thresholds and the function that computes the gray-intensity
thresholds. Transition algorithms based on the complementary cumulative distri¬
bution resist more noise than those based on the density distribution so that both
T-CCD-L and T-CCD-N generate fewer stains (penalized UV measurements) than
T-DF-L and T-DF-N. Therefore, they have the highest AC efficiency; see means
and variances in Fig. 7.11. On the other hand, transition algorithms based on
lognormal threshold have a sharper foreground contour than those based on the
normal threshold. Although these differences are visually minimal, they are re¬
flected on the UV measurements.

I only present the influence of transition operator in T-CCD-L and variants A,
B and C because the rest of transition methods are influenced in a similar manner.

The relative high variance of T-CCD-L-A and the graph behavior of the AC
efficiency, see Fig. 7.12 and Table 7.14, suggest that T-CCD-L-A resists moderate
noise.

Incidence and isolate transition operators increase the AC efficiency in images
with high noise level at the cost of dropping the cardinality of transition set and,
in consequence, the AC efficiency decreases in images whose foreground contains
small connected components like punctuation marks and small characters. Note
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Table 7.11 - AC pairwise comparison. See Table 7.1 for a description of values
nyx and pyx . The highest values are shown in bold.

Kit.
nyx Pyx

Otsu
ny.x Pyx

Por.
nyx Pyx

Sau.
nyx Pyx

Wolf
nyx Pyx

T-CCD-L
nyx Pyx

T-CCD-N
nyx Pyx

T-DF-L
nyx Pyx

T-DF-N
nyx Pyx

Kittlcr - - 15 0.21 18 0.25 26 0.35 20 0.33 14 0.18 13 0.18 17 0.22 11 0.14
Otsu 58 0.79 - - 44 0.62 55 0.76 52 0.78 20 0.34 23 0.41 29 0.45 22 0.39
Portes 53 0.75 27 0.38 - - 37 0.51 40 0.61 21 0.30 27 0.38 25 0.36 24 0.35
Sauvola 48 0.65 17 0.24 35 0.49 - - 38 0.54 19 0.26 20 0.27 25 0.32 17 0.25
Wolf 40 0.67 15 0.22 26 0.39 33 0.46 - 14 0.20 17 0.23 21 0.28 13 0.20
T-CCD-L 64 0.82 38 0.66 49 0.70 54 0.74 56 0.80 - - 29 0.62 24 0.60 27 0.54
T-CCD-N 61 0.82 33 0.59 44 0.62 53 0.73 56 0.77 18 0.38 - - 28 0.52 23 0.47
T-DF-L 61 0.78 35 0.55 44 0.64 52 0.68 53 0.72 16 0.40 26 0.48 - - 25 0.42
T-DF-N 66 0.86 34 0.61 45 0.65 52 0.75 53 0.80 23 0.46 26 0.53 34 0.58 - -

Table 7.12 - PR pairwise comparison for text. See Table 7.1 for a description of
values nyx and pyx . The highest values are shown in bold.

Kit.
nyx Pyx

Otsu
nyx Pyx

Por.
nyx Pyx

Sau.
nyx Pyx

Wolf
nyx Pyx

T-CCD-L
nyx Pyx

T-CCD-N
nyx Pyx

T-DF-L
nyx Pyx

T-DF-N
nyx Pyx

Kittlcr - - 20 0.24 32 0.39 44 0.52 32 0.41 20 0.24 21 0.25 21 0.25 21 0.25
Otsu 65 0.76 - - 52 0.63 59 0.73 51 0.64 32 0.42 31 0.42 37 0.49 30 0.43
Portes 51 0.61 31 0.37 - - 53 0.64 45 0.56 28 0.34 31 0.38 26 0.31 33 0.40
Sauvola 41 0.48 22 0.27 30 0.36 - - 34 0.41 19 0.23 20 0.25 24 0.29 20 0.24
Wolf 46 0.59 29 0.36 35 0.44 49 0.59 - - 25 0.31 27 0.33 27 0.33 26 0.33
T-CCD-L 62 0.76 44 0.58 55 0.66 64 0.77 55 0.69 - - 40 0.59 31 0.58 38 0.58
T-CCD-N 62 0.75 42 0.58 51 0.62 61 0.75 55 0.67 28 0.41 - - 33 0.49 32 0.52
T-DF-L 62 0.75 39 0.51 57 0.69 59 0.71 54 0.67 22 0.42 35 0.51 - - 34 0.50
T-DF-N 63 0.75 39 0.57 50 0.60 62 0.76 53 0.67 28 0.42 30 0.48 34 0.50 - -

Table 7.13 - Mean, variance and quantiles ofAC efficiency for each binarization
method. The best values are shown in bold.

Values i/n such that yZhJ equal or greater than
mean Var 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60 0.50

Kittler 0.646 0.261 0.02 0.05 0.10 0.21 0.37 0.50 0.55 0.65 0.78
Otsu 0.787 0.196 0.06 0.16 0.27 0.47 0.59 0.73 0.80 0.90 0.91
Portes 0.748 0.203 0.05 0.10 0.21 0.34 0.56 0.64 0.70 0.83 0.88
Sauvola 0.702 0.212 0.06 0.09 0.19 0.28 0.42 0.47 0.55 0.77 0.81
Wolf 0.691 0.246 0.00 0.06 0.14 0.34 0.47 0.57 0.60 0.74 0.84
T-CCD-L 0.805 0.175 0.08 0.13 0.30 0.48 0.67 0.76 0.84 0.91 0.95
T-CCD-N 0.798 0.182 0.08 0.13 0.31 0.45 0.67 0.76 0.79 0.90 0.95
T-DF-L 0.795 0.196 0.09 0.12 0.31 0.51 0.65 0.76 0.79 0.87 0.95
T-DF-N 0.796 0.189 0.08 0.15 0.28 0.51 0.63 0.72 0.81 0.92 0.94
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Figure 7.12 - Ordered AC efficiency graphs ofT-CCD-L and variants. The area
between Otsu’s and Fortes's graphs is plotted in light gray as reference.

Table 7.14 -Mean, variance and quantiles ofAC efficiencyfor T-CCD-L and vari¬
ants. The best values are shown in bold.

Values i/n such that yZij equal or greater than
mean Var 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60 0.50

T-CCD-L-A 0.771 0.213 0.06 0.09 0.24 0.44 0.64 0.73 0.79 0.87 0.92
T-CCD-L-B 0.758 0.186 0.3 0.05 0.15 0.33 0.55 0.69 0.76 0.88 0.93
T-CCD-L-C 0.771 0.175 0.5 0.06 0.16 0.36 0.59 0.70 0.73 0.93 0.95
T-CCD-L 0.805 0.175 0.08 0.13 0.30 0.48 0.67 0.76 0.85 0.91 0.95
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that the incidence operator does not remove dense salt and pepper noise. Thus, it
has to be applied after isolate transition operators.

The dilation transition operator counterbalances the unwanted effect of the in¬
cidence and isolate transition operators by increasing the cardinality of diminished
transition sets. I should remark that this operator has to be applied in images with
low noise level, or after isolate and incidence transition operators. Otherwise, the
noise is magnified.

7.7 Summary
In this chapter, I presented the four main contributions of my thesis: an analy¬
sis of the performance of binarization algorithms and unsupervised measures. In
concrete, I proposed two mechanisms for systematic comparison of the efficacy
of algorithms using OCR’s and historical documents (Blaeu maps).

The data set used in all tests is described in Section 7.1. Later on, OCR’s
measures based on the maximum matching string (Definition 7.2) are discussed
in Section 7.2.

Six commercial OCRs are evaluated in Section 7.3. TopOCR is chosen to carry
on with all comparative studies since it has performed the best among freeware
software and has command-line mode (essential tool for massive evaluations).

In Section 7.4, I proposed a mechanism for systematic comparison of the ef¬

ficacy of unsupervised evaluation methods for parameter selection of binariza¬
tion algorithms in optical character recognition (OCR). The comparison process
is streamlined in several steps. Given an unsupervised measure and a binarization
algorithm, I:
(i) find the best parameter combination for the algorithm in terms of the measure,

(ii) use the best binarization of an image on an OCR, and
(iii) evaluate the accuracy of the characters detected.

The performance of the transition method is evaluated in Section 7.5 and Sec¬

tion 7.6. The running-time of three variants of the transition method is determined
under a normalization by the running-time of Sauvola’s algorithm. It turns out that
the transition method is between 4.2 and 6.1 times slower than Sauvola’s methods,
which is one of the fastest algorithms. However, it is between 100 and 150 times
faster than Otsu’s methods, which is considered as one of the best binarization
algorithms.

Results presented in Table 7.8 and Table 7.13 indicate that the transition method
outperforms top-ranked binarization algorithms, namely Otsu’s,Wolf’s, Sauvola’s,
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and Kittler’s methods. Table 7.13 also indicates that:
(i) the transition method resists highest levels of noise,
(ii) the complementary cumulative distribution function decreases the impact of
outliers on the double-linear threshold, and
(iii) the lognormal threshold generates sharper foreground contours than both nor¬
mal and autolinear threshold.

Since all variants are influenced by transition operators in a similar manner,
Table 7.14 presents the influence of transition operator in a particular variant of
the transition method. The incidence transition operator can remove noise that
isolated operators cannot, and the dilation transition operator can improve the
performance of normal and lognormal thresholds.



Chapter 8

Slope estimators (chapter n+1)

Always strive to win, because in so doing even
when you lose, you still win!

Salome Angulo Romero
Mexican professor of mathematics (1949-2010)

I wrote “chapter n+1” in the title of this chapter because I introduce the
differences-rate estimator for the slope in a linear regression model, which
is apparently unrelated to binarization and the general topics of my thesis. How¬
ever, I developed this novel estimator for the double-linear threshold in which
the slope of two lines from a histogram are estimated.

In this chapter, I prove that this novel estimator is an unbiased estimator with
low computational cost. Although the breakdown point of differences-rate es¬

timator is zero, it can accurately estimate the slope on histograms of empirical
complementary cumulative distribution functions where the effect of outliers is
faded. Moreover, the alternative form of this estimator is linearly computed in the
number of samples and, in consequence, it is suitable for estimating the slope of
lines in large histograms with extreme values, and for time-consuming algorithms.

123
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estimator

efficiency

I describe a potential application of this estimator to estimate the exponent
parameters in overestimated measurements drawn from a power-law distribution.

8.1 Simple Linear regression model
Consider the simple linear regression model

- xiy i -/3 + a + €j, for 1 < i < n (8.1)

where (3 e R is the slope parameter, a e R is the intercept parameter, the
observations are of the form z, = (jc,-, y,) e R 2

, and e,- is a random variable depicting
the error from the observed data.

An estimator is a measure calculated from a sample of data that is used to
infer the value of an unknown parameter in a statistical model. In the simple linear
regression model, fi and a are the parameters to be estimated. Four concepts are
usually employed to evaluate an estimator: unbiasedness, asymptotic efficiency,
breakdown point, and run-time complexity.

Definition 8.1: Assume that the parameter ofa model is defined in (a,b). For an
estimator 0 to be unbiased, we mean that on the average the estimator will yield
the true value for all 9 € (a, b). That is, the estimator is unbiased if

e(o} = 9 for all 9. (8.2)

The theorem of the Cramer-Rao lower bound - (simple linear model) states
that if 9 is an unbiased estimator of 9, then there exists LB(9) such that

Var(9) > LB(9), (8.3)

which is known as Cramer-Rho lower bound. The calculation of the Cramer-Rho
lower bound depends on the distribution of e,-’s, and it is derived from the inverse
of a Fisher information matrix. 1

Given an estimator 9 of an unknown parameter 9, the efficiency is a measure
of how close Var(9) is to Cramer-Rho lower bound. It is defined by

Efficiency(0) =—, (8.4)
Var(9)

1 Readers interested in further pursuing the Cramer-Rao lower bound and related topics are
encouraged to consult the book by Kay [38].
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where LB(8) is the Cramer-Rho lower bound for Var(6). An estimator with effi¬
ciency 1.0 is said to be an efficient estimator.

The efficiency is usually computed for independent observations such that e, ~

N(0, a2 ). Hence, for the simple linear model, the Cramer-Rao lower bound is
given by

Var(ji)>-—-- = LB(J3) for all /i. (8.5)

For histograms, (8.5) is simplified to

(8 .6 )= LB(fi) for all ji.

where the observations have the form (i ■ x, y ; ) for i = 1,2,..., n.
The asymptotic efficiency of an estimator is then defined as the estimator asymptotic efficiency

efficiency for n —> oo. For example, in the presence of Gaussian noise, the mean
estimator has an asymptotic (large sample) efficiency of 1.0 (achieving the lower
bound) while the median estimator’s efficiency is only | « 0.64.

The notion of breakdown point was coined, defined, and discussed by Ham- breakdown point
pel [28]. The breakdown point of an estimator is informally defined as the smallest
percentage of contaminated data that may cause an estimator to take misleading
values. For example, the breakdown point of the sample mean is ~ since a single
large outlier can corrupt the result. The median remains reliable if less than half
of the data are contaminated. Indeed, 50% is the best that can be expected; for
larger amounts of contamination, it becomes impossible to distinguish between
the “good” and the “bad” parts of the sample.

For the run-time complexity, we use the conventional Big - O notation O(-).

8.2 Estimators

The following estimators of both slope and intercept parameters are defined in
terms of the simple linear regression model. In the same manner, their complexity
analysis is simplified. Their generalization for higher dimensions can be found in
their references.
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I refer as arithmetic form

to those equations with close

form such that only arithmetic

operations (addition, subtrac¬

tion, multiplication, and divi¬

sion) are involved.

The least square estimator2 proposed around 1 795 (LSS) is defined as

n

0lss,o:lss) = argmin V a'), (8.7)

where
r,•(/?', a') = yt - xt -ft - a'. (8.8)

The values r,•(/?', a') are known as residuals. A more complete name for this
estimator would be least sum of squares estimator, which I adopt for the rest of
this chapter.

If 6,’s are independent and identically distributed, such that E(e,-) is finite,
then

n n n

(ILSS ~ (8.9)

i=l L f=l

is unbiased. The efficiency of fiLss at Gaussian noise is 1.0. Moreover, (8.9)
has the mathematical beauty of being an arithmetic form and the computational
beauty of being linear on the number of observations. However, a single outlier
can lead fiLss to misleading values. Therefore, its breakdown point is zero.

In 1887, Edgeworth [21 ] [22] proposed the least sum of absolute errors esti¬
mator (LSAE), improving a proposal by Boscovich:

0lsae,&lsae ) = argmin V ||ri(/3\ar
,
)||, (8.10)p^ jrf

where ||
•
|| denotes the absolute value. This estimator is less sensitive to outliers

than the least sum of squares estimator, but even so, its breakdown point is zero.
Another drawback is thatPlsAE depends on aLSAE. The estimatorPlsAE is unbiased
only if £(e,) = 0 where e, are independent and identically distributed. Narula and
Wellington [55] presented a survey of algorithms to calculate this estimator.

Huber [30] introduced the M-estimators in 1973, which is defined as

n

= argmin Y p (rtf, a’)) , (8.11)ft' n,' -*

2 This estimator is attributed to Carl Friedrich Gauss. Adrien-Marie was the first to publish the
method, however. See Stigler [85] for historical discussion.
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where p(x) is not monotone with one minimum in zero such that ip(x) = (^)p(x) is
continuous and bounded. Ifp(x) is convex, Huber proved that (8.11) is equivalent
to solve the system

n

1=1
n (8 . 12)

^ <p(ri(J3',a')) -a' = 0.
i=l

Pm is unbiased only if £(0(6,)) = 0 and the e,-’s are independent and approximately
identically distributed. Choosing an adequate <A(x), M-estimators are statistically
more efficient than the least sum of absolute errors estimator at central model and
Gaussian error; M-estimators, however, cannot cope with grossly aberrant values
in x,’s, namely leverage points, which have a large influence in (8.12). Further- a point (*,,>>,) whose xt is

more, solving (8.12) may need numerical optimization algorithms. Subsequent outlying is called a leverage

variants of M-estimators achieved around 30% of the breakdown point; see [77] point.

for more references of these estimators.
The repeated medians estimator, proposed by Siegel [83] in 1982, can resist

the effects of outliers having the best breakdown point (50%). For the simple
linear regression model, this estimator is defined as

(8.13)

Although pkm has no close form, it can be calculated in a deterministic manner
with a running-time of 0(n2 ln(«)); see [68], Chapter 8.5. This estimator is unbi¬
ased assuming that e,’s are independent and approximately identically distributed
and £(e,) exists. It is robust against a high percentage of outliers. The Gaus¬
sian efficiency of the repeated median method was found experimentally as being
around 0.60.

Two years later, in 1984, Rousseeuw [77] proposed the least median of squares
estimator defined as

Plms depends on cklmsi and its Gaussian asymptotic efficiency is 0%. Another
drawback is that Plms is unbiased only if the e,’s are independent and identi¬
cally distributed such that £(e,) = 0 and finite £(e?). In addition, the best algo¬
rithm known to computePlms , by Edelsbrunner and Souvaine [20], has a run-time
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0(n 2
). In the same publication, Rousseeuw also proposed the least trimmed of

squares estimator; Rousseeuw said that he has “In press” a publication about
the least trimmed of squares estimator, however, I was unsuccessful in tracking
such a publication. (LTSS) which minimizes the sum of squares of the smallest k
residuals. That is

(Pltss,&ltss ) - m in
P',cr'

(8.15)

where r2 (j3', a')(o denotes the smallest i value from the set

{r2 (J3',a') | for i= (8.16)

Pltss is unbiased with the same assumptions of Plms , and it has a Gaussian
asymptotic efficiency of 8%. Moreover, it also reaches a 50% breakdown point
for k = However, known algorithms for its calculation have a run-time of
0(n2 ln(n)) or higher; see Li [43],

Rousseeuw et al. [78] proposed, in 1993, the least quartile difference esti¬
mator (LQAD), which is defined as

hQAD = vcim{\W)\yk) } (8.17)

where \\r(P')\yk) denotes the ^-smallest element from elements of the set

[\\riiJ3',a') - r0,a')\\ ; 0 < j < i for i = 1,...,«}
, (8.18)= {lly>i ~P' ■ Xi-yj+P' ■ Xj\\ ; 0 < j < / for i = 1,...,«}.

This estimator has a breakdown point of 50% if

(8.i9)

Furthermore, Plqad does not depend on aLQAD , and it is unbiased if the e,’s are
independent and approximately identically distributed such that E(ei) exists. Its
asymptotic efficiency at Gaussian noise is 0.67. However, known algorithms for
the exact solution ofPlqad have a run-time of 0(n 2 In 2 n ) or higher, see [2],

Croux et al. [17] proposed the generalization of this estimator, namely gen¬
eralized S-estimator (GS-Estimator). Berrendero [4] studied the GS-estimators
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robustness and Roelant et al. [75] introduced the GS-estimators for the multivari¬
ate regression model.

The least trimmed differences (LTSSD), proposed by Stromberg et al. [86]
in 2000, also exploits the pairwise differences minimizing the sum of the smallest
quartile of the squared differences of the residual pairs.

k

PLTSSD = Yi r2(fi')(i), (8.20)
1=1

where r2 (J3')^k) denotes the ^-smallest element from Q elements of the set

- r0,a')] 2 ; 0 < j < i < n}
= (tv;-P ■ *i ~ yj +P ■ xjf ; 0 < j < i < n}.

It is unbiased if the e,’s are independent and approximately identically distributed
such that E(ei) and E(ef) exist. The breakdown of this point is 50% if k is de¬
fined as (8.19) with asymptotic efficiency of 0.66 at Gaussian noise. However, it
is computationally expensive. Pitssd has a run-time complexity 0(n4 \n 2

(n)) by
adapting algorithms forPltsd- Nevertheless, for k - n, the (8.20) (no trimmed) is
equivalent to

Plssd -
Yj tf; - yil ■ [xj ~ Xi\

1 <i<j<n

Y c*/ - *'] 2
I <i<j<n

(8 .22)

which is an arithmetic form and quadratic in the number of observations, but then
its breakdown point is 0%.

8.3 Differences-rate estimator
Let me introduce a definition used in the assumptions of the differences-rate esti¬
mator.

Definition 8.2: A set of values X\ < X\ < ... < xn are in n-general position if
there exists a pair of values x, and Xj in the set such that x,- + Xj for some indexes
1 < / < j < n.
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Definition 8.3: Assume the simple linear regression model with n > 2 obser¬
vations such that x\ < x2 < ... < xn are in n-general position. Define the
differences-rate estimator as

zf>-»]
Pdr = ~——- (8.23)

n j-1

Z Tj 1x <

- x
< ]

7=2 i=l

Proposition 8.1. The differences-rate estimatorfor simple linear regression model
is equivalent to

n

Yp.i-n-\]- yi
Pdr =-v- (8.24)

Yj2-i-n- 1 ] • JCf

i=i

Proof. I prove (8.1) by induction on the number n. Since the numerator and de¬
nominator of (8.24) are dual, I will prove the identity for the denomiator. That
is,

11+1 7-1 n+1zz [v
7=2 i= 1

Trivially, (8.24) holds fo:

n 7-1

zz
7=2 i=l

Now consider
«+l 7-1

ZZ [x;~ x
<

7=2 i=l

By grouping the first term v

n+1 7-1

=
7=2 i=l

- X,] - 2,12 • i - [n + 1] - 1] • Xi.
i=i

r n = 2. Suppose that it holds for
n

[Xj - Xi] = 2] [2 • i ■- n - 1] • Xj.

(8.25)

(8.26)
i=l

n 7-1

] /* ^

'

IT/ 2Ci] + ^ 7 ^11+1 2:;]
7=2 i=l

n 7-1

i=l

ZZ [x;- x' ]
7=2 i'=l

+ /7 •
X/2+ ] ^ ^

Xj
i=i

ith the third term, we obtain

Z U; • [2 • i - n - 1] -x,]
i=i

+ 77 -X„+ |

(8.27)

(8.28)
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The proof is concluded by rewriting

n • xn+\ = [2 • [n + 1] - [n + 1] - 1] • xn+]

which is the n + 1 term of (8.25).

(8.29)

□

Theorem 8.1. Assume the simple linear regression model such that X\ < x2 <
... < x„ are in n-general position, and e\,..., en are random variables indepen¬
dent and identically distributed with finite £(e,). Then,.

E(J3DR)=/3.

Therefore, fiDR is an unbiased estimator of/3.

Proof. The expected value of (8.23) is given by

( n j-1 \ n j-1

(8.30)

E(fioR)
=E^-

V j=2 1=1

7=2 i=l
n ./'-l

j=2 (=1

(8.31)

Observe that

= E(f:1 ■ Xj + a + ej - f3 • Xi - a £,•j
= e(/>■ Xj + €j -/? • Xi - £,)

(8.32)

for all pair i and j. Since e, and ej are independent observations, (8.32) is equiva¬
lent to

E (y; - yi) - P ■ [xj - xt\ + E(ej) - £(e;)-
For identically distributed observations, f?(e,) = E{ef). Therefore,

E (yj-yi) =J3 - [Xj-Xi\.

(8.33)

(8.34)

Thus, we conclude that

n j-1 n j-1

7=2 i=l 7=2 i=l

7=2 1=1 7=2 i=l

= /?■ (8.35)

□
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Theorem 8.2. Assume the simple linear regression model such that x\ < x2 <
... < x„ are in n-general position, and e\,..., en are random variables indepen¬
dent and identically distributed with finite Varied = <x2 . Then,

Var(fiDR ) =
[n - 1] • n ■ [n + 1] • cr2

Yjli-n-W
L i= 1

(8.36)

Proof. Observe that

Var(ji ) = Vartfii • x, + or + e,) = Var(et ) = cr2 , (8.37)

and

Var(j3ni< ) = Var

^[2i-n - 1] • y,
J=1
n

^Jili-n - 1] -Xt
V ,= i ^

n

Y_p-i~n - l] 2 • Var(yO
i= 1

^[2i-n - 1 ]-Xj
. r=i

(8.38)

Simplifying the summatory in the numerator

YJ[2i-n-l] 2 = 4 ^i2
i= 1 L i=l

■ 4[n + 1]
1=1

+ «•[«+])■

[n - 1] • n ■ [n + 1]

where we have used the identities

and

v-i . n ■ [n + 1 ]

n ■ [n + 1 ] • [2n + 1 ]

6

Therefore, we conclude the proof using (8.39) in (8.38).

(8.39)

(8.40)

(8.41)

□



8.3. DIFFERENCES-RATE ESTIMATOR 133

Theorem 8.3. The efficiency offtdr at Gaussian noise is given by

Efficiency(finR ) =
3 ^[2i-n- 1] -Xii

- i=i

[n- 1] • [n+ 1] •

i=i

n

1=1

(8.42)

Proof. The efficiency of {3DR derives directly from the ratio (8.5) to (8.42) □

Corollary 8.1. Assume a simple linear regression model where the observations
have the form (x, y \), (2 • x, y2 ), ...(/?• x, yn ), such that the e,

’s are independent and
identically distributed with finite E (e,). Then, [3 is unbiased estimated by

n

—n-l] ■yt

Pdr - 1=1

x ■ [n - 1 ]•«•[«+ 1 ]

Proof. Corollary 8.1 is derived from (8.24) and the identity

n ii

^[2/ - n - 1] • i • x = x • 2
i=i L/=i

~[n+ 1]

n

i=i
x • [n - 1] • n ■ [n + 1

(8.43)

(8.44)

□

Corollary 8.2. Assume a simple linear regression model where the observations
have the form (x, y \), (2 • x, yf),... (n ■ x, y„). such that the e,-

’s are independent and
identically distributed with finite Z?(e,) and Var(Cj). Then ,

Var (pDR) _\lof__
x2 • [n - 1 ] • n ■ [n + 1 ]

’ (8.45)

which is identical to the Cramer-Rho lower bound at Gaussian noise. Therefore,
fiDR is an efficient estimator offt.
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Proof. Direct calculus yields

Var (pDR) = Var

n

6-Yp-i-n-l] ■yi

i= 1

x ■ [n - 1 ] • n ■ [n + 1 ]

62 -Yp-i~n- l] 2 - VariyJ

[x ■ [n - 1] • n ■ [n + l]] 2

To simplify (8.46) I used the identity (8.39).

(8.46)

□

Unfortunately, the breakdown point of Differences-Rate estimator is zero be¬

cause y —> oo if any yt —> oo.

8.4 Complexity and computational stored cost

The complexity of computed with (8.24) is 0(n), where n is the number of
observations.

Since a single variable overflow in running-time could crash the whole system,
the computational stored cost of variables is an important matter for applications
where values are computed from a large amount of data. For instance, in the
standard programming language of C++, if two variables x and y are integers of
32 bits, then the sum x + y may result in an integer higher than 32 bits, in which
case, a variable overflow will happen if x + y is assigned to a variable of 32 bits
or less and, as a result, the calculation of any variable which depends on this sum
will fail.

The following definitions formalize the stored cost of variable.

Definition 8.4: The precision of A(x) is defined as the number of bits used to
store the value x.

Proposition 8.2. A(x)fidfills the following properties for x, y integers:

1. A(x + y) < max{A(x), A(y)} + I.

2. A(-x) < A(x) + 1.
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3. A(x-y)< A(x) + A(y).
Proof. Without losing generality, assume x > y > 0 such that A(x) = n and
A(y) = m.

1) Let n = m. Then,

x <2n - I and y < 2n - 1 =J x + y < 2',+l - 2 (8.47)

2) Computationally, a variable needs an extra bit to store the number sign when
it can be either plus or minus.

3) Assume A(x) = n and A(y) = m. Then,

x < 2" - 1 and y<2m -l=>x-y< 2n+m - 2" - 2m + 1. (8.48)

□

Definition 8.5: Define A(*) = max{A(x), A(y)} as the maximum number of bits
stored in x and y in order to compute ~.

A computational advantage of fiDR over fiLSS is that A0nR ) < A(j3LSS ).

Proposition 8.3. Suppose that A(x ( ), A(yi) < a for i = 1,... n, A(n ') < b, and finK

is computed by (8.24). Then, A(J3DK ) < a + 2b + 1.

Proof. Note that

-n<2-i-n-\<n for i = 1,..., n (8.49)

then
A(2 ■ i - n - \ ) < A(-n) <b+\. (8.50)

Without losing generality assume A(y) > A(x). Let

z = argmax (A(y,)} (8.51)
yi, i=l.n

be the variable with the maximum stored cost from the sample. Thus

A(J3dr ) = max (A(y), A(x)} = A(y)

<
a|^[-«]

• zj = A(n • [—n] • z) A(«) + A(-«) + A(z) = b + (b + 1) + a.

(8.52)
□

Similarly, I calculated A(fiLSS ) = A (J3lssd) < 2a + 2b + 1 according (8.9) and
(8.22).
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power
tion

8.5 Application in power-law distributions
The populations of cities, the intensities of earthquakes, and the sizes of power
outages, for example, are all thought to have power-law distributions [57]. Quan¬
tities such as these are not well characterized by their typical or average values.
For instance, according to the Mexican Census (1995) [31], the average popula¬
tion of a city, town, or village in Mexico is around 453. But this statement is not
a useful one for most purposes because a significant fraction of the total popula¬
tion lives in cities whose population is larger by several orders of magnitude, like
Mexico City, in which more than 8.84 million people live.

law distribu- Power-law distributions is a family of statistical distributions, such as Pareto
and Zipf distribution, where values with extreme deviation of the median have a
significant probability of being observed. Such distributions lead to much heavier
tails than other common models, such as exponential distributions. Mathemati¬
cally, a quantity x > xmin > 0 obeys a power law if it is drawn from a probability
distribution function

Pr(X = x) = if/(x) = c ■ x~a , (8.53)
where a > 0 is a constant parameter of the distribution known as the exponent or
scaling parameter and c > 0 is the normalization constant.

Power-law distributions occur in diverse models of pattern recognition and
computer vision [7], [25], [74], However, the estimation of the parameters of a
power law distribution from observed data is a serious challenge if the measured
quantities are noisy. Hence the importance of using robust estimators.

8.5.1 Estimators for the exponenent of a power-law distribu¬
tion

The maximum likelihood estimator of a gives an accurate parameter estimate in
the limit of large sample size. For the continuous case, this estimator is given by

Xmin )

where xu ...,xn are drawn from a power law distribution such that x, > xmin . An
estimate of the standard error & on a is

a - 1

(8.54)

(8.55)
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1 strongly recommend the publications by Clauset et al. [15], and Newman [58]
for a useful discussion of these and related points.

An alternative method to estimate a is based on the linearity of the comple¬
mentary cumulative distribution function on logarithmic scales. That is,

/"»oo

Pr(X > x) = ¥c(x) - c ■ y~
a dy =i--C- -■■■■ ■ x^a~X) (8.56)JX 1 )

In (Te(x)) = —(a - 1) • ln(x) + constant. (8.57)
Thus, the parameter a can be estimated from the absolute slope of the empirical
complementary cumulative distribution function on a doubly logarithmic plot,
which is an estimate of (8.57). However, such a graph should be truncated in order
to avoid the noise introduced by fluctuations in its right tail. Then, the truncated
empirical complementary cumulative distribution function is given by

^(x) = | (x« | xi < x] |, for T' (x) > ymin (8.58)

where x\ < X2 < ... < x„ are the observed measurements, and ymin is a parameter.
Experimentally, I computed good results with ymin - 0.01.

The simple linear regression model for (8.56) can potentially lead us to esti¬
mates with large bias. The noise, for instance, could obey a distribution whose
expected value is different to zero or does not exist, like the Cauchy distribution
or for some parameters of the Pareto distribution. 3

Clauset et al. [15] pointed out that the assumptions to calculate the standard
error on the slope of a regression line, which include independent and Gaussian
noise in the dependent variable at each value of the independent variable, do not
hold for (8.56). In fact, assuming a Gaussian noise in the observed samples X\,<
..., < x„; 'P(Xj) will have a Gaussian noise but the noise in the logarithm is not
Gaussian. Furthermore, the assumption of independence fails because 'Fe(x,) =
i (x,-+ i) + iA(x,) for x,- < x,-+ i, where iJf(xj) is the empirical probability density
function, and hence adjacent values of the empirical complementary cumulative
distribution function are strongly correlated. However, I will show that estimators
based on linear regression are more robust than the maximum likelihood estimator
when the data has been contaminated. For that, I tested the ability of the least sum
of squares, the least sum of squared differences, and the differences-rate estimator
to extract a known exponent parameter from noisy synthetic power-law distributed
data. I also addressed the maximum likelihood estimator as a reference point.

3The probability density function of the Pareto distribution is /(x; k,a) = a ■ ka ■ x~a~ x

, where
a,k > 0 are parameters. The Pareto distribution has infinite variance if 0 < a < 2. If a < 1, also
has infinite mean.

The standard error is an al¬

ternative name of the muestral

standard deviation
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The net wealth of an individ¬

ual is the total of his or her as¬

sets minus the total his or her

debts.

8.5.2 Noisy measurements from power-law distributed data

Noisy measurements of the true quantities of the phenomenon come in three ba¬

sic flavors: all are underestimated values (noise type left), all are overestimated
values (noise type right), and there are both underestimated and overestimated
values (noise type left-right). In this context, “underestimated value” means that
at most the value equals the true value; “overestimated value” means that at least
the value equals the true value

I model underestimated and overestimated measurements as follows:

xt = [1 + u(\ ■ Vi (8.59)

where x, is the /'-observed measurement, «,■ is a random variable uniformly dis¬
tributed in [a, b ], and v, is the true /-quantity of the phenomenon which obeys a

power-law distribution.
The factor [1 + //] in (8.59) models a complete ignorance of the noise distri¬

bution in the measurements. However, this model restricts x, between the lower
bound [1 + a] ■ Vj and the upper bound [1 + b] ■ v,-. Therefore, a and b determine
which kind of noisy measurements there are in the observations. For example, all
our measurements are overestimated if 0 < a, b.

In the following paragraphs I state some real and hypothetical examples where
the measurements are underestimated and overestimated.

The net wealth in US dollars of the richest individuals in the wold is an exam¬
ple where noisy measurements are both underestimated and overestimated values.
Forbes Magazine, for instance, publishes a ranking of the world’s billionaires
annually. This ranking is based on the net wealth of each individual. The comple¬
mentary cumulative histogram of the 24th edition of this ranking4 appears to obey
a power-law distribution; see Fig. 8.1. However, these data are biased. Forbes
Magazine says that there are billionaires that may not be in the list since some
billionaires were not detected by their reporters. Another reason for this bias is
that some billionaires cooperate to assess their fortune, but others do not. 5 There¬
fore, for those billionaires who cooperated, their fortune is underestimated since
they may not (be able to) report all that they own. However, the fortune of those
billionaires that did not cooperate may be either underestimated, or overestimated.

4 This ranking can be found in: http://www.forbes.com/2010/03/10/worlds-richest-people-
slim-gates-buffett-billionaires-2010_land.html Readers interested in this data can mail me.

5Forbes’s methodology can be found in: http://www.forbes.com/forbes/2010/0329/billionaires-
2010-wealth-estates-stocks-yachts-fortunes-methodology.html
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Figure 8.1 - On the left, histogram of the number of billionaires that have a net
worth equal or higher than x according to the list of the world's billionaires (Febru¬
ary 2010, Forbe’s 24th ranking). On the right, histogram of the same data, but
plotted on logarithmic scales

Underestimated measurements may occur in phenomena where the quantity is
the number of existing “things” of “something”. For example, as first observed
by de Sofia [181, the numbers of citations received by scientific papers appear to
have a power-law distribution. These data are strictly underestimated because,
in the practice, a significant number of publications is not indexed and not all
citations can be extracted from a manuscript because of inconsistent references
and digitalization problems (low OCR accuracy, wrong text extraction, to mention
some).

Overestimated measurements may occur in phenomena where their quantities
are measurable only after they take place, for example, hypothetically speaking,
the time for detecting the presence of a disease. Overestimated measurements
may also occur in measuring techniques which intrinsically overestimate the phe¬
nomenon quantities. For example, the area of a bacterium may be approximated
for a convex hull that contains the whole bacterium.

8.5.3 Simulations of noisy measurements

For each estimator method, I computed several simulations with different types
and levels of noise. A simulation consists of m - 1,000 data sets. Each data set
has the form

A) — [Xj [, Xj2, • ■ ■, %i,n}

= {[1 + ui,\ ] • V;,l> [1 + uid\ • V,',2, • • • , [1 + Uj n \ ■ V/,„}
(8.60)
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for n = 10,000 and i = 1 where My is uniformly distributed, and Vy
follows a Pareto distribution.

The value vy is artificially generated with the transformation method: If we
can generate a random real number r uniformly distributed in the range 0 < r < 1,

then
v = vm/„(l - r)^r (8.61)

is Pareto-distributed in the range vmin < x with exponent a. For the simulations, I
set a = 2.5, and xmin = 1.

The noise My is uniformly distributed between [a, b] for all data set in a simu¬
lation, where a and b depend on the type of noise that the simulation performs:

• Noise type left: My ~ U(-5,0 )

• Noise type right: My ~ U(0,6)

• Noise type left-right: My ~ U(-S,S)

where 6 is the noise level in the simulation.
In each simulation, the absolute error e, = ||a, - a|| for i = 1,2,...«?, was

computed, where a, is the estimated value of the exponent parameter from Xj.
The mean and standard deviation of e,-’s of each simulation are show in Fig. 8.2,

Fig. 8.3, and Fig. 8.4.
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Noise Level
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Figure 8.2 -At the top, mean ofabsolute error from samples with noise type left.
On the bottom, standard deviation ofabsolute errorfrom samples with noise type
left.
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Noise Level

Figure 8.3 -At the top, mean ofabsolute errorfrom samples with noise type right.
On the bottom, standard deviation ofabsolute error from samples with noise type
right.
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0.0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3

Noise Level

Noise Level

Figure 8.4 - At the top, mean ofabsolute errorfrom samples with noise type left-
right. On the bottom, standard deviation ofabsolute errorfrom samples with noise
type left-right.
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8.6 Summary
After I reviewed preliminary concepts (Section 8.1) and the state of the art (Sec¬
tion 8.2) of the simple linear regression model, I proposed (Section 8.3) the differ¬
ences - rate estimator for simple linear regression models, which is the fifth main
contribution of my thesis.

The differences-rate estimator is an unbiased estimator (Theorem 8.1), and is
efficient for histogram samples (Corollary 8.2 ) under Gaussian noise, even when
such efficiency does not stand for all samples in n-general position (Theorem 8.3).

The computational efficiency of the difference-rate estimator is its most no¬
table advantage over other estimators. It is linearly computed with a number of
samples. Furthermore, in practice, its implementation involves few arithmetic op¬
erations and its running-time is better than the running-time of the least square
estimator.

In Section 8.4, I defined the computational stored cost of a variable in terms
of the number of bits to be stored. I discussed the relevance of these definitions,
which arises in applications with massive numerical elements. Subsequently, I
proved that the differences-rate estimator stands one of the lower stored costs al¬
lowing the calculations of large histograms from large numeric elements.

I showed two applications of the differences-rate estimator:
(i) In Section 5.2.3, the histogram of transition values is approximated by two

lines whose slopes are estimated by the differences-rate estimator.
(ii) In Section 8.5, the exponent of power-law distributions is computed by lin¬

ear regression methods. Simulations showed that the performance of difference-
rate estimator under moderate noise is comparable with the repeated medians esti¬
mator (a robust estimator with a breakdown point of 50%), but hundreds of times
faster; see Section 8.5.3. It considerably outperforms the least square estimator if
the noise level is less than 20%.



Chapter 9

Conclusions

Pretty and beloved Mexico
If 1 die farfrom you
Say that I am asleep

And bring me back to here.

By Jesus Monge Ramirez
(Chucho Monge)

Mexican composer (1910- 1964)

In this thesis, I proposed a novel framework, which I named transition method,
capable of binarizing historical documents more efficiently than other top-ranked
binarization methods. The transition method assumes that both the background
and the foreground vary smoothly, exhibiting high contrast at the boundary. The
key idea of this method is a criterion to select pixels which will be taken as rep¬

resentative samples of the foreground and background. It is roughly divided into
five steps:
(i) calculation of transition values,
(ii) calculation of transition thresholds,
(iii) restoration of transition sets,

(iv) detection of regions of interest, and
(v) calculation of thresholds of gray intensities.

In Chapter 4, I mathematically modeled the distribution of gray intensities.
As first suggested by Chow and Kaneko [14], gray intensities appear to obey a

normal distribution. Indeed, experimental observations in historical documents
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confirm such a conjecture but are restricted to small neighborhoods. Following
this line, contrast and smoothness play the most important role in my approach
rather than spatial relationships between pixels. Even though spatial relationships
are ignored, my proposed model is capable of determining certain bounds and
properties which led me to propose the transition method.

The strength of the transition method stems not only in its images modeling,
but also in its capacity of “plugging” different models in each method’s stages.
For example, to compute transition thresholds, I first proposed the quantile tran¬
sition method, which has a crucial parameter. However, in further publications, I
proposed the double linear and Rosin’s transition thresholds, both of which lack
parameters and, as a consequence, are suitable methods for unsupervised applica¬
tions.

I concluded that the restoration of transition sets is critical in images with high
levels of noise. In particular, isolated, incidence, and dilation transition operators
may be applied (in that order) to enhance the transition sets. This combination
tends to improve our transition set approximation. Moreover, it is robust for dif¬
ferent levels of noise.

I derived the dilation transion operator from the concept of transition balance
(Definition 5.3). However, such a concept was not fully justified, and further
techniques may be developed from it, like a direct binarization and edge detection
method.

Comparative studies in Chapter 7 strongly indicate that the transition method
performs better with the lognormal threshold than with the normal threshold, even
when the transition thresholds were computed with different methods. Hence, I
conjectured in [72], [73], and [71] that the gray intensities of transition pixels are
lognormally distributed rather than normally distributed. However, this conjecture
is contrary to empirical observations (gray intensities are normally distributed). I
suspect that this pattern could be due to maxmin function, and/or due to sampling
process in the very boundary between the foreground and background. The gray
intensities of pixels along boundaries may obey a distribution that is not Gaussian.

Although the transition method has promising results in historical documents,
it cannot cope with sudden illumination changes, and with large isolated bleed-
through artifacts. But in fact, none of the binarization methods described in this
thesis can cope with such problems. The transition method has the potential of
overcoming such problems by developing extended techniques in the transition
set restoration, region of interest detection, and gray intensities thresholds.

In this thesis, I also studied unsupervised measures for segmentation quality
based on variances of gray intensities. Technical conclusions are widely discussed
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in Section 6.2 and Section 7.4.3. Nevertheless, I would like to remark that val¬
ues of unsupervised measures may be used to compare the performance of two
different parameterizations of a single algorithm rather than comparing the per¬
formance of two different algorithms. An unsupervised measure may not “share”
the same assumptions as the evaluated binarization method. As I showed in Sec¬
tion 7.4, certain unsupervised measures are unsuitable to evaluate the performance
of certain binarization methods.

In Chapter 8, I proposed the differences-rate estimator, which is an unbiased
estimator for the slope in simple linear regression models. It can accurately esti¬
mate the slope on histograms of empirical complementary cumulative distribution
functions where the effect of outliers had faded. Moreover, its alternative form
is linearly computed in the number of samples and, hence, it is suitable for esti¬
mating the slope of lines in large histograms with extreme values, and for time-
consuming algorithms.
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Chapter 10

Summary of contributions

When you want something, all the
universe conspires in helping you to

achieve it.

The Alchemist by Paulo Coelho
Brazilian lyricist and novelist (1947 - )

In this thesis, I proposed a novel approach for binarization, edge detection, and
the detection of region of interest. Additionally, I proposed novel unsupervised
measures to evaluate the binarization performance, a novel slope estimator, and a
novel statistical test for pairwise comparisons. In concrete terms:

1. I proposed the /-transition pixels, a generalization of edge pixels; see Def¬
inition 4.4 and Definition 4.5.

2. I proposed the term ideal image based on smooth surfaces and contrast; see
Definition 4.2 and Definition 4.3.

3. I defined the transition functions and characterized the transition pixels
with extreme values for those functions; see Section 4.3 and Definition 4.10.

4. I proved that the function maxmin is a transition function in ideal images;
see Section 4.4 and Theorem 4.1.
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5. I pointed out how the statistical distribution of gray intensities of transition
sets approximate the statistical distribution of gray intensities of the fore¬

ground and background; see Section 5.1.

6. I proposed and described the transition method with five steps:

(a) calculus of transition values,

(b) selection of transition thresholds,

(c) restoration of transition set,

(d) detection of region of interest, and

(e) binarization, or edge detection.

7. I proposed three novel thresholding for transition values: quantile transition
threshold (Section 5.2.1), Rosin’s transition threshold (Section 5.2.2), and
double-linear transition threshold (Section 5.2.3).

8. I proposed three novel transition operators: expansion (Section 5.3.2), inci¬
dence (Section 5.3.3), and dilation (Section 5.3.4).

9. I proposed two simple criteria for detecting the region of interest; see Sec¬

tion 5.4.

10. I proposed a simple algorithm for edge detection; see Section 5.6.

1 1. I proposed several algorithms for binarization. Particularly, I described:

(a) linear mean-variance threshold (Section 5.5.1),

(b) autoliear threshold (Section 5.5.2),

(c) minimum-error-rate threshold (Section 5.5.4),

(d) normal threshold (Section 5.5.5), and

(e) lognormal threshold (Section 5.5.6).

12. 1 introduced in Section 6.1 the concept of simple images (Definition 6.1).

13. I statistically analized local implementations of three well-known unsuper¬
vised measures:

(a) uniformity measure (Section 6.2.1),
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(b) region non-uniformity measure (Section 6.2.2), and

(c) weighted variance measure (Section 6.2.3).

14. I proposed four novel evaluation measures for binarization:

(a) normal uniform variance (Section 6.2.4),

(b) unbiased weighted variance (Section 6.2.5),

(c) lognormal uniform variance (Section 6.2.6), and

(d) lognormal weighted variance (Section 6.2.6).

15. I proved in Theorem 6.1 that the expected value of the unbiased weighted
variance measure is minimum in a perfect binarization.

16. I analyzed unsupervised evaluation measures by describing statistically which
of them are suitable for nine binarization methods; see Section 7.4.

17. I performed an extensive comparison of several unsupervised measures, bi¬
narization algorithms , and OCRs. I used it to show the strength of the WV
measure; Section 7.4.

18. I performed an extensive comparison between the transition method and
several top-ranked binarization algorithms; see Section 7.5 and Section 7.6.

19. I proposed and described a novel estimator (differences-rate estimator) for
the slope of the simple linear regression (Section 8.3).

20. I proved the computational goodness of differences-rate estimator; Sec¬
tion 8.4.

21. I showed a suitable application of the differences-rate estimator in power-
law distributions; see Section 8.5.

22. I proposed a statistical test to compare measures based on an intuitive triad
of possible results: better, worse, or comparable performance; Appendix C.
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Appendix A

Integral Images

Ramfrez-Ortegon et al. [72] extended the integral image [89] to compute effi¬
ciently any statistical moment in subsets of pixels in neighborhoods with radius r
of an image F. This is particularly useful for the transition method, and for statis¬
tical binarization methods.

Definition A.l: The integral image Fs of a subset S c P in an image F is an
image defined as

FsiPij) = X Z F(P^ ‘ h (A-l)
0</!<(' 0<k<j

where ly (/»,■■) denotes the indicatorfunction

1s(Pij) =
ifPtj e S
otherwise. (A.2)

The efficiency of integral images emerges from the linearity of its calculation,
see Fig. A.l, given by

Fs(Pij) = F(Pij) ■ 1s(Pij) +
FsiPtj- i) if y > 0

FsjPi-ij) if i > 0
-Fs(Pi-ij-i) if i > 0 and j > 0

(A.3)

As an immediate result of (A.3), the sum of F{q) for q € Sr(Pjj ) is computed
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Fs(Pi,j ) = S ' MPm)
o</i<« o<fc<i

= ^(Py) ' U(Pij) + Fs(Pi- ij)
+Fs (Pitj_ 1 )

— Fs(pi_ lj _ 1 )

Figure A.l - Calculation of the integral image of a pixel in general position.

as

z fw= y f =
qeSr(Pij) sr(Pi.j )

Fs(Ph,w) + '

-Fs(PiJ-r- 1)
~Fs(Pi-r-lj)
+Fs(Pi-r-\J-r-\)

if j - r > 0

if i - r > 0
jf i-r>011 j-r>0

(A.4)

with h = max
{«
+ r, nv }, and w = max { j + r, nx }, where n v is the number of rows

in F, and nx is the number of columns. Figure A.2 shows the calculation (A.4) of
a pixel in general position (Definition 2.10).

Remark 2.5 states that the frame isolate operator is quickly computed since
the cardinality of any subset S of a rectangular partition P is computed by integral
images in constant time. For this,

\Sr(p)\ = 2 1s(q) = |+j Is (A.5)
qsSr(p) Srtp)

Moreover, given any image F,
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P<— r—lj-r-l Pi—r—l,j+r> .
'PriPif/Pi+r,j—r—l Pi j Pi+r,j+r

■ > V

Figure A.2 - Calculation of (A.4) for a pixel in general position.

and

2 iF(9)f= l+J^
2
.

qtSr(p) Sr(p)

from which &2
ps can be computed in constant time according (B.2) as

~ 2

^F.Srip)
1

\Sr (P)\ ~ 1

1±J F2

Sr(P)

W 15 -1
Sr (p)

4 2
qtSr(p)

l+J F
Sr(p)

W15
Sr(p)

(A.7)

(A.8)
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Appendix B

Mean and variances in sets

Given HF^{i) = \{p 6 J{ \ F(p) = /'}|, denote

• The mean of F in J{ as

k2>M im * <>

Ffji - \ pW\
0 otherwise.

The unbiased sample variance of F in as

°F,JI ~
i ifM>1

ps31
0 otherwise,

where fi2Fm = [pF^f and F2 (p) = [F{p)f .

The biased sample variance of values F in as

hJ\f2(p)-f2w ifm>o
2 mAj^ F#I _ 1 P

otherwise.

• The unbiased sample variance of logarithms in 3\.

2 = In I 1°FJl
&2
F,m

F2
F,j{

(B.l)

(B.2)

(B.3)

(B.4)
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Appendix C

Uncertainty test

In [70], I developed the uncertainty test to compare measures based on an intu¬
itive triad of possible results: better, worse, or comparable performance.

Given an image, suppose that we are able to compare the performance of two
methods x and y based on some criterion. In this context, performance means
how well the method performs its task. Also suppose that there are only three
possible outcomes of the method’s comparison in a single image: Method x better
than method y (E i), method y better than method x (E2 ), and method x as good
as method y (£3). Therefore, we ascertain that method x is better than method y
in an image population if E\ occurs more frequently than E2 . More formally, let
Pi ~ Pr(£,) for i = 1,2,3 be the probability of occurrence of Et in an image which
was randomly drawn from an image population. Then, our assessment is based on
the numerical relation between p x and p2 .

Let the random variable A, indicate the number of occurrences of E, in a sam¬
ple of/? images which were independently and randomly drawn from a large pop¬
ulation of images. Then, the triad (Ai, N2 ,A3 ) follows a trinomial distribution 1

.

Assume that (n x ,n2 ,n3 ) is an observed vector of (A|,A2 ,A3 ); the probability
of observing (n x ,n2 , n3 ) is given by

i/f(nu n2 ,n3
-,n, pu P2 , P3 ) = Pr(A, = nuN2 = n2 ,N3 = «3 )

n\ „. (C.l)
n

x
! • n2 \ ■ n3 \

P
1

1 ' P2
' P3

where •! denotes the factorial function. Therefore, p, can be estimated by Pi - 'pr
'Technically speaking, this is sampling without replacement, so the correct distribution is the

multivariate hypergeometric distribution, but the distributions converge as the population grows
large.

Given a postive integer n, the

factorial of n is defined as n\ -
n • [n — ]]■ ...2- 1. Factorial of

zero is defined as 0! = 1.

159
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Unfortunately, large samples to ensure convergence may be unavailable, and the
probability of observing pi < p2 may be significant if p\ - p2 > 0 is small.

The problem is then to measure how unlike a ■ p\ > p2 for a < I is, given that

Pi < p2 . Therefore, the upper bound of Pr(a ■ p\ > p2 \ p\ < p2 ) for all possible
pairs p\ < p2 is the maximum probability of observing a ■ pi > p2 while the true
probabilities p, and p2 are such that pi < p2 .

I named this probability as a-uncertainty, which can be estimated by

UN(n, a) max
Pi.wJ&y

,x2 ,x3 ;n,yu y2 , (C.2)

where
y = {(yi.y2) e R2

| 0 < y\ <>>2^1 and y\ +y2 < I},
=tl -y\ -yi,

(C.3)

(C.4)

and
X = |(jcj , JC2, x3 ) e N3

|
a ■ xi > x2 and xi + x2 + x3 = . (C.5)

Table C.l presents values of a-uncertainty for different values of n and a.
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Table C.l - a-uncertainty values.

a
25 50 75 86

n
100 150 200 300 400

0.95 0.500 0.444 0.409 0.373 0.382 0.403 0.362 0.343 0.291
0.90 0.345 0.336 0.322 0.295 0.309 0.284 0.218 0.193 0.147
0.85 0.345 0.240 0.244 0.225 0.184 0.144 0.115 0.074 0.049
0.80 0.345 0.240 0.178 0.166 0.136 0.082 0.052 0.028 0.012
0.75 0.212 0.161 0.124 0.080 0.067 0.043 0.020 0.006 0.002
0.70 0.212 0.101 0.053 0.053 0.044 0.014 0.007 0.001 0.000
0.65 0.115 0.059 0.032 0.020 0.018 0.006 0.001 0.000 -
0.60 0.115 0.032 0.018 0.011 0.006 0.001 0.000 - -
0.55 0.054 0.016 0.005 0.003 0.002 0.000 - - -
0.50 0.054 0.008 0.003 0.001 0.000 - - - -
0.45 0.022 0.003 0.001 0.000 - - - - -
0.40 0.022 0.001 0.000 - - - - - -
0.35 0.007 0.000 - - - - - - -
0.30 0.002 - - - - - - - -

0.25 0.002 - - - - - - - -
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OCR, 100

absolute potential AC
measure, 102, 116

AC efficiency
measure, 103, 116
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of an algorithm, 98
measure, 99

aging
artifacts due to aging, 2

Agullo
Agullo et al. cited in, 55

algorithm
accuracy of an algorithm, 98
Bersen’s algorithm, 6
global algorithm, 4
hybrid algorithm, 4
Johannsen’s algorithm, 101, 104, 105
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Kapur’s algorithm, 25, 26, 101, 104, 105
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104, 110
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Niblack’s algorithm, 5, 101, 103, 104
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118
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quantile normal algorithm, 110

Sauvola’s algorithm, 5,101, 104, 110, 113,
116

thresholding algorithm, 5
Wolf’s algorithm, 5, 101, 104, 105, 113,

116
Yanowitz’s algorithm, 6

arithmetic
arithmetic form. 126

artifacts due to
aging, 2
printing, 2

asymptotic
efficiency, 124, 125

autolinear
autolinear threshold, 67
threshold, 113

background
definition, 19

differences, 34
interval, 65
surface, 33

balance
transition balance, 62

Bayes decision
rule, 68

Bayesian
estimation, 46

Bayesian decision
theory, 68

Bernholt
Bernholt et al. cited in, 128

Berrendero
Berrendero cited in, 128

Bersen
Bersen’s algorithm, 6
Bersen cited in, 6
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bi-level
image, 12

biased sample variance
of gray intensities, 88

biased sample variance of values F, 157
Big-O, 125
binarization, 3

contrast binarization, 5
definition, 3, 19
histogram cluster binarization, 5, 21
spatial binarization, 6
statistical binarization, 5

binary
image, 12

bleed-through, 2
Boltzmann-Gibbs, 25
breakdown

point, 123-125
Bruckstein

Yanowitz and Bruckstein cited in, 6

Canny
Canny cited in, 6, 81
edge detector, 6

Caron
Caron et al. cited in, 4, 63, 136

Cauchy
distribution, 137

Chan
Chan et al. cited in, 35, 61, 86

characters
rotated characters, 2
slanted characters, 2

Chen
Chen’s method, 6
Chen et al. cited in, 4, 6

Cheriet
Moghaddam and Cheriet cited in, 21,23

Cho
Cho et al. cited in, 25

Chou
Chou’s method, 23
Chou cited in, 21
Chou et al. cited in, 4, 23

Chow
Chow and Kaneko cited in, 31,43, 145

class-conditional density, 46
Clauset

Clauset et al. cited in, 137
command-line

command-line interface, 100
comparison

pairwise comparison, 97
complementary cumulative distribution

function, 137
complete

form, 76
complexity

run-time complexity, 124
continuous

image, 10
contour

foreground contour, 35
contrast

binarization, 5
differences, 34

Cramer-Rao
lower bound, 124

cross
neighborhood, 13, 113

cross isolate
operator, 15, 57, 115
transition operator, 57, 115

Croux
Croux et al. cited in, 128

de Solla
de Solla cited in, 139

diagonal
neighborhood, 13, 113

diagonal isolate
operator, 15, 57, 115
transition operator, 57, 115

differences
background differences, 34
contrast differences, 34
foreground differences, 34
least trimmed differences, 129

differences of gray intensity
notation, 34

differences-rate
estimator, 55, 123, 130
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digital
library, 1

dilation, 57
transition operator, 62, 115

Discrete Laplace
function, 39

distribution
Cauchy distribution, 137
exponential distribution, 136
Gumbel distribution, 49
Pareto distribution, 136, 137
power law distribution, 53, 136
power-law distribution, 136
Zipf distribution, 136

Dots per inch, 98
double-linear

threshold double-linear, 54
threshold, 123
threshold, 115
transition threshold, 113

dpi, 98

Edelsbrunner
Edelsbrunner and Souvaine cited in, 127

edge
pixel, 79, 149
set, 29

edge detector
Canny edge detector, 6

Edgeworth
Edgeworth cited in, 126

efficiency, 124
asymptotic efficiency, 124, 125
definition, 124

efficient
estimator, 125

empirical complementary cumulative distri¬
bution

function, 51, 137
empirical scaled density

function, 51
entropy

nonextensive entropy, 5
Tsallis entropy, 5

equation
quadratic equation, 76

erosion, 57
error

minimum probability of error, 86
probability of error, 69
error, 137

estimation
Bayesian estimation, 46
maximum likelihood estimation, 46

estimator, 124
definition, 124
differences-rate estimator, 55, 123, 130
efficient estimator, 125
Generalized S- estimator, 128
least median of squares estimator, 127
least quartile difference estimator, 128
least square estimator, 126
least sum of absolute errors estimator, 126
least sum of squares estimator, 126
least trimmed sum of squares estimator, 128
least-square estimator, 55
M- estimator, 126
repeated medians estimator, 127
unbiased estimator, 124

expansion
operator, 16

exponent
parameter, 136

exponential
distribution, 136

factorial
factorial function, 159

Fisher
information, 124

Forbes
Magazine, 138

foreground
contour, 35
definition, 19
differences, 34
interval, 65
proportion, 70
surface, 33
tendency, 32

form
form, 126
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complete form, 76
simple form, 72, 76

Forsyth
Forsyth and Ponce cited in, 61

frame
isolate operator, 115

frame isolate
operator, 15

transition operator, 115
FreeOCR

OCR, 100
function

complementary cumulative distribution l'unc
tion, 137

Discrete Laplace function, 39
empirical complementary cumulative dis¬

tribution function, 51, 137
empirical scaled density function, 51
function, 159
image function, 11

linear kernel function, 39
maxmin function, 7, 39, 112, 115
transition function, 7, 29, 39, 149

Gatos
Gatos et al. cited in, 73

general position
definition, 14
notation, 14

Generalized S-
estimator, 128

Geusebroek
Geusebroek and Smeulders cited in, 136

global
algorithm, 4
thresholding, 20

Gonzalez
Gonzalez and Woods cited in, 10, 12, 22
Gonzalez cited in, 14

Govindaraju
Milewski and Govindaraju cited in, 3, 4

gray
image, 11

gray intensities
biased sample variance of gray intensities,

88

histogram of gray intensities, 22
mean of gray intensities, 26, 30
sample standard error of gray intensities,

89
variance of gray intensities, 26, 30

gray intensity
notation, 22, 26, 30

gray-intensity
measure, 88, 103

gray-intensity logarithm
unbiased sample variance of gray-intensity

logarithm, 90
-grid, 10
Gumbel

distribution, 49
Gupta

Gupta cited in, 21

Hampel
Hampel cited in, 125

histogram
of gray intensities, 22

histogram cluster
binarization, 5, 21

Huber
Huber cited in, 126

hybrid
algorithm, 4

hyphenation
line-break hyphenation, 2

ideal
image, 29, 86, 149

Illingworth
Kittler and Illingworth cited in, 24, 31,43

image
bi-level image, 12
binary image, 12
continuous image, 10
function, 11

gray image, 11

ideal image, 29, 86, 149
integral image, 8, 26, 110, 153
local contrast of image, 33
r-simple image, 86
simple image, 86
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smoothness of image, 32
two-dimensional digital image, 11

two-dimensional partition image, 10
two-level image, 12

incidence
operator, 16
transition operator, 61, 115

independent and identically distributed, 126
INEGI

INEGI cited in, 136
information

Fisher information, 124
integral

image, 8, 26, 110, 153
intercept

parameter, 124
interest

region of interest, 63
interface

interface, 100
interval

background interval, 65
foreground interval, 65

isolate
transition operator, 57, 113, 115

isolate operator
frame isolate operator, 115

isolated transition
pixel, 60

Jain
Trier and Jain cited in, 4, 22, 26, 30, 101,

113
Johannsen

Johannsen’s algorithm, 101, 104, 105
Johannsen and Bille

Johannsen and Bille’ algorithm, 24
Jolion

Wolf and Jolion cited in, 5
Junker

Junker et al. cited in, 99

k-isolate
operator, 15

Kamel
Kamel’s algorithm, 6

Kamel and Zhao cited in, 6
Kaneko

Chow and Kaneko cited in, 31,43, 145
Kapur

Kapur’s algorithm, 25, 26, 101, 104, 105
Kapur et al. cited in, 25

Kavallieratou
Kavallieratou’s threshold, 36
Kavallieratou’s algorithm, 5, 28, 101, 103,

104, 110
Kavallieratou and Stathis cited in, 5
Kavallieratou cited in, 5, 27

Kay
Kay cited in, 35, 124

kerning
varying kerning, 2

Kittler
Kittler’s algorithm, 24, 101, 104, 105
algorithm, 113
Kittler and Illingworth cited in, 24, 31,43
Kittler cited in, 5
Kittler’s threshold, 5

Kittler’s
algorithm, 116

Kohmura
Kohmura and Wakahara cited in, 3

Laplace
operator, 6

leading
varying leading, 2

least median of squares
estimator, 127

least quartile difference
estimator, 128

least square
estimator, 126

least sum of absolute errors
estimator, 126

least sum of squares
estimator, 126

least trimmed
differences, 129

least trimmed sum of squares
estimator, 128

least-square
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estimator, 55
Lee

Ng and Lee cited in, 89
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leverage point, 127
Levine

Levine and Nazif cited in, 30, 88
Li

Li’s algorithm, 6
Li cited in, 128
Li et al. cited in, 6

Liao
Liao et al. cited in, 23

library
digital library, 1

line-break
hyphenation, 2

linear
regression model, 123

linear kernel
function, 39

linear mean-variance
linear mean-variance threshold, 65, 67

local
algorithm, 4
thresholding, 20

local contrast
of image, 33

log-log
plot, 53

lognormal
lognormal threshold, 78
threshold, 113, 115

lower bound
Cramer-Rao lower bound, 124

Lu
Lu’s algorithm, 6
Lu and Tan cited in, 6

M-
estimator, 126

Magazine
Forbes Magazine, 138

Maini
Maini and Sohal cited in, 6, 81

Marchand-Maillet

Marchand-Maillet cited in, 14, 57
maximum likelihood

estimation, 46
method, 136

maximum matching
string, 99

maxmin
function, 7, 39, 112, 115

mean
of gray intensities, 26, 30

mean of F, 157
measure

absolute potential AC measure, 102, 116
AC efficiency measure, 103, 116
accuracy measure, 99
gray-intensity measure, 88, 103
potential AC efficiency measure, 102
precision measure, 99
region non-uniformity measure, 88, 103
relative potential AC measure, 102
unbiased weighted variance measure, 90,

101
uniform variance measure, 89, 103, 116
uniformity measure, 88
weighted variance measure, 89, 103

Mello
Mello and Schuler cited in, 26
Mello et al. cited in, 3, 4, 26

method
maximum likelihood method, 136
regression method, 55
transformation method, 140
transition method, 7, 45

Milewski
Milewski and Govindaraju cited in, 3, 4

minimum error
thresholding, 5

minimum error thresholding, 24
minimum probability

of error, 86
minimum symmetric

value, 46, 68
minimum-error-rale

minimum-error-rate threshold, 71
threshold, 76
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Minkowski algebra, 14
Model 1, 30
Moghaddam

Moghaddam’s method, 23
Moghaddam and Cheriet cited in, 21,23

MoreDataOCR
OCR, 100

n-general
position, 129

Narula
Narula and Wellington cited in, 126

Nazif
Levine and Nazif cited in, 30, 88

Needleman
Needleman and Wuntsh cited in, 99

negative transition
set, 45

neighborhood
cross neighborhood, 13, 113
neighborhood cross, 15
diagonal neighborhood, 13, 113
rectangular neighborhood, 13
square neighborhood, 13

net
net wealth, 138
wealth, 138

Newman
Newman cited in, 53, 136, 137

Ng
Ng’s algorithm, 23
Ng and Lee cited in, 89

Niblack
Niblack’s algorithm, 26
Niblack’s threshold, 27, 65
Niblack’s algorithm, 5, 101, 103, 104
Niblack cited in, 5, 14

Nieto-Castanona
Nieto-Castanona et al. cited in, 63

noise
noise, 61
type left, 138
type left-right, 138
type right, 138

nonextensive
entropy, 5

normal
normal threshold, 75
threshold, 113, 115

OCR
ABBYY FineReader OCR, 100
FreeOCR OCR, 100
MoreDataOCR OCR, 100
OneNote OCR, 100
SimpleOCR OCR, 100
Tesseract OCR, 100
TopOCR OCR, 100

Oh
Oh’s algorithm, 6
Oh cited in, 6

OneNote
OCR, 100

operator
cross isolate operator, 15, 57, 115
diagonal isolate operator, 15, 57, 115
expansion operator, 16
frame isolate operator, 15

incidence operator, 16
k-isolate operator, 15

Laplace operator, 6
rectangular isolate operator, 15

simple expansion operator, 17

simple isolate operator, 15

order statistic, 49
Otsu

Otsu’s algorithm, 22
Otsu’s threshold, 36
Otsu’s algorithm, 101, 104, 105, 110, 113,

118
Otsu cited in, 5, 89
Otsu’s threshold, 5

P-tile
P-tile method, 51

pairwise
comparison, 97

parameter
exponent parameter, 136
intercept parameter, 124
scaling parameter, 136
slope parameter, 124
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Pareto
distribution, 136, 137
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partition set, 10

payware
payware software, 100

Pietikainen
Sauvola and Pietikainen cited in, 4, 5

pixel, 10
edge pixel, 79, 149
isolated transition pixel, 60
notation, 10
t-transition pixel, 149
transition pixel, 7, 29, 34, 35, 45

plot
log-log plot, 53

point
breakdown point, 123-125
point, 127

Ponce
Forsyth and Ponce cited in, 61

Portes
Portes’s algorithm, 25, 101, 104, 113, 118
Portes et al. cited in, 5, 25
Portes’s threshold, 5
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n-general position, 129

positive transition
set, 45

potential AC efficiency
measure, 102

power law
distribution, 53, 136

power-law
distribution, 136

precision, 134
measure, 99

Press
Press et al. cited in, 127

printing
artifacts due to printing, 2
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of error, 69

proportion
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quadratic
equation, 76

quantile
threshold, 112

quantile autolinear
algorithm, 110

quantile lognormal
algorithm, 110

quantile normal
algorithm, 110
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image, 86

Ramirez
Ramirez and Rojas cited in, 83
Ramirez et al. cited in, 22, 146

Ramfrez-Ortegon
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Ramrez-Ortegon
Ramrez-Ortegon et al. cited in, 7

random-valued
random-valued noise, 61

rectangular
neighborhood, 13

rectangular isolate
operator, 15

transition operator, 57
region

of interest, 63
region non-uniformity

measure, 88, 103
region of interest

definition, 63
regression

method, 55
regression model

linear regression model, 123
simple linear regression model, 124

relative potential AC
measure, 102

Ren
Ren cited in, 136
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Roelant et al. cited in, 55, 129
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Ramirez and Rojas cited in, 83
Rosin

Rosin’s threshold, 52
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characters, 2
Rousseeuw

Rousseeuw cited in, 127
Rousseeuw et al. cited in, 128

rule
Bayes decision rule, 68

run-time
complexity, 124

Sahoo
Sahoo et al. cited in, 4, 30, 86, 88

sample standard error
of gray intensities, 89

Sankur
Sezgin and Sankur cited in, 5, 30, 86,

101, 113
Sauvola

Sauvola’s algorithm, 27
Sauvola’s threshold, 36
Sauvola’s algorithm, 5, 101, 104, 110, 11

116
Sauvola and Pietikainen cited in, 4, 5

scaling
parameter, 136

Schuler
Mello and Schuler cited in, 26

Serra
Serra cited in, 14

set
edge set, 29
negative transition set, 45
set, 10
positive transition set, 45
transition set, 7

Sezgin
Sezgin and Sankur cited in, 5, 30, 86, 81

101, 113

Sezgin cited in, 33
Siegel

Siegel cited in, 127
simple

form, 72, 76
image, 86

simple edge
transition operator, 80

simple expansion
operator, 17
transition operator, 58

simple isolate
operator, 15

simple linear
regression model, 124

SimpleOCR
OCR, 100

slanted
characters, 2

slope
parameter, 124

Smeulders
Geusebroek and Smeulders cited in, 136

smoothness
of image, 32

software
software, 100

Sohal
Maini and Sohal cited in, 6, 81

Souvaine
Edelsbrunner and Souvaine cited in, 127

spatial
binarization, 6

square
neighborhood, 13

squared neighborhood
notation, 13

standard
standard error, 137

Stathis
Kavallieratou and Stathis cited in, 5
Stathis cited in, 33
Stathis et al. cited in, 30, 101, 113

, statistical
binarization, 5
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Stigler
Stigler cited in, 126

stored cost
of variable, 134

string
maximum matching string, 99

Stromberg
Stromberg et al. cited in, 129

surface
background surface, 33
foreground surface, 33

t-transition
pixel, 149

Tan
Lu and Tan cited in, 6

tendency
foreground tendency, 32

Tesseract
OCR, 100

test
uncertainty test, 8, 97, 100, 159

the General Archive of the Nation, I

the Library of Congress, 1

the National Archives of Egypt, 1

the valley-emphasis threshold, 23
Theatrum orbis terrarum, sive, Atlas novus,

98
theory

Bayesian decision theory, 68
threshold

autolinear threshold, 113
double-linear threshold, 115
double-linear, 54
Kittler’s threshold, 5
lognormal threshold, 113, 115
minimum-error-rate threshold, 76
normal threshold, 113, 115
Otsu’s threshold, 5
Portes’s threshold, 5
quantile threshold, 112

thresholding
algorithm, 5
definition, 5
global thresholding, 20
thresholdingiterative global, 27

local thresholding, 20
minimum error thresholding, 5

TopOCR
OCR, 100

transformation
method, 140

transition
balance, 62
function, 7, 29, 39, 149
method, 7, 45
pixel, 7, 29, 34, 35, 45
set, 7
value, 7, 29

transition method, 2
transition operator

cross isolate transition operator, 57, 115
diagonal isolate transition operator, 57, 115
dilation transition operator, 62, 115
frame isolate transition operator, 115
incidence transition operator, 61, 115
isolate transition operator, 57, 113, 115
rectangular isolate transition operator, 57
simple edge transition operator, 80
simple expansion transition operator, 58

transition set
notation, 38

transition threshold
double-linear transition threshold, 113
transition threshold quantile, 51

Trier
Trier and Jain cited in, 4, 22, 26, 30, 101,

113
Trier cited in, 33

Tsallis
entropy, 5

Tsallis entropy, 25
two-dimensional digital

image, 11

two-dimensional partition
image, 10

two-level
image, 12

type left
noise type left, 138

type left-right
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noise type left-right, 138 Gonzalez and Woods cited in, 10, 12, 22
type right

noise type right, 138
Wuntsh

Needleman and Wuntsh cited in, 99

unbiased Yanowitz
estimator, 124

unbiased sample variance
Yanowitz’s algorithm, 6
Yanowitz and Bruckstein cited in, 6

of gray-intensity logarithm, 90
unbiased sample variance of F, 1 57
unbiased sample variance of logarithms, 1 57
unbiased weighted variance

Zhang
Zhang cited in, 85
Zhang et al. cited in, 85, 86

measure, 90, 101

unbiasedness, 124
uncertainty, 160

Zhao
Kamel and Zhao cited in, 6

Zipf
test, 8, 97, 100, 159 distribution, 136

uniform variance
measure, 89, 103, 116

uniformity
measure, 88

value
minimum symmetric value, 46, 68
transition value, 7, 29

variable
stored cost of variable, 134

variance
of gray intensities, 26, 30

varying
kerning, 2
leading, 2

Wakahara
Kohmura and Wakahara cited in, 3

wealth
net wealth, 138
wealth, 138

weighted variance
measure, 89, 103

Wellington
Narula and Wellington cited in, 126

Wolf
Wolf’s threshold, 27, 36
Wolf’s algorithm, 5, 101, 104, 105, 113,

116
Wolf and Jolion cited in, 5

Woods
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