Aus dem Institut für Lebensmittelhygiene
des Fachbereichs Veterinärmedizin
der Freien Universität Berlin

Post harvest-Einsatz virulenter Bakteriophagen gegen Campylobacter spp.
und Yersinia enterocolitica

Inaugural-Dissertation
zur Erlangung des Grades eines
Doktors der Veterinärmedizin
an der
Freien Universität Berlin

vorgelegt von
Stefanie Orquera Narvaez
Tierärztin
aus Mainz

Berlin 2012

Journal-Nr.: 3601
Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin

Dekan: Univ.-Prof. Dr. Jürgen Zentek
Erster Gutachter: Univ.-Prof. Dr. Thomas Alter
Zweiter Gutachter: Univ.-Prof. Dr. Hafez Mohamed Hafez
Dritter Gutachter: Univ.-Prof. Dr. Uwe Rösler

Deskriptoren (nach CAB-Thesaurus):
Campylobacter, Yersinia enterocolitica, bacteriophages, food safety, resistance mechanisms

Tag der Promotion: 12.04.2013

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

ISBN: 978-3-86387-301-1
Zugl.: Berlin, Freie Univ., Diss., 2012
Dissertation, Freie Universität Berlin
D 188

Dieses Werk ist urheberrechtlich geschützt.

Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

This document is protected by copyright law.
No part of this document may be reproduced in any form by any means without prior written authorization of the publisher.

Alle Rechte vorbehalten | all rights reserved
Inhaltsverzeichnis:

1 Einleitung ... 12

2 Schrifttum .. 13

2.1 Yersinia .. 13

2.1.2 Yersinia-Epidemiologie, klinische Aspekte ... 13

2.2 Campylobacter .. 14

2.2.1 Campylobacter-Epidemiologie ... 15

2.2.2 Prävalenzen von Campylobacter in Geflügel ... 16

2.2.3 Klinische Aspekte bei humanen Infektionen ... 16

2.2.4 Bekämpfungsmaßnahmen gegen Campylobacter ... 17

2.3 Bakteriophagen allgemein ... 19

2.3.1 Virulente Bakteriophagen ... 20

2.3.2 Temperente Bakteriophagen ... 21

2.3.3 Yersinia-Bakteriophagen .. 23

2.3.4 Campylobacter-Bakteriophagen ... 23

2.4 Koevolution Bakterien/Bakteriophagen .. 24

2.5 Bakterielle Abwehrmechanismen gegen Bakteriophagen ... 25

2.5.1 Blockierung der Adsorption ... 26

2.5.2 Blockierung der DNA-Injektion .. 26

2.5.3 Restriktions- und Modifikations (R/M)-Systeme .. 27

2.5.4 Abortive Infektions (Abi)-Systeme .. 27

2.5.5 Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-System 28

2.5.6 Superinfection Exclusion Systems (Sie) ... 29

2.5.7 Charakterisierung Phagen-resistenter Klone ... 30

2.6 Anpassung der Bakteriophagen an die Resistenzmechanismen des Wirtsbakteriums 32

2.6.1 Veränderung der Rezeptor-Bindungsstelle .. 32

2.6.2 Verteidigung der Bakteriophagen gegen das R/M-System ... 33

2.6.3 Verteidigung der Bakteriophagen gegen das Abi-System ... 33

2.6.4 Verteidigung der Bakteriophagen gegen das CRISPR/Cas System 34

2.7 Einsatz der Bakteriophagen .. 34

2.7.1 Bakteriophagenapplikation im Tier ... 35

2.7.2 Bakteriophagenapplikation im Menschen ... 37

2.7.3 Bakteriophagenapplikation im Lebensmittel .. 38

2.8 Rechtliche Situation des Bakteriophagen-Einsatzes in Lebensmitteln 40
3 Material .. 43

3.1 Geräte .. 43

3.2 Reagenzien und Chemikalien .. 43

3.3 Puffer .. 44

3.4 Enzyme .. 44

3.5 Primer/Adapter .. 45

3.6 Kits .. 45

3.7 Nährmedien ... 46

3.8 Bakterienstämme .. 47

3.9 Bakteriophagen .. 47

4 Methoden .. 48

4.1 Kultivierung der Bakterien .. 50

4.2 Herstellung des Softagars ... 50

4.3 Plaque-Assay zur Bestimmung des Phagentiters 50

4.4 Vermehrung des Bakteriophagen .. 51

4.6 Bestimmung der pH-Wert-Toleranz der Bakteriophagen 51

4.7 Reduktion der bakteriellen Keimzahl durch spezifische Bakteriophagen in Medium 52

4.8 Untersuchung der Fleischmatrix ... 52

4.9 Reduktion der bakteriellen Keimzahl durch spezifische Bakteriophagen in Fleisch .. 52

4.10 Plaque-Assay zur Bestimmung einer Resistenz gegenüber Bakteriophagen .. 53

4.11 Subkultivierung der resistenten Klone ... 53

4.12 Resistenz gegenüber anderen Bakteriophagen 53

4.13 Binding-Assay der Phagen CP 81, CP 84 und PY 100 54

4.14 Bestimmung der Beweglichkeit Phagen-resistenter Klone 54

4.15 DNA-Isolierung (Chelex-Methode) .. 54

4.16 fAFLP-Analyse .. 55

4.17 Gelelektrophorese ... 57

4.18 Sequenzierung des PCR-Produktes .. 57

4.19 CRISPR/Cas-System .. 58

4.20 Sequenzierung des flaA-Gens .. 59

4.21 Sequenzierung des Poly G-Traktes der Gene cj1421 und cj1422 60

5 Ergebnisse ... 61

5.1 Temperaturtoleranz der Bakteriophagen .. 61

5.1.1 Temperaturtoleranz des Bakteriophagen CP 81 61
5.1.2 Temperaturtoleranz des Bakteriophagen CP 84 .. 62
5.1.3 Temperaturtoleranz des Bakteriophagen PY 100 .. 62
5.2 pH-Wert-Toleranz der Bakteriophagen .. 63
5.2.1 pH-Wert-Toleranz des Bakteriophagen CP 81 .. 63
5.2.2 pH-Wert-Toleranz des Bakteriophagen CP 84 .. 63
5.2.3 pH-Wert-Toleranz des Bakteriophagen PY 100 .. 64
5.3 Keimzahlreduktion von L. monocytogenes ATCC 7644 in Medium 65
5.3.1 Reduktion der L. monocytogenes ATCC 7644-Keimzahl durch den Bakteriophagen P100 bei 37°C in Medium .. 65
5.3.2 Reduktion der L. monocytogenes ATCC 7644-Keimzahl durch den Bakteriophagen P100 bei 4°C in Medium .. 66
5.4 Reduktion der L. monocytogenes ATCC 7644-Keimzahl durch den Bakteriophagen P100 in Schweinefleisch bei 4°C .. 67
5.5 Keimzahlreduktion von Campylobacter in Medium ... 68
5.5.1 Reduktion der Campylobacter-Keimzahl durch den Bakteriophagen CP 81 bzw. CP 84 bei 37°C in Medium .. 68
5.5.2 Reduktion der Campylobacter-Keimzahl durch den Bakteriophagen CP 81 bzw. CP 84 bei 4°C in Medium .. 70
5.6 Keimzahlreduktion von Campylobacter in Hähnchenfleisch 72
5.6.1 Reduktion der C. jejuni NCTC 11168-Keimzahl durch den Bakteriophagen CP 81 in vakuumverpacktem Hähnchenfleisch bei 37°C .. 72
5.6.2 Reduktion der Campylobacter-Keimzahl durch den Bakteriophagen CP 81 bzw. CP 84 in vakuumverpacktem Hähnchenfleisch bei 4°C .. 73
5.7 Keimzahlreduktion von Y. enterocolitica 83/88/2 in Medium 73
5.7.1 Reduktion der Y. enterocolitica 83/88/2-Keimzahl durch den Bakteriophagen PY 100 bei 37°C in Medium .. 74
5.7.2 Reduktion der Y. enterocolitica 83/88/2-Keimzahl durch den Bakteriophagen PY 100 bei 4°C in Medium .. 75
5.8 Keimzahlreduktion von Y. enterocolitica 83/88/2 in Schweinefleisch 76
5.9 Plaque-Assay ... 77
5.10 Subkultivierung der resistenten und sensiblen Klone über sechs Wochen 78
5.11 Kreuzresistenz gegenüber anderen Bakteriophagen .. 79
5.12 fAFLP-Analyse ... 80
5.13 Sequenzierung des CRISPR-Locus Phagen-resistenter und Phagen–sensibler C. jejuni NCTC 11168-Klone .. 80
5.14 Binding-Assay ... 81
5.14.1 Binding-Assay der Campylobacter-Bakteriophagen CP 81 und CP 84 81
5.14.2 Binding-Assay des Yersinia-Bakteriophagen PY 100.. 82
5.15 Beweglichkeitsassay.. 82
5.16 flaA-Sequenzierung Phagen-resistenter und Phagen-sensibler Campylobacter-Klone......... 83
5.17 Sequenzierung der Gene cj1421 und cj1422 Phagen-sensibler und Phagen-resistenter C. jejuni
NCTC 11168-Klone .. 83

6 Diskussion .. 84
7 Ausblick ... 92
8 Zusammenfassung .. 93
9 Summary .. 94
10 Quellenverzeichnis .. 95
11 Anhang .. 118
Abbildungsverzeichnis

Abbildung 1: Morphologie der Bakteriophagen ... 20
Abbildung 2: Befall eines C. jejuni durch Bakteriophagen .. 21
Abbildung 3: Injektion des Bakteriophagen-Genoms in das Genom der Bakterienzelle 22
Abbildung 4: Koevolution von E. coli O157:H7 und dem Bakteriophagen PP01............... 25
Abbildung 5: Phagentiter des Bakteriophagen CP 81 bei Temperaturen zwischen 60°C und 80°C.. 61
Abbildung 6: Phagentiter des Bakteriophagen CP 84 bei Temperaturen zwischen 60°C und 80°C.. 62
Abbildung 7: Phagentiter des Bakteriophagen PY 100 bei Temperaturen zwischen 60°C und 80°C.. 62
Abbildung 8: Phagentiter des Bakteriophagen CP 81 bei pH 4 und den Temperaturen 4°C und 37°C.. 63
Abbildung 9: Phagentiter des Bakteriophagen CP 84 bei pH 4 ... 63
Abbildung 10: Phagentiter des Bakteriophagen PY 100 bei pH 4 und den Temperaturen 4°C und 37°C.. 64
Abbildung 11: Keimzahlbestimmung von L. monocytogenes ATCC 7644 (A) und Phagentiterbestimmung des Bakteriophagen P100 (B) bei 37°C in Medium....................... 65
Abbildung 12: Keimzahlbestimmung von L. monocytogenes ATCC 7644 (A) und Phagentiterbestimmung des Bakteriophagen P100 (B) bei 4°C in Medium....................... 66
Abbildung 13: Keimzahlbestimmung von L. monocytogenes ATCC 7644 (A) und Phagentiterbestimmung des Bakteriophagen P100 (B) bei 4°C in vakuumverpacktem Schweinefleisch ... 67
Abbildung 14: Keimzahlbestimmung von C. jejuni NCTC 11168 (A) und Phagentiterbestimmung des Bakteriophagen CP 81 (B) bei 37°C in Medium 68
Abbildung 15: Keimzahlbestimmung von C. coli NCTC 12668 (A) und Phagentiterbestimmung des Bakteriophagen CP 84 (B) bei 37°C in Medium 69
Abbildung 16: Keimzahlbestimmung von C. jejuni NCTC 11168 (A) und Phagentiterbestimmung des Bakteriophagen CP 81 (B) bei 4°C in Medium 70
Abbildung 17: Keimzahlbestimmung von C. coli NCTC 12668 (A) und Phagentiterbestimmung des Bakteriophagen CP 84 (B) bei 4°C in Medium 71
Abbildung 18: Keimzahlbestimmung von C. jejuni NCTC 11168 (A) und Phagentiterbestimmung des Bakteriophagen CP 81 (B) bei 37°C in vakuumverpacktem Hähnchenfleisch ... 72
Abbildung 19: Keimzahlbestimmung von C. jejuni NCTC 11168 (A) bzw. C. coli NCTC 12668 (B) und Phagentiterbestimmung des Bakteriophagen CP 81 (C) bzw. CP 84 (D) bei 4°C in vakuumverpacktem Hähnchenfleisch ... 73
Abbildung 20: Keimzahlbestimmung von *Y. enterocolitica* 83/88/2 (A) und Phagentiterbestimmung des Bakteriophagen PY 100 (B) bei 37°C in Medium. 74
Abbildung 21: Keimzahlbestimmung von *Y. enterocolitica* 83/88/2 (A) und Phagentiterbestimmung des Bakteriophagen PY 100 (B) bei 4°C in Medium. 75
Abbildung 22: Keimzahlbestimmung von *Y. enterocolitica* 83/88/2 (A) und Phagentiterbestimmung des Bakteriophagen PY 100 (B) bei 4°C in vakuumverpacktem Schweinefleisch. .. 76
Abbildung 23: Plaquebildung unterschiedlicher Klone ... 77
Abbildung 24: fAFLP-Analyse der resistenten und sensiblen *Campylobacter*-Klone. 80
Abbildung 25: Phagentiter des Bakteriophagen CP 81 (A) bzw. CP 84 (B) in den Überständen der verschiedenen Phagen-sensiblen wie Phagen-resistenten *Campylobacter*-Klone. 81
Abbildung 26: Phagentiter des Bakteriophagen PY 100 in den Überständen der verschiedenen Phagen-sensiblen und Phagen-resistenten *Y. enterocolitica* 83/88/2-Klone. 82
Abbildung 27: Wachstum Phagen-sensibler (A) und Phagen-resistenter (B) *C. jejuni* NCTC 11168-Klone im Schwärmagar. ... 82
Abbildung 28: Wachstumszonen Phagen-sensibler und –resistenter *C. jejuni* NCTC 11168- Klone im Schwärmagar. .. 83
Abbildung 29: Poly G-Trakt des Gens *cj1421* Phagen-sensibler und Phagen- resistenter *C. jejuni* NCTC 11168-Klone .. 118
Abbildung 30: Poly G-Trakt des Gens *cj1422* Phagen-sensibler und Phagen- resistenter *C. jejuni* NCTC 11168-Klone .. 118
Tabellenverzeichnis

Tabelle 1 Prävalenz von \textit{Campylobacter} auf Hähnchenkarkassen der EU 16
Tabelle 2 Geräte ... 43
Tabelle 3 Reagenzien und Chemikalien ... 43
Tabelle 4 Puffer .. 44
Tabelle 5 Enzyme ... 44
Tabelle 6 Primer/Adapter .. 45
Tabelle 7 Kits ... 45
Tabelle 8 Nährmedien ... 46
Tabelle 9 Bakterienstämme ... 47
Tabelle 10 Bakteriophagen ... 47
Tabelle 11: Reversion der Phagen-resistenten \textit{C. jejuni} NCTC 11168-Klone zur Sensibilität 78
Tabelle 12: Reversion der Phagen-resistenten \textit{C. coli} NCTC 12668-Klone zur Sensibilität ... 78
Tabelle 13: Reversion der Phagen-resistenten \textit{Y. enterocolitica} 83/88/2-Klone zur Sensibilität ... 78
Tabelle 14: Kreuzresistenz der gegen CP 81 resistenten \textit{C. jejuni} NCTC 11168-Klone und der gegen CP 84 resistenten \textit{C. coli} NCTC 12668-Klone gegenüber anderen Bakteriophagen derselben Gruppe ... 79
Tabelle 15: Keimzahlreduktionen von \textit{Campylobacter} durch Bakteriophagen im Tier 119
Tabelle 16: Keimzahlreduktionen von \textit{Salmonella} durch Bakteriophagen im Tier 120
Tabelle 17: Keimzahlreduktionen von \textit{E. coli} durch Bakteriophagen im Tier 121
Tabelle 18: Keimzahlreduktionen von \textit{C. jejuni} durch Bakteriophagen im Lebensmittel.... 122
Tabelle 19: Keimzahlreduktionen von \textit{Salmonella} durch Bakteriophagen im Lebensmittel. 123
Tabelle 20: Keimzahlreduktionen von \textit{L. monocytogenes} durch Bakteriophagen im Lebensmittel ... 124
Tabelle 21: Keimzahlreduktionen von \textit{L. monocytogenes} durch den Bakteriophagen P100 im Lebensmittel ... 125
Tabelle 22: Keimzahlreduktionen von \textit{E. coli} durch Bakteriophagen im Lebensmittel 126
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abi</td>
<td>Abortive Infektionssysteme</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>C.</td>
<td>Campylobacter</td>
</tr>
<tr>
<td>cas</td>
<td>CRISPR assoziiert</td>
</tr>
<tr>
<td>CIN</td>
<td>Yersinia Selektiv-Agar</td>
</tr>
<tr>
<td>CRISPR/Cas System</td>
<td>Clustered regularly interspaced short palindromic repeats System</td>
</tr>
<tr>
<td>d</td>
<td>Tag/Tage</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäuren</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Desoxyribonukleosidtriphosphate</td>
</tr>
<tr>
<td>E.</td>
<td>Escherichia</td>
</tr>
<tr>
<td>EB</td>
<td>Listeria Anreicherungsbouillon</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EOP</td>
<td>Efficiency of Plating</td>
</tr>
<tr>
<td>fAFLP</td>
<td>fluorescent Amplified Fragment-Length Polymorphism</td>
</tr>
<tr>
<td>fw</td>
<td>forward</td>
</tr>
<tr>
<td>kb</td>
<td>kilo Basen</td>
</tr>
<tr>
<td>KbE</td>
<td>Kolonie bildende Einheiten</td>
</tr>
<tr>
<td>L.</td>
<td>Listeria</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani-Agar</td>
</tr>
<tr>
<td>LFGB</td>
<td>Lebensmittel-, Bedarfsgegenstände- und Futtermittelgesetzbuch</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharid</td>
</tr>
<tr>
<td>mCCDA</td>
<td>modifizierter Charcoal-Cefoperazon-Desoxycholat Agar</td>
</tr>
<tr>
<td>MHB</td>
<td>Müller-Hinton-Blut-Agar</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of Infection</td>
</tr>
<tr>
<td>NZCYM</td>
<td>NZamine, Natriumchlorid, Casaminosäuren, Hefeextrakt, Magnesiumsulfat</td>
</tr>
<tr>
<td>p.i.</td>
<td>post infectionem</td>
</tr>
<tr>
<td>PALCAM</td>
<td>Polymyxin, Acriflavin, Lithiumchlorid, Ceftazidin, Aesculin, Mannitol-Agar</td>
</tr>
<tr>
<td>PbE</td>
<td>Plaque bildende Einheiten</td>
</tr>
<tr>
<td>pre i.</td>
<td>pre infectionem</td>
</tr>
<tr>
<td>PT</td>
<td>Typisierungsphage</td>
</tr>
<tr>
<td>R/M-Systeme</td>
<td>Restriktions- und Modifikationssysteme</td>
</tr>
<tr>
<td>rev</td>
<td>reverse</td>
</tr>
<tr>
<td>RKI</td>
<td>Robert Koch Institut</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäuren</td>
</tr>
</tbody>
</table>
S. *Salmonella*

Sie Superinfection Exclusion Systems

SM-Puffer Natrium Magnesium-Puffer
TBS TRIS-Borat-EDTA-Puffer
TE-Puffer Tris-EDTA-Puffer
TS-Medium Tryptisches Soja-Medium
TSA Tryptischer Soja-Agar
üN-Kultur über Nacht Kultur

Y. *Yersinia*
1 Einleitung

Ziel dieser Arbeit war es zu überprüfen, ob die beiden *Campylobacter*-Bakteriophagen CP 81 und CP 84 sowie der *Yersinia*-Bakteriophage PY 100 sich für einen post harvest-Einsatz zur Keimzahlsenkung ihrer Wirte eignen. Hierfür wurden die Bakteriophagen näher charakterisiert (Temperatur-, pH-Wert-Toleranz) sowie die Effektivität der über diese Bakteriophagen erfolgenden Keimzahlsenkung ihres Wirtsbakteriums in Medium und in Fleisch bestimmt. Anschließend wurden die bei der Applikation gegen die Bakteriophagen erfolgten Resistenzmechanismen näher analysiert.
2 Schrifttum

2.1 Yersinia

2.1.2 Yersinia-Epidemiologie, klinische Aspekte

Im Jahr 2010 kam es zu ca. 6.800 gemeldeten Yersiniose-Fällen in Europa (EFSA, 2012). In Deutschland handelte es sich im Jahr 2011 um ca. 3.400 Yersiniose-Fälle (RKI, 2012b), was durchschnittlich 7,2 Erkrankten pro 100.000 Einwohner entspricht. Y. enterocolitica sowie Y. pseudotuberculosis verursachen nach einer Inkubationszeit von ca. fünf Tagen gewöhnlich über ein bis zwei Wochen Durchfall, Fieber, Erbrechen, Tenesmus und abdominale
Schmerzen (Abdel-Haq et al., 2000; Furman et al., 2011). Hauptsächlich erkranken Kinder an Enteritis (Rosner et al., 2010). Als Spätfolgen können reaktive Arthritis (Sievers et al., 1972), Erythema nodosum (Cover & Aber, 1989) und Septikämie mit Leber- und Milzabszessen auftreten (Navascues et al., 2004; Grigull et al., 2005; Pulvirenti et al., 2007). Die meisten Erkrankungen in Europa werden von Y. enterocolitica Biotyp 4, Serotyp O3 verursacht (Rosner et al., 2010).

2.2 Campylobacter
Der Genus Campylobacter (C.) umfasst 25 Spezies (List of Prokaryotic names with Standing in Nomenclature, August 2012), wobei 95% der humanen Isolate zu den Spezies C. jejuni ssp. jejuni oder C. coli gehören. Campylobacter sind gram-negativ, Oxidase positiv und mikroaerophil. Sie sind 0,2 bis 0,8 μm breite und 0,5 bis 5 μm lange, schlanke, spiral- bzw. kommaförmige Stäbchenbakterien, die sich korkenzieherartig über eine monopolare oder bipolare Geißel fortbewegen und in der Stationärphase eine kokkoide Form annehmen. Ausnahmen bilden die unbewegliche Spezies C. gracilis und die mehr als zwei Flagellen aufweisende Spezies C. showae. Lebensmittelhygienisch relevant sind vor allem die Spezies C. jejuni, C. coli und C. lari, deren optimale Wachstumstemperatur 30°C bis 42°C beträgt (Nachamkin et al., 2008).

2.2.1 *Campylobacter*-Epidemiologie

2.2.2 Prävalenzen von *Campylobacter* in Geflügel

Die Untersuchungen der European Food Safety Agency (EFSA) (EFSA, 2008) zeigten eine *Campylobacter*-Prävalenz in Europa von 75,8% auf Hähnchenkarkassen. Diese Prävalenzen variierten hierbei von 4,9% (Estland) bis 100,0% (Luxemburg) (Tab. 1).

Tabelle 1 Prävalenz von *Campylobacter* auf Hähnchenkarkassen der EU

<table>
<thead>
<tr>
<th>Land</th>
<th>Campylobacter-Prävalenz</th>
<th>Anzahl der getesteten Hähnchengruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgien</td>
<td>52,7%</td>
<td>380</td>
</tr>
<tr>
<td>Bulgarien</td>
<td>45,2%</td>
<td>280</td>
</tr>
<tr>
<td>Dänemark</td>
<td>31,4%</td>
<td>396</td>
</tr>
<tr>
<td>Deutschland</td>
<td>60,8%</td>
<td>432</td>
</tr>
<tr>
<td>Estland</td>
<td>4,9%</td>
<td>102</td>
</tr>
<tr>
<td>Finnland</td>
<td>5,5%</td>
<td>369</td>
</tr>
<tr>
<td>Frankreich</td>
<td>88,7%</td>
<td>422</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>86,3%</td>
<td>401</td>
</tr>
<tr>
<td>Irland</td>
<td>98,3%</td>
<td>394</td>
</tr>
<tr>
<td>Italien</td>
<td>49,6%</td>
<td>393</td>
</tr>
<tr>
<td>Lettland</td>
<td>33,6%</td>
<td>122</td>
</tr>
<tr>
<td>Litauen</td>
<td>45,8%</td>
<td>374</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>13%</td>
<td>100</td>
</tr>
<tr>
<td>Malta</td>
<td>94,3%</td>
<td>367</td>
</tr>
<tr>
<td>Niederlande</td>
<td>37,6%</td>
<td>429</td>
</tr>
<tr>
<td>Österreich</td>
<td>80,6%</td>
<td>408</td>
</tr>
<tr>
<td>Polen</td>
<td>80,4%</td>
<td>419</td>
</tr>
<tr>
<td>Portugal</td>
<td>70,2%</td>
<td>421</td>
</tr>
<tr>
<td>Rumänien</td>
<td>64,2%</td>
<td>357</td>
</tr>
<tr>
<td>Schweden</td>
<td>14,6%</td>
<td>410</td>
</tr>
<tr>
<td>Slowakei</td>
<td>79,1%</td>
<td>422</td>
</tr>
<tr>
<td>Slowenien</td>
<td>77,8%</td>
<td>413</td>
</tr>
<tr>
<td>Spanien</td>
<td>92,6%</td>
<td>389</td>
</tr>
<tr>
<td>Tschechische Republik</td>
<td>68,6%</td>
<td>422</td>
</tr>
<tr>
<td>Ungarn</td>
<td>55,3%</td>
<td>321</td>
</tr>
<tr>
<td>Zypern</td>
<td>14,1%</td>
<td>357</td>
</tr>
<tr>
<td>EU (26 Mitgliedsstaaten)</td>
<td>75,8%</td>
<td>9.213</td>
</tr>
<tr>
<td>Norwegen</td>
<td>5,1%</td>
<td>396</td>
</tr>
<tr>
<td>Schweiz</td>
<td>71,7%</td>
<td>408</td>
</tr>
</tbody>
</table>

2.2.3 Klinische Aspekte bei humanen Infektionen

Die Erkrankung kann schon durch die Aufnahme geringer Campylobacter-Keimzahlen von 10^2 KBE hervorgerufen werden. Bei Individuen, die sich mit Campylobacter infizierten und trotzdem nicht erkrankten, wurde eine Serum-Antikörper-Antwort auf das C. jejuni-Gruppenantigen des infizierenden Stammes vorgefunden (Jones & Robinson, 1981; Rosenfield et al., 1981; Blaser et al., 1987; Black et al., 1988).

2.2.4 Bekämpfungsmaßnahmen gegen Campylobacter

2.2.4.1 Hygieneverbesserung in der Primärproduktion

Händewaschen, Schuh- und Kleidungswechsel sowie deren Desinfektion zeigten entweder ein späteres Auftreten oder eine Reduktion der Campylobacter-Kontamination der Herde (van de Giessen et al., 1992; van de Giessen et al., 1998; Pattison, 2001). Eine wichtige Hygienemaßnahme stellt auch die Vermeidung des Einbringens von Fliegen und anderer Insekten sowie Nagetieren in die Hühnerställe dar (Gregory et al., 1997; van de Giessen et al., 1998; Refregier-Petton et al., 2001). So führte eine Reduktion der Fliegenanzahl zu einer verminderten Kontamination der Herde mit Campylobacter von 51,4% auf 15,4% (Hald et al., 2007). Ein weiterer wichtiger Risikofaktor sind sich in der Nähe befindende andere Geflügelherden (Evans & Sayers, 2000; Refregier-Petton et al., 2001) oder auch andere Tierarten (Bouwknecht et al., 2004; Katsma et al., 2007), die dieselben Campylobacter spp. aufweisen können (Gregory et al., 1997). Des Weiteren sollte ein besonderes Augenmerk auf das Ausdünnen der Herde gelegt werden, da dabei Campylobacter in hohem Maße eingetragen werden kann (Katsma et al., 2007; Allen et al., 2011). Beim Ausdünnen werden vor allem kranke und schwache sowie weibliche Tiere vier bis acht Tage vor der Schlachtung aus der Herde ausgesondert (Katsma et al., 2007). Hierdurch lässt sich ein höherer Masterfolg der verbleibenden, männlichen Tiere erzielen. Das Ausdünnen wird von Mannschaften durchgeführt, die meist mehrere Geflügelfarmen und –schlachthöfe bedienen, wodurch eine Übertragung von Campylobacter über die kontaminierte Ausrüstung erfolgen kann (Slader et al., 2002).

2.2.4.2 Maßnahmen bei der Schlachtung
et al., 2007). Des Weiteren kann der Brühtank dekontaminiert, die Schlachtkörper mit Milchsäure behandelt, Karkassen angefroren („Crust freezing“) oder bestrahlt bzw. komplett eingefroren werden (Rosenquist et al., 2003; Havelaar et al., 2007, Mangen et al., 2007).

Eine weitere Möglichkeit die Campylobacter-Prävalenz und somit den Eintrag in den Schlachthof zu senken, stellt ein pre harvest-Einsatz von Bakteriophagen vor dem Transport zum Schlachthof dar. Auf die keimzahlsenkende Wirkung von Bakteriophagen vor der Schlachtung (in vivo) bzw. nach der Schlachtung (im Lebensmittel) wird in Kapitel 2.7 näher eingegangen.

2.2.4.3 Maßnahmen nach der Schlachtung

2.3 Bakteriophagen allgemein

Kopfgröße korreliert mit der Genomgröße, wobei alle *Caudovirales* ikosaedrische Köpfe (20 Seiten/12 Vertices) aufweisen. Über 96% besitzen einen Schwanz und werden anhand dessen den Familien *Myoviridae* (24%), *Siphoviridae* (61%) und *Podoviridae* (14%) zugeordnet. *Myoviridae* haben lange, rigide, kontraktile Schwänze (Abb. 1A); *Siphoviridae* lange flexible, nicht kontraktile Schwänze (Abb. 1B) und *Podoviridae* kurze nicht kontraktile Schwänze (Abb. 1C). Die restlichen 3,7% (208 Bakteriophagen) gehören 17 weiteren Familien an und sind polyedrische (Abb. 1 D, 1 E), filamentöse (Abb. 1 F) oder pleomorphe Bakteriophagen (Ackermann, 2001 und 2007).

Abbildung 1: Morphologie der Bakteriophagen

Graphik aus dem Institut für Lebensmittelhygiene

Die Konzentration der Bakteriophagen wird in Plaque bildenden Einheiten pro ml (PbE/ml) angegeben. Infiziert jeder Bakteriophage eine Wirtszelle und deren Nachkommen die umliegenden Bakterien, wird pro ursprünglichem Bakteriophage ein Plaque im Bakterienrasen gebildet und man spricht von 100% Efficiency of Plating (EOP). Die EOP berechnet sich aus den Plaque bildenden Einheiten pro ml, die der Bakteriophage auf dem Referenzstamm bildet, geteilt durch die Anzahl der Plaques pro ml, die er auf einem anderen Stamm bzw. auf einem gegen den Bakteriophagen resistenten Klon ausbildet (Kutter, 2009). Bei einer von 1 auf 10^{-7} bis 10^{-9} reduzierten EOP handelt es sich um ein starkes, bei 10^{-4} bis 10^{-6} um ein schwächeres und darunter um ein schwaches antivirales System (Moineau, 1999). *Multiplicity of Infection* (MOI) ist das Verhältnis der Anzahl an Bakteriophagen pro Bakterienzelle (Kasman et al., 2002).

2.3.1 Virulente Bakteriophagen

2 Schrifttum

Abbildung 2: Befall eines C. jejuni durch Bakteriophagen
Graphik von J. Reetz, BfR

2.3.2 Temperente Bakteriophagen
Temperente Bakteriophagen injizieren ihre Nukleinsäuren in das Zytoplasma (Abb. 3). Die Nukleinsäuren werden anschließend in das Wirtsgenom eingebaut und verbleiben dort als sogenannte Prophagen. Einige Prophagen können auch als zirkuläres oder lineares Plasmid im

2.3.2.1 Gentransfer
Temperente Bakteriophagen können Gene auf das Wirtsbakterium übertragen, die die Virulenz des Bakteriums gegenüber dem menschlichen Organismus verstärken. Durch solche übertragenen Virulenzgene können z. B. Streptokokken besser an Blutplättchen binden (Bensing et al., 2001) oder Hyaluronidasen produzieren, die sie über den Abbau der menschlichen Hyaluronsäure befähigen, sich besser im menschlichen Organismus

Abbildung 3: Injektion des Bakteriophagen-Genoms in das Genom der Bakterienzelle
Graphik aus dem Institut für Lebensmittelhygiene

2.3.3 Yersinia-Bakteriophagen
Die in der Literatur beschriebenen Yersinia-Bakteriophagen sind hauptsächlich temperent und wurden über eine Induktion aus Yersinia-Stämmen isoliert (Popp et al., 2000; Kot et al., 2002; Kudriakova et al., 2010). Es handelt sich vornehmlich um Bakteriophagen mit doppelsträngiger DNA (Popp et al., 2000; Zhao et al., 2011), die häufig eine Ähnlichkeit mit Coliphagen aufweisen. So stimmen 89% des Genoms des Yersiniaphagen ΦA1122 mit dem des Coliphagen T7 überein (Garcia et al., 2003). Der virulente Bakteriophage PY 100 zeigt ein breites Wirtsspektrum, da er sowohl Y. enterocolitica-, Y. pseudotuberculosis- als auch Y. pestis-Stämme bei 37°C lysisiert. Er wurde aus Stallmist isoliert und verfügt über ein ikosaedrisches Kapsid und einen kontraktilen Schwanz (Myoviridae). Das Genom besteht aus doppelsträngiger DNA mit einer Größe von ca. 50 kb und 93 offenen Leserahmen (Schwudke et al., 2008).

2.3.4 Campylobacter-Bakteriophagen
Campylobacter-Bakteriophagen konnten bisher aus Faeces von Hühnern (Grajewski et al., 1985; Connerton et al., 2004; Atterbury et al., 2005; El-Shibiny et al., 2005; Loc Carrillo et al., 2007), Hühnerfleisch (Atterbury et al., 2003b), Hühnerhaut und Hähnchen-Spülwasser

Die temperenten Campylobacter-Bakteriophagen implementieren ihre spezifischen Sequenzen in die Genome ihres Wirtes und sind in den Campylobacter spp. weit verbreitet (Fouts et al., 2005; Parker et al., 2006; Barton et al., 2007). Die Mu-ähnlichen Prophagen können Inversionen genomischer Segmente um bis zu 590 kb bedingen, was ca. einem Drittel des Genoms entspricht (Scott et al., 2007b).

2.4 Koevolution Bakterien/Bakteriophagen
2.5 Bakterielle Abwehrmechanismen gegen Bakteriophagen

diese vier Resistenzmechanismen kodieren, sind bei Laktokokken weit verbreitet und befinden sich gewöhnlich auf Plasmiden (Coffey & Ross, 2002).

2.5.1 Blockierung der Adsorption

2.5.2 Blockierung der DNA-Injektion

nicht mehr injizieren (Garvey et al., 1995). Der genaue Mechanismus ist bei beiden Beispielen noch nicht geklärt.

2.5.3 Restriktions- und Modifikations (R/M)-Systeme

2.5.4 Abortive Infektions (Abi)-Systeme

2.5.5 Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-System
CRISPR/Cas-Systeme konnten bisher in ca. 40% der sequenzierten bakteriellen Genome nachgewiesen werden (Yosef et al., 2011). Die Mikroorganismen können einen oder mehrere unabhängig voneinander agierende CRISPR-Loci im Genom enthalten (Jansen et al., 2002). Ein CRISPR-Locus enthält 21 bis 48 bp lange, identische, sich wiederholende, oft palindromische DNA-Sequenzen in die Spacer (21 bis 72 bp lange hochvariable DNA-

2.5.6 Superinfection Exclusion Systems (Sie)
Bedingen temperente Bakteriophagen eine Resistenz der Wirts bakterien gegenüber anderen superinfizierenden Bakteriophagen, werden die Mechanismen als Superinfection Exclusion Systems (Sie) bezeichnet. Die von temperenten Bakteriophagen eingebrachten Gene können z. B. eine Veränderung des eigenen Rezeptors bzw. des Rezeptors eines anderen

2.5.7 Charakterisierung Phagen-resistenter Klone

Eine weitere Möglichkeit der Charakterisierung Phagen-resistenter Klone stellt deren Subkultivierung über Wochen ohne weiteren Phagenkontakt dar. Nach unterschiedlichen

Beruht die Resistenz gegenüber Bakteriophagen auf einer Blockierung der DNA-Injektion, kann eine Bindung der Bakteriophagen über das Binding-Assay nachgewiesen werden. Das Binding-Assay müsste dabei verlängert werden, um den fehlenden späteren Anstieg des Phagentiters durch die fehlende DNA-Injektion und damit Vermehrung der Bakteriophagen nachweisen zu können. Zusätzlich müsste elektronenmikroskopisch nachgewiesen werden, dass die Bakteriophagen binden können, die DNA aber in den Köpfen verbleibt (Watanabe et al., 1984).

Können die Bakteriophagen die DNA injizieren, kann diese über das CRISPR/Cas-System abgebaut und an der Replikation gehindert werden. Um einen über das CRISPR/Cas-System

2.6 Anpassung der Bakteriophagen an die Resistenzmechanismen des Wirtsbakteriums

2.6.1 Veränderung der Rezeptor-Bindungsstelle
Bakterien schützen sich gegenüber Bakteriophagen z. B. über die Veränderung des Rezeptors, an den der Bakteriophage bindet. Der Bakteriophage Ox2 bindet normalerweise an das Membranprotein OmpA, passte sich jedoch an die resistenten Wirts bakterien an und die Bakteriophagenmutante Ox2h5 entstand. Diese konnte im Gegensatz zu dem Bakteriophagen Ox2 auch an OmpA-veränderte Wirts bakterien binden. Der aus dieser Mutante entstandene Bakteriophage Ox2h10 konnte zusätzlich zu OmpA auch an OmpC binden, allerdings mit einer geringen Affinität. Der daraus wiederum entstandene Bakteriophage Ox2h12 konnte nicht mehr an OmpA, dafür aber mit hoher Affinität an OmpC binden. Der genaue Entstehungsmechanismus ist noch nicht geklärt (Drexler et al., 1989). Die Veränderungen der

2.6.2 Verteidigung der Bakteriophagen gegen das R/M-System

2.6.3 Verteidigung der Bakteriophagen gegen das Abi-System
Eine Resistenzz gegenüber dem über das Plasmid pTR2030 kodierten Abi-Systems erlangte der Laktokokken-infizierende Bakteriophage Φ50 über die Aufnahme einer 1.273 bp umfassenden Region dieses Plasmids. Die von dem Bakteriophagen aufgenommene Region

2.6.4 Verteidigung der Bakteriophagen gegen das CRISPR/Cas System

2.7 Einsatz der Bakteriophagen

2.7.1 Bakteriophagenapplikation im Tier

2.7.1.1 Campylobacter

2.7.1.2 Salmonella
In Tabelle 16 (s. Anhang) sind die über Bakteriophagen erzielten Keimzahlreduktionen bei Salmonella dargestellt. Diese wurden in mit Salmonella infizierten Hähnchen oder bei Wall et al. (2010) in mit Salmonella infizierten Schweinen durchgeführt. Salmonella-Bakteriophagen wurden entweder vor (pre. i.), bei (0 h) oder nach (p.i.) der Kontamination verabreicht. Auffällig ist, dass die meisten Bakteriophagen trotz unterschiedlicher Applikationszeitpunkte, primär oder sekundär erfolgter Infektionen, unterschiedlicher Bakteriophagen-Anzahlen, unterschiedlicher Keimzahlen und unterschiedlicher Bakteriophagentiter zu ähnlichen Keimzahlensenkungen von ca. 1 bis 2 log-Stufen führten (Atterbury et al., 2007; Berchieri et al., 1991; Borie et al., 2009; Fiorentin et al., 2005; Wall et al., 2010). Nur die Bakteriophagen
Die 6 h nach der Bakteriophagenapplikation erzielte Keimzahlsenkung um 3 log-Stufen durch den Phagen Φ2.2 sank allerdings im Versuchsverlauf auf 1 log-Stufe ab. Der Bakteriophage Φ25 konnte seinen Wirt trotz guter in vitro-Versuche nicht senken (Atterbury et al., 2007), wodurch wieder bestätigt wird, dass ein Rückschluss von in vitro-Ergebnissen auf in vivo-Ergebnisse nicht unbedingt möglich ist.

2.7.1.3 E. coli

2 Schrifttum

Zusammenfassend haben die in vivo-Versuche gezeigt, dass Bakteriophagen in der Lage sind, die Keimzahlen der Wirtsbakterien zu senken, hierdurch auch die klinischen Symptome zu vermindern und die Mortalität zu reduzieren (Smith & Huggins 1983 und 1987). Allerdings konnten gute in vitro-Ergebnisse nicht unbedingt auf gute in vivo-Keimzahlreduktionen übertragen werden (Loc Carrillo et al., 2005; Atterbury et al., 2007). Der Phagentiter, der die Keimzahl am besten senken konnte, war nicht immer der höchste Phagentiter und müsste eventuell vor einem Einsatz bestimmt werden (Loc Carrillo et al., 2005; Callaway et al., 2008). Eine häufigere Bakteriophagenapplikation kann den Effekt der Keimzahlensenkung verlängern (Tanji et al., 2005). Allerdings spielen sehr viele andere Faktoren wie die Tierart, der Applikationsort, der Applikationszeitpunkt etc. eine Rolle für einen erfolgreichen Einsatz (Sheng et al., 2006). Eine Bakteriophagenapplikation, die so zeitnah wie möglich an der Infektion erfolgte, schien bessere Resultate zu erzielen (Smith & Huggins, 1983).

In den hier aufgeführten Versuchen wurden Bakteriophagen allerdings nur bei gegenüber dem Bakteriophagen nachweislich sensiblen Stämmen eingesetzt. Da Bakteriophagen sehr speziespezifisch sind bzw. teilweise nur gewisse Stämme einer Spezies lysieren, kann bei hohen Keimzahlreduktionen eines Stammes nicht auf Keimzahlreduktionen anderer Stämme geschlossen werden. Bei einer Applikation von Bakteriophagen zur Therapie eines bakteriell erkrankten Tieres sollte das Bakterium deshalb idealerweise aus dem Tier isoliert und der die Keimzahl dieses Bakteriums am besten reduzierende Bakteriophage ermittelt werden (Barrow, 2001). Ist es möglich den Bakteriophagen dann gezielt einzusetzen, könnte dieser die Keimzahl sogar stärker senken als Antibiotika (Smith & Huggins, 1982).

2.7.2 Bakteriophagenapplikation im Menschen

durchgeführt und die Versuche verliefen nicht nach westlichen Standards (Sulakvelidze et al., 2001).

2.7.3 Bakteriophagenapplikation im Lebensmittel

Ein Bakteriophagen-Einsatz im Lebensmittel stellt eine weitere Möglichkeit dar, die Keimzahl lebensmittelhygienisch relevanter Bakterien und damit auch die über diese verursachten Erkrankungsfälle beim Menschen zu senken. Die Zusammenfassung der aufgeführten Studien soll das Potenzial eines Bakteriophagen-Einsatzes im Lebensmittel aufzeigen.

2.7.3.1 *Campylobacter*

Auch Atterbury et al. (2003a) wiesen eine stärkere Keimzahlensenkung bei einem höheren Phagentiter nach. Diese Keimzahlensenkung konnte durch Tiefgefrierung (-20°C) verstärkt werden.

2.7.3.2 Salmonella

2.7.3.3 Listeria (*L.*)

2.7.3.3.1 Der Bakteriophage P100
Bei dem Bakteriophage P100 handelt es sich um einen Bakteriophagen der Firma Micreos Food Safety. Für den Antrag zur Zulassung dieses Bakteriophagen als Produkt „LISTEX“ zur Reduktion der *Listeria*-Keimzahl in Lebensmitteln in der EU wurden mehrere Studien durchgeführt, die in Tabelle 21 (s. Anhang) dargestellt sind. Bei den Versuchen wurde der

2.7.3.4 *E. coli*

In Tabelle 22 (s. Anhang) sind die Ergebnisse der über Bakteriophagen erfolgten Keimzahlsenkung in unterschiedlichen Lebensmitteln dargestellt. Die Bakteriophagen wurden 1 h nach der Kontamination mit *E. coli* dazugegeben und die Keimzahl nach 3 bzw. 24 h bestimmt. Die Keimzahl konnte in allen Lebensmitteln (Brokkoli, Spinat, Tomaten und Steak) mit 2 bis 3 log-Stufen ungefähr gleich stark durch die Bakteriophagen gesenkt werden (O’Flynn et al., 2004; Abuladze et al., 2008). Die Versuche im Lebensmittel zeigten, dass im Gegensatz zu den *in vivo*-Versuchen der höchste Phagentiter die Keimzahl generell am stärksten senken konnte (Atterbury et al., 2003a; Higgins et al., 2005; Bigwood et al., 2008; Guenther et al., 2009; Soni & Nannapaneni 2010). Je näher der Zeitpunkt der Bakteriophagenapplikation an der Kontamination lag, desto höher fielen die Keimzahlreduktionen aus (Leverentz et al., 2004). Die Eigenschaften des Lebensmittels stellten einen wichtigen Faktor für die Keimzahlsenkung dar (Guenther et al., 2009). Die Temperatur schien keine Auswirkungen auf die Keimzahlsenkung zu haben (Leverentz et al., 2001; Soni et al., 2009; Soni & Nannapaneni 2010).

2.8 Rechtliche Situation des Bakteriophage-Einsatzes in Lebensmitteln

Eine Schwierigkeit besteht zusätzlich in der Eingruppierung der Bakteriophagen im Lebensmittelrecht. Werden Bakteriophagen zu den Lebensmittelzusatzstoffen nach §2 Abs. 3 Satz 1 des Lebensmittel-, Bedarfsgegenstände- und Futtermittelgesetzbuch (LFGGB), Art. 1 Abs. 2 der RL 89/107/EWG oder der Abs. 3 Satz 1 der VO (EG) Nr. 1333/2008 gezählt, handelt es sich um Stoffe, die dem Lebensmittel aus technologischen Gründen zugesetzt werden, wodurch der Stoff selbst oder seine Nebenprodukte zu einem Bestandteil des Lebensmittels werden oder werden können. Eine weitere Eingruppierungsmöglichkeit für Bakteriophagen wäre die Gruppe der Verarbeitungshilfsstoffe nach §2 Abs. 3 Nr. 1 LFGGB, §6 Abs. 1 Nr. 1a des LFGB oder Abs. 6, Satz 1 der VO (EG) Nr. 1333/2008, bei der es sich um Stoffe handelt, die nicht selbst als Lebensmittelzutat verzeihnt, jedoch bei der Verarbeitung von Rohstoffen, Lebensmitteln oder deren Zutaten aus technologischen Gründen während der Be- oder Verarbeitung verwendet werden und unbeabsichtigt, technisch unvermeidbare Rückstände oder Rückstandesderivate im Enderzeugnis hinterlassen können, unter der Bedingung, dass diese Rückstände gesundheitlich unbedenklich sind und sich technisch nicht auf das Enderzeugnis auswirken. Würden Bakteriophagen als Verarbeitungshilfsstoffe gelten, könnte die Lebensmittelkennzeichnung gegebenenfalls entfallen, was für den kommerziellen Einsatz von Bakteriophagen von Vorteil wäre, da ein Zusatz von Viren in ein Lebensmittel zu Skepsis beim Verbraucher führen könnte. Zusätzlich würde eine nationale Zulassung im Gegensatz zu einer europäischen ausreichen. Die Einteilung der Bakteriophagen hängt davon ab, ob die durch Erhitzen im Lebensmittel inaktivierten Bakteriophagen als nicht zu vermeidender Rückstand oder als Inhaltsstoff angesehen werden. Eine weitere Einteilungsmöglichkeit wäre die Gruppe der Enzyme und Mikroorganismen nach §6 Abs. 1 Nr. 1a LFGB, bei denen eine Reinkultur vorliegen muss, was bei den Bakteriophagen gegeben wäre. Im Enderzeugnis dürften sie nicht mehr technologisch wirksam sein, wodurch wieder die Frage zu stellen ist, ob dies bei durch Erhitzung des Lebensmittels inaktivierten Bakteriophagen der Fall wäre.
In den USA wurden im Gegensatz zu der EU schon vier Bakteriophagenpräparate in den letzten sieben Jahren zugelassen. Es handelt sich hierbei um den Bakteriophagen P100 (LISTEX) von Micreos Food Safety, Holland, für die Anwendung im Lebensmittel gegen Listerien, den Bakteriophagen-Cocktail ListShield von der Firma Intralytix Inc. für die Anwendung im Lebensmittel gegen Listerien, den Phagencocktail EcoShield von derselben Firma für die Anwendung im Lebensmittel gegen \textit{E. Coli} und den Phagen-Cocktail Agriphage der Firma OmniLytics zur Anwendung gegen \textit{Xanthomonas campestris} und \textit{Pseudomonas syringae}.
3 Material

3.1 Geräte
In Tabelle 2 sind die für die Versuche verwendeten Geräte zusammengefasst.

Tabelle 2 Geräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Gerätetyp</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoxomat</td>
<td>AN2CTS</td>
<td>MART Microbiology</td>
</tr>
<tr>
<td>PCR-Cycler</td>
<td>C1000 Thermal Cycler</td>
<td>BioRad</td>
</tr>
</tbody>
</table>

3.2 Reagenzien und Chemikalien
Die in den Versuchen verwendeten Reagenzien und Chemikalien sind in Tabelle 3 aufgeführt.

Tabelle 3 Reagenzien und Chemikalien

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Hersteller, Art.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar Agar</td>
<td>Oxoid; Art.-Nr. LP0011</td>
</tr>
<tr>
<td>peqGold Universal Agarose</td>
<td>Peqlab, Erlangen, Deutschland; Art.-Nr. 35-1030</td>
</tr>
<tr>
<td>Chelex 100 Resin</td>
<td>BioRad, München, Deutschland; Art.-Nr. 142-1253</td>
</tr>
<tr>
<td>Citrat-Monohydrat</td>
<td>Merck; Art.-Nr. 104956</td>
</tr>
<tr>
<td>dNTP Set, 100mM</td>
<td>Fermentas, Art.-Nr. R0181</td>
</tr>
<tr>
<td>Gene Ruler 100 bp</td>
<td>Fermentas; Art.-Nr. SM0242</td>
</tr>
<tr>
<td>GR Green</td>
<td>Labgene, Chatel St. Denis, Schweiz; Art.-Nr. IV-1071</td>
</tr>
<tr>
<td>Magnesiumsulfat</td>
<td>Roth; Art.-Nr. P027.1</td>
</tr>
<tr>
<td>Natriumacetat (Trihydrat)</td>
<td>Merck; Art.-Nr. 6268</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>Merck; Art.-Nr. 6404</td>
</tr>
<tr>
<td>Salzsäure</td>
<td>Merck; Art.-Nr. 9057</td>
</tr>
<tr>
<td>Magnesiumchlorid [50 mM]</td>
<td>Qiagen, Hilden, Deutschland; Art.-Nr. 201207</td>
</tr>
<tr>
<td>10x Coral Ladepuffer</td>
<td>Qiagen, Hilden, Deutschland; Art.-Nr. 201207</td>
</tr>
<tr>
<td>Trichloressigsäure</td>
<td>Merck; Art.-Nr. 807</td>
</tr>
</tbody>
</table>
3.3 Puffer
In Tabelle 4 sind die Puffer mit der Herstellung bzw. dem Hersteller aufgeführt.

Tabelle 4 Puffer

<table>
<thead>
<tr>
<th>Puffer</th>
<th>Herstellung/Hersteller, Art.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5M Essigsäure/Acetat-Puffer</td>
<td>30 ml Essigsäure/Acetat-Puffer pH4, 68,04 g Natriumacetat (Trihydrat) mit Salzsäure auf pH 4 einstellen und auf 1 l auffüllen</td>
</tr>
<tr>
<td>10mM Citratpuffer</td>
<td>1,92 g Citrat-Monohydrat, 800 ml Aqua dest. Mit Natronlauge auf pH 2,8 einstellen und auf 1 l auffüllen</td>
</tr>
<tr>
<td>8,5fach TRIS-Borat-EDTA-Puffer (TBS)</td>
<td>800 ml Aqua dest., 80 g Natriumchlorid, 30 g TRIS-Puffer mit Salzsäure auf pH 7 einstellen</td>
</tr>
<tr>
<td>Natrium Magnesium (SM) Puffer</td>
<td>1M TRIS-Puffer pH 7, 100mM Magnesiumsulfat auf 1 l auffüllen</td>
</tr>
<tr>
<td>10x PCR Puffer</td>
<td>Qiagen, Hilden, Deutschland; Art.-Nr. 201207</td>
</tr>
<tr>
<td>Tango Puffer</td>
<td>Fermentas; Art.-Nr. BY5</td>
</tr>
<tr>
<td>TBE Elektrophorese-Puffer</td>
<td>Roth; Art.-Nr. 3061.2</td>
</tr>
<tr>
<td>TBE Elektrophorese-Puffer</td>
<td>Roth; Art.-Nr. 3061.2</td>
</tr>
<tr>
<td>Tris EDTA (TE) Puffer</td>
<td>Roth</td>
</tr>
<tr>
<td>TRIS-Puffer</td>
<td>Roth; Art.-Nr. 5429.3</td>
</tr>
</tbody>
</table>

3.4 Enzyme
Die für die PCRs und fAFLP verwendeten Enzyme sind in Tabelle 5 aufgeführt.

Tabelle 5 Enzyme

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller, Art.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hha I</td>
<td>Fermentas; Art.-Nr. ER1851</td>
</tr>
<tr>
<td>Hind III</td>
<td>Fermentas; Art.-Nr. ER0501</td>
</tr>
<tr>
<td>ReddyMixPCR MasterMix</td>
<td>Thermo Scientific, Bonn, Deutschland; Art.-Nr. AB-0575/LD/B</td>
</tr>
<tr>
<td>T4 DNA-Ligase (5 U/µl)</td>
<td>Fermentas, St. Leon Roth, Deutschland; Art.-Nr. EL0011</td>
</tr>
<tr>
<td>Taq DNA-Polymerase (5 U/µl)</td>
<td>Qiagen, Hilden, Deutschland; Art.-Nr. 201207</td>
</tr>
</tbody>
</table>
3 Material

3.5 Primer/Adapter

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
<th>Publikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fla4F</td>
<td>5'-GGA TTT CGT ATT AAC ACA AAT GGT GC-3'</td>
<td>Dingle et al. (2002)</td>
</tr>
<tr>
<td>Fla1728R</td>
<td>5'-CTG TAG TAA TCT TAA AAC ATT TTG-3'</td>
<td>Dingle et al. (2002)</td>
</tr>
<tr>
<td>Hha pre</td>
<td>5'-GAT GAG TCC TGA TCG C-3'</td>
<td>Duim et al. (1999)</td>
</tr>
<tr>
<td>Hind pre</td>
<td>5'-GAC TGC GTA CCA GCT T-3'</td>
<td>Duim et al. (1999)</td>
</tr>
<tr>
<td>Hha sel</td>
<td>5'-GAT GAG TCC TGA TCG CA-3'</td>
<td>Duim et al. (1999)</td>
</tr>
<tr>
<td>FAM Hind sel</td>
<td>FAM 5'-GAC TGC GTA CCA GCT TA-3'</td>
<td>Duim et al. (1999)</td>
</tr>
<tr>
<td>cj1421/1</td>
<td>5'-ATG CTC AAC CCA AAT TCA GC-3'</td>
<td>diese Studie</td>
</tr>
<tr>
<td>cj1421/2</td>
<td>5'-GAT ATC CCC GTC TCC TCC AC-3'</td>
<td>diese Studie</td>
</tr>
<tr>
<td>cj1422/1</td>
<td>5'-TCC AAA TGC ACC AAT AAG CA-3'</td>
<td>diese Studie</td>
</tr>
<tr>
<td>cj1421/3</td>
<td>5'-TTG GGT ATT TAA GTT GGG GAA A-3'</td>
<td>diese Studie</td>
</tr>
<tr>
<td>CAMPDRF</td>
<td>5'-AGC TGC CCT TAT GGT GGT G-3'</td>
<td>Schouls et al. (2003)</td>
</tr>
<tr>
<td>CAMPDRR</td>
<td>5'-AAG CGG TTT TAG GGG ATT GT-3'</td>
<td>Schouls et al. (2003)</td>
</tr>
<tr>
<td>Hhalad 1</td>
<td>5'-GAC GAT GAG TCC TGA TCG-3'</td>
<td>Duim et al. (1999)</td>
</tr>
<tr>
<td>Hhalad 2</td>
<td>5'-ATC AGG ACT CAT CG-3'</td>
<td>Duim et al. (1999)</td>
</tr>
<tr>
<td>HindIIIad 1</td>
<td>5'-CTC GTA GAC TGC GTA CC-3'</td>
<td>Duim et al. (1999)</td>
</tr>
<tr>
<td>HindIIIad 2</td>
<td>5'-AGC TGG TAC GCA GTC-3'</td>
<td>Duim et al. (1999)</td>
</tr>
</tbody>
</table>

3.6 Kits
Für die Aufreinigung der PCR-Produkte wurde der in Tabelle 7 aufgeführte PCR Purification Kit von Fermentas verwendet.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller, Art.-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneJET PCR Purification Kit</td>
<td>Fermentas, Art.-Nr. K0702</td>
</tr>
</tbody>
</table>
3.7 Nährmedien

Tabelle 8 zeigt die verwendeten Nährmedien.

<table>
<thead>
<tr>
<th>Nährmedium</th>
<th>Hersteller, Art.-Nr.</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müller-Hinton-Blut-Agar (MHB)</td>
<td>Oxoid Wesel, Deutschland; Art.-Nr. CM 337</td>
<td>Oxoid 5% steriles Schafblut</td>
</tr>
<tr>
<td>Modifizierter Charcoal-Cefoperazon-Desoxycholat-Agar (mCCDA)</td>
<td>Oxoid; Art.-Nr. CM 739</td>
<td>Oxoid; Art.-Nr. SR 155 (Cefoperazon, Natriumdesoxycholat)</td>
</tr>
<tr>
<td>Karmali-Agar</td>
<td>Oxoid; Art.-Nr. CM 0935</td>
<td>Oxoid; Art.-Nr. SR 0167 (Vancomycin, Cefoperazon, Cycloheximid)</td>
</tr>
<tr>
<td>Luria-Bertani (LB)-Platten</td>
<td>Merck Darmstadt, Deutschland; Art.-Nr. 1.10285</td>
<td>Oxoid; Art.-Nr. LP0011 Agar-Agar</td>
</tr>
<tr>
<td>Yersinia Selektiv-Agar (CIN)</td>
<td>Oxoid; Art.-Nr. CM 0653</td>
<td>Oxoid; Art.-Nr. SR 0109 (Cefsulodin, Irgasan, Novobiocin)</td>
</tr>
<tr>
<td>Tryptischer Soja-Agar (TSA)</td>
<td>Oxoid; Art.-Nr. CM 0131</td>
<td></td>
</tr>
<tr>
<td>Polymyxin, Acriflavin, Lithiumchlorid, Ceftazidin, Aesculin, Mannitol (PALCAM)-Agar</td>
<td>Merck ; Art.-Nr. 11755</td>
<td>Merck; Art.-Nr. 12122 (Polymyxin, Ceftazidin, Acriflavin)</td>
</tr>
<tr>
<td>Brucella Bouillon-Agar</td>
<td>BD Biosciences, Heidelberg, Deutschland; Art.-Nr. 211088</td>
<td>Oxoid; Art.-Nr. LP0011 Agar-Agar</td>
</tr>
<tr>
<td>NZ amine, Natriumchlorid, Casaminosäuren, Hefeextrakt, Magnesiumsulfat (NZCYM) Medium</td>
<td>Roth Karlsruhe, Deutschland; Art.-Nr. X 974.1</td>
<td></td>
</tr>
<tr>
<td>Preston Bouillon</td>
<td>Oxoid; Art.-Nr. CM 67</td>
<td>Oxoid; Art.-Nr. SR 204E lysiertes Pferdeblut; Art.-Nr. SR 232E Campylobacter Growth Supplement; Art.-Nr. SR 48C (Polymyxin, Rifampicin, Trimethoprim, Amphotericin B)</td>
</tr>
<tr>
<td>Tryptisches Soja (TS)-Medium</td>
<td>Merck; Art.-Nr. 05459</td>
<td></td>
</tr>
<tr>
<td>Listeria Anreicherungsbouillon (EB)</td>
<td>Oxoid; Art. Nr. CM 0862</td>
<td>Oxoid; Art.-Nr. SR 0141E (Cycloheximid, Acriflavin)</td>
</tr>
</tbody>
</table>
3.8 Bakterienstämme
Die in den Versuchen verwendeten Bakterienstämme sind in Tabelle 9 aufgeführt.

Tabelle 9 Bakterienstämme

<table>
<thead>
<tr>
<th>Spezies</th>
<th>isoliert aus</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. jejuni NCTC 11168</td>
<td>human</td>
<td>Dr. Stefan Hertwig, Bundesinstitut für Risikobewertung (BfR)</td>
</tr>
<tr>
<td>C. coli NCTC 12668</td>
<td>human</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>Y. enterocolitica 83/88/2 (ohne Virulenzplasmid)</td>
<td>human</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>L. monocytogenes ATCC 7644</td>
<td>human</td>
<td>LGC Standards, Wesel, Deutschland</td>
</tr>
</tbody>
</table>

Die Aufbewahrung der Stämme erfolgte in der Cryobank, Mast Diagnostica, Reinfeld, Deutschland, Art.-Nr. 291701.

3.9 Bakteriophagen

Tabelle 10 Bakteriophagen

<table>
<thead>
<tr>
<th>Bakteriophage</th>
<th>Wirt</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 81</td>
<td>C. jejuni</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 84</td>
<td>C. jejuni, C. coli</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 1</td>
<td>C. jejuni</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 14</td>
<td>C. jejuni</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 32</td>
<td>C. jejuni</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>F 14</td>
<td>C. jejuni</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 7</td>
<td>C. jejuni, C. coli</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 21</td>
<td>C. jejuni, C. coli</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 68</td>
<td>C. jejuni, C. coli</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 75</td>
<td>C. jejuni, C. coli</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 83</td>
<td>C. jejuni, C. coli</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>CP 75</td>
<td>C. jejuni, C. coli</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>PY 100</td>
<td>Y. enterocolitica, Y. pseudotuberculosis, Y. pestis</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
<tr>
<td>P100</td>
<td>L. monocytogenes</td>
<td>Dr. Stefan Hertwig (BfR)</td>
</tr>
</tbody>
</table>
4 Methoden

Die in dieser Arbeit durchgeführten Versuche können in drei Rubriken eingeteilt werden:

- die Charakterisierung der Bakteriophagen
- die durch die Bakteriophagen erzielten Keimzahlsenkungen des Wirtsbakteriums
- die Charakterisierung der Resistenzmechanismen der Wirtsbakterien gegenüber dem jeweiligen Bakteriophagen

Charakterisierung der Bakteriophagen

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Versuch</th>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werden die Bakteriophagen durch Erhitzen oder die Veränderung des pH-Wertes inaktiviert?</td>
<td>Bestimmung der Temperaturtoleranz der Bakteriophagen bei 60°C bis 80°C und der pH-Wert-Toleranz bei pH 3 und pH 4.</td>
<td>4.5, 4.6</td>
</tr>
</tbody>
</table>

Durch die Bakteriophagen erzielte Keimzahlsenkungen

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Versuch</th>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keimzahlreduktion des Wirtsstammes durch den Bakteriophagen bei 37°C in Medium sowie 4°C in Medium und in Fleisch.</td>
<td>Inkubation der Bakterien mit dem jeweiligen Bakteriophagen bei 37°C in Medium und 4°C in Medium und Fleisch. Keimzahlbestimmung und Vergleich mit der Negativkontrolle.</td>
<td>4.7, 4.9</td>
</tr>
</tbody>
</table>
Methoden

Die Charakterisierung der Resistenzmechanismen der Wirtsbakterien gegenüber dem jeweiligen Bakteriophagen

Bei den Versuchen bei 37°C in Medium sind innerhalb von 48 h resistente Klone gegen den jeweiligen Bakteriophagen entstanden. Die folgenden Versuche sollten die erfolgte Resistenzentwicklung näher charakterisieren.

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Versuch</th>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ist die Resistenz reversibel?</td>
<td>Subkultivierung der resistenten Klone über sechs Wochen. Wöchentliche Resistenzbestimmung.</td>
<td>4.11</td>
</tr>
<tr>
<td>Bewirkt die Resistenz eine Kreuzresistenz gegenüber anderen Bakteriophagen?</td>
<td>Bestimmung, ob die resistenten Klone auch gegen andere Bakteriophagen resistent sind.</td>
<td>4.12</td>
</tr>
<tr>
<td>Haben genomische Rearrangements zu der Resistenz geführt?</td>
<td>Durchführung einer fAFLP-Analyse mit sensiblen und resistenten Klonen.</td>
<td>4.16</td>
</tr>
<tr>
<td>Sind die resistenten Klone gegenüber den sensiblen in der Beweglichkeit verändert?</td>
<td>Durchführung eines Beweglichkeitsassays.</td>
<td>4.14</td>
</tr>
<tr>
<td>Beruht die Resistenz auf dem CRISPR/Cas System?</td>
<td>Vergleich der CRISPR-Locus-Sequenzen sensibler und resister Klon.</td>
<td>4.19</td>
</tr>
<tr>
<td>Können die Bakteriophagen noch an die resistenten Klone binden?</td>
<td>Durchführung eines Binding-Assays.</td>
<td>4.13</td>
</tr>
<tr>
<td>Ist FlaA der Rezeptor des Bakteriophagen?</td>
<td>Vergleich der flaA-Sequenz sensibler und resister Klon.</td>
<td>4.20</td>
</tr>
<tr>
<td>Ist der Poly G-Trakt der Gene cj1421 und cj1422 bei den resistenten Klonen verändert?</td>
<td>Vergleich der Sequenz des Poly G-Traktes von cj1421 und cj1422 sensibler und resister Klon.</td>
<td>4.21</td>
</tr>
</tbody>
</table>
4 Methoden

4.1 Kultivierung der Bakterien

Campylobacter

Y. enterocolitica

L. monocytogenes

4.2 Herstellung des Softagars

NZCYM-Softagar
100 ml NZCYM-Medium wurden mit 0,6 g Agar-Agar (Oxoid) vermischt und mindestens dreimal aufgekocht. Anschließend wurde der dadurch entstandene Softagar in einem Wasserbad bei 50°C unter Schütteln aufbewahrt. Der NZCYM-Softagar wurde bei den Campylobacter- und dem Yersinia-Bakteriophagen verwendet.

TS-Softagar
100 ml TS-Medium wurden mit 0,4 g Agar-Agar vermischt und mindestens dreimal aufgekocht. Anschließend wurde der dadurch entstandene Softagar in einem Wasserbad bei 50°C unter Schütteln aufbewahrt. Der TS-Softagar wurde bei dem Listeria-Phagen P100 verwendet.

4.3 Plaque-Assay zur Bestimmung des Phagentiters
100 µl einer über Nacht (üN)-Kultur wurden mit 100 µl einer seriellen Verdünnungsreihe des Bakteriophagenlysats vermischt und 10 min bei Raumtemperatur inkubiert. Anschließend
wurden 5,5 ml Softagar hinzugegeben und zusammen in eine Petrischale gegeben. Der Agar wurde rotierend über die Petrischalen verteilt, die Platten 5 min zum Trocknen stehen gelassen und anschließend 24 h bei 37°C inkubiert. Die Plaques wurden gezählt und der Phagentiter bestimmt.

4.4 Vermehrung des Bakteriophagen
200 µl einer üN-Kultur wurden mit 100 µl einer Verdünnungsstufe Bakteriophagenlysat vermischt und 10 min bei Raumtemperatur inkubiert. Anschließend wurden 5,5 ml Softagar hinzugegeben und zusammen in eine Petrischale gegeben. Die Platten wurden 24 h bei 37°C inkubiert. Der Agar wurde mit einem abgeflamnten Löffel aus den Petrischalen in einen Erlenmeyerkolben gegeben und SM-Puffer bis zur Bedeckung des Agars hinzugefügt. Auf einem Magnetrührer wurde der Agar über 4 h gerührt, 16.000 x g für 30 min bei 22°C zentrifugiert und der Überstand mit einem 0,22 µm Filter filtriert.

4.5 Bestimmung der Temperaturtoleranz der Bakteriophagen
300 µl Phagenlysat wurden in einem Thermomixer bei unterschiedlichen Temperaturen unter Schütteln inkubiert und der Phagentiter nach 5 bis 30 min bestimmt.

4.6 Bestimmung der pH-Wert-Toleranz der Bakteriophagen
Toleranz der Bakteriophagen bei pH 4
450 µl Phagenlysat wurden mit 75 µl 0,5 M Essigsäure/Acetat-Puffer vermischt, wodurch ein pH-Wert von 4,0 ±0,1 erreicht wurde. Anschließend wurden die Phagenlysate bei 4°C und 37°C inkubiert, 175 µl nach 0 h, 24 h und 48 h entnommen und diese mit 8 ml TBS (8,5fach) neutralisiert (pH 7,0 ± 0,2). Anschließend wurde der Phagentiter bestimmt. Der pH 7 stellte sicher, dass die beim Plaque-Assay verwendeten Bakterien nicht durch den niedrigen pH-Wert beeinträchtigt wurden.

Toleranz der Bakteriophagen bei pH 3
450 µl Phagenlysat wurden mit 7,5 ml 10mM Citrat-Salzsäure-Puffer vermischt und so ein pH 3 erhalten. Anschließend wurden die Ansätze bei 4°C und 37°C inkubiert, 2,65 ml nach 0 h, 24 h und 48 h entnommen und diese dann mit 48 ml TBS 8,5fach auf pH 7,0 ± 0,2 eingestellt. Anschließend wurde der Phagentiter bestimmt. Auch hier stellte der pH 7 sicher, dass die für das Plaque-Assay verwendeten Bakterien nicht durch einen niedrigen pH-Wert beeinträchtigt wurden.
4.7 Reduktion der bakteriellen Keimzahl durch spezifische Bakteriophagen in Medium

Eine üN-Kultur der jeweiligen Bakterien wurde mit NZCYM- bzw. TS-Medium auf eine Keimzahl von ca. $1,0 \times 10^5$ KbE/ml eingestellt. 1 ml dieser Verdünnung wurde anschließend mit 1 ml Phagenlysat (unterschiedliche MOI) bzw. 1 ml SM-Puffer (Negativkontrolle) vermischt und bei 37°C bzw. 4°C inkubiert. Nach unterschiedlichen Zeitpunkten wurde die Keimzahl durch Ausplattierung von Verdünnungsreihen in NZCYM- bzw. TS-Medium auf MHB-, LB- bzw. TSA-Platten sowie der Phagentiter mittels Plaque-Assay bestimmt.

4.8 Untersuchung der Fleischmatrix

Campylobacter

Zur Überprüfung, ob das für die Versuche eingesetzte Hähnchenfleisch keine *Campylobacter*-Kontamination aufwies, wurden 25 g Hähnchenfleisch 1:10 in Preston Bouillon verdünnt, 2 min gestomachert und 24 h bei 37°C inkubiert. Daraus wurden 10 µl auf Karmali-Platten und modifiziertem Charcoal-Cefoperazon-Desoxycholat-Agar (mCCDA)-Platten ausgestrichen und diese 48 h bei 37°C bebrütet.

Yersinia, Listeria

Nur wenn kein Bakterienwachstum auf den selektiven Nährmedien nachgewiesen werden konnte, wurde das bis dahin bei -20°C eingefrorene Hähnchen- bzw. Schweinefleisch steril in 10 g Portionen verpackt, bei -20°C gelagert und 24 h vor den Versuchen bei 4°C im Kühlschrank aufgetaut.

4.9 Reduktion der bakteriellen Keimzahl durch spezifische Bakteriophagen in Fleisch

100 µl einer üN-Kultur wurden mit NZCYM- bzw. TS-Medium auf die Keimzahl von ca. $1,0 \times 10^6$ KbE/ml verdünnt. 100 µl dieser Verdünnung wurden auf jeweils 10 g Hähnchen- bzw. Schweinefleisch im Stomacherbeutel gegeben, einmassiert und eine halbe Stunde bei Raumtemperatur inkubiert. Anschließend wurde 1 ml Phagenlysat bzw. 1 ml SM-Puffer (Negativkontrolle) sowie bei *Campylobacter* noch jeweils 5 ml NZCYM-Medium hinzugegeben. Die Stomacherbeutel wurden vakuumverschlossen und bei 37°C bzw. 4°C inkubiert.
4 Methoden

inkubiert. Zu den Zeitpunkten 0 h, 6 h, 24 h, 48 h, 72 h und 144 h wurde je ein Stomacherbeutel der beiden Ansätze steril aufgeschnitten, 1:10 mit NZCYM- bzw. TS-Medium verdünnt und 2 min gestomachert. Daraus wurden Verdünnungsreihen in NZCYM-bzw. TS-Medium hergestellt, auf mCCDA-, CIN- bzw. PALCAM-Platten ausgespatelt und der Phagentiter über ein Plaque-Assay aus den Verdünnungsreihen ermittelt. Um die Begleitflora im Plaque-Assay zu hemmen, wurden 400 µl des mCCDA-Selektiv-Supplements, des *Yersinia*-Selektiv-Supplements bzw. des PALCAM-Selektiv-Supplements kurz vor dem Gießen pro 100 ml in den Softagar hinzugegeben.

4.10 Plaque-Assay zur Bestimmung einer Resistenz gegenüber Bakteriophagen

4.11 Subkultivierung der resistenten Klone

4.12 Resistenz gegenüber anderen Bakteriophagen
Die gegen CP 81 resistenten *C. jejuni* NCTC 11168-Klone wurden auf eine Resistenz gegenüber vier weiteren Gruppe II-Bakteriophagen getestet (CP 1, CP 14, CP 32, F 14). Die gegen CP 84 resistenten *C. coli* NCTC 12668-Klone wurden auf die Resistenz gegenüber fünf anderen Gruppe III-Bakteriophagen (CP 7, CP 21, CP 68, CP 75, CP 83) getestet. Hierfür wurden Plaque-Assays erstellt, um festzustellen, ob die Bakteriophagen noch in der Lage waren, Plaques auszubilden.
4.13 Binding-Assay der Phagen CP 81, CP 84 und PY 100
Zur Überprüfung, ob die Bakteriophagen noch an ihren jeweiligen Wirt binden können oder eine Veränderung/Blockierung des Rezeptors stattgefunden hat, wurde ein Binding-Assay durchgeführt. Hierfür wurden die Bakteriophagen (CP 81: \(10^7\) PbE/ml; CP 84/PY 100: \(10^9\) PbE/ml) mit üN-Kulturen eines Phagen-sensiblen bzw. eines Phagen-resistenten Klons sowie als Kontrollen mit reinem Medium bzw. einer üN-Kultur eines Bakteriums anderen Genus vermisch und bei 37°C inkubiert. Zu den Zeitwerten 0 h, 10 min, 30 min, 1 h, 1,5 h, 2 h bzw. 4 h wurden die Proben aufgeschüttelt, jeweils 1 ml abgenommen, dieser 10 min bei ca. 16.000 x g zentrifugiert und der Phagentiter des Überstandes mittels Plaque-Assay bestimmt. Konnten die Bakteriophagen binden, wurden sie mit den Bakterien bei der Zentrifugation pelletiert, wodurch es zu einer Senkung des Phagentiters im Überstand kam. Konnten die Bakteriophagen nicht mehr binden, blieb der Phagentiter demnach konstant. Die Proben wurden manuell aufgeschüttelt, um eine Trennung der an die Bakterien gebundenen Bakteriophagen zu vermeiden.

4.14 Bestimmung der Beweglichkeit Phagen-resistenter Klone
Es wurden üN-Kulturen der von dem Versuch zur Keimzahl-Reduktion durch Bakteriophagen in Medium bei 37°C isolierten Einzelkolonien angefertigt (Kapitel 4.7). Hierbei wurden 30 C. jejuni NCTC 11168-Klone des 0 h Wertes, 30 Klone des 48 h Wertes und 30 Klone, die 48 h mit Bakteriophagen inkubiert worden waren, verwendet. Bei den C. coli NCTC 12668-Klonen handelte es sich um fünf Klone des 0 h Wertes, fünf Klone des 48 h Wertes und fünf Klone, die 48 h mit Bakteriophagen inkubiert worden waren. Es wurde jeweils 1 µl der üN-Kulturen auf eine 0,4%ige Brucella Bouillon-Platte pipettiert. Die Platten wurden 48 h bei 37°C bebrütet und anschließend der Durchmesser der bewachsenen Fläche bestimmt.

4.15 DNA-Isolierung (Chelex-Methode)
400 µl 0,1x Tris-EDTA (TE)-Puffer wurden mit Koloniematerial vermisch, 10 min bei 16.000 x g (4°C) zentrifugiert und der Überstand dekantiert. Anschließend wurde das Pellet in 400 µl 5% Chelex 100 Resin (BioRad) resuspendiert, 1 h bei 56°C und 15 min bei 95°C in einem Thermomixer unter Schütteln inkubiert und anschließend zentrifugiert. Der Überstand wurde jeweils abgenommen und bis zur Verwendung der DNA bei 4°C aufbewahrt.
4 Methoden

4.16 fAFLP-Analyse

1. **Restriktion der DNA**
Bei den für die Restriktion der DNA verwendeten Enzymen handelte es sich um *Hha I* und *Hind III*.

 Mastermix für 1 Probe:

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hha I [10.000 U/ml]</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Hind III [10.000 U/ml]</td>
<td>0,2 µl</td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td>7,4 µl</td>
</tr>
<tr>
<td>10x Tango Puffer</td>
<td>1 µl</td>
</tr>
<tr>
<td>DNA-Template</td>
<td>1 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

 Der Restriktionsverdau fand für 60 min bei 37°C statt.

2. **Ligation der Adapter**
Bei den für die Ligation verwendeten Adaptoren handelte es sich um *HhaIad 1*, *HhaIad 2*, *HindIIIad 2 und HindIIIad 2*. Bei der Ligation binden die Adapter an die Enden der von den Restriktionsendonukleasen geschnittenen Fragmente.

 Herstellung der Adapter

 HhaIad

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>HhaIad 1 [100 µM]</td>
<td>20 µl</td>
</tr>
<tr>
<td>HhaIad 2 [100 µM]</td>
<td>20 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>60 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>100 µl</td>
</tr>
</tbody>
</table>

 HindIIIad

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>HindIIIad 1 [100 µM]</td>
<td>2 µl</td>
</tr>
<tr>
<td>HindIIIad 2 [100 µM]</td>
<td>2 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>96 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>100 µl</td>
</tr>
</tbody>
</table>

 Alle Ansätze wurden 5 min bei 95°C erhitzt, abgekühlt und kurz zentrifugiert.
Ligation

Mastermix für 1 Probe:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>10,3 µl</td>
</tr>
<tr>
<td>T4-DNA-Ligase [5 U/µl]</td>
<td>0,2 µl</td>
</tr>
<tr>
<td>10x T4 DNA Ligase Puffer</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>HhaIad</td>
<td>1 µl</td>
</tr>
<tr>
<td>HindIIIad</td>
<td>1 µl</td>
</tr>
<tr>
<td>Restriktionsansatz</td>
<td>10 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

Die Konzentrationen der Adapter wurden von Messens et al. (2009) übernommen. Die Ligation fand über 120 min bei 37°C statt.

3. Präselektive PCR

Bei den für die präselektive PCR verwendeten Primern handelte es sich um HhaIpre und HindIIIpre. Bei der präselektiven PCR werden die Fragmente, an die Adapter gebunden haben, amplifiziert.

Mastermix für 1 Probe:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReddyMixPCR Master Mix (Abgene)</td>
<td>20 µl</td>
</tr>
<tr>
<td>MgCl2 [25 mM]</td>
<td>1 µl</td>
</tr>
<tr>
<td>HhaIpre [10 µM]</td>
<td>1 µl</td>
</tr>
<tr>
<td>HindIIIpre [1 µM]</td>
<td>2 µl</td>
</tr>
<tr>
<td>Ligationsansatz</td>
<td>1 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

Temperatur	**Zeit**
95°C | 3 min
94°C | 20 s
56°C | 30 s
72°C | 120 s

\[20x\]
4. Selektive PCR
Für die selektive PCR wurden die Primer \textit{Hhasel} und FAM \textit{Hindsel} verwendet. Bei der selektiven PCR bindet ein fluoreszierender Primer an die vervielfältigten Fragmente.

\begin{tabular}{|l|l|}
\hline
Mastermix für 1 Probe: & \\
\hline
ReddyMixPCR Master Mix (Abgene) & 18 µl \\
MgCl$_2$ [25 mM] & 0,8 µl \\
\textit{Hhasel} [100µM] & 0,2 µl \\
FAM \textit{Hindsel} [10 µM] & 0,3 µl \\
Präselektives PCR Produkt & 0,7 µl \\
\hline
\textbf{Σ} & 20 µl \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline
\textbf{Temperatur} & \textbf{Zeit} \\
\hline
95°C & 3 min \\
94°C & 20 s \\
66°C & 30 s \\
72°C & 120 s \\
94°C & 20 s \\
56°C & 30 s \\
72°C & 120 s \\
60°C & 30min \\
\hline
\end{tabular}

Anschließend wurde eine Gelelektrophorese durchgeführt. War ein für die fAFLP-Analyse typisches Bandenmuster sichtbar, wurden die PCR-Produkte zur weiteren Analyse an die Firma LGC Genomics (Deutschland) weggeschickt.

4.17 Gelelektrophorese
Ein 3%iges Agarosegel wurde gegossen und TBE-Puffer bis zur Überdeckung des Gels hinzugegeben. 100 µl eines 10fach Coral Ladepuffers (Qiagen) wurden mit 1 µl GR Green (Labgene) vermischt. 2 µl dieses Gemischs wurden mit 8 µl PCR Produkt zusammengegeben und in die mittleren Taschen des Agarosegels aufgetragen. In die seitlichen Taschen wurden 4 µl des Gene Rulers 100 bp (Fermentas) mit 2 µl des Ladepuffer-GR Green-Gemischs pipettiert. Anschließend wurde eine Gelelektrophorese bei 80 Volt laufen gelassen und die Bandenmuster analysiert.

4.18 Sequenzierung des PCR-Produktes
Die PCR-Produkte wurden über das Fermentas PCR purification Kit aufgereinigt und die Konzentration der DNA mittels Nanodrop bestimmt. Die DNA wurde auf 30 µg/µl verdünnt. Die Sequenzierung erfolgte durch die Firma GATC.
4.19 CRISPR/Cas-System

Mastermix für 1 Probe:

<table>
<thead>
<tr>
<th>DNA</th>
<th>2,3 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer CAMPDRF [100 µM]</td>
<td>0,1 µl</td>
</tr>
<tr>
<td>Primer CAMPDRR [100 µM]</td>
<td>0,1 µl</td>
</tr>
<tr>
<td>ReddyMixPCR MasterMix (Abgene)</td>
<td>22,5 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>3 min</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>30 s</td>
<td></td>
</tr>
<tr>
<td>69°C</td>
<td>30 s</td>
<td>35x</td>
</tr>
<tr>
<td>72°C</td>
<td>60 s</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>7 min</td>
<td></td>
</tr>
</tbody>
</table>

Es wurde anschließend eine Gelelektrophorese durchgeführt, die DNA aufgereinigt und sequenziert (Kapitel 4.17; 4.18).
4 Methoden

4.20 Sequenzierung des *flaA*-Gens

Masernmix für 1 Probe:

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x Puffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>MgCl₂ [25mM]</td>
<td>3 µl</td>
</tr>
<tr>
<td>dNTPs [10mM]</td>
<td>2 µl</td>
</tr>
<tr>
<td>Taq-Pol [5U/µl]</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>5 µl</td>
</tr>
<tr>
<td>Fla4F [50µM]</td>
<td>0,25 µl</td>
</tr>
<tr>
<td>Fla1728R [50µM]</td>
<td>0,25 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>34,1 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>5 min</td>
</tr>
<tr>
<td>94°C</td>
<td>30 s</td>
</tr>
<tr>
<td>55°C</td>
<td>60 s</td>
</tr>
<tr>
<td>72°C</td>
<td>60 s</td>
</tr>
<tr>
<td>72°C</td>
<td>5 min</td>
</tr>
</tbody>
</table>

Es wurde eine Gelelektrophorese mit anschließender Aufreinigung und Sequenzierung des PCR-Produktes durchgeführt (Kapitel 4.17; 4.18). Die Nukleotidsequenzen der Phagenresistenten Klone wurden mit denen der Phagen-sensiblen Klone verglichen.
4.21 Sequenzierung des Poly G-Traktes der Gene \textit{cj1421} und \textit{cj1422}

Chromosomale DNA Phagen-sensibler und –resistenter \textit{C. jejuni} NCTC 11168-Klone wurde mit Hilfe der Chelex-Methode isoliert. Der Poly G-Trakt der Gene \textit{cj1421} und \textit{cj1422} wurde amplifiziert. Für das Gen \textit{cj1421} wurden die Primer \textit{cj1421/1} und \textit{cj1421/2} sowie für das Gen \textit{cj1422} die Primer \textit{cj1421/1} und \textit{cj1422/1} verwendet.

Mastermix für 1 Probe:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x Puffer</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>dNTPs [10mM]</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Taq-Pol [5U/µl]</td>
<td>0,1 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>2 µl</td>
</tr>
<tr>
<td>Primer fw [100µM]</td>
<td>0,25 µl</td>
</tr>
<tr>
<td>Primer rev [100µM]</td>
<td>0,25 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>19,4 µl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>4 min</td>
</tr>
<tr>
<td>94°C</td>
<td>45 s</td>
</tr>
<tr>
<td>56°C</td>
<td>45 s</td>
</tr>
<tr>
<td>72°C</td>
<td>45 s</td>
</tr>
<tr>
<td>72°C</td>
<td>5 min</td>
</tr>
</tbody>
</table>

Es wurde eine Gelelektrophorese mit anschließender Aufreinigung und Sequenzierung des PCR Produktes durchgeführt (Kapitel 4.17; 4.18). Für die Sequenzierung wurden die Primer \textit{cj1421/1} und \textit{cj1421/3} verwendet. Die Sequenzen der Phagen-resistenten wurden mit denen der Phagen-sensiblen Klone verglichen.
5 Ergebnisse

5.1 Temperaturtoleranz der Bakteriophagen

5.1.1 Temperaturtoleranz des *C. jejuni*-Bakteriophagen CP 81

Der Bakteriophage CP 81 wurde bei Temperaturen, die beim Erhitzen von Lebensmitteln erreicht werden, nach unterschiedlichen Zeitpunkten inaktiviert. Bei 60°C wurde der Phagentiter um fast 6 log-Stufen innerhalb von 30 min reduziert. Inaktiviert wurde der Bakteriophage CP 81 bei 65°C bzw. 68°C nach 25 bzw. 20 min und bei 70°C nach 15 min. Bei 80°C wurde er schon innerhalb von 5 min inaktiviert (Abb. 5).

Abbildung 5: Phagentiter des Bakteriophagen CP 81 bei Temperaturen zwischen 60°C und 80°C

Dargestellt ist die x-fache Reduktion der PbE/ml, als Mittelwerte mit Standardabweichungen (n=3)
5 Ergebnisse

5.1.2 Temperaturtoleranz des *Campylobacter*-Bakteriophagen CP 84
Der Bakteriophage CP 84 zeigte sich widerstandsfähiger zwischen 60°C bis 80°C als der Bakteriophage CP 81. Der Phagentiter dieses Bakteriophagen blieb bei 60°C konstant und wurde bei 65°C bzw. 70°C um 4 bzw. 6 log-Stufen innerhalb von 30 min reduziert. Zu einer Inaktivierung kam es nach 10 min bei 80°C (Abb. 6).

Abbildung 6: Phagentiter des Bakteriophagen CP 84 bei Temperaturen zwischen 60°C und 80°C
Dargestellt ist die x-fache Reduktion der PbE/ml, als Mittelwerte mit Standardabweichungen (n=3)

5.1.3 Temperaturtoleranz des *Yersinia*-Bakteriophagen PY 100
Der Bakteriophage PY 100 zeigte sich bei 60°C bis 80°C am widerstandsfähigsten, da dessen Phagentiter auch bei 60°C konstant blieb und bei 70°C bzw. 80°C nur um 6 log-Stufen reduziert wurde (Abb. 7). Eine Inaktivierung konnte erst nach 15 min bei 90°C nachgewiesen werden (Daten nicht gezeigt).

Abbildung 7: Phagentiter des Bakteriophagen PY 100 bei Temperaturen zwischen 60°C und 80°C
Dargestellt ist die x-fache Reduktion der PbE/ml, als Mittelwerte mit Standardabweichungen (n=3)
5.2 pH-Wert-Toleranz der Bakteriophagen

5.2.1 pH-Wert-Toleranz des C. jejuni-Bakteriophagen CP 81
Der Phagentiter des Bakteriophagen CP 81 sank bei pH 4 innerhalb von 48 h bei 4°C um ca. 1 log-Stufe und bei 37°C um ca. 2 log-Stufen ab (Abb. 8). Bei pH 3 (4°C, 37°C) lag der Phagentiter schon nach 24 h unterhalb der Nachweisgrenze (10 PbE/ml) (Daten nicht gezeigt).

Abbildung 8: Phagentiter des Bakteriophagen CP 81 bei pH 4 und den Temperaturen 4°C und 37°C
Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)

5.2.2 pH-Wert-Toleranz des Campylobacter-Bakteriophagen CP 84
Der Phagentiter des Bakteriophagen CP 84 blieb bei pH 4 innerhalb von 48 h bei 4°C konstant (Abb. 9). Er lag jedoch bei pH 4 (37°C) und pH 3 (4°C und 37°C) schon innerhalb von 24 h unterhalb der Nachweisgrenze (10 PbE/ml) (Daten nicht gezeigt).

Abbildung 9: Phagentiter des Bakteriophagen CP 84 bei pH 4
Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5.2.3 pH-Wert-Toleranz des *Yersinia*-Bakteriophagen PY 100
Der Phagentiter des Bakteriophagen PY 100 blieb bei pH 4 und 4°C konstant, sank jedoch bei 37°C innerhalb von 48 h um 5 log-Stufen ab (Abb. 10). Bei pH 3 (4°C und 37°C) lag der Phagentiter schon innerhalb von 24 h unterhalb der Nachweigrenze (10 PbE/ml) (Daten nicht gezeigt).

Abbildung 10: Phagentiter des Bakteriophagen PY 100 bei pH 4 und den Temperaturen 4°C und 37°C
Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5.3 Keimzahlreduktion von *L. monocytogenes* ATCC 7644 in Medium

5.3.1 Reduktion der *L. monocytogenes* ATCC 7644-Keimzahl durch den Bakteriophagen P100 bei 37°C in Medium

Abbildung 11: Keimzahlbestimmung von *L. monocytogenes* ATCC 7644 (A) und Phagentiterbestimmung des Bakteriophagen P100 (B) bei 37°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5 Ergebnisse

5.3.2 Reduktion der *L. monocytogenes* ATCC 7644-Keimzahl durch den Bakteriophagen P100 bei 4°C in Medium

Abbildung 12: Keimzahlbestimmung von *L. monocytogenes* ATCC 7644 (A) und Phagentiterbestimmung des Bakteriophagen P100 (B) bei 4°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5.4 Reduktion der *L. monocytogenes* ATCC 7644-Keimzahl durch den Bakteriophagen P100 in Schweinefleisch bei 4°C

Abbildung 13: Keimzahlbestimmung von *L. monocytogenes* ATCC 7644 (A) und Phagentiterbestimmung des Bakteriophagen P100 (B) bei 4°C in vakuumverpacktem Schweinefleisch.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5.5 Keimzahlreduktion von *Campylobacter* in Medium

5.5.1 Reduktion der *Campylobacter*-Keimzahl durch den Bakteriophagen CP 81 bzw. CP 84 bei 37°C in Medium

Die Keimzahl des Stammes *C. jejuni* NCTC 11168 wurde durch den Bakteriophagen CP 81 bei 37°C bei einer MOI 10^1 nach 24 h um 1,5 log- und nach 30 h um 2 log-Stufen reduziert. Eine MOI 10^2 erzielte eine Keimzahlsenkung von 1 log-Stufe nach 5 h, die sich auch über den Versuchsverlauf nicht veränderte (Abb. 14A). Auffällig ist, dass eine höhere MOI zwar früher zu einer Reduktion führte, die Reduktion an sich jedoch geringer ausfiel. Der Phagentiter stieg innerhalb des Versuchs auf 10^7 PbE/ml (MOI 10^1) bzw. blieb konstant bei 10^7 PbE/ml (MOI 10^2) (Abb. 14B).

Abbildung 14: Keimzahlbestimmung von *C. jejuni* NCTC 11168 (A) und Phagentiterbestimmung des Bakteriophagen CP 81 (B) bei 37°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
Bei 37°C wurde die Keimzahl des Stammes *C. coli* NCTC 12668 durch den Bakteriophagen CP 84 bei einer MOI 10^1 und 10^2 nach 24 h um 1 log-Stufe gesenkt. Eine MOI 10^4 reduzierte die Keimzahl zwar schon nach 5 h, allerdings nur um 0,5 log-Stufen (Abb. 15A). Auffällig ist, dass auch bei diesem Bakteriophagen bei steigender MOI eine frühere Reduktion erfolgt, diese aber insgesamt geringer ausfällt. Der Phagentiter stieg auf 10^9 PbE/ml bzw. blieb konstant bei 10^9 PbE/ml (Abb. 15B).

Abbildung 15: Keimzahlbestimmung von *C. coli* NCTC 12668 (A) und Phagentiterbestimmung des Bakteriophagen CP 84 (B) bei 37°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5.5.2 Reduktion der *Campylobacter*-Keimzahl durch den Bakteriophagen CP 81 bzw. CP 84 bei 4°C in Medium

Bei 4°C konnte die Keimzahl des Stammes *C. jejuni* NCTC 11168 durch den Bakteriophagen CP 81 bei einer MOI 10^1 und 10^2 nicht gesenkt werden (Abb. 16A). Der Phagentiter blieb dabei jeweils konstant bei 10^6 bzw. 10^7 PbE/ml (Abb. 16B).

Abbildung 16: Keimzahlbestimmung von *C. jejuni* NCTC 11168 (A) und Phagentiterbestimmung des Bakteriophagen CP 81 (B) bei 4°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
Die Keimzahl des Stammes *C. coli* NCTC 12668 wurde bei 4°C durch den Bakteriophagen CP 84 weder bei einer MOI 10\(^3\), noch bei einer MOI 10\(^4\) gesenkt (Abb. 17A). Der Phagentiter blieb jeweils konstant bei 10\(^8\) bzw. 10\(^9\) PbE/ml (Abb. 17B).

Abbildung 17: Keimzahlbestimmung von *C. coli* NCTC 12668 (A) und Phagentiterbestimmung des Bakteriophagen CP 84 (B) bei 4°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5 Ergebnisse

5.6 Keimzahlreduktion von *Campylobacter* in Hähnchenfleisch
Weiterhin wurde untersucht, ob eine *Campylobacter*-Keimzahlreduktion durch die Phagen in artifiziell kontaminiertem Hähnchenfleisch erfolgen kann.

5.6.1 Reduktion der *C. jejuni* NCTC 11168-Keimzahl durch den Bakteriophagen CP 81 in vakuumverpacktem Hähnchenfleisch bei 37°C
Auch in Hähnchenfleisch konnte die Keimzahl des Stammes *C. jejuni* NCTC 11168 bei 37°C durch den Bakteriophagen CP 81 bei einer MOI 10^2 nach 24 h um 1 log-Stufe gesenkt werden (Abb. 18A). Der Phagentiter blieb konstant bei 10^5 PbE/ml (Abb. 18B).

Abbildung 18: Keimzahlbestimmung von *C. jejuni* NCTC 11168 (A) und Phagentiterbestimmung des Bakteriophagen CP 81 (B) bei 37°C in vakuumverpacktem Hähnchenfleisch.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5 Ergebnisse

5.6.2 Reduktion der *Campylobacter*-Keimzahl durch den Bakteriophagen CP 81 bzw. CP 84 in vakuumverpacktem Hähnchenfleisch bei 4°C

![Graph A](image1)

![Graph B](image2)

Abbildung 19: Keimzahlbestimmung von *C. jejuni* NCTC 11168 (A) bzw. *C. coli* NCTC 12668 (B) und Phagentiterbestimmung des Bakteriophagen CP 81 (C) bzw. CP 84 (D) bei 4°C in vakuumverpacktem Hähnchenfleisch.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=9)

5.7 Keimzahlreduktion von *Y. enterocolitica* 83/88/2 in Medium

Im Anschluss an die Versuche mit den thermophilen *C. jejuni* - und *C. coli* - Stämmen wurde der gleiche Versuchsansatz mit dem psychrotropen *Y. enterocolitica*-Stamm 83/88/2 und dem Bakteriophagen PY 100 bei 37°C bzw. 4°C in Medium durchgeführt.
5 Ergebnisse

5.7.1 Reduktion der *Y. enterocolitica* 83/88/2-Keimzahl durch den Bakteriophagen PY 100 bei 37°C in Medium

Die Keimzahl des Stammes *Y. enterocolitica* 83/88/2 konnte bei 37°C und einer MOI 10^{-2} nicht von dem Bakteriophagen PY 100 gesenkt werden. Bei einer MOI 10^{-2} wurde die Keimzahl des Stammes nach 24 h um 3 log-Stufen und bei einer MOI 10^{4} bereits nach 1,5 h um 5 log-Stufen reduziert (Abb. 20A). Auffällig ist, dass der Bakteriophage bei einer höheren MOI die *Y. enterocolitica*-Keimzahl stärker senkte als bei einer niedrigen MOI. Der Phagentiter stieg auf 10^9 PbE/ml oder blieb konstant bei 10^9 PbE/ml (Abb. 20B).

Abbildung 20: Keimzahlbestimmung von *Y. enterocolitica* 83/88/2 (A) und Phagentiterbestimmung des Bakteriophagen PY 100 (B) bei 37°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5.7.2 Reduktion der *Y. enterocolitica* 83/88/2-Keimzahl durch den Bakteriophagen PY 100 bei 4°C in Medium

Bei einer MOI 10^2 wurde der Stamm nach 24 h um ca. 1 log-Stufe und bei einer MOI 10^4 nach 24 h um bis zu 3 log-Stufen gesenkt (Abb. 21A). Auffällig ist, dass der Bakteriophage auch bei 4°C die *Y. enterocolitica* 83/88/2-Keimzahl bei einer höheren MOI stärker reduzierte. Bei einer MOI 10^2 konnte der Phage die Keimzahl des Stammes *Y. enterocolitica* 83/88/2 jedoch nicht senken. Der Phagentiter blieb konstant bei 10^7 bzw. 10^9 PbE/ml (Abb. 21B).

Abbildung 21: Keimzahlbestimmung von *Y. enterocolitica* 83/88/2 (A) und Phagentiterbestimmung des Bakteriophagen PY 100 (B) bei 4°C in Medium.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3)
5.8 Keimzahlreduktion von *Y. enterocolitica* 83/88/2 in Schweinefleisch

Weiterhin wurde untersucht, ob der Bakteriophage PY 100 die *Y. enterocolitica* 83/88/2-Keimzahl auch in artifiziell kontaminiertem Schweinefleisch bei 4°C senken kann.

Bei 4°C konnte die Keimzahl des Stammes *Y. enterocolitica* 83/88/2 bei einer MOI 10⁴ in artifiziell kontaminiertem Schweinefleisch nach 24 h signifikant um 1,5 log Stufen durch den Bakteriophagen PY 100 gesenkt werden (Abb. 22A). Der Phagentiter blieb konstant bei ca. 10⁸ PbE/ml (Abb. 22B).

Abbildung 22: Keimzahlbestimmung von *Y. enterocolitica* 83/88/2 (A) und Phagentiterbestimmung des Bakteriophagen PY 100 (B) bei 4°C in vakuumverpacktem Schweinefleisch.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3). Signifikanz: p<0,05 (Mann-Whitney-Test).
5.9 Plaque-Assay

Sensibel

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistent</td>
<td>B</td>
<td>D</td>
<td>F</td>
</tr>
</tbody>
</table>

Abbildung 23: Plaquebildung unterschiedlicher Klone

48 h Inkubation **ohne** Bakteriophagen: A (Y. enterocolitica 83/88/2), C (C. jejuni NCTC 11168), E (C. coli NCTC 12668)
48 h Inkubation **mit** Bakteriophagen: B (Y. enterocolitica 83/88/2), D (C. jejuni NCTC 11168), F (C. coli NCTC 12668)
5.10 Subkultivierung der resistenten und sensiblen Klone über sechs Wochen

Tabelle 11: Reversion der Phagen-resistenten *C. jejuni* NCTC 11168-Klone zur Sensibilität

<table>
<thead>
<tr>
<th>C. jejuni-Klone</th>
<th>1. Durchgang</th>
<th>2. Durchgang</th>
<th>3. Durchgang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n. n.</td>
<td>n. n.</td>
<td>n. n.</td>
</tr>
<tr>
<td>2</td>
<td>n. n.</td>
<td>n. n.</td>
<td>n. n.</td>
</tr>
<tr>
<td>3</td>
<td>n. n.</td>
<td>n. n.</td>
<td>n. n.</td>
</tr>
<tr>
<td>4</td>
<td>n. n.</td>
<td>n. n.</td>
<td>n. n.</td>
</tr>
<tr>
<td>5</td>
<td>n. n.</td>
<td>n. n.</td>
<td>n. n.</td>
</tr>
</tbody>
</table>

n.n.: nicht nachweisbar (über den gesamten Versuchszeitraum)

Tabelle 12: Reversion der Phagen-resistenten *C. coli* NCTC 12668-Klone zur Sensibilität

<table>
<thead>
<tr>
<th>C. coli-Klone</th>
<th>1. Durchgang</th>
<th>2. Durchgang</th>
<th>3. Durchgang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nach 3 Wochen</td>
<td>nach 2 Wochen</td>
<td>nach 1 Woche</td>
</tr>
<tr>
<td>2</td>
<td>nach 3 Wochen</td>
<td>nach 2 Wochen</td>
<td>nach 1 Woche</td>
</tr>
<tr>
<td>3</td>
<td>nach 3 Wochen</td>
<td>nach 2 Wochen</td>
<td>nach 3 Wochen</td>
</tr>
<tr>
<td>4</td>
<td>nach 4 Wochen</td>
<td>nach 3 Wochen</td>
<td>nach 3 Wochen</td>
</tr>
<tr>
<td>5</td>
<td>nach 1 Woche</td>
<td>nach 2 Wochen</td>
<td>nach 1 Woche</td>
</tr>
</tbody>
</table>

Tabelle 13: Reversion der Phagen-resistenten *Y. enterocolitica* 83/88/2-Klone zur Sensibilität

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nach 3 Wochen</td>
<td>n. n.</td>
<td>Nach 3 Wochen</td>
</tr>
<tr>
<td>2</td>
<td>nach 4 Wochen</td>
<td>nach 2 Wochen</td>
<td>nach 2 Wochen</td>
</tr>
<tr>
<td>3</td>
<td>nach 3 Wochen</td>
<td>nach 2 Wochen</td>
<td>nach 2 Wochen</td>
</tr>
<tr>
<td>4</td>
<td>nach 4 Wochen</td>
<td>nach 2 Wochen</td>
<td>nach 3 Wochen</td>
</tr>
<tr>
<td>5</td>
<td>nach 3 Wochen</td>
<td>n. n.</td>
<td>Nach 2 Wochen</td>
</tr>
</tbody>
</table>

n.n.: nicht nachweisbar (über den gesamten Versuchszeitraum)
5 Ergebnisse

5.11 Kreuzresistenz gegenüber anderen Bakteriophagen
Es wurde überprüft, ob eine Resistenz gegen die Bakteriophage CP 81 bzw. CP 84 auch zu einer Kreuzresistenz gegenüber anderen Campylobacter-Phagen derselben Gruppe führt. Die gegen CP 81 resistenten C. jejuni-Klone waren gegen alle getesteten Gruppe III-Campylobacter-Bakteriophagen (CP 1, CP 14, CP 32, F 14) resistent. Die gegen CP 84 resistenten C. coli-Klone waren jedoch nur gegenüber einem (CP 68) von fünf weiteren Gruppe II-Campylobacter-Bakteriophagen (CP 7, CP 21, CP 68, CP 75, CP 83) resistent (Tab. 14).

Tabelle 14: Kreuzresistenz der gegen CP 81 resistenten C. jejuni NCTC 11168-Klone und der gegen CP 84 resistenten C. coli NCTC 12668-Klone gegenüber anderen Bakteriophagen derselben Gruppe.

<table>
<thead>
<tr>
<th>Phage</th>
<th>R/S</th>
<th>Phage</th>
<th>R/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1</td>
<td>R</td>
<td>CP7</td>
<td>S</td>
</tr>
<tr>
<td>CP14</td>
<td>R</td>
<td>CP21</td>
<td>S</td>
</tr>
<tr>
<td>CP32</td>
<td>R</td>
<td>CP68</td>
<td>R</td>
</tr>
<tr>
<td>FI4</td>
<td>R</td>
<td>CP75</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP83</td>
<td>S</td>
</tr>
</tbody>
</table>

R: resistent, S: sensibel
5.12 fAFLP-Analyse

Abbildung 24: fAFLP-Analyse der resistenten und sensiblen Campylobacter-Klone.
blau: Phagen-resistente Klone; rot: Phagen-sensible Klone

5.13 Sequenzierung des CRISPR-Locus Phagen-resistenter und Phagen–sensibler C. jejuni NCTC 11168-Klone
5.14 Binding-Assay
Um zu überprüfen, ob die Phagen noch an die resistenten Klone binden können, wurde ein Binding-Assay durchgeführt.

5.14.1 Binding-Assay der *Campylobacter*-Bakteriophagen CP 81 und CP 84

Abbildung 25: Phagentiter des Bakteriophagen CP 81 (A) bzw. CP 84 (B) in den Überständen der verschiedenen Phagen-sensiblen wie Phagen-resistenten *Campylobacter*-Klone.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3) S: Sensibler Klon, R: Resistenter Klon, Y: *Y. enterocolitica* (Kontrolle), M: NZCYM-Medium (Kontrolle), Signifikanz: * ≤ 0,05, ** ≤ 0,005, *** ≤ 0,0005 (Mann-Whitney-Test).
5.14.2 Binding-Assay des Yersinia-Bakteriophagen PY 100

Abbildung 26: Phagentiter des Bakteriophagen PY 100 in den Überständen der verschiedenen Phagen-sensiblen und Phagen-resistenten Y. enterocolitica 83/88/2-Klone.

Dargestellt sind die Mittelwerte mit Standardabweichungen (n=3). S: Sensibler Klon, R: Resisterter Klon, C: C. coli (Kontrolle), M: NZCYM-Medium (Kontrolle). Signifikanz: * ≤ 0,05, ** ≤ 0,005, *** ≤ 0,0005 (Mann-Whitney-Test).

5.15 Beweglichkeitsassay

Es wurde überprüft, ob es über die Resistenz bei den Phagen-resistenten Campylobacter-Klonen zu einer veränderten Beweglichkeit im Vergleich zu den Phagen-sensiblen Klonen gekommen ist. Bei dem Stamm C. jejuni NCTC 11168 unterschied sich der Durchmesser der Wachstumszonen Phagen-sensibler Klone zu Beginn (0 h) bzw. nach 48 h Inkubation ohne Bakteriophagen in Schwärmagar dabei signifikant um 10 mm bzw. 15 mm im Vergleich zu den Phagen-resistenten Klonen nach 48 h Inkubation mit Bakteriophagen bei 37°C (Abb. 27A, 27B, 28A, 28B).

Abbildung 27: Wachstum Phagen-sensibler (A) und Phagen-resistenter (B) C. jejuni NCTC 11168-Klone im Schwärmagar
Die Phagen-resistenten *C. coli* NCTC 12668-Klone unterschieden sich in der Beweglichkeit nicht von den Phagen-sensiblen *C. coli* NCTC 12668-Klonen. Der Durchschnitt betrug bei beiden 23 mm. Der Stamm *Y. enterocolitica* 82/88/2 ist generell unbeweglich.

Durchmesser der Wachstumszonen Phagen-sensibler *C. jejuni* NCTC 11168-Klone zu Beginn des Versuchs (0 h), nach 48 h Inkubation ohne CP81(48 h) und nach 48 h Inkubation mit dem CP 81 (48 h + P). Signifikanz: ** p ≤ 0.005, * p ≤ 0.0005 (Mann-Whitney-Test).**

5.16 **flaA-Sequenzierung Phagen-resistenter und Phagen–sensibler Campylobacter-Klone**
Da sich die Phagen-resistenten von den Phagen-sensiblen *C. jejuni* NCTC 11168-Klonen in der Beweglichkeit voneinander unterschieden, wurde das *flaA*-Gen Phagen-sensibler und Phagen-resistenter *C. jejuni* NCTC 11168- und *C. coli* NCTC 12668-Klone sequenziert und die Sequenzen miteinander verglichen. Es konnten keine Sequenzunterschiede innerhalb der jeweiligen Spezies festgestellt werden.

5.17 **Sequenzierung der Gene *cj1421* und *cj1422* Phagen-sensibler und Phagen-resistenter *C. jejuni* NCTC 11168-Klone**
6 Diskussion
Ziel der Arbeit war es festzustellen, ob sich die *Campylobacter*-Bakteriophagen CP 81 und CP 84 sowie der *Yersinia*-Bakteriophage PY 100 zur Reduktion ihrer Wirtsbakterien für einen post harvest-Einsatz im Fleisch eignen. Zuerst wurden die Bakteriophagen auf ihre Toleranz gegenüber Temperaturen von 60°C bis 80°C und ihre Toleranz gegenüber pH 3 und pH 4 hin untersucht. Über diese Untersuchungen kann aufgezeigt werden, ob ein Erhitzen des mit Bakteriophagen versetzten Lebensmittels oder das Zugeben einer sauren Soße bzw. Marinade zu einer Inaktivierung der Bakteriophagen führen würden. Bei diesen Versuchen sank der Phagentiter des Bakteriophagen CP 81 bei 60°C kontinuierlich um 6 log-Stufen ab. Bei 65°C bis 70°C wurde der Bakteriophage CP 81 nach 15 bis 25 min und bei 80°C nach weniger als 5 min inaktiviert. Der Phagentiter des Bakteriophagen CP 84 sank bei 65°C um 4 log-Stufen, bei 70°C um 6 log-Stufen ab und der Phage wurde nach 10 min bei 80°C inaktiviert. Der *Yersinia*-Bakteriophage PY 100 zeigte sich mit einem bei 60°C konstanten Phagentiter, einer 6 log-Stufen Reduktion bei 70°C und 80°C und einer Inaktivierung nach 15 min bei 90°C am widerstandsfähigsten. Diese Ergebnisse stimmen mit denen der Literatur überein, wo es bei dem Coliphagen MS2 erst bei Temperaturen über 60°C zu einer schnellen Inaktivierung kam (Seo et al., 2012). Fünf *Lactococcus*-, zwei *Streptococcus*- und sieben *Lactobacillus*-Bakteriophagen wurden erst bei 72°C nach 7 min inaktiviert (Guglielmotti et al., 2011). In den Versuchen von Ebrecht et al. (2010) wurden vier von fünf *Lactobacillus*-Bakteriophagen bei 72°C nach 5 min inaktiviert. Der Phagentiter eines dieser fünf Bakteriophagen blieb dagegen auch bei 72°C konstant. Generell kann zusammengefasst werden, dass ein mit Bakteriophagen behandeltes Lebensmittel für eine Inaktivierung der Phagen mehr als 10 min über 80°C erhitzt werden sollte.

ausgegangen werden, dass der Phagentiter der bisher in der Literatur untersuchten Bakteriophagen erst ab pH 3 reduziert wird und eine Inaktivierung bei pH 2 erfolgt. Hierbei sollte die Pufferwirkung des Fleisches bei marinierten Fleischprodukten mit einberechnet werden.

Anschließend wurde untersucht, inwieweit die Bakteriophagen CP 81, CP 84 und PY 100 die Keimzahl ihres Wirts bakteriums bei 37°C in Medium und bei 4°C in Medium und Fleisch senken können. Die hier verwendeten Temperaturen stellen gute Wachstumsbedingungen der Bakterien (37°C) bzw. Kühlungsbedingungen von Lebensmitteln (4°C) dar. Darüber ist ein Vergleich zwischen der höchstmöglichen (37°C) und der bei 4°C erfolgenden Keimzahlsenkung möglich. Bei 4°C kommt es bei Campylobacter zu keiner bzw. bei Yersinia zu einer verlangsamen ten bakteriellen Vermehrung und damit auch zu keinem bzw. einem verlangsamen ten lytischen Zyklus des infizierenden Bakteriophagen. Deshalb kann eine Campylobacter-Keimzahlsenkung durch Bakteriophagen bei 4°C ausschließlich über eine „Lyse von außen“ erfolgen. Die erhaltenen Ergebnisse über die Keimzahlsenkung bei 4°C in Medium können daraufhin mit denen bei 4°C in Fleisch verglichen und so auf die Auswirkungen des Fleisches auf die Bakteriophagen-Bakterien-Interaktion geschlossen werden.

Die Versuchsbedingungen für die Versuche zur Keimzahlreduktion von Campylobacter bzw. Yersinia in Medium und in Fleisch wurden vorerst mit dem gut charakterisierten Listeria-Phagen P100 (LISTEX) der Firma Micreos Food Safety und dem Listeria-Referenzstamm L. monocytogenes ATCC 7644 (Serotyp 1/2c) durchgeführt und auf Reproduzierbarkeit hin überprüft. Die Listerien wurden sowohl bei 37°C als auch bei 4°C in Medium und in Fleisch innerhalb von 1,5 h (37°C) bzw. 24 h (4°C) inaktiviert und konnten bis zum Versuchsende nicht mehr nachgewiesen werden. Das Fleisch zeigte hierbei somit keine Auswirkungen auf die über den Bakteriophagen P100 erfolgte Keimzahlsenkung. Diese Daten stimmen mit der über den Bakteriophagen P100 veröffentlichten Literatur überein, bei der dieser Bakteriophage selbst niedrige initiale Keimzahlen von 10^1 bis 10^4KbE um 1 bis 4 log-Stufen in unterschiedlichen Lebensmitteln senken konnte (Carlton et al., 2005; Holck & Berg 2009; Guenther et al., 2009; Soni et al., 2009; Soni & Nannapaneni 2010).

anderen Bakteriophagen jedoch post harvest auch eine Senkung der *Campylobacter*-Keimzahl bei 4°C um 1 bis 2 log-Stufen auf Hühnerhaut und in gekochtem und rohem Fleisch möglich. Pre harvest-Einsätze von *Campylobacter*-Bakteriophagen erzielten hingegen höhere Keimzahlsenkungen im Tier von 2 bis 5 log-Stufen und scheinen somit besser zur Bekämpfung einer *Campylobacter*-Kontamination von Geflügelfleisch geeignet zu sein (Loc Carrillo et al., 2005; Wagenaar et al., 2005; El-Shibiny et al., 2009).

Im Gegensatz zu den *Campylobacter*-Bakteriophagen konnte der *Yersinia*-Phage PY 100 die Zellzahlen seines Wirtes signifikant um 3 log-Stufen bei 4°C in Medium und um 1,5 log-Stufen bei 4°C in Fleisch senken. Diese Ergebnisse zeigen auf, dass die Anwesenheit des Fleisches zu einer geringeren Keimzahlsenkung durch den Bakteriophagen PY 100 führte. Dieser Effekt könnte auf ein verringertes Auseinandertreffen der Bakteriophagen mit den Bakterien zurückgeführt werden. Übereinstimmend mit der Mehrheit der im Lebensmittel angewandten Bakteriophagen erfolgten die effizientesten Zellzahlreduktionen von *Y. enterocolitica* 83/88/2 bei der höchsten MOI (Goode et al., 2003; Leverentz et al., 2004; O’Flynn et al., 2004; Carlton et al., 2005; Guenther et al., 2009). Bei einer niedrigen MOI wie 10^{-2}, konnte die Keimzahl allerdings weder bei 37°C noch bei 4°C gesenkt werden. Die fehlende Keimzahlsenkung bei MOI 10^{-2} (37°C) könnte damit zusammenhängen, dass der Bakteriophage zwar lysiert, sich dies aber durch die hohe Vermehrungsrate von *Yersinia* nicht auf die Keimzahl auswirkt. Eine weitere Erklärung, die auch die fehlende Keimzahlsenkung bei 4°C (MOI 10^{-2}) begründen würde, wäre ein nicht erreichter „inundation threshold“. Der „inundation threshold“ ist die minimale Bakteriophagen-Anzahl, die gegeben sein muss, um eine Keimzahlreduktion hervorzurufen (Kasman et al., 2002; Cairns et al., 2009).

Campylobacter und Salmonella von 2 bis 87,8% beschrieben (Berchieri et al., 1991; Scott et al., 2007b; El-Shibiny et al., 2009). Es ist fragwürdig, ob sich die Resistenz gegen den jeweiligen Bakteriophagen während der Assays entwickelte oder ob einige resistente Klone schon von vornherein in der ersten üN-Kultur vorhanden waren (Cairns et al., 2009). Die Theorie eines Vorliegens resisterter Klone in der ersten üN-Kultur wird dadurch unterstützt, dass auch zu Beginn der hier durchgeführten Experimente schon vereinzelt gegen den Bakteriophagen resistente Kolonien vorgefunden wurden.

Das CRISPR/Cas-System stellt einen weiteren Mechanismus dar, der über den Abbau der eindringenden Bakteriophagen-DNA zu einer Resistenz geführt haben könnte. Deshalb wurde

Beweglichkeit könnte darauf hinweisen, dass sich der veränderte bzw. blockierte Rezeptor an der Flagelle befindet.

Zusammenfassend lässt sich schlussfolgern, dass sich der *Yersinia*-Bakteriophage PY 100 im Gegensatz zu den *Campylobacter*-Bakteriophagen CP 81 und CP 84 für einen post harvest-Einsatz eignet. Sowohl bei *Yersinia*- als auch bei *Campylobacter*-Bakteriophagen-Interaktionen konnte die Bildung resistenter Klone beobachtet werden. Die zugrunde liegenden Resistenzmechanismen konnten jedoch nicht vollständig geklärt werden. Bei den erfolgten Resistenzentwicklungen könnte es sich bei den Phagen-resistenten *C. jejuni* NCTC 11168-Klonen um eine Punktmutation handeln, die eine Veränderung des Phagen-Rezeptors an der Flagelle bedingt haben könnte. Da es bei den Phagen-resistenten *C. coli* NCTC 12668- und *Y. enterocolitica* 83/88/2-Klonen zu einer Reversion zur Phagen-Sensibilität kam, die Bakteriophagen aber nicht mehr an die resistenten Klone binden konnten, könnte es sich hier um eine mögliche Phasenvariation handeln, die den Phagenrezeptor reversibel veränderte. Eine weitere Möglichkeit wäre die reversible Blockierung des Rezeptors über kompetitive Inhibitoren oder Exopolysaccharide.
7 Ausblick

8 Zusammenfassung

Titel: Post harvest-Einsatz virulenter Bakteriophagen gegen Campylobacter spp. und Yersinia enterocolitica

Ziel der Arbeit war es festzustellen, ob sich die Campylobacter-Bakteriophagen CP 81 und CP 84 sowie der Yersinia-Bakteriophage PY 100 für einen post harvest-Einsatz zur Senkung der Campylobacter und Yersinia enterocolitica-Belastung im Lebensmittel eignen. Bei den Untersuchungen der über die Bakteriophagen erzielten Keimzahlsenkung bei 37°C und 4°C in Medium sowie bei 4°C in Fleisch, konnte festgestellt werden, dass die Campylobacter-Bakteriophagen die Keimzahl ihres Wirtes bei 37°C in Medium nur um 1 log-Stufe senkten. Da beide Campylobacter-Bakteriophagen die Campylobacter-Keimzahl bei 4°C in Medium und in Fleisch nicht senken konnten, eignen sich diese Bakteriophagen nicht für einen post harvest-Einsatz. Der Yersinia-Bakteriophage PY 100 senkte die Keimzahl seines Wirtsbakteriums allerdings um bis zu 5 log-Stufen bei 37°C in Medium, um bis zu 3 log-Stufen bei 4°C in Medium und um 1,5 log-Stufen bei 4°C in Fleisch. Somit ist dieser Bakteriophage für einen post harvest-Einsatz geeignet.

9 Summary

Title: Post harvest application of virulent bacteriophages against *Campylobacter* spp. and *Yersinia enterocolitica*

The aim of this study was to determine if *Campylobacter* bacteriophages CP 81 and CP 84 as well as *Yersinia* bacteriophage PY 100 serve for post harvest application to reduce *Campylobacter* and *Yersinia enterocolitica* load in food. Therefore, it was assessed how these bacteriophages could decrease cell number of the corresponding host bacterium at 37°C and 4°C as well as at 4°C in meat. It was shown that the *Campylobacter* bacteriophages could only decrease cell number of its host at 37°C in medium by 1 log, independently of applied MOI. As both *Campylobacter* bacteriophages could not decrease *Campylobacter* numbers at 4°C in medium and in meat, these bacteriophages do not serve for post harvest application. In contrast, *Yersinia* bacteriophage PY 100 decreased cell numbers of its host successfully by up to 5 log at 37°C in medium, by up to 3 log at 4°C in medium and by 1.5 log at 4°C in meat. Therefore, this bacteriophage is suitable for post harvest application.

All three strains developed resistance towards the corresponding bacteriophage when incubated with this phage for 48 h at 37°C. Therefore, resistance mechanisms were analysed into further detail. A binding assay revealed that all three bacteriophages could no longer bind to the corresponding resistant clones. This indicates a change or possible loss of the bacteriophage receptor. Between phage resistant and phage sensitive *Campylobacter* clones no changes of the fAFLP band patterns, flaA-sequence or the CRISPR locus could be observed. Resistance mechanisms of all three strains differ in the facts that phage resistant *C. jejuni* NCTC 11168 clones remained resistant over the whole testing period of six week of subculturing whereas phage resistant *C. coli* NCTC 12668 and *Y. enterocolitica* 83/88/2 clones turned back to phage sensitivity. Additionally, only phage resistant *C. jejuni* NCTC 11168 clones showed changed motility rates as well as cross resistance towards further bacteriophages of the same group. Changes of the poly G tract of genes *cj1421* and *cj1422* described in literature could only be detected in some of the phage resistant *C. jejuni* NCTC 11168 clones. This difference can therefore not represent the main resistance mechanism.

10 Quellenverzeichnis

102

Groman, N. B. (1953) Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in *Corynebacterium diphtheriae* as a result of exposure to specific bacteriophage. *Journal of Bacteriology*, 66, 184-191.

Nauta, M. J. (2010) *Campylobacter* transfer from naturally contaminated chicken thighs to cutting boards is inversely related to initial load. *Journal of Food Protection*, 73, 6-7; author reply 7-8.

11 Anhang

Abbildung 29: Poly G-Trakt des Gens *cj1421* Phagen-sensibler und Phagen- resistenter *C. jejuni* NCTC 11168-Klone

rot: Phagen-resistente Klone, blau: Phagen-sensitive Klone

Abbildung 30: Poly G-Trakt des Gens *cj1422* Phagen-sensibler und Phagen- resistenter *C. jejuni* NCTC 11168-Klone

rot: Phagen-resistente Klone, blau: Phagen-sensitive Klone

118
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. jejuni HPC 5</td>
<td>10⁸</td>
<td>CP34</td>
<td>10⁷</td>
<td>1 x 0 h p.i.</td>
<td>3,9</td>
<td>nach 24 h</td>
<td>Loc Carrillo et al., 2005</td>
</tr>
<tr>
<td>C. jejuni GIIC</td>
<td>10⁸</td>
<td>CP8</td>
<td>10⁷</td>
<td>5 d p.i.</td>
<td>5,6</td>
<td>nach 24 h</td>
<td>El-Shibiny et al., 2009</td>
</tr>
<tr>
<td>C. jejuni HPC5</td>
<td>10⁸</td>
<td>CP220</td>
<td>10⁵ – 10⁹</td>
<td>1 x täglich, ab 4 d pre i. über 10 d</td>
<td>71 + 69</td>
<td>10⁹ – 10¹⁰</td>
<td>1 x täglich, 5 d p.i. über 6 d</td>
</tr>
</tbody>
</table>

p.i.: post infectionem; pre i.: pre infectionem
Tabelle 16: Keimzahlreduktionen von *Salmonella* durch Bakteriophagen im Tier

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td></td>
<td>Φ151</td>
<td></td>
<td></td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. enterica Serovar Typhimurium</td>
<td>10^8</td>
<td>Φ10</td>
<td>10^{10}</td>
<td>2 d p.i.</td>
<td>2,2</td>
<td>nach 24 h</td>
<td>oral</td>
<td>Caecum, Ileum</td>
<td>Atterbury et al., 2007</td>
</tr>
<tr>
<td>S. enterica Serovar Hadar</td>
<td></td>
<td>Φ25</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 x S. enterica Serovar Typhimurium</td>
<td>10^7</td>
<td>Φ2 2</td>
<td>10^{11}</td>
<td>10 min p.i.</td>
<td>3</td>
<td>nach 6 h</td>
<td>oral</td>
<td>Colon</td>
<td>Berchieri et al., 1991</td>
</tr>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td>10^4</td>
<td>CON</td>
<td>10^{7}</td>
<td>1 x 3 h p.i. über das Futter, gesamter Versuch</td>
<td>2</td>
<td>nach 14 d</td>
<td>oral 10^7 PbE/g Futter, ad libitum</td>
<td>Caecum</td>
<td>Sklar & Joerger, 2001</td>
</tr>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td>10^5</td>
<td>3 Phagen</td>
<td>10^{3}</td>
<td>1 d pre i.</td>
<td>2</td>
<td>nach 7 d</td>
<td>oral</td>
<td>Caecum</td>
<td>Borie et al., 2009</td>
</tr>
<tr>
<td>S. enterica Serovar Typhimurium</td>
<td>10^8</td>
<td>CNPSA 1, 3, 4</td>
<td>10^{11}</td>
<td>7 d p.i.</td>
<td>2</td>
<td>nach 20 d</td>
<td>oral sekundär von 5 auf 30 Tiere</td>
<td>Faeces</td>
<td>Fiorentin et al., 2005</td>
</tr>
<tr>
<td>S. enterica Serovar Typhimurium</td>
<td>10^9</td>
<td>14 Wildtyp-Phagen+Felix O1</td>
<td>10^{10}</td>
<td>0, 4 und 6 h p.i.</td>
<td>1,6</td>
<td>nach 6 h</td>
<td>sekundär von 4 auf 8 Tiere</td>
<td>Caecum, Ileum</td>
<td>Wall et al., 2010</td>
</tr>
</tbody>
</table>

p.i.: post infectionem; pre i.: pre infectionem
Tabelle 17: Keimzahlreduktionen von E. coli durch Bakteriophagen im Tier

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli O157:H7</td>
<td>10⁹</td>
<td>SP15, 21,22</td>
<td>10¹⁰</td>
<td>1 x 2 d p.i.</td>
<td>2</td>
<td>nach 3 d</td>
<td>Mäuse</td>
<td>Tanji et al., 2005</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>10¹⁰</td>
<td>8 Phagen</td>
<td>10¹⁰</td>
<td>48 + 72 h p.i.</td>
<td>3</td>
<td>nach 96 h</td>
<td>Schafe</td>
<td>Callaway et al., 2008</td>
</tr>
<tr>
<td>4 x E. coli O157:H7</td>
<td>10¹⁰</td>
<td>KH1</td>
<td>10¹¹</td>
<td>0 h, 8 d, 9 d, 10 d</td>
<td>0</td>
<td>über 21 d</td>
<td>Schafe</td>
<td>Sheng et al., 2006</td>
</tr>
<tr>
<td>4 x E. coli O157:H7</td>
<td>10⁶</td>
<td>KH1+SH1</td>
<td>10¹¹</td>
<td>0, 1, 2, 4 d p.i. rektal + 7 d über das Trinkwasser</td>
<td>1</td>
<td>nach 7 d</td>
<td>Stiere</td>
<td></td>
</tr>
</tbody>
</table>

p.i.: post infectionem, pre i.: pre infectionem
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. jejuni</td>
<td><10²</td>
<td>10⁶</td>
<td></td>
<td>10 min p.i.</td>
<td>0</td>
<td>gekochtes Roastbeef</td>
<td>5°C</td>
<td>Bigwood et al., 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>rohes Rindfleisch</td>
<td>5°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,7</td>
<td>gekochtes Roastbeef</td>
<td>24°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>rohes Rindfleisch</td>
<td>24°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4</td>
<td>gekochtes Roastbeef</td>
<td>5°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4</td>
<td>rohes Rindfleisch</td>
<td>5°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>4</td>
<td>gekochtes Roastbeef</td>
<td>24°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>rohes Rindfleisch</td>
<td>24°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,7</td>
<td>gekochtes Roastbeef</td>
<td>24°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>rohes Rindfleisch</td>
<td>24°C</td>
<td></td>
</tr>
<tr>
<td>C. jejuni</td>
<td>10⁴</td>
<td>12673</td>
<td>10⁶</td>
<td>0 h p.i.</td>
<td>2,7</td>
<td>Hühnerhaut</td>
<td>4°C</td>
<td>Goode et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>-20°C</td>
</tr>
</tbody>
</table>

p.i.: post infectionem, pre i.: pre infectionem
Tabelle 19: Keimzahlreduktionen von *Salmonella* durch Bakteriophagen im Lebensmittel

<table>
<thead>
<tr>
<th>Stamm</th>
<th>[KbE]</th>
<th>Phagen</th>
<th>[PbE]</th>
<th>Zeitpunkt der Applikation der/des Phagen</th>
<th>Reduktion (log_{10})</th>
<th>Lebensmittel</th>
<th>Lagerung</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td>10⁴</td>
<td>PHL4</td>
<td>10¹⁰</td>
<td>2 h p.i.</td>
<td>Isolierungsrate um 85% gesenkt</td>
<td>Hähnchenschlachtkörper</td>
<td>4°C</td>
<td>Higgins et al., 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHL1-72</td>
<td>10¹⁰</td>
<td></td>
<td>Isolierungsrate um 93% gesenkt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. enterica Serovar Typhimurium</td>
<td>10²</td>
<td>FelixO1</td>
<td>10⁶</td>
<td>0 h p.i.</td>
<td>2</td>
<td>Frankfurter Würstchen aus Hähnchenfleisch</td>
<td>22°C</td>
<td>Whichard et al., 2003</td>
</tr>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td>10⁴</td>
<td>SJ2</td>
<td>10⁷</td>
<td>30 min p.i.</td>
<td>2-3</td>
<td>rohe Milch</td>
<td>8°C</td>
<td>Modi et al., 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Phagen</td>
<td>10⁶</td>
<td>10 min p.i.</td>
<td>2</td>
<td>pasteurisierte Milch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. enterica Serovar Typhimurium</td>
<td><10⁴</td>
<td>P7</td>
<td>10⁶</td>
<td>10 min p.i.</td>
<td>4,7</td>
<td>gekochtes Roastbeef</td>
<td>24°C</td>
<td>Bigwood et al., 2008</td>
</tr>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td>10⁴</td>
<td>PT 12</td>
<td>10⁴</td>
<td></td>
<td>2,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td>10⁴</td>
<td>P22</td>
<td>10⁷</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. enterica Serovar Enteritidis</td>
<td>10⁴</td>
<td>29C</td>
<td>10⁸</td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. enterica Serovar Heidelberg</td>
<td>10²</td>
<td>29C</td>
<td>10⁷</td>
<td>30 min p.i.</td>
<td>inaktiviert</td>
<td>Hühnerhaut</td>
<td>4°C</td>
<td>Goode et al., 2003</td>
</tr>
</tbody>
</table>

p.i.: post infectionem, pre i.: pre infectionem, PT: Typisierungsphage
Tabelle 20: Keimzahlreduktionen von *L. monocytogenes* durch Bakteriophagen im Lebensmittel

<table>
<thead>
<tr>
<th>Stamm</th>
<th>[KbE]</th>
<th>Phagen</th>
<th>[PbE]</th>
<th>Zeitpunkt der Applikation der/des Phagen</th>
<th>Reduktion (\log_{10})</th>
<th>Zeitpunkt der Reduktion nach Applikation</th>
<th>Lebensmittel</th>
<th>Lagerung</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. monocytogenes WSLC 1001</td>
<td>(10^3)</td>
<td>A511</td>
<td>(10^6)</td>
<td>1-2 h p.i.</td>
<td>2</td>
<td>über 6 d</td>
<td>Hot Dogs</td>
<td>6°C, 6 d</td>
<td>Guenther et al., 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10^7)</td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10^8)</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10^6)</td>
<td></td>
<td>1</td>
<td>am 6. d</td>
<td>Kohl</td>
<td>6°C, 6 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10^7)</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10^8)</td>
<td></td>
<td>4</td>
<td>über 6 d</td>
<td>gemischte Meeresfrüchte</td>
<td>6°C, 6 d</td>
<td></td>
</tr>
<tr>
<td>L. monocytogenes LCDC 81-861</td>
<td>(10^5)</td>
<td>6 Phagen</td>
<td>(10^8)</td>
<td>0,5; 1; 2; 4 h p.i.</td>
<td>3</td>
<td>nach 5 bis 7 d</td>
<td>Honigmelonestücke</td>
<td>10°C</td>
<td>Leverentz et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 h</td>
<td>0</td>
<td>Apfelstücke</td>
<td>6°C, 6 d</td>
<td></td>
</tr>
<tr>
<td>Stamm</td>
<td>[KbE]</td>
<td>[PbE]</td>
<td>Zeitpunkt der Applikation der/des Phagen</td>
<td>Reduktion (log_{10})</td>
<td>Zeitpunkt der Reduktion nach Applikation</td>
<td>Lebensmittel</td>
<td>Lagerung</td>
<td>Autor</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>L. monocytogenes 1/2a + 4b</td>
<td>10^4</td>
<td>10^6</td>
<td>15 min p.i.</td>
<td>1</td>
<td>nach 2 h</td>
<td>rohes Lachsfilet</td>
<td>4°C</td>
<td>Soni & Nannapaneni, 2010</td>
<td></td>
</tr>
<tr>
<td>L. monocytogenes 1/2a + 4b</td>
<td>10^3</td>
<td>10^6</td>
<td>1 h p.i.</td>
<td>2</td>
<td>über 2 h</td>
<td>geräuchterer Lachs</td>
<td>4°C</td>
<td>Holck & Berg, 2009</td>
<td></td>
</tr>
<tr>
<td>L. monocytogenes 1/2a + 4b</td>
<td>10^4</td>
<td>10^6</td>
<td>15 min p.i.</td>
<td>3,5</td>
<td></td>
<td>Welsfilet</td>
<td>4°C</td>
<td>Soni et al., 2009</td>
<td></td>
</tr>
<tr>
<td>L. monocytogenes 1/2a + 4b</td>
<td>10^5</td>
<td>10^6</td>
<td>15 min p.i.</td>
<td>0,5</td>
<td></td>
<td>Weichkäse in der Herstellung</td>
<td>6°C</td>
<td>Carlton et al., 2005</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 22: Keimzahlreduktionen von *E. coli* durch Bakteriophagen im Lebensmittel

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli O157:H7</td>
<td>10(^2)</td>
<td>E11/2, e4/1c, pp01</td>
<td>10(^8)</td>
<td>1 h p.i.</td>
<td>2</td>
<td>nach 3 h</td>
<td>Steak</td>
<td>37°C</td>
<td>O'Flynn et al., 2004</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>10(^2)</td>
<td>Ec229, Ec230, Ec231</td>
<td>10(^6)</td>
<td>1 h p.i.</td>
<td>2-3</td>
<td>24-168 h</td>
<td>Brokkoli</td>
<td>20-22°C</td>
<td>Abuladze et al., 2008</td>
</tr>
<tr>
<td></td>
<td>10(^4)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>Tomaten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-3</td>
<td></td>
<td>Spinat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10(^3)</td>
<td></td>
<td>10(^5)</td>
<td></td>
<td>3</td>
<td>nach 24 h</td>
<td>Steak</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Publikationsverzeichnis:

Artikel

Poster

Vorträge

Danksagung:

Bedanken möchte ich mich zunächst bei meinem Doktorvater Professor Dr. Thomas Alter (Leiter des Instituts für Lebensmittelhygiene der FU Berlin) für die stets gewährte freundliche, schnelle Anleitung, für die Beschaffung und Sicherstellung finanzieller Mittel über den gesamten Zeitraum und die entspannte und freundliche Arbeitsatmosphäre im Institut. Zusätzlich möchte ich ihm danken, dass die Doktorarbeit so schnell korrigiert werden konnte, um sie noch vor der Geburt meines Sohnes einreichen zu können.

Besonderer Dank gilt meiner wissenschaftlichen Betreuerin Dr. Greta Götz für ihre Geduld, ihre vielen fundierten und fachlich kompetenten Erklärungen, ihre immer freundliche und ausgeglichene Art, ihre fortwährende Hilfsbereitschaft, ihre guten Ideen und dass sie sich immer sofort um die Beantwortung sämtlicher Fragen kümmerte und einsetzte.

Bezüglich der großen Hilfe und freundlichen Hilfsbereitschaft im Labor, besonders in der letzten Zeit, wo ich nicht mehr im Labor arbeiten konnte, gilt mein Dank Dr. Josef Kleer, Kathrin Oeleker, Alice Jirova und Heiko Holzt. Ich möchte vor allem auch Mandy Schröder für die Untersuchungsergebnisse der Temperatur- und pH-Wert-Toleranz des Bakteriophagen PY 100 danken.

Ich danke auch Dr. Stefan Hertwig und Dr. Jens Hammerl aus dem Bundesinstitut für Risikobewertung für die stets freundliche Hilfe, Kooperation, Korrekturen und für die Bereitstellung ihres Fachwissens sowie ihrer Bakteriophagen und Bakterienstämmen.

Weiterhin danke ich allen Mitarbeitern des Instituts für Lebensmittelhygiene für die herzliche Atmosphäre, die immer freundliche Hilfsbereitschaft, die netten Gespräche im Doktorandenraum beim Kaffeetrinken und Kekseessen.
Selbstständigkeitserklärung:

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Ich versichere, dass ich ausschließlich die angegebenen Quellen und Hilfen in Anspruch genommen habe.

Stefanie Orquera