
CHAPTER 3

Digraph Roots

1. Matrices and Digraphs, Powers and Roots

Consider a directed graph D (or digraph, for short) on n vertices to-
gether with its adjacency matrix, i.e., the n × n matrix A = (aij) with
aij = 1 iff there is an arc j → i in D and aij = 0 otherwise. We can use
iterated multiplications of the adjacency matrix with itself to find paths in
the digraph. Precisely, the (i, j)-entry of the kth power Ak of A is positive
iff there is a walk of length exactly k from vertex i to vertex j in D. By
walk of length k we mean a sequence (v0, v1, . . . , vk) of k + 1 vertices with
an arc from vi−1 to vi for 1 ≤ i ≤ k, where vertices may appear several
times; in contrast to a path, which is a walk with all vertices distinct. We
are only interested in the existence of such walks, not their number—which
is counted by the respective entry of Ak—so we interpret A as a Boolean
0/1-matrix with the product C = A ·B defined in the usual way:

cij =
∨n

h=1
aih ∧ bhj .

Identifying a digraph with its adjacency matrix, we define the kth power,
k ∈ N, of a digraph D to be the digraph Dk on the same vertex set and with
an arc from a to b if and only if there is a directed walk of length exactly
k from a to b in D (possibly visiting some vertices several times). Figure 1
shows an example.

D2 D3D

Figure 1. Powers of a digraph.

Note that the interpretation of digraphs as Boolean matrices implies
that our digraphs may have loops but no multiple arcs. It is easy to see
that the adjacency matrix of Dk is in fact the kth Boolean power of the
adjacency matrix of D (see, for example, [38]).

Boolean matrix algebra serves as a fundamental tool in algorithmic graph
theory. The correspondence between graphs and matrices lies at the heart
of many fundamental algorithms for transitive-closure or shortest-path com-
putations [35, 1, 12] (where usually powers of the matrix A + I, with I
the identity matrix, are considered to account for all paths up to a certain
length k).
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72 3. DIGRAPH ROOTS

We are interested in the inverse operation to exponentiation: root find-
ing. The complexity of the following problem was open until now.

The Boolean-Matrix-Root Problem. Given a Boolean n× n ma-
trix A and an integer k ≥ 2, does there exist a kth root B of A, that is, an
n× n matrix B with Bk = A.

Or equivalenty, stated in terms of digraphs:

The Digraph-Root Problem. Given a digraph D and an integer
k ≥ 2, does there exist a kth root R of D, that is, a digraph R on the same
vertex set, with Rk = D.

Twenty years ago, in the open-problems section of his book [26], Kim in-
quired for the special case k = 2, whether the Boolean-matrix-root problem
might perhaps be NP-complete. We answer this question in the affirmative.

1. Theorem. Deciding whether a square Boolean matrix or, equiva-
lently, a digraph has a kth root is NP-complete for each single parameter
k ≥ 2.

With the right computational problem for the reduction, the proof of
this result turns out surprisingly simple. This is quite remarkable since it
thus relates digraph roots very closely to a well-known NP-complete prob-
lem. It allows to identify quite accurately “the reason” for the hardness of
the problem. In an attempt to isolate and inhibit these computationally
difficult aspects, we shall discover a close connection between digraph roots
and graph isomorphism, which eventually leads to a further complexity re-
sult (Theorem 3). But let us postpone these issues till after the proof and
discussion of Theorem 1.

Related work—related questions. Over the field of complex num-
bers or the reals, matrix roots are a well-studied and still up-to-date topic
of linear algebra [29, 24, 36]. But results from that field of research do
generally not apply to Boolean matrices. While it is known, for example,
that every regular matrix over the complex numbers has a kth root for any
k ≥ 2 [36], this is not true for Boolean matrices, as the invertible matrix(

0
1

1
0

)
shows. Further, complex or real matrices are amenable to numerical

methods like Newton iteration [22], whereas such techniques clearly do not
apply to Boolean matrices. When it comes to roots, Boolean matrices don’t
seem to have much in common with matrices over C since the former behave
much more rigidly than the latter.

The situation is, however, different if we ask for powers of a matrix
instead of roots. There are theoretical results on Boolean matrix powers
[13] and in practice we can, of course, compute the kth power of a Boolean
matrix A by treating it as a matrix over the reals. We calculate Ak over
Q and afterwards replace each positive entry with 1. This simple reformu-
lation allows us, for example, to apply fast matrix multiplication methods
such as Strassen’s to path problems in graphs [35, 1]. But this simula-
tion through matrices over the reals clearly only works because there cannot
happen cancellation between positive and negative entries. For root finding,
such simulation over Q or C would lead into major problems.
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Figure 2. A directed square root (left) of a symmetric di-
graph (right) which does not have a symmetric square root.

Alternative notions of graph powers. A problem similar to the one
at hand has been discussed by Motwani and Sudan. In [34] they showed
that computing square roots of undirected graphs is NP-hard. But their
notion of graph powers differs from ours in two important points.

They consider undirected graphs only, which in our setting would cor-
respond to symmetric digraphs, i.e., all edges are bidirectional. This not
only restricts the set of possible inputs but also—and this is the decisive
difference—the solutions. For example, the symmetric digraph on the right
of Figure 2 has the digraph to its left as a square root, but it is not the
square of any symmetric digraph. To see this, observe that any square root
of an undirected graph with maximum degree strictly greater than 2 must
also have a vertex of degree at least 3. Such a vertex would in turn induce
a triangle in the square. The digraph in the figure has maximum degree 3
but it does not contain a triangle.

Further, Motwani and Sudan define squaring to maintain existing edges,
which in our setting would correspond to attaching loops to all vertices.
This monotonicity ensures that much information of the underlying graph
can be read off from its square and the hardness proof of [34] makes essential
use of this property. In contrast to this, squaring a digraph under the rules
derived from Boolean matrix multiplication can almost completely destroy
the neighborhood information and may even decompose the digraph. Ac-
tually, most of our arguments depend crucially on such vanishing edges. So
apparently, the squares in [34] and our notion of powers are fundamentally
different concepts.

Nomenclature. In the light of the preceding discussion, Boolean ma-
trices form the right framework to ask questions about roots in the sense
we defined them. They do not leave the ambiguities that the expression
“graph root” obviously has and locate the problem correctly in the context
of semigroups. However, for the actual work, the proof of Theorem 1, we
will resort to the language of graph theory since our arguments will exten-
sively use respective notions like paths, cycles, and vertex neighborhoods.
Moreover, after the NP-completeness proof we shall emphasize the link to
graph theory even more by relating our roots to graph-isomorphism.

So let us agree on the precise meanings of some common graph theoretic
notions whose exact distinction will be crucial in certain situations. A walk
is simply a sequence (a0, a1, . . . , ar) of vertices with an arc ai → ai+1 for
0 ≤ i < r, whereas a path is a walk of pairwise distinct vertices. The
parameter r is the length of the walk respectively path. A cycle is a closed
walk, that means, a0 = ar and vertices may be traversed several times. By
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isolated cycle we mean a strongly connected component of a digraph where
each vertex has indegree and outdegree 1, i.e., a single non-self-touching
cycle without further arcs.

For a digraph R on vertex set V we let

R(v) :=
{
w ∈ V

∣∣ v
R−→ w

}
denote the set of outneighbors of v in R. Defining R̄ to be the digraph
obtained from R by inverting all arcs, we write R̄(v) for the inneighbors
of v. Note that our generalization

R(U) :=
⋃
u∈U

R(u)

to subsets U ⊆ V diverts from standard notation (as for example in [3, sec.
1.2]) as R(U) need not be disjoint from U . In other words, we let a digraph
act on vertex sets just like its adjacency matrix acts on the characteristic
vectors of such sets.

These definitions help simplify our notation. For example, we write
x ∈ R̄j(Y ) to state that there is a walk of length j from x to some vertex in
Y ⊆ V and expressions like R3R̄8R make perfect sense, encoding some kind
of zig-zag walk through the digraph R.

2. NP-Completeness

This section comprises the proof of Theorem 1; but before turning to
the details, presenting a suitable NP-complete problem which we can reduce
to digraph roots, let us collect some motivating observations about digraph
square roots.

Consider some set X of vertices of a digraph D and let Z denote all
outneighbors of vertices in X. Assume for simplicity that X and Z are
disjoint, so in particular, there are no loops or cycles on these vertices. In
a square root of the digraph D, any of the arcs from X to Z must be
realized as paths of length two. Hence, the root must provide a set Y of
intermediate vertices through which all these paths can pass. If now—for
whatever reason—there is only a small number of such intermediate vertices
available, |Y | ≤ r, say, with r a little smaller than |X| and |Z|, these paths
must intersect in order to ship all their information from X to Z. This
situation is almost exactly captured by the following decision problem, which
is already listed in Garey and Johnson’s classic [18] (p. 222).

The Set-Basis Problem. Let C be a collection of subsets of some
finite set S. A set basis for C is another collection B of subsets of S such
that each C ∈ C can be written as a union of sets from B. Given a finite
set S, a collection C of subsets of S, and an integer r ≤ |S|, the set-basis
problem asks whether there exists a set basis B for C consisting of at most
r sets. This problem is known to be NP-complete [40].

We claim that the local configuration of the above square-root problem
is nothing but a set-basis instance. The sets X and Z correspond to the
given collection C and the ground set S, respectively, while the intermediate
vertex set Y takes the place of the sought-after collection B.
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Figure 3. Reducing set basis to kth root (a) and encoding
a set basis as a root (b). (Wide arrows represent collections
of arcs that depend on the actual instance.)

Our precise proof of this claim, which also treats the general case of
arbitrary kth roots, comes in the three customary parts: a reduction from a
set-basis instance to a kth-digraph-root instance and the two complementary
transformations between valid solutions.

The reduction. From a set-basis-problem instance (C, S, r) we con-
struct a digraph D such that D has a kth root iff C has a set basis B of
size at most r. We may assume w.l.o.g. that neither the collection C nor
any C ∈ C be empty, that all C ∈ C be pairwise distinct, and further that⋃

C = S, i.e., each s ∈ S lie in some set C ∈ C.
As suggested by the above discussion, our construction essentially draws

the containment graph of the set system C on S and provides the right
number of intermediate vertices. Surprisingly few framework arcs will have
to be added in order to ensure that any root uses them as intended.

We start with the containment relations. The digraph D possesses the
sets C ∈ C and the elements s ∈ S as vertices and additionally an “anchor
vertex” u. Define the containment arcs

(14) C
D−→ s for all pairs (C, s) ∈ C× S with s ∈ C

and additionally the grounding arcs

u
D−→ C for each C ∈ C.

Compare the left component of Figure 3(a).
The intermediate vertices come in k−1 isomorphic components which are

simply stars. The µth component consists of the r+1 vertices aµ, bµ
1 , bµ

2 , . . . , bµ
r

connected via

aµ D−→ bµ
i for i ∈ {1, . . . , r},

as shown in the right half of Figure 3(a).
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Constructing a root from a set basis. To show that our construction
works, we describe how to obtain a kth root R of the digraph D from a set
basis of size r for C. Therefore we first need a lot of framework arcs that
are independent of the actual basis B: the horizontal paths

u
R−→ a1 R−→ a2 R−→ · · · R−→ ak−1

and
b1
i

R−→ b2
i

R−→ · · · R−→ bk−1
i for each i ∈ {1, . . . , r},

and also the back connections

ak−1 R−→ C for each C ∈ C;

drawn as thin arcs in Figure 3(b).
The remaining arcs depend on the given set basis B = {B1, . . . , Br},

which comes with a representation

(15) C =
⋃

i∈IC

Bi, IC ⊆ {1, . . . , r}

of each set C ∈ C.
Note that a basis with less than r sets can be extended to one of size

r by adding singleton sets {s} ⊆ S and it is also clear that we can pick
the collection B and the index sets IC in such a way that each index i ∈
{1, . . . , r} appears in at least one IC .

The set basis B is now wired via

bk−1
i

R−→ s for each pair (i, s) with s ∈ Bi,

while the corresponding representations are realized as

C
R−→ b1

i for each index i ∈ IC .

These connections appear bundled as wide arrows in Figure 3(b).
These definitions guarantee that there exists an R-walk of length k from

a certain C to some s ∈ S iff there exists any basis set Bi with s ∈ Bi and
i ∈ IC . By the definition of a set basis, the latter condition is equivalent to
s ∈ C, which, by construction of the digraph D, means just that there is a
D-arc from C to s. Thus we have shown that Rk equals D on C × S. The
identity of these two digraphs on the remaining vertices is immediate.

Getting a set basis from a root. We turn to the other, slightly more
intricate implication. Let D be the digraph constructed from a given set-
basis instance (C, S, r) and let R be any kth root of D. From this root
we must obtain a set basis B for C with at most r sets. The basic idea
is, of course, to show that the root R must look essentially as the one we
constructed in the preceding paragraph.

First of all, observe that cycles in R would induce cycles in any positive
power of R. Thus, R contains no cycles. Now consider an arbitrary vertex
C ∈ C. Since u → C in D, there must be an R-walk of length k from u
to C. We claim that all interior vertices of any such walk P are from the
set {a1, . . . , ak−1}. To see this, pick any interior vertex x on P . Clearly x
must have positive outdegree in D because C has. So x can only be some
aµ or from the set C; the remaining alternative x = u would yield a cycle.
Assume for contradiction that x ∈ C. Then there is a path Q of length k in
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R from u to x. Because x was assumed to be an inner vertex on the path P ,
a certain inner vertex y on Q is at distance −k from C. This means y = u,
which implies that the vertex u lies on an R-cycle—a contradiction.

So all interior vertices of R-walks from u to some C ∈ C are from the set
{a1, . . . , ak−1}. Obviously, any such path must use each of these aµ exactly
once since otherwise there would be cycles. Furthermore, all such paths
pass the aµ in the same order, again because two different orders would
yield cycles. We may assume by symmetry that the aµ are traversed from
a1 through ak−1. Thus we see that R(ak−1) = C and conclude

Rk−1(C) = Rk−1R(ak−1) = D(ak−1) = {bk−1
1 , . . . , bk−1

r }.

So all R-walks from C to S pass through these bk−1
i . We focus on the

ultimate edges on any such walk and define

Bi := R
(
bk−1
i

)
for 1 ≤ i ≤ r.

We claim that B := {B1, . . . , Br} is a set basis for C. This is easily verified.
Reading the defining relation (14) as

C
Rk

−→ s ⇐⇒ s ∈ C,

one sees that the index sets

IC :=
{
i
∣∣ bk−1

i ∈ Rk−1(C)
}

yield basis representations of the sets C ∈ C as in Equation (15).
This concludes the proof of Theorem 1.
We emphasize that the given set-basis instance is completely maintained

by our reduction. Its containment relations are encoded one-to-one by arcs
of the digraph. Thus, on the large scale, an instance of the digraph-root
problem can be seen as a collection of many interacting set-basis problems.
One might well argue that finding digraph roots is actually a generalized
set-basis problem.

As a corroboration for this point of view we mention that the set-basis
problem already appeared before in connection with Boolean matrix algebra.
Markowsky [31] used it in a very economic proof for the NP-completeness
of Schein-rank computation.1

3. Roots and Isomorphism

Let us carry the concluding remarks of the preceding section a little
further and have a closer look at Figure 3 from page 75 again. The con-
struction there required only paths of length 2, which then induced a few
long paths in the root. One could say that the computational complexity of
root finding results from the described interaction of many very short paths.
In some sense, our proof has exploited a local phenomenon. If we suppress
the local interaction by some restriction on the digraph, maybe we can find
some further properties of digraph roots that live on a global scale. Here is
our approach.

1Analogous to the matrix rank over fields, the Schein rank of a Boolean matrix A is
the minimal integer ρ such that A can be represented as a Boolean sum A =

∨ρ
i=1ciri,

where the ci are column and the ri row vectors with zero-one entries [26, Sec. 1.4].
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Figure 4. The complete subdivision (right) of a digraph (left).

2. Definition. The complete subdivision of a digraph D is the digraph
obtained from D by replacing each arc a → b of D by a new vertex xab and
the two arcs a → xab → b. (See Figure 4.) We call a digraph a subdivision
digraph if it is (isomorphic to) the complete subdivision of some digraph.

Subdivisions are a fundamental notion in graph theory but opposed to
their common usage in relation with topological minors, we employ them
here to equip our digraphs with a certain stiffness. The effect is the de-
sired inhibition of the local interaction we exploited in the NP-completeness
proof. However, the problem of root finding for such subdivision digraphs
does not become trivial. Instead, the following surprising relation to graph
isomorphism shows up.

3. Theorem. Deciding whether a subdivision digraph with positive min-
imal indegree and outdegree has a kth root, is graph-isomorphism complete
for each single parameter k ≥ 2.

The graph-isomorphism problem asks whether two given (di)graphs are
isomorphic or not, i.e., whether there exists an arc-preserving bijection be-
tween their vertex sets.2 No polynomial-time algorithm for this problem is
known, neither is it known to be NP-complete. On the contrary, it is a prime
candidate for a problem strictly between P and NP-completeness (cf. [27]
and [30]). Computational problems of the same complexity as the graph-
isomorphism problem are called graph-isomorphism complete, or simply iso-
morphism complete because isomorphism problems for several algebraic or
combinatorial structures fall into this class. For example, isomorphism of
semigroups and finite automata [9], finitely represented algebras, or con-
vex polytopes [25]. Other problems ask for properties of the automorphism
group of a graph, for example, computing the order of this group or its
orbits [33].3 Finally, several restrictions of the graph-isomorphism problem
are known to remain isomorphism complete, as for example isomorphism of
regular graphs [9].

As the above list indicates, actually all problems known to be isomor-
phism complete are more or less obviously isomorphism problems of various
combinatorial structures. Hence, the relation between digraph roots and

2One usually considers undirected graphs but it is well-known and easily seen that
with respect to their computational complexity the undirected and directed version of the
problem are equivalent.

3The latter two problems are known to be isomorphism complete only in the weaker
sense of Turing reduction, as opposed to the concept of many-one reduction.
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graph isomorphism we are going to establish in our proof of Theorem 3 may
come quite as surprise.

From isomorphisms to roots. Theorem 3 rests on a structural result
(Theorem 6) which states that any kth root of a subdivision digraph D
establishes isomorphisms between the components of D. This is just the
kind of global structure we wanted to find when we defined subdivision
digraphs.

The starting point is the following connection between digraph roots and
digraph isomorphism, which holds for arbitrary digraphs. Subdivisions will
then be needed to obtain a converse of this result.

4. Proposition. Let D = D1 ∪̇D2 ∪̇ · · · ∪̇Dk be the disjoint union of k
isomorphic digraphs D1, . . . , Dk. Then D has a kth root.

Proof. We construct a digraph R on the vertices of D with Rk = D.
Pick isomorphisms ϕi : D1 → Di, 1 ≤ i ≤ k (ϕ1 being simply the identity).
For each vertex a of D1 we let R contain the path

(16) ϕ1(a) R−→ ϕ2(a) R−→ · · · R−→ ϕk(a)

and additionally the arcs

(17) ϕk(a) R−→ ϕ1(b) for all b ∈ D1(a).

Figure 5 shows a local picture of this construction.

ϕ1(a)

. . .

. . .

. . .
ϕk(a)ϕ3(a)ϕ2(a)

Figure 5. Constructing a kth root (continuous lines) for a
disjoint union of k isomorphic digraphs (dashed lines).

We claim that Rk = D. To see this, pick any v ∈ Di, 1 ≤ i ≤ k, and
compute

Rk(v) = Riϕkϕ
−1
i (v) by (16)

= Ri−1D1ϕ
−1
i (v) by (17)

= ϕiD1ϕ
−1
i (v) by (16)

= Di(v) = D(v),

treating digraphs and isomorphisms equally as mappings between subsets of
the vertex set. �
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From roots to isomorphisms. Note how the root arcs in the above
construction encode the isomorphism between the components of the di-
graph D. Our goal is to show that for a subdivision digraph, any root
establishes isomorphisms between the weakly connected components of this
digraph in exactly the same way. Before we can embark on this venture,
however, we have to take care of some degenerate cases that do not fit into
this picture.

Usually in a subdivision digraph one can easily distinguish the original
vertices, sometimes called branching vertices, from the newly inserted sub-
division vertices. In fact, a subdivision digraph is obviously bipartite and
as soon as every weakly connected component contains at least one vertex
whose indegree or outdegree differs from 1, the two classes can be uniquely
identified.

A problem arises with subdivision digraphs that contain isolated cycles.
In such components, all vertices look like subdivision vertices and this ab-
sence of clearly identifiable branching vertices leads to untypical behavior
with respect to root finding. Fortunately, isolated cycles are simple objects
and we can completely describe their powers.

5. Lemma. The kth power of an isolated cycle of length r is the disjoint
union of gcd(r, k) isolated cycles of length r/gcd(r, k).

Proof. For every vertex x on an isolated cycle C, the sets Ck(x) and
C̄k(x) are singletons. So each vertex of Ck has in– and outdegree 1, that
means, Ck is the disjoint union of isolated cycles and by symmetry, all these
cycles are of the same length. To determine this common length, start at
an arbitrary vertex a and walk around C until you first reach a again in a
multiple ` of k steps. Clearly, ` is the least common multiple of r and k; so
the length of a cycle in Ck is

`

k
=

lcm(r, k)
k

=
r

gcd(r, k)
. �

As a consequence of Lemma 5, isolated cycles cannot have the isomor-
phism property we are looking for. But this is no problem. We shall show
later that any vertex on an isolated cycle of a subdivision digraph D must
also lie on an isolated cycle in any root of D. Thus, with respect to roots,
cycle vertices do not interact with vertices from the other components of a
subdivision digraph and we may in the following restrict our attention to
subdivision digraphs without isolated cycles.

Ignoring isolated cycles we can show that subdivision digraphs bear the
desired isomorphism structure—under the unfortunately indispensable ad-
ditional condition that each vertex has at least one inneighbor and one
outneighbor. We shall prove the following theorem.

6. Theorem. A subdivision digraph without isolated cycles and with
positive minimal indegree and outdegree has a kth root if and only if it is
the disjoint union of k isomorphic digraphs.

The basic idea for the proof of Theorem 6 is to show that in any kth root
of a subdivision digraph, subdivision vertices and branching vertices appear
in blocks of length k. More precisely, we will show that any subdivision
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vertex of D lies on an R-path of length k that consists only of subdivision
vertices (of D) and likewise for branching vertices.

A direct proof of this statement, however, appears quite difficult since
“subdivision vertex” is a semantic concept depending on the global struc-
ture of the digraph. Therefore we work with the simple local properties of
subdivision vertices that can easily be dealt with.

7. Definition. We call a vertex of a digraph thin if its indegree and
outdegree are 1; otherwise we call it proper.

The second step in our analysis will be to identify root arcs that are
unique for their incident vertices, thus establishing unique correspondences
that will be needed to identify the sought-after isomorphisms.

8. Definition. We call an arc ab of a digraph R strong if no further
arcs leave a or enter b, i.e., R(a) = {b} and R̄(b) = {a}. More generally, a
walk is called strong if all of its arcs are strong.

Most of the forthcoming proofs will be indirect, leading to contradic-
tions to the following trivial observation about subdivision digraphs, which
expresses the simple fact that digraphs, as we define them, cannot have
parallel edges.

9. Observation. No two vertices in a subdivision digraph have a com-
mon inneighbor and a common outneighbor. �

A general remark to avoid confusion. As before, we shall deal with two
different digraphs on the same vertex set. When we talk about subdivision
and branching vertices or thin and proper vertices, these notions shall always
refer to (the arcs of) the subdivision digraph D. On the other hand, the
term “strong” will always refer to arcs of the root R.

For technical reasons we provide the lemmas about unique arcs first and
construct the long paths afterwards, since the latter rely on the former. Here
is our first criterion for strongness of root arcs:

10. Lemma. In a root R of a subdivision digraph D, any R-arc between
two D-thin vertices is strong.

Proof. Consider any pair a, b of D-thin vertices with a → b in R. As a
thin vertex, a must also have at least one outneighbor in R, so assume for
contradiction that deg+

R(a) > 1, i.e., there exists some c 6= b with a → c in
R. By symmetry, the case deg−R(b) 6= 1 reduces to this situation by reversing
all arcs.

The unique vertex u in R̄k−1(a) has at least two D-outneighbors, b and c.
Hence, this u is proper and therefore c is thin. So b and c are both thin and
the sets Rk−1(b) and Rk−1(c) must therefore be nonempty. From Rk−1(b)∪
Rk−1(c) ⊆ Rk(a) we thus conclude that Rk−1(b) = Rk−1(c) = {v}, where v
is the unique D-outneighbor of a. Altogether, we have found two vertices,
b and c, with common in– and common outneighbors—a contradiction to
Observation 9. �

One could actually relax the preconditions in Lemma 10 but its present
form is sufficient for our purposes and it will fit quite naturally into its later
applications.
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There is an analog of Lemma 10 for proper vertices but it requires an
explicit minimal-degree condition that was trivially met by thin vertices.
Actually there can be non-strong arcs between pairs of proper vertices. So it
is in the following lemma where the additional degree condition of Theorem 3
enters.

11. Lemma. In a root R of a subdivision digraph D, any R-arc between
two D-proper vertices that have each at least one in– and one outneighbor
is strong.

Proof. Consider any pair a, b of D-proper vertices with a → b in R.
Assume for contradiction that there exists some c 6= b with a → c in R.
Again, the case deg−R(b) > 1 reduces to this situation. Since a has a D-
inneighbor, the set R̄k−1(a) is nonempty. But any vertex from this set
is an inneighbor of two vertices, one of which is proper. An impossible
configuration in a subdivision digraph. �

The preceding two lemmas provide us with a simple procedure to identify
R-walks of D-thin or D-proper vertices. Starting from a thin vertex a0

of D, we check whether there is some D-thin outneighbor a1 of a0 in R.
If such an a1 exists it must be unique by Lemma 10. Next check for a
D-thin outneighbor a2 of a1 and iterate this process until some ultimate
at has no further D-thin outneighbors in R. Likewise we may search for
inneighbors, altogether constructing a unique maximal R-walk of D-thin
vertices containing a0—provided we don’t run into cycles. Analogously, we
can find unique maximal walks of proper vertices.

We have now all necessary prerequisites to prove that thin vertices and
proper vertices come in blocks.

12. Lemma. Let R be a kth root of a subdivision digraph D and let
a0 → a1 → · · · → a` be an R-walk of length ` ≤ k between two D-thin
vertices a0 and a`. Then all intermediate ai, 0 < i < `, are also thin.

Proof. We pick an arbitrary index j between 0 and ` and show that aj

is a thin vertex. Therefore first observe that the sets Rk(aj) and R̄k(aj) are
nonempty because a0 and a` are thin. We assume for contradiction that aj is
a proper vertex, so one of those two sets must contain at least two elements.
By symmetry assume that |Rk(aj)| > 1; so let x, y be two different elements
from this set.

Denote the unique vertex in Rk(a0) by v. Since Rk−j(aj), Rk−`(a`) ⊆
Rk(a0), we get precisely

Rk−j(aj) = {v} = Rk−`(a`).

The first identity tells us that from aj the two vertices x, y ∈ Rk(aj) are
only reachable via v, i.e., x, y ∈ Rj(v), and together with the second identity
this implies

(18) x, y ∈ Rk−`+j(a`).

See Figure 6.
Since a` is thin, the set Rk(a`) contains exactly one vertex, w, say. Thus,

by (18), we have R`−j(x)∪R`−j(y) ⊆ {w}. As neighbors of the proper vertex
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j
j k − `

x

a0 aj a` v
y

w

`− j
`− j

Figure 6. Path construction from the proof of Lemma 12.

a` the vertices x and y must be thin, so the sets R`−j(x) and R`−j(y) are
nonempty and we actually get R`−j(x) = R`−j(y) = {w}, which implies
Rk(x) = Rk(y). Altogether, x and y have the common D-inneighbor a` and
also a common outneighbor, in contradiction to Observation 9. �

13. Lemma. Let R be a kth root of a subdivision digraph D and let
a0 → a1 → · · · → a` be an R-walk of length ` ≤ k between two D-proper
vertices a0 and a`. Then all intermediate ai, 0 < i < `, are also proper.

Proof. Assume for contradiction that some aj is a thin vertex. Then
Rk(aj) is nonempty, so we may pick some u ∈ Rk−j(aj) together with some
R-walk P of length k − j from aj to u. As a D-outneighbor of the proper
vertex a0 the vertex u is thin. Thus, by Lemma 12, all vertices on the walk
P are in fact thin and Lemma 10 then implies that this walk is strong.
Therefore the set R`−i(ai) contains exactly one vertex, which can only be
a`. But this vertex was assumed to be proper. �

The proofs of Lemmas 10 through 13 show very graphically how the local
properties of subdivision digraphs are exploited on the way to Theorems 3
and 6. They all employ a kind of squeezing technique along R-paths, leading
to the unique identification of certain vertices or a contradiction involving
too many neighbors of a subdivision vertex.

Combining the homogeneous paths provided by Lemmas 12 and 13 with
the uniqueness statements of Lemmas 10 and 11, we are now able to con-
struct isomorphisms from roots.

Proof of Theorem 6. We already know from Proposition 4 that the
disjoint union of k isomorphic digraphs has a kth root. So it remains to
decompose D into k isomorphic subgraphs D1, . . . , Dk and to provide iso-
morphisms between them. We do this by partitioning the whole vertex set
into blocks of size k, such that each block contains exactly one vertex from
each Di.

For each proper vertex a of D, determine the maximal R-walk Pa through
a that consists entirely of D-proper vertices, as described in connection with
Lemmas 10 and 11. Such a walk cannot extend indefinitely, precisely, it
consists of at most k vertices because all vertices at distance k from a proper
vertex are thin. On the other hand, Pa must have at least k vertices because
otherwise its thin neighbors would, by Lemma 12, force all its vertices to be
thin, too.

For a thin vertex b we proceed similarly. Determine the maximal R-walk
Qb through b that consists entirely of D-thin vertices. Again, such a walk
is bounded by some proper vertices to its left and right because otherwise
we would get a cycle of thin vertices, which we excluded in the statement of
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the theorem. As in the case of proper vertices, the length of Qb is at least
k − 1 (i.e., it contains at least k vertices) because by Lemma 13 the proper
neighbors at the two ends must be at least k + 1 steps apart. To determine
its exact length, we turn back to the original concept of subdivision and
branching vertices. Observe that by what we already know about proper
vertices, Qb is adjacent to a sequence of k branching vertices at each end.
Hence, the first k and also the last k vertices of Qb must be subdivision
vertices of D. The next k vertices, on either end of Qb, are then by defini-
tion branching vertices again, followed by another sequence of k subdivision
vertices, etc. Clearly, this pattern only works out even if Qb contains exactly
(2t + 1)k vertices, for some nonnegative integer t.

We then subdivide all paths Qb into paths of size k so that afterwards
each vertex v of D lies on a unique strong path Pv of k thin respectively
proper vertices and any two such paths Pb, Pc are either vertex disjoint or
identical.

The obvious idea to identify isomorphic subgraphs now, is to put each
vertex v of D into the subgraph Di that corresponds to the position of v on
the path Qv, i.e., the ith vertex goes into Di. The sought-after isomorphisms
φij : Di → Dj are also induced by the partition. Simply let φij map a vertex
v ∈ Di to the unique vertex of Dj that lies on the path Qv. Clearly this
mapping is well-defined. In order to check that it is also an isomorphism, we
essentially only have to revisit the proof of Proposition 4, which constructed
a root from isomorphisms. The crucial observation is again the strongness of
our paths. Any walk of length k in R passes exactly once from one path Pa to
a some path Pb with a → b in D, the remaining k−1 steps using only strong
arcs. From this correspondence we see immediately that two vertices from
the same path Pa have D-neighbors in the same set of adjacent paths. �

For computational purposes we note the following simple reformulation
of Theorem 6.

14. Corollary. Let D be a subdivision digraph without isolated cycles
and with positive minimal indegree and outdegree. Let further D1, . . . , Dm be
the different isomorphism classes of weakly connected components appearing
in D and let di count the components in D isomorphic to Di, 1 ≤ i ≤ m.
Then D has a kth root if and only if k|di for all i ∈ {1, . . . ,m}. �

Counting cycles. We already discovered in Lemma 5 that powers of
cycles are again cycles. To justify our hitherto ignorance towards cycles, we
now also establish the converse: cycles have cycles as roots.

15. Lemma. All vertices that lie on isolated cycles of a subdivision di-
graph D also lie on isolated cycles in any root of D.

Proof. Let R be some kth root of D. We show that for any vertex c
on a D-cycle, the sets Ri(c) and R̄i(c), 1 ≤ i < k, are all singletons. This
means that two D-adjacent vertices are connected through a strong walk in
R, which proves the lemma.

So assume for contradiction that there exist two different vertices x, y
in Rj(c), 1 ≤ j < k. (For R̄ the statement is completely symmetric to this
case.) There exists some u ∈ R̄k(x)∩R̄k(y) because R̄k(c) is nonempty. With



3. ROOTS AND ISOMORPHISM 85

two outneighbors in the subdivision digraph D, this u must be a branching
vertex, hence, x and y are subdivision vertices. Therefore the sets Rk(x) and
Rk(y) are nonempty and since Rk(c) consists of exactly one vertex, we even
have Rk−i(x) = Rk−i(y), which now implies Rk(x) = Rk(y) 6= ∅. Hence, the
two vertices x and y yield a contradiction to Observation 9. �

Lemma 5 told us that a single isolated root cycle yields only cycles of the
same length in D. When we want to decide whether a collection of cycles
in a given subdivision digraph D has a root, we may thus treat cycles of
different lengths separately.

So assume that that D is the disjoint union of isolated cycles, all of a
common length `, and that R is a kth root of D. Let C be a cycle in R of
some length r. We write

(19) ` =
∏

p`i
i , k =

∏
pki

i , r =
∏

pri
i ,

where p1, p2, . . . are the prime numbers. Lemma 5 tells us r = ` · gcd(r, k);
expressed in terms of prime factorizations this reads ri = `i + min{ri, ki},
which yields the implications

`i > 0 ⇒ ri = `i + ki,(20)

`i = 0 ⇒ 0 ≤ ri ≤ ki.(21)

So the length r of the root cycle C is determined up to the order ri at pi for
those indices i that satisfy `i = 0 and ki > 0.

We now argue that for root checking we may restrict our attention to
root cycles with ri = 0 in (21). Assume that some root cycle C of length r
has rj > 0 for some index j with `j = 0. Replace C by p

rj

j many cycles of
length

r′ :=
r

p
rj

j

=
∏
i6=j

pri
i

each. One easily checks r′/ gcd(r′, k) = r/ gcd(r, k) to see that the new
cycles together have the same kth power as the old cycle C. Hence, the new
digraph is also a root of D. By repeating this transformation until all root
cycles satisfy ri = 0 in (21) for all primes, we may assume that all cycles in
R have the same (minimal) length

r =
∏
li>0

p`i+ki
i .

How many D-cycles of length ` does one R-cycle of length r give? By
Lemma 5 this number is exactly

gcd(r, k) =
∏

p
min{ri,ki}
i =

∏
`i>0

p
min{`i+ki,ki}
i =

∏
`i>0

pki
i .

This shows that a disjoint union of m cycles of length ` has a kth root if
and only if

(22)
∏
`i>0

pki
i divides m,

where `i and ki are the orders of ` resp. k at pi as defined in (19).
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16. Proposition. Given a subdivision digraph D that consists of iso-
lated cycles only and a parameter k ≥ 2, we can check in polynomial time
whether D has a kth root.

Proof. We sum up the results of the preceding discussion in a simple
algorithm. For each integer ` that appears as the length of a cycle in D,
compute the prime factorization ` =

∏
p`i

i and then the order ki of k at each
prime pi with positive `i, i.e., the maximal ki so that pki

i |k. The digraph
D has a kth root iff (22) is satisfied for each length ` (the integer m there
counting the number of length-` cycles).

The `i can be obtained in polynomial time since ` is bounded by the size
of D and the relevant ki are determined efficiently by simple division, even
if k is exponential in the input size. �

Reducing isomorphism to subdivision roots. It remains to merge
the results of the preceding sections into a proof of our isomorphism-com-
pleteness theorem. We now give the details of both polynomial-time reduc-
tions between digraph-isomorphism and subdivision-digraph roots.

Proof of Theorem 3. Let us first show that digraph roots are no eas-
ier to compute than digraph isomorphism, by giving a many-one reduction
from the latter problem to the former.

For a given pair D1, D2 of digraphs, we construct a subdivision digraph
D as follows.

(i) Make k − 2 isomorphic copies D3, . . . , Dk of D2

(ii) Extend each Di, 1 ≤ i ≤ k, to a digraph D′
i by adding two new

“super vertices” si, ti, introducing the double connections si →
a → si for each a ∈ Di, equipping ti with a self-loop ti → ti, and
attaching it via si → ti.

(iii) Form the complete subdivision D′′
i of each extended D′

i.
(iv) Let D := D′′

1 ∪̇D′′
2 ∪̇ · · · ∪̇D′′

k be the disjoint union of the D′′
i .

Clearly D is a subdivision digraph and the vertices si guarantee that it
has positive minimal in– and outdegree and consists of exactly k components,
none of which is an isolated cycle. Hence, Theorem 6 tells us that D has
a kth root iff all D′′

i are isomorphic or, equivalently, all D′
i are isomorphic.

Since the ti are distinguishable from all other vertices in the respective D′
i

(because they are the only self-looped vertices with outdegree 1) this is the
case iff all Di are isomorphic or, by step (i), simply iff D1 ' D2.

We turn to the other reduction from subdivision-digraph roots to digraph
isomorphism, which, by means of Proposition 16 and Theorem 6, is now
very easy to formulate; but only as a Turing reduction, as opposed to the
stronger notion of many-one reduction. That is, we describe a polynomial-
time algorithm for the subdivision-digraph-root problem that may use a
digraph-isomorphism oracle arbitrarily often.

Given a subdivision digraph D with positive minimal in– and outdegree,
together with an integer k, we first use Proposition 16 to test in polynomial
time whether the union of all isolated cycles of D has a kth root. Then we
group the non-cycle components of D into isomorphism classes and apply
Corollary 14. The independent treatment of isolated cycles and non-cycle
components was justified by Lemmas 5 and 15. �
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Outlook. While the original problem, the open complexity status of
Boolean matrix root computation, is now settled, our search for further
structure has lead to new questions. First of all, it would be desirable
to get rid of the degree condition in Theorem 3. Let us indicate what
can happen in a subdivision digraph that contains vertices without in– or
outneighbors. Figure 7 shows such a digraph D together with a square
root R. The two final root arcs can touch each other because the topmost
vertex has no outneighbor and Lemma 11 about strong root arcs does not
apply. Consequently, the minimal-degree condition is in fact indispensable
for Theorem 6. But could it still be possible to remove it from the complexity
result of Theorem 3? Observe that instead of being the disjoint union of
two isomorphic subgraphs, the digraph D in Figure 7 can be decomposed
into two parts, A and B (the former consisting of the two paths on the left,
the latter containing the remaining five vertices), such that there exists a
surjective homomorphism (i.e., an arc-preserving map) from A onto B. This
homomorphism corresponds exactly to those arcs of R that go from A to B.

D R

Figure 7. Dropping the degree condition in Theorem 6.

Though the general situation seems more difficult to analyze, this simple
example indicates that when the degree condition is dropped, we have to deal
with several interacting homomorphism problems. Thus, it is not at all clear
whether the relaxed digraph root problem remains isomorphism complete
since the general homomorphism problem for graphs is NP-complete [21].
(3-Colorability can be written as a homomorphism problem, for example).

More generally, we might ask for stronger versions of Theorem 3 show-
ing isomorphism completeness of root finding for larger classes of digraphs.
Although the structural result of Theorem 6 requires the special appear-
ance of subdivision digraphs, their strict regularity should not ultimately be
needed to deactivate the computationally hard aspects of the root problem
established through Theorem 1. Yet, the concept of subdivisions and the
techniques we employed throughout the proofs of Lemmas 10 to 13 might
serve as a guideline for such generalizations.




