
CHAPTER 2

Weak Positional Games

1. Tic-Tac-Toe

Let H = (V,E) be a hypergraph, that is, V = V (H) is a finite set and
E = E(H) is a set of subsets of V . The elements of V are called the vertices
of H and the sets in E are the edges of H. Two players, called Maker
and Breaker, play the following game on H. Maker begins by picking some
vertex of H, then Breaker chooses some different vertex. They alternate
in this fashion until all vertices of H are taken, retaking of vertices being
forbidden. Maker wins if he manages to claim all vertices of some edge
e ∈ E, otherwise Breaker wins.

Note the obvious unfairness, or rather asymmetry in the game. Breaker
does not win by getting a complete edge as Maker does. His moves are only
meant to block vertices and make the incident edges useless for Maker. Also
observe that by definition, there cannot be a draw.

Such a game is called a weak positional game on the hypergraph H. The
term positional game goes back to Hales and Jewett [19] where a variant
of such games were first studied. The attribute “weak” has been coined
later to distinguish them from the so-called “strong” games which we shall
address soon. Briefly, “weak” accounts for the fact that Breaker does not
win when he claims an edge e ∈ E himself.

The relevant question about a game on a fixed hypergraph is, of course,
who can win. That is, does Maker or Breaker have a strategy that always
wins. Formally, a strategy is a mapping σ from finite sequences (x1, x2, . . . ,
xr) of distinct vertices of H to V (H) \ {x1, x2, . . . , xr}, where r < |V (H)|.
The obvious semantic being that the xi describe the course of play up to
some point and then σ determines the next move. So in case of a Maker
strategy σ is only defined for sequences of even length and only for sequences
of odd length in case of Breaker strategies.

A winning strategy is a strategy that wins against all possible opponent
plays. A fundamental theorem of combinatorial game theory tells us that
either one of the two players must have such a winning strategy (games
with this property are called determined) draw being impossible by the very
definition of the game. This is easily shown by a simple game-tree backward-
labeling argument, as described in many books on combinatorial games.
The essential ingredient here is the finiteness of the game. See Section 2 of
Chapter 1 for a brief discussion of some aspects of non-determined games.

Winning strategies for Maker will sometimes be called making strategies
and such for Breaker breaking strategies. In our arguments, we usually like to
consider a game out the perspective of Maker, which suggests the following
convention.
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1. Definition. A hypergraph H is a winner if Maker, playing first, has
a winning strategy on H, otherwise, when Breaker has a winning strategy,
we call it a loser.

In this work, our main motivation to study positional games is the com-
putational complexity of the question whether a given hypergraph is a win-
ner. Note that an efficient decision procedure for this question would imme-
diately yield winning strategies on any winner by a standard reduction. At
each move, we could simply determine the value of the outcomes of all our
options together with all possible opponent plays. From this we would then
be able to tell which moves are the best.

However, a polynomial-time algorithm for arbitrary hypergraphs should
not be hoped for. Schaefer [39] showed that this problem is PSPACE-
complete, which is “the right” class for a two-person game. The paper
does not use the term hypergraph, though, but works with games on DNF
formulas, which behave equivalently. Thanks to Jesper Makholm Byskov
for pointing me at that result.

We will focus on hypergraphs with edges of bounded size.

2. Definition. The rank of a hypergraph is the size of a largest edge.
A hypergraph is called k-uniform if all its edges are of size k.

Hypergraphs of rank 2 are not very interesting from the point of posi-
tional games. Any edge of size 1 yields an immediate Maker win, so we may
assume that the hypergraph is 2-uniform, i.e., an ordinary simple graph. If
such a hypergraph has any vertex of degree greater than one, i.e., if any two
edges share a vertex, Maker wins by playing at such a vertex because in his
next move he will complete either of the two edges since Breaker can only
play in one of them. On the other hand, Schaefer’s proof requires no edges
larger than 11, so that the decision problem is already PSPACE-complete for
hypergraphs of rank 11.

In this interval, between 2 and 11, the smallest interesting rank is 3. We
set out to distinguish rank-3 winners from rank-3 losers efficiently, i.e., in
polynomial time. Unfortunately, we do not succeed completely. There is a
problem with too-much-overlapping edges. We shall solve the task only for
hypergraphs with the following additional property.

3. Definition. A hypergraph is almost-disjoint if no two edges intersect
in more than one vertex.

4. Theorem. The question whether a given almost-disjoint hypergraph
of rank-3 is a winner or a loser can be decided in polynomial time.

Theorem 4 is not about efficient algorithms. Our motivation is not the
desire to actually play such games better, like with chess, but to understand
the underlying principles which let you win or lose on a hypergraph. The
above result rests on a classification of rank-3 hypergraphs into winners and
losers, which is somehow the more important result. That classification
(Theorem 38) depends on several notions that first need to be developed, so
that we must defer its statement to a later place, where the actual work is
done.
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It might be suspected that by restricting ourselves to almost-disjoint
hypergraphs, we have defined away the essential part of the problem. This
is not the case. Our investigation of almost-disjoint hypergraphs exhibits a
lot of structure and the techniques we employ during the analysis reveal some
of the deeper mechanics behind such games. Moreover, we shall give some
evidence that the almost-disjointness condition can be removed through a
preprocessing step, so that our result could be immediately applied to all
rank-3 hypergraphs without further modifications in the proof.

Strong games. Positional games can be seen as the natural generaliza-
tion of the well-known game Tic-Tac-Toe, which is played by two players on
a board of 3× 3 = 9 squares. Alternately the opponents claim squares, the
first player by drawing crosses the second by drawing noughts; reclaiming of
previously taken squares being forbidden. Either player wins if he manages
to get three squares in a row, horizontally, vertically, or on one of the two
diagonals. Figure 1 shows a game in progress.

Figure 1. A game of Tic-Tac-Toe.

Note the obvious difference to weak positional games. In Tic-Tac-Toe
the second player also tries to complete an edge of his own. In some sense,
the game now seems fairer.

The natural generalization of this symmetric rule system to arbitrary
hypergraphs H = (V,E) leads to the definition of a strong positional game.
Two players, not called Maker or Breaker now, alternately claim vertices in
V until either one player has claimed all vertices of some edge e ∈ E, in
which case he wins, or all vertices are claimed and neither player achieved
this goal, in which case the game is a draw. The term “strong” will soon
become clear when we relate these games to weak games.

The difference between weak and strong games already bears on the
simple example of Tic-Tac-Toe. While every child knows that it is a draw
in the strong version, Maker can win on the 3× 3 board in the weak game
because in certain situations Breaker lacks counter threats.

Due to the changed game definition we get a new type of strategy. A
drawing strategy is a strategy that always leads to at least a draw, i.e., if you
follow this strategy you can be sure not to lose and it may happen that you
win. Similar to the case of weak games, a simple game-tree argument shows
that either one of the two players has a winning strategy or both players
have drawing strategies. A special feature of strong positional games is that
this trichotomy (first player win, second player win, and draw) collapses
to only two cases. The second player cannot win, as can be seen by the
following well-known strategy-stealing argument. Assume for contradiction
that the second player has a winning strategy. Then the first player can
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“steal” this strategy by playing his first move anywhere and then behaving
as if he was the second player. The point is that the additional first move
does not create any problems for the first player because of the monotonicity
of the game. If the strategy prompts him to play a vertex he has already
taken, he can just play this move anywhere else and still have all vertices
taken that the strategy requires. Having more vertices claimed is never a
disadvantage.

So, strong games, if played optimally, also have just two different possible
outcomes: first player win or draw. The following trivial statement relates
weak and strong games in terms of winning strategies, justifying the pair
“weak”/“strong.”

5. Remark. If the first player can win the strong game on a hypergraph
H, Maker can win the weak game on H. If Breaker can win the weak game
on a hypergraph H, the second player can force a draw in the strong game.

So, taking Maker’s respectively the first player’s perspective again, being
able to win a strong game is really a stronger statement than being able
to win the corresponding weak game. Beck’s survey paper [7] contains
a detailed discussion of the relation between weak and strong positional
games.

Previous Results. A main branch of research about positional games
aims at the development of strong criteria for the existence of winning strate-
gies, often in terms of the number of edges and vertices, like the following
early result by Erdös and Selfridge [15].

6. Theorem (Erdös-Selfridge). Let H = (V,E) be an n-uniform hyper-
graph. If |E| < 2n−1 then Breaker wins the weak game on H and thus the
second player can draw in the strong game.

Beck [4, 5] has developed a variety of strong conditions of this kind. We
refer to his extensive overview [7].

Sometimes hypergraphs are investigated that are implicitly defined by
certain regular structures. For example, in [20] and [6] the two players pick
edges from a complete graph and try to obtain a subgraph of a certain pre-
scribed type. Another famous class of hypergraphs are generalized Tic-Tac-
Toe boards, where the vertex set is the nd grid cube {1, . . . , n}d embedded in
d-space with exactly all collinear n-sets as edges. These games have already
been studied in Hales and Jewett’s original paper [19]. Berlekamp, Conway,
and Guy’s classic [8] contains a whole chapter about some sorts of positional
games, like five-in-a-row on a checker board and games with polyominoes.
It also contains a detailed case analysis of the original 3 by 3 Tic-Tac-Toe.

Eventually, we should mention that also strong positional games are
PSPACE-complete. Reisch [37] showed this for the special case of the board
game Gomoku (five-in-a-row in the plane).

Our approach to positional games very much differs from most of the
above in that it aims at optimal play for a limited class of hypergraphs.
While density arguments like Theorem 6 usually give winning or losing cri-
teria for much larger classes of games than the one we attempt to solve,
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they cannot give definite answers how to play on any arbitrary given in-
stance. Usually the gap between the best winning criterion and the best
losing criterion is rather large, leaving a lot of difficult instances unresolved.

The price we must pay for our desire for a complete analysis, are several
lengthy case distinctions and sometimes a certain lack of beauty. Quite in
contrast to the nice density theorems of [19] and [15]. Though we introduce
tools to break hypergraphs into nice components, it cannot be avoided that
eventually some dirty parts have to be sorted out by direct inspection. The
ultimate result however, will be rather concise, a neat classification into
winners and losers.

2. Winning Ways

Before we embark on the analysis of rank-3 games, let us briefly discuss a
few very basic concepts and fix some related terminology. Consider a single
move of Breaker at some vertex y. Clearly, all edges of H that contain this
vertex will be of no use for Maker any more because he is not allowed to ever
recolor y. So we may interpret Breaker’s move as deleting the vertex y and
all incident edges f 3 y from H. On the other hand, a Maker move at some
vertex x brings Maker one step closer to his goal in each edge that contains
x. His move can be understood as shrinking all edges e 3 x by the vertex x,
i.e., deleting x from V (H) and replacing each such e by e′ = e \ {x}. In this
interpretation, Maker wins iff he manages to produce an empty edge. Note
how this point of view captures the inherent asymmetry of the game and it
is very useful to analyze hypergraphs in which some vertices have already
been played by any of the two players. We let

(12) H [+x1,...,+xr,−y1,...,−ys]

denote the hypergraph obtained from H by “shrinking away” the Maker ver-
tices x1, . . . , xr and deleting all edges containing any of the Breaker vertices
y1, . . . , ys in the above fashion. We shall also use obvious abbreviations of
this expression like H [+M ] with M = {x1, . . . , xr} a set of Maker moves.

Formally, there is no need for the numbers r and s in (12) to be related
in any way. We can have, for example, a large number of Maker plays in H
but no Breaker moves at all. This expression will still make sense. Hence,
our notation can be used to describe the course of play on local fragments of
a hypergraph, where the players not necessarily play in alternating fashion.
In other words, we can treat tenuki—moves that do not directly answer
the opponents preceding move locally but shift play to another part of the
graph.1 Second, the resulting hypergraph is clearly independent of the order
of deletion and shrinking steps. This is convenient for analyzing snap shots
of a game without bothering about the precise order of moves that lead to
an actual position.

Playing along paths. We start our investigation of rank-3 hyper-
graphs by collecting some elementary, though important criteria that guar-
antee a Maker win. The crucial objects are paths.

1In the Asian board game Go, a move that stays away from a local fight is called
tenuki.
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7. Definition. A walk (from a vertex v0 to another vertex vr) in a
hypergraph is a sequence W = (v0, e1, v1, . . . , er, vr), r ≥ 0, of vertices vi

and edges ei, such that vi−1, vi ∈ ei for 1 ≤ i ≤ r. The index r is the length
of the walk and we call v0 and vr the start and end vertex of the walk,
respectively.

A walk is a path if all vertices vi are distinct and ei ∩ ej = ∅ for all pairs
of indices i, j with |i− j| > 1. A cycle in a hypergraph is a walk of strictly
positive length from a vertex to itself, satisfying all requirements of a path
except that, of course, e1 ∩ er must not be empty.

We shall often treat a path or cycle W itself as a hypergraph by letting
V (W ) = {v0, . . . , vr} ∪ e1 ∪ · · · ∪ er and E(W ) = {e1, . . . , er}. As usual,
we say that two vertices of a hypergraph are connected if there is a walk
between them, and a hypergraph is connected if any two of its vertices are.

In contrast to simple graphs, one might come up with alternative defi-
nitions for the concept of paths in hypergraphs. We just chose the one that
will best serve our purposes. Though the following two notions are abso-
lutely standard and should not bear any ambiguities, we like to provide a
rigorous definition.

8. Definition. A subhypergraph of a hypergraph H is another hyper-
graph K with V (K) ⊆ V (H) and E(K) ⊆ E(H). The induced subhy-
pergraph on a vertex set W ⊆ V (H) of a hypergraph H is defined as the
hypergraph H[W ] :=

(
W, {e ∈ E(H) | e ⊆ W}

)
.

If a and b are vertices of a path, we write aPb for the unique subpath
of P from a to b. We often stack several such subpaths of different paths
to obtain a single long path. For example, if a and b are vertices of paths
P and Q, respectively, and P and Q intersect in some other vertex x, then
we write aPxQb for the path from a to b in P ∪ Q via x. Of course, we
then have to check that the resulting walk is a path again but in most cases
this will be obvious. When the path we want to use consists of only one
edge, f = {a, b, x}, for example, we sometimes simply write afb. We also
use constructs like aPxQa to create a cycle from two paths that intersect in
two vertices a and x.

The following lemma is rather trivial, but as we already emphasized,
paths in hypergraphs require a slightly more careful treatment than paths
in simple graphs. So we like to give a rigorous proof here to make sure not
to overlook any details and to comply with our definitions.

9. Lemma. If two vertices a, b in a hypergraph are connected then there
exists a path from a to b.

Proof. We claim that any shortest walk (v0, e1, v1, . . . , er, vr) from a
to b is actually a path. Otherwise there would be two edges ei, ej with
i < j−1, such that the intersection ei∩ej contains some vertex x. But then
the sequence (v0, e1, . . . , ei, x, ej , . . . , er, vr) is a shorter walk from a to b; a
contradiction. �

Figure 2 shows a path of length 7 with five 3-edges in the interior and
a 2-edge at each end. Assume that Maker plays at x1. Then Breaker must
clearly answer at y1. After that, Maker x2 leaves only Breaker y2 and then,
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Maker x3 forces Breaker y3. And so on. Maker can play all the way down
to x6, where he wins because Breaker will have to answer x6 at y6, leaving
the singleton edge {x7} for Maker.

y2

y1

x1 x2 x3 x4 x5 x6

y3 y4 y5 y6

x7

Figure 2. A winning path.

This scheme only works because any two adjacent edges of the path
intersect in just one vertex. The hypergraph in Figure 3 is a loser. If Maker
tries the same trick there, he gets stuck in the middle because after Maker
x4 there, Breaker y4 will destroy his options for the right side. However, if
the hypergraph at hand is almost disjoint then all paths are nice.

y2

y1

x1 x2

y3

x3

y4

x4

Figure 3. A non-almost-disjoint losing path.

10. Lemma. An almost-disjoint rank-3 hypergraph that has a path con-
taining two 2-edges is a winner.

Proof. We may assume that the path contains exactly two 2-edges and
that these are in the two terminal positions by simply removing further 2-
edges and trailing 3-edges. So we have a path (v0, e1, v1, . . . , er, vr) where
e1 and er are 2-edges and the other ei are 3-edges. Maker wins by playing
along this paths as described above. �

Combining Lemmas 9 and 10 we get the following useful win criterion.

11. Corollary. Any connected almost-disjoint rank-3 hypergraph with
at least two 2-edges is a winner. �

During the analysis of a game in progress, it will often be useful to have
the following variant of Lemma 10 available, which tells us how Breaker has
to reply to a Maker move in a component with a 2-edge.

12. Lemma. Let P be a path in an almost-disjoint rank-3 hypergraph
and assume that P contains a 2-edge. If Maker plays somewhere in P then
Breaker must answer somewhere in P , too; otherwise Maker wins.

Proof. If Maker plays inside the 2-edge the statement is trivial. Oth-
erwise, Maker creates an additional new 2-edge that lies on a common path
with the original 2-edge. By Lemma 10, Breaker must answer on this sub-
path of the original path. �
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Inner and outer vertices. Let us have a closer look at that carbon
molecule in Figure 2 again. The vertices that Maker played there shall be
of general importance for us.

13. Definition. Let P be a path or a cycle. A vertex of P that appears
in more than one edge is called an inner vertex of P ; the other vertices are
the outer vertices of P .

The way Maker won in Figure 2 was not unique. It is not hard to see—
though we won’t prove this now—that he could have started at any of the
inner vertices and still have won, while the outer vertices would have all
lead to a loss. The reason for this is in a way to be found in the following
absolutely trivial, yet important fact.

14. Remark. If x is an inner vertex on an almost-disjoint path P from a
to b then the subpaths xPa and xPb only intersect in the vertex x. Similarly,
if Maker plays at an inner vertex of an almost-disjoint cycle, this cycle is
split into a path.

Note that outer vertices do not have this property. The following two
lemmas, which will be useful in many situations, exploit the above observa-
tion for cycles.

15. Lemma. Let C be a cycle in an almost-disjoint rank-3 hypergraph.
If Maker plays at an inner vertex of C then Breaker must answer somewhere
in C, too; otherwise Maker wins.

Proof. Playing at an inner vertex, Maker turns the cycle into a path
with a 2-edge at each end, which by Lemma 10 is a winner. See the left-hand
side of Figure 4. �

Figure 4. Playing an inner vertex of a 3-uniform cycle yields
a path with two 2-edges (left), playing an outer vertex yields
a cycle with a 2-edge (right).

Of course, it is crucial again to pick an inner vertex. Playing an outer
vertex of a cycle yields just a cycle with a 2-edge, as shown on the right-hand
side of Figure 4. If Maker then plays in such a cycle again, Breaker has only
few options left.

16. Lemma. Let C be a cycle in an almost-disjoint rank-3 hypergraph
and assume that C contains exactly one 2-edge. If Maker plays at an inner
vertex of C then Breaker must answer in the 2-edge; otherwise Maker wins.
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Proof. If Maker plays in the 2-edge, the statement is trivial. Otherwise,
his move, which breaks up the cycle into a path, creates two 2-edges. This
leaves a path with three 2-edges altogether. If Breaker does not play in the
original 2-edge now, which is clearly the middle one, he leaves behind two
2-edges connected by a path. A win, by Lemma 10. �

3. Decomposing Hypergraphs

The last two lemmas from the previous section demonstrated the poten-
tial of cycles for Maker. With a single move at an inner vertex of a cycle
he could create an immediate threat. A key tool for our analysis of hyper-
graph games will be a decomposition lemma that allows us to reduce any
hypergraph into parts that are doubly connected in a certain way. In those
parts we will then have good chances to find cycles that yield several Maker
threats, allowing us to construct winning strategies for Maker.

We start with a simple observation about disconnected hypergraphs. For
two hypergraphs H1 and H2, their union H = H1 ∪ H2 is given simply by
V (H) = V (H1) ∪ V (H2) and E(H) = E(H1) ∪ E(H2). In case of disjoint
vertex sets V (H1) and V (H2) this yields a disconnected union H = H1 ∪̇H2.
It appears plausible that in such a case, moves played in one component
should not interfere with those played somewhere else. Let us formalize this
intuition.

17. Lemma. The disjoint union H = A ∪̇ B of two hypergraphs A and
B is a winner iff at least one of A and B is a winner.

Proof. If A or B is a winner then clearly H is. So assume that neither
A nor B can be won. So there are breaking strategies α and β for A and B,
respectively. Against any Maker strategy, Breaker can use these to obtain a
breaking strategy for H. Whenever Maker plays in A he answers according
to α, when Maker plays in B Breaker follows β, at each move always ignoring
anything that happened in the other component. This way Breaker can
assure that in none of the two components Maker can get a monochromatic
edge. Thus, H is a loser. �

Lemma 17 tells us that if Maker can win on some hypergraph H he only
needs one component of H, never playing in the rest of H. And of course,
this rule can be applied recursively to any stage of the game: Maker never
needs to leave a component he once played in.

Splitting at articulations. Lemma 17 is not very deep. But it paves
the way for a stronger result that will become a vital tool for our analysis
of games on rank-3 hypergraphs. Suppose that the components A and B of
H are not completely disjoint but almost, i.e., they share just one vertex.
Then we can still relate the winning and losing behavior of A and B to that
of H.

18. Definition. We call a vertex p an articulation vertex of a connected
hypergraph H if H can be written as a union H = A ∪B of two nontrivial
hypergraphs A and B with V (A) ∩ V (B) = {p}.
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The left hypergraph in Figure 5 has exactly one articulation vertex, the
square one. The central vertex in the hypergraph on the right is not an
articulation.

Figure 5. A hypergraph with an articulation vertex (left)
and one without (right).

19. Lemma (Articulation Lemma). Let H = A ∪ B be the union of
two hypergraphs A and B which have exactly one point p in common, i.e.,
V (A)∩V (B) = {p}. Then H is a winner if and only if one of the following
holds:

- A is a winner,
- B is a winner,
- A[+p] and B[+p] are both winners.

Proof. First note that every single one of the three cases implies a win
for H. For the first two this is clear. If the last case holds, Maker can win
by playing his first move at p. This leaves two disjoint graphs both of which
he can win. Breaker cannot answer in both, so at his second move, one of
A[+p] and B[+p] will still be available to Maker and give him a win.

For the converse implication consider the case that none of the three
options in the statement of the lemma is true. By symmetry we may assume
that B[+p] is a loser. So we have breaking strategies α and β for A and
B[+p], respectively. Breaker combines these strategies as follows. Against
any Maker move in A he also answers in A, according to his strategy α.
When Maker plays in B \ {p} he answers there, following to strategy β.
This way Maker can never complete one edge of H since the edges of A are
taken care of by α and the strategy β guarantees that even if Maker should
get the vertex p, it won’t help him on B because not only B but even B[+p]

was a loser. �

Note that we had to require the nontriviality and connectivity condition
in the definition of an articulation vertex for technical reasons. (Otherwise
every vertex would be an articulation.) Lemma 19 does obviously not depend
on such restrictions.

Figure 5 indicates that in contrast to simple graphs, hypergraphs allow
different notions of connectivity. If we removed the central vertex from the
right hypergraph in that picture together with all incident edges, we would
of course decompose the hypergraph into disjoint components. But that is
not what we want because the Articulation Lemma does not apply to that
hypergraph. The “right” notion of connectivity for us is the following.

20. Definition. A hypergraph H with at least k vertices is Maker-k-
connected if its reduction H [+M ] is connected for every set M ⊆ V (H) of
Maker moves that has cardinality strictly less than k.
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Practically, Maker-k-connectivity means that Maker would have to play
at least k times until the hypergraph decomposes. Note also that Maker-1-
connectivity is equivalent to ordinary connectivity because then M = ∅ is
the only allowed set of Maker moves. We refrain from defining the analog
concept of “Breaker-connectivity” since we shall not need it anyway.

21. Lemma. A hypergraph H with at least k vertices is Maker-k-connected
iff it cannot be written as a union H = A∪B with V (A), V (B) 6= V (H) and
|V (A) ∩ V (B)| < k.

The crucial property here is, of course, that the hypergraphs A and B
do not overlap on k vertices, the other restriction only makes sure that the
decomposition is nontrivial in the sense that A and B are both really needed
in the union.

Proof of Lemma 21. Assume that we have such a representation H =
A ∪ B. Taking M = V (A) ∩ V (B) immediately gives us a Maker set such
that H [+M ] is disconnected. Conversely, assume that there exists a set
M ⊂ V (H) of cardinality ` < k such that the reduced hypergraph H [+M ] is
disconnected, i.e., H [+M ] = A′ ∪̇ B′. This decomposition tells us that any
H-edge lies completely in V (A′)∪M or V (B′)∪M . Therefore, we can write
H as the union H = H [−V (B)]∪H [−V (A)], where the two vertex sets intersect
in the set M which has cardinality ` < k. �

22. Corollary. A hypergraph with at least two vertices is Maker-2-
connected iff it is connected and contains no articulation vertex. �

Path decompositions. Through repeated application of Lemmas 17
and 19 we will reduce statements about general hypergraphs to such about
Maker-2-connected hypergraphs. Those are then amenable to the follow-
ing path-adjoining lemma, which is very much redolent of classical ear-
decomposition theorems. Here, however, it appears in a slightly technical
guise, due to the special requirements of our analysis in the subsequent
sections.

23. Lemma. Let H be a rank-3 Maker-2-connected hypergraph and let
(B,M, T ), with ∅ 6= B,M, T ( V (H), be a nontrivial partition of the vertices
of H such that no vertex in B is adjacent to a vertex in T . In other words,
the “middle layer” separates “bottom” from “top.” Then there exists a path
in H[M ∪ T ] connecting two distinct vertices a and b in M and using no
further vertices in M and no edges of H[M ].

In one sentence, Lemma 23 tells us that if we step from the middle layer
into the top layer then we find a path through T that brings us back to M .

Have a look at Figure 6. In the typical application of Lemma 23, the
middle layer M will be a part of a hypergraph H that we are currently
reconstructing and about which we already know a lot of structure, while the
top layer T contains the unexplored parts of H that are somehow connected
to M . The lemma then tells us that we can extend M into T path by path
in a regular fashion. The lower layer B contains all the remaining vertices
that are of no interest for the local situation.
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T

M

B

a b

Figure 6. Finding paths with Lemma 23.

Proof of Lemma 23. Pick a connected component C of the hyper-
graph H[M ∪ T ]−E(H[M ]) (i.e., the subhypergraph induced by the vertex
set M ∪ T without those edges that lie entirely in M) that contains at least
one vertex in T . For example, in Figure 6, the path from a to b through
T would be such a component C. The intersection X = V (C) ∩ M has
cardinality at least two because H is Maker-2-connected. (C [+X] contains
no vertex in M , so it is disconnected from B by assumption; therefore, the
hypergraph H [+X] itself is disconnected and thus, X ≥ 2.)

For each pair u, v of distinct vertices from X, pick a shortest path Pu,v

from u to v in C. Such paths exist by Lemma 9. Amongst all these paths
(for all possible pairs u, v) pick one, Pa,b, say, of minimal length. We claim
that this is a path as required by the statement of the lemma. Assume for
contradiction that Pa,b contains more vertices in M than only a and b, some
additional vertex c, say. The three vertices a, b, c cannot lie in the same edge
of C because then they would form an induced edge of H[M ] which we had
excluded. Consequently, one of the paths Pa,c and Pc,b must be shorter than
Pa,b—a contradiction to minimality. �

Creating a 2-edge. In Section 2 we emphasized that in a rank-3 hy-
pergraph, 2-edges are good for Maker. Already two of them lead to a win if
the hypergraph is almost disjoint, by Corollary 11. In this section we show
how to reduce the problem whether a 3-uniform hypergraph is a winner, to
the question whether a rank-3 hypergraph with a 2-edge is a winner. Those
will then be easier to analyze.

24. Lemma. Let H be a 3-uniform hypergraph that is a winner. Then
there exists a Maker move x such that for any Breaker answer y, the hyper-
graph H [+x,−y] has a connected component that contains a 2-edge and is a
winner.

Proof. By induction on the size of H. Take the first move x from any
making strategy for H. Assume for contradiction that for some Breaker
answer y the hypergraph H ′ = H [+x,−y] has no connected component that
is a winner with a 2-edge. By Lemma 17, H ′ must have a component W
that is a winner and by assumption, W contains only 3-edges. But such a W
is actually a proper subhypergraph of H, so by induction there is a Maker
move x̂ ∈ V (W ) such that for every Breaker answer ŷ ∈ V (W ) \ {x̂} the
remainder W [+x̂,−ŷ] has a winning component that contains a 2-edge. Since
W was a subgraph of H, we can use x̂ as the first Maker move in H as well
and this will then guarantee a winning component with a 2-edge after any
Breaker answer. �
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One could easily generalize the proof of Lemma 24 to show that Maker
can actually win by always playing inside a component that contains at least
one 2-edge, except for his first and last move, of course. But all we need here
is a 2-edge after the first move as guaranteed by Lemma 24 because it gives
us the following reduction from a 3-uniform hypergraph H to hypergraphs
with at least one 2-edge.

For each pair x, y of first Maker and Breaker moves, check whether
among those components of H [+x,−y] that contain a 2-edge there is at least
one winner. If for some x this is the case for all possible answers y then H
is a winner, otherwise it’s a loser.

Once we have a 2-edge, we use the Articulation Lemma to cut our hy-
pergraph recursively at articulation vertices, so that eventually we will be
left with Maker-2-connected hypergraphs only. Having created a 2-edge is
really important for this step. In the proof of the subsequent lemma, the
presence of the 2-edge eliminates one alternative in the Articulation Lemma,
giving us sufficient information to avoid a possible combinatorial explosion
during the decomposition process.

25. Lemma. Let H be an almost-disjoint connected rank-3 hypergraph
with exactly one 2-edge f . Let H = A ∪ B be a decomposition of H with
V (A) ∩ V (B) = {p} for some articulation vertex p, such that f lies in A.
Let B1, . . . , Br be the connected components of the hypergraph B[+p]. Then
each of the connected hypergraphs A,B1, . . . , Br contains at least one 2-edge,
and H is a winner iff at least one of them is a winner.

Proof. Since H was connected, each of the Bi has at least one edge
that contained the deleted vertex p in H. Hence, those edges are 2-edges.
Clearly A is connected simply because H is and it contains a 2-edge by
assumption.

For the stated equivalence, first observe that the preconditions alone
imply that A[+p] is a winner: if p ∈ f then because A[+p] contains a 1-edge
and otherwise because A[+p] has at least two 2-edges. Now the Articulation
Lemma tells us that H is a winner iff one of A and B[+p] is. (Since A[+p] is
a winner, the third case of the Articulation Lemma reduces to “B[+p] is a
winner,” which makes the second case obsolete.) And by Lemma 17, B[+p]

is a winner iff one of the Bi is. �

We use Lemma 25 as an algorithmic recipe for reducing the problem
of deciding whether a given connected almost-disjoint rank-3 hypergraph
H with exactly one 2-edge is a winner, to such hypergraphs that are even
Maker-2-connected instead of just connected.

If an application of Lemma 25 yields any Bi with more than one 2-edge,
this Bi is a winner by Corollary 11, and then H is one, too. Otherwise,
we apply Lemma 25 recursively to each of A,B1, . . . , Br until we either
find a component with two 2-edges or no articulation vertices are left and
hence, all pieces are Maker-2-connected. (Remember that a single 2-edge
is by definition Maker-2-connected.) Eventually we know that the original
hypergraph H is a winner iff one of those Maker-2-connected fragments is.
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4. Between the Docks

We are left with the task of finding out whether a given almost-disjoint
rank-3 Maker-2-connected hypergraph H with exactly one 2-edge is a win-
ner. Figuratively, we shall view the unique 2-edge, which we will henceforth
denote by φ = {α, β}, as sitting at the center of H and everything else ar-
ranged around it. We then try to understand how this environment can look
like, under what conditions it yields a win and why it perhaps does not.

Call all edges adjacent to φ dock edges, motivated by the fact that the
rest of H is connected to φ through them. Anything else between the docks,
that is, the subhypergraph of H with α, β, and all dock edges removed, will
be called the core, denoted by K.

By almost-disjointness, each dock edge contains only one of α and β, so
anticipating the way we shall draw pictures, we may speak of lower docks,
those incident with α, and upper docks, incident with β. The vertices in
the docks, except α and β, are called dock vertices. The two sets of upper
and lower docks will sometimes be referred to as the upper and lower shore,
respectively. We distinguish two types of docks, which have to be treated
very differently. Call a dock closed if its dock vertices are connected in K,
otherwise call it open.

Figure 7 gives an overview. It displays a hypergraph with four upper
and four lower docks. Connections between docks being indicated as mere
paths, though they can, in principle, be arbitrarily complicated, of course.
As in most figures in this section, we omit the 2-edge φ between α and β
from the drawing for graphical reasons.

β

α

the core K

upper dock

lower dock

vertices
dock

dock

dock

closed

open

Figure 7. A schematic picture of docks and core.

To decide whether a hypergraph arranged as above is a winner or a
loser, we take the following approach. Throughout this section we make
the general assumption that the hypergraph H at hand is a loser and try
to rule out configurations that would conflict with this assumption because
they yield a Maker win. Eventually, we shall find that only a few connection
types between the docks are possible. After that, in the next section, we shall
prove that our classification is valid, i.e., none of the left-over configurations
can be won by Maker.

We begin our analysis on a global scale. Our first observation accounts
how many docks of what type can be connected to a single open or closed
dock.
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26. Observation. In the core K of a loser H, no two different docks
from the same shore are connected. A closed dock is connected to exactly
one dock on the other shore. Each dock vertex of an open dock is either
connected to one dock on the other shore or to no docks at all, but at least
one of them is connected to another dock.

Proof. The first statement is the basic observation, which then implies
the others. Assume for contradiction that two different lower docks e =
{α, a, a′} and f = {α, c, c′} are connected in K, i.e., there is a path from
a or a′ to c or c′. Pick a shortest such path P and change vertex labels
if necessary, to have P going from a to c; this guarantees that none of a′

and c′ are touched by P . (Note that a = c is possible.) See Figure 8.
Maker can win by playing at α because by Lemma 15 this move requires an
immediate answer in the cycle αeaPcfα but Breaker must also destroy the
now singleton edge {β}.

The rest is an easy implication of the above. Every dock must be con-
nected to at least one other dock to make H Maker-2-connected and in each
case a connection to some further dock would induce a connection between
docks from the same shore. �

β

α

e f

P

a ca′ c′

Figure 8. Two connected lower docks yield a win.

Figure 7 already contained schematic representations of all dock connec-
tions allowed by Observation 26.

In the following, we investigate the local structure of the different con-
nection types between docks: open-open, closed-closed, and closed-open. In
each case, we face a lower dock g = {α, a, c} and an upper dock h = {β, b, d}
that are somehow connected in the core K of H. As in Observation 26 above,
we always make the general assumption that the whole hypergraph H is a
loser.

Between two open docks. The situation between vertices from two
open docks is very simple.

27. Observation. Let the docks g = {α, a, c} and h = {β, b, d} both be
open, with a and b connected in the core K. Then the connected component
of K that contains a and b is simply a path between these two vertices that
contains no further dock vertices.

Figure 9 visualizes Observation 27. We postpone the proof for a second
to discuss a general issue. Almost all arguments throughout this section
require us to pick inner vertices on paths that lie “between” certain given
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α

β

b d

a c
g

h

P

Figure 9. Two open docks connected by a path.

vertices. While such a notion would be clear for ordinary graphs, we should
make it precise for our hypergraphs.

28. Definition. For two distinct vertices u, v of a path or cycle P , we
say that some other vertex x lies between u and v on P if x is an inner vertex
of the subpath uPv or x = u or x = v.

As an example, we have marked the vertices between u and v on the path
on the left-hand side of Figure 10 with circles. We will use this concept in
situations where there exists some other path Q from u to v, with Q disjoint
from P except for the terminal vertices u and v. Then a vertex between u
and v on P will be an inner vertex of the cycle uPvQu.

v

u
x

Q

P

α

β

b

a g

h

u

v

Figure 10. An example path with all vertices between two
vertices u and v marked (left) and an extension of Figure 9
by another path (right).

The main ingredient for the proof of Observation 27 is Lemma 23, which
we use here for the first time. It is the technical tool to provide us with
the intuitively obvious fact that if we add any further edge to the hith-
erto constructed part of H between two docks, there will be a whole new
path between two distinct vertices of this subgraph because H is Maker-2-
connected. We will see this argument repeatedly in the following and we
give it here in great detail as a general example.

Proof of Observation 27. Pick any path P from a to b as shown in
Figure 9. Maker will use the cycle C = αgaPbhβφα (i.e., the path P closed
to a cycle by the two docks and the 2-edge φ) to set up threats against
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Breaker. To show that no further edges are incident to vertices of P , we
assume for contradiction that some edge e ∈ E(K)\E(P ) is connected to P .

In the general case, when e contains a vertex z 6∈ V (P ), we apply
Lemma 23 as follows. The middle layer M in that lemma is V (P ). The
bottom layer B consists of all vertices of H that are connected to α and β in
H −P , i.e., it contains α, β, and the vertices between all the other docks of
H. The top layer T is the rest V (H) \ (M ∪B), which is not empty because
we have z ∈ T . Now Lemma 23 tells us that there is a path Q in K that
connects two distinct vertices u, v of P and contains no further vertices of P .

Between the vertices u and v on P we find an inner vertex x of our cycle
C. (We refer to the inner vertices of C rather than those of P because we
need to include the end vertices a and b as well.) The right-hand side of
Figure 10 shows a concrete example where one of u and v is an outer vertex
of P and the other an inner. A suitable x is found between them. This x is
clearly also an inner vertex of the cycle D = xPuQvPx.

In the special case e ⊆ V (P ) we do not need the Lemma 23 for path
finding, of course. Simply pick two vertices u, v of e that are closest to each
other on P . Again there is an inner vertex x of C between u and v, which
is also an inner vertex of the cycle D = xPuevPx.

In any case, Maker wins by playing at x because Lemma 15 restricts
Breaker’s reply to the cycle D, while Lemma 16 requires a move in the
2-edge φ of C, which does not touch D. �

Since Observation 26 leaves the possibility that one of the two dock
vertices of an open dock is connected to no other dock vertex as long as the
other one is, we must note this simple case, too.

29. Observation. If a dock vertex of an open dock is connected to no
other dock vertices then it is not incident to any edge of K.

Proof. If some K-edge was connected to such a vertex, this vertex
would be an articulation point of H, in contradiction to Maker-2-connected-
ness. �

Between two closed docks. The situation of two closed docks con-
nected in K is considerably more complicated to analyze than the previous
case of two open docks. A waterproof discussion requires the investigation
of many potential configurations. In the end, however, we shall see that all
but one simple arrangement can be excluded because they would lead to
immediate Maker wins.

Let us begin with the construction of the objects that we know must be
there. Pick two paths A and B in K, the former from a to c and the latter
from b to d. See Figure 11 for two concrete example configurations. We do
not require, nor can we prove, disjointness of A and B but we know these
paths cannot intersect too deeply. As it turns out, the vertex x in the left
example from the figure already leads to a Maker win.

30. Observation. The paths A and B cannot share a vertex that is at
the same time an inner vertex of A or one of the two dock vertices a and
c, and an inner vertex of B or one of the two dock vertices b and d. In
particular, the docks g and h do not intersect.
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Proof. Assume there exists such a common vertex and pick such an x,
if possible one of the dock vertices. We show that Maker wins by playing
at x. If x is an inner vertex of A, we have the two paths Pa := xAagαφβ and
Pc := xAcgαφβ (see left-hand side of Figure 11) in each of which Breaker
must answer. So Breaker must play a vertex in g ∪ φ. If x = a or x = c,
Lemma 12 forces Breaker to answer in the same set. A symmetric argument
for the upper shore shows that Breaker must also play in h ∪ φ.

α

β

b

a g

h
d

x

c

B

A

α

β

b

a g

h

A

B

d

c

e
x

y

Figure 11. The two connecting paths A and B touching in
a common inner vertex (left) and touching in two different
vertices (right).

If g and h do not intersect then this already tells us that Breaker can
only play at α or β. If g and h do intersect then their intersection is by
almost-disjointness only one vertex, which by our choice must be x and is
thus already taken by Maker. Therefore, Breaker is restricted to play at α
or β in this case, too. In addition to this, Lemma 15 requires an answer in
each of the two cycles xAagcAx and xBbhdBx, whose intersection does not
contain α and β. So Maker wins. �

Note that Observation 30 also excludes the possibility that the paths A
and B share an edge because at least one vertex of such an edge would be
an inner vertex in both paths (or dock vertex). This tells us that A and B
cannot overlap too much. We now show that they cannot even intersect in
two vertices.

31. Observation. The upper and lower path, A and B, share at most
one vertex.

Proof. Assume for contradiction that the two paths intersect in more
than one vertex; we show that this gives a Maker win. Pick a shortest
path P in A ∪ B from g to h. By symmetry we may assume that P goes
from a ∈ g to b ∈ h and then minimality implies that c, d 6∈ V (P ). Hence,
C = αgaPbhβφα is a cycle.

Starting at a, we walk along C into the core until we enter the first edge
e that does not lie in A. (In an extremal case, e might actually be the dock
edge h.) Denote the inner vertex of C that came just before e by x; clearly
x ∈ V (A) ∩ V (B). Note that we do not claim that x be an inner vertex of
A or B. Compare the right drawing of Figure 11.

Let y 6= x be a further contact point of A and B such that the total
length of the paths xAy and xBy is minimal. Observation 30 implies that
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these two subpaths share no edges and therefore, by minimality and almost-
disjointness, the composition D = xAyBx is a cycle (not self-touching)
which clearly has x as an inner vertex. We have constructed two cycles, C
and D, which share x as an inner vertex. Maker plays at x. By Lemma 16
Breaker must answer at α or β and by Lemma 15, he must play somewhere
in D, but these vertex sets are disjoint. �

In case that A and B do not touch at all, we now extend our construction
by a connecting path. Let F be a shortest such path from any vertex u of A
to any vertex v of B. (See the right-hand side of Figure 12 for an example.)
Note that in contrast to ordinary graphs, the minimality of F does not
guarantee that F contains no further vertices of A or B. So we have to
prove this property.

32. Observation. The connecting path F touches A and B each in only
one vertex.

Proof. Assume for contradiction that F touches B in two vertices, u, v,
say. If one of these vertices is a dock vertex, let x be this dock vertex. (By
almost-disjointness there can be only one.) Otherwise there lies at least one
inner vertex of B between u and v; let x be such an inner vertex then. See
the left-hand side of Figure 12.
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Figure 12. The connecting path F touching B in two places
(left) and touching an inner vertex of B (right).

Maker plays at x. If x is a dock vertex then Lemma 12 requires an
answer in the path xhβφα. Otherwise we have the two paths xBbhβφα and
xBdhβφα in both of which Breaker must play, which leaves the same replies
b, d, β, α. By Lemma 15, Breaker must also answer in the cycle xBuFvBx
since it contains x as an inner vertex. Together, even in the best case for
Breaker, when b and d both lie in that cycle, he is left with no more replies
than b and d.

There are further threats on the lower side. We have the two paths
xBuFwAsgαφβ and xBvFwAsgαφβ, where w is a contact vertex of F and
A, and s is either a or c. Lemma 12 forces Breaker to play in both paths but
their intersection clearly contains none of b and d; hence Maker wins. �

We now know that F connects exactly one vertex p of A to one vertex q
of B. (Where the case that A and B touch is included as the degenerate case
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where F has length 0 and consists of just one vertex p = q.) See Figure 13.
We can say even a little bit more. The contact points p and q cannot be
arbitrary vertices of A and B. Only outer vertices, as drawn in the figure,
are allowed.

33. Observation. The vertices p and q are outer vertices of A and B,
respectively.

Proof. Assume for contradiction that one of them, q, say, is an inner
vertex, of B. See the right-hand side of Figure 12. We assume by symmetry
w.l.o.g. that c is no closer to p than a so that qFpAagαφβ is a path (i.e.,
does not use a vertex twice).

Maker plays at a. Then Lemma 12 requires an answer in the path agαφβ
and Lemma 15 one in the cycle aAcga. Therefore Breaker must play at α
or c. Maker’s next move is at q. It lies on the path (qFpAa)[+a] and is an
inner vertex of the cycle qBbhdBq. Lemma 12 and Lemma 15 require an
answer in the path and the cycle, respectively, and since these substructures
intersect only in Maker’s vertex q, Maker wins. �

β
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q

Figure 13. The final configuration between two closed
docks consisting of the three paths A,B, and F .

We are almost done. It remains to show that Figure 13 is complete.

34. Observation. There are no further edges in the core K touching
any vertex of the three paths A,B, and F .

Proof. Let M := A ∪ B ∪ F . We assume for contradiction that there
exists some further edge e ∈ E(K) \E(M) that contains a vertex of M . If e
contains also some vertex outside of M , we can apply Lemma 23 to obtain
a path P in K connecting two vertices u, v ∈ V (M) and containing no other
vertex of M . In the degenerate case, when e ⊆ V (M), we pick two vertices
u, v ∈ e such that the unique path from u to v in M does not contain the
third vertex w of e.

Denote by Q the unique path from u to v in M , precisely, Q is of the form
uAv, uBv, uFv, uApFv, uBqFv, or uApFqBv, depending on the locations
of u and v. Together with the path P , respectively the edge e, this path
forms a cycle C = uQvPu respectively C = uQveu in K. Next we pick
a shortest path R in M from the lower dock to the upper dock, w.l.o.g.
R = aApFqBb. Minimality guarantees that this path does not contain the
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other two dock vertices c and d, so that the composition D = αgaRbhβφα is
a cycle which contains the 2-edge φ. The left-hand side of Figure 14 shows
what we have constructed so far.
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Figure 14. Cycle constructions for the proof of Observation 34.

We now have to distinguish the different types of Q. If the cycle C
contains an edge of F then this edge contains a vertex x that is inner to
both cycles. As in many situations before, Lemmas 15 and 16 then show
that if Maker plays at x, Breaker has no reply to the threats of the two
cycles C and D, so he loses.

The situation is similarly easy for Maker if u, v ∈ V (A) and the subpath
uAv contains the contact point p (the case u, v ∈ V (B) being completely
symmetric to this). Then the cycle C again shares an edge with R, namely
the one edge of A that contains the vertex p. So Maker wins at a vertex in
this edge.

The only remaining configuration is one that has u and v on the same
side of p on the path A, as depicted in the right drawing of Figure 14.
Between u and v lies an inner vertex x of A (x ∈ {u, v} being allowed)
and this x is clearly also an inner vertex of C. We claim that Maker wins
at x. Consider the two paths P1 = xAagαφβ and P2 = xApFqBbhβφα.
Lemma 12 requires a reply in their intersection, the 2-edge φ plus possibly
the dock vertex c. The cycle C, in which Breaker must also play, contains
none of these vertices, so Maker wins. �

This concludes the analysis of the core between two closed docks. It
must look exactly as shown in Figure 13.

Between a closed and an open dock. To analyze the core between
a closed and an open dock, we cannot proceed as in the previous cases. If
we started with a few basic connections and then added new paths provided
by Lemma 6, trying to sort out winning configurations, we would never
reach an end. As we shall see, there exists an infinite family of topologically
different core types. So we have to take a different approach, which unfor-
tunately comes not as naturally as the incremental one. We first present a
uniform class of hypergraphs—without further motivation—and afterwards
prove that the core between a closed and an open dock must come from this
class.
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35. Definition. A 3-uniform hypergraph L is called a ladder of height
h ≥ 0 on a0 and c0 if it can be constructed by the following procedure:

- begin with the empty hypergraph L0 = ({a0, c0}, ∅) on two vertices
a0, c0;

- for i = 1, . . . , h do
(if h = 0 then simply skip the loop)

- take a new path Fi of length ≥ 2 with start vertex ci−1, end
vertex ai−1 (which are both vertices of Li−1) and no further
vertices common with Li−1;

- denote the last inner vertex of Fi by ai and the last outer
vertex different from ai−1 by ci; as shown in this figure:

ci−1

. . .
ai−1ai

ci

Fi :

the vertices ai and ci will be the contact points for the next
path Fi+1;

- let Li := Li−1 ∪ Fi;
- either end the construction of L by letting L := Lh

or take an optional additional path R from ch to some vertex r of
the path ch−1Fhah except ah (but r = ch−1 allowed) that contains
no further points of Lh and let L := Lh ∪R.

Figure 15 shows a ladder of height 4. The dotted bubbles indicate level sets,
defined as follows. The ith level, 1 ≤ i ≤ h, consists of the set V (Fi) \
{ai−1, ci}, i.e., the vertices of the path ci−1Fiai. On level 0 lies only the
vertex a0; and the remaining vertices at the top of L, which are exactly
those in V (R) \ {r} or only the single vertex ch, in case the optional path
R is not present, form the highest level h + 1.

a2

c1a1

a0c0

c2

c3a3

c4 a4

r

F4

F2

F3

F1

level 0

level 2

level 4

level 3

level 1

level 5

Figure 15. A ladder of height 4 with the optional top path
R drawn dashed and the level sets indicated as dotted bub-
bles.

We let the highest level of a ladder be one above its formal height because
we like to think of the vertex ch and the optional path R as parts that do not
belong to the regular structure. This convention shall turn out convenient.
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The introduction of ladders is motivated by the next observation, which
describes the closed-open case completely. We still face two docks g =
{α, a, c} and h = {β, b, d} in a hypergraph H, which we assume to be a loser.
This time, g shall be closed and h shall be open, with a and c connected to
b in the core K. Let J denote the connected component of K that contains
the dock vertices a, b, c, extended by the vertices α and β and the dock edges
g and h. We can now put all we have to say about J in one brief statement.

36. Observation. The hypergraph J is a ladder on a0 = α and c0 = β.
Its height is at least 1, and at least 2 if it does not contain the additional
path R.

Figure 16 shows such a ladder on α and β with the two contained docks
arranged in the way we usually draw them.

db

a1 c1

α = a0

β = c0

Figure 16. A ladder of height 3 connecting a closed lower
and an open upper dock.

In order to allow the rather long and technical proof of Observation 36
to focus on the basic ideas, we prepare the main technical tools separately
in advance. Like in the open-open and closed-closed case, we will argue that
if J contains any further edges not in L then the whole hypergraph H must
be a winner. Therefore we again need a suitable set of paths that end in
a 2-edge and can thus be used as threats against Breaker. For the present
open-closed case, we shall make repeated use of certain paths that connect
some vertex x somewhere up in the ladder to one of the base vertices a0 and
c0, which we define recursively as follows.

For a level-1 vertex x let

Pa(x) = xF1a0 and Pc(x) = xF1c0

denote the shortest path from x to the respective base vertex. For x on a
level j with 2 ≤ j ≤ h, let

Pa(x) =

{
xFjcj−1Pa(aj−1) if j even,

xFjaj−1Pa(aj−1) if j odd

and

Pc(x) =

{
xFjaj−1Pc(aj−1) if j even,

xFjcj−1Pc(aj−1) if j odd.

These somewhat cumbersome definitions describe rather simple geometrical
objects: two kinds of paths that climb down the ladder on its left and its
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right rail. The paths Pa all head for a0 while the Pc aim for c0. The parity
conditions simply take care of the alternating orientations of the paths Fi:
Pa(x) goes through the ai with even i and through the ci with odd i; for
Pc(x) vice-versa. Figure 17 depicts the two complementary paths Pa(x) and
Pc(x) for a level-4 vertex x (compare to Figure 15). The path Pc(x) starts
from x along F4 to its left end, from where it descends down the ladder along
the left rim. Likewise, the path Pa(x) climbs down the right-most edges of
the ladder.

a2

a1

c0

c2

a3

c4 a4 x

a2

c1a1

a0

c3a3

x

Figure 17. The paths Pc(x) (left) and Pa(x) (right) for a
vertex x on level 4 of the ladder from Figure 15. Common
vertices marked.

The following property makes the paths Pa and Pc useful for Maker.

37. Lemma. Let x be a level-j vertex of some ladder of height h. If x
is an inner vertex of Fj or its starting vertex cj−1 then the two paths Pa(x)
and Pc(x) intersect in no vertices other than x and all ai with 1 ≤ i < j.

Proof. From their starting point x on Fj the two paths in consider-
ation head in opposite directions. (Note that in the case x = cj−1 this is
guaranteed because the level of this vertex was defined to be j, not j − 1.)
Once the two paths enter Fj−1, they stay on opposite sides of the ladder as
far as possible. Hence, they can only intersect in the middle vertices ai that
lie below. �

The paths Pa and Pc shall now be used to derive Maker wins for any
configuration that deviates from a ladder shape.

Proof of Observation 36. Pick any inclusion-maximal ladder L on
a0 = α and c0 = β in J , which will have height at least 1 because any
path from β to α can serve as the path F1. We do not demand that L have
greatest possible height but only that we cannot extend it with J-edges to a
larger ladder. It might be helpful to convince oneself that this means exactly
that either L contains the optional path R—which in a way seals off the top
part of L—or that there is no additional path from ch to any other vertex
of Fh; although formally, this fact shall not be needed in this proof.

So assume for contradiction that J ) L. As before we either employ
Lemma 23 to get a J-path P between two distinct vertices of L or, in the
degenerate case, we find a single edge e ∈ E(J) \ E(L) with e ⊆ V (L). Let
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j be the lowest level touched by P respectively e. We distinguish different
possible contact configurations.

If the second contact point of the path P lies also on level j or, in the
degenerate situation, if at least one further vertex of the additional edge e
does, then Maker wins as follows. Denote the two contact points of P and
L by u and v. In the degenerate case, pick u, v ∈ e such that the third
vertex of e does not lie between u and v on the path Fj (respectively R,
if j = h + 1). Then there exists an inner vertex x of Fj respectively R
between u and v. See Figure 18. This x is an inner vertex of the cycle
C = xFjuPvFjx respectively C = xRuPvRx, which in either case contains
no vertices on levels strictly less than j. (Observe that calling cj a level-
(j + 1) vertex was again necessary to guarantee that the cycle C cannot use
the edge {aj−1, aj , cj}.) For the case j = 1 we note that C does surely not
contain c0 because otherwise it would include the upper dock, making it a
closed dock.

Now Maker plays at x. By Lemma 15, Breaker’s reply must be in C
but Lemma 12 prompts for an answer in each of the paths Pa(x)a0φc0 and
Pc(x)c0φa0. By Lemma 37 the intersection of these two paths and the cycle
C contains no vertex other than x, so Maker wins.

aj−1

aj−2

cj−1

aju

vx
C

cj

cj−2

P

Fj

Figure 18. Both contact points u and v on level j.

Our analysis of the situation where there is only one contact point, u,
say, on the lowest contact level j ≥ 1 splits into two cases. First the general
case: j < h. The union of all paths Fi with i > j together with the path R
(provided it is present), i.e., the induced subhypergraph of L on all vertices
on levels above j and the vertex aj , forms a connected subhypergraph M
of L, shown in Figure 19. Pick a shortest path Q in M from aj to v, the
second contact point of the new path P (respectively e) and L, which must
lie in M because u is the only contact on level j. If there is a third contact
point w, relabel v and w if necessary, such that v lies no farther from u than
w, so that by almost disjointness w does not lie on Q. We obtain a cycle
C = ajQvPuFjaj with aj as an inner vertex. By construction, C contains
no vertices strictly below level j. Maker plays at aj . Just like above, Breaker
is forced to answer in C but also in each of the two paths Pa(aj)a0φc0 and
Pc(aj)c0φa0, whose intersection contains no vertex of C, except aj , of course.
Hence Maker wins.

It remains to consider the case j = h. (j = h + 1 is impossible because
that would leave no higher levels for the second contact point.) First observe
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aj−1cj−1

aj cju

v

Q

P

M

Figure 19. Second contact point v on a higher level.

that L surely contains the optional path R since otherwise the new path
P (or the edge e) would have to connect to the only level-(h + 1) vertex
ch, forming such a path R itself, thereby contradicting the maximality of
L. We know that P (resp. e) connects u ∈ V (Fh) \ {ah−1, ch} to some
v ∈ V (R) \ V (Fh). See Figure 20. A possible further contact point w would
also have to lie in this set, in which case we assume w.l.o.g. that v come
before w on rRch, so that w does not lie on the path rRv.

ah

ah−1

ch

ch−1

r

u

v
R

P

Fh

x

Figure 20. Contact points on levels h and h + 1.

If u = r then Maker wins easily at u because this is then an inner vertex
of the cycle uRvPu, which intersects at least one of the paths Pa(u) and
Pc(u) only at x (depending on the parity of h). Note that u need not be
an inner vertex of Fh for this to work. So we are left with the case u 6= r.
Between u and r on Fh we find an inner vertex x of Fh (x = u and x = r
being allowed). This x is also an inner vertex of the cycle xFhuPvRrFhx,
which contains no vertices strictly below level h. Like we argued before,
Maker wins by playing at x because Breaker cannot play in this cycle and
the two paths Pa(x)a0φc0 and Pc(x)c0φa0 at the same time.

This eventually shows that our assumption J ) L must be false. The
additional statements about the height of L follow immediately from the
fact that the lower dock is closed. �

5. Playing for Breaker

The classification into different connection types in the core started from
the assumption that the whole hypergraph at hand was a loser. We do not
know yet, whether any hypergraph with one 2-edge whose core uses only
those connections singled out in the previous section, could perhaps be a
winner. We settle this issue by proving the open implication of the following
theorem.
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38. Theorem. An almost-disjoint Maker-2-connected hypergraph with
only 3-edges except exactly one 2-edge is a loser if and only if its core con-
nections are of the following three types:

- between two open docks there is only a path as described in Obser-
vation 27 and shown in Figure 9 on page 44,

- between two closed docks the connection satisfies all properties
stated in Observations 30 through 34 as shown in Figure 13 on
page 48,

- between a closed and an open dock the connection is a ladder as
stated in Observation 36 and indicated in Figure 16 on page 51.

Elementary losers. Essentially, the task in this section will be to prove
that certain hypergraphs, usually subhypergraphs of the given hypergraph
at hand, are losers. Besides some side remarks along our discussion of win-
ning paths and cycles in Section 2, we have by now not really proven any
hypergraphs losers. So let us start by collecting some necessary basic facts,
again about paths and cycles.

39. Lemma. Any almost-disjoint 3-uniform path P is a loser. Moreover,
even P [+u] is a loser for any vertex u ∈ V (P ).

Proof. It suffices to prove the second, stronger statement; by induction.
Let v be any Maker move in P [+u]. Breaker can always separate u and v in
the following way. If u and v do not lie in a common edge of P , Breaker
plays a vertex y between them. (For example, in Figure 10 on page 44, y
would be one of the two marked vertices between u and v.) Otherwise he
plays the third vertex y in the edge that contains u and v.

The hypergraph P [−y] is then the disjoint union of two paths, where u
lies in one component and v in the other. Each of those components are
losers by induction and consequently, the whole graph P [+u,+v,−y] is a loser
by Lemma 17. A length-zero path with just one vertex is trivially a loser
because it contains no edges that Maker could fill. �

40. Lemma. An almost-disjoint cycle of 3-edges is a loser. Even more,
it remains a loser if we replace one 3-edge by a 2-edge.

Proof. It obviously suffices to prove the second statement. (The right-
hand side of Figure 4 on page 36 showed how a cycle with one 2-edge can
be interpreted as a 3-uniform cycle with a Maker play at an outer vertex.)
Irrespective of where in the cycle Maker plays his first move x, Breaker
always takes one vertex of the 2-edge, destroying that edge. The resulting
hypergraph can be interpreted as a path of 3-edges in which Maker has
played one vertex, x. Hence it is a loser by Lemma 39. �

Typical applications of Lemma 39 will be configurations in which some
path is only connected through a single vertex to the rest of the hypergraph.
In such a situation, the Articulation Lemma tells us that we can either
remove that path completely or, if it already contains a Maker move, replace
it by another Maker move at the contact point. The precise conditions are
captured by the following corollaries to Lemma 39.
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41. Corollary. Let H = P ∪ B be the union of an almost-disjoint
3-uniform path P and an arbitrary hypergraph B that have exactly one point
in common. Then H is a winner if and only if B is. �

42. Corollary. Let P be an almost-disjoint 3-uniform path and B be
an arbitrary hypergraph, such that V (P )∩V (B) = {p} for some articulation
vertex p. Let furhter x be any vertex of P . Then the union H = P [+x] ∪ B
is a winner if and only if B[+p] is. �

Since ladders play an important role in our classification, we shall need
losing conditions for them, too.

43. Lemma. A ladder on a 2-edge is a loser.

44. Lemma. Let x be a vertex on the 1st level of a ladder L on a0 and c0.
Then the hypergraph L[+x,−a0] is a loser.

a2

x

a2
F2F2c2 c2

F1F1

c0 a0

a1 c1

c0 a0

a1 c1

Figure 21. The ladder configurations of Lemma 43 (left)
and Lemma 44 (right).

Figure 21 shows the respective configurations of these lemmas. The two
statements are closely related. We prove them together by an interleaved
induction.

Proof of Lemmas 43 and 44. We parameterize the lemmas by the
height: A(h) denote the statement of Lemma 43 restricted to ladders of
height h and B(h) denote the statement of Lemma 44 restricted to ladders
of height h. We perform a mixed induction on h by reducing B(h) toA(h−2),
and A(h) to A(k) and B(`) with k < h and ` ≤ h. Note that this avoids
circular arguments although A(h) may use B(h), because B(h) does not rely
on A(h).

Induction bases. Since a height-0 ladder on a 2-edge is just that 2-
edge, A(0) is obviously true, and B(0) is true simply because the respective
hypergraph does not contain any edges on which Maker could win. Let us
also treat B(1) at this point to take care of some irregularities which result
from the path R. If the optional path R is not present, the hypergraph
is just the path F1 with one vertex played, a loser by Lemma 39. If R is
present, we can simply remove it because Breaker’s move a0 has destroyed
the second contact point c1 of R and F1. So we get the same loser as before.
(Though Figure 21 shows the regular path F2 instead of the path R, one can
still see there that the rightmost path can be deleted because of Breaker’s
move at a0.)

The induction step for B(h), h ≥ 2, works similarly. We use Corollary 42
to replace the path F1 by a single Maker move at a1. Then we delete the
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dangling path F2 (see right of Figure 22) by Corollary 41. What’s left is a
ladder of height h− 2 on the new 2-edge {a2, c2}.

Induction step for A(h), h ≥ 1. If Maker plays his first move x on level 0,
i.e., x = a0, then Breaker answers at c0. We can then delete the path c0F1a1

(or a slightly shorter path up to r if h = 1 and R is present). This leaves a
ladder on the 2-edge {a1, c1}, a loser by induction.

If Maker’s first move x is on level h or h + 1, Breaker answers at ah−1.
This disconnects levels h and h + 1 from all lower levels. See the left-hand
side of Figure 22. If x lies on level h, the top part is a loser by B(1) and if x
lies on R then we can remove most of Fh so that the rest of the top part is
a loser by Lemma 39. The lower part is (after removal of the dangling path
Fh−1) a ladder of smaller height, hence also a loser by induction.

ajahch
r

Fh

cj
x

cj+1aj+1

Fj

R

aj−1 cj−1

aj−2cj−2

ch−1ah−1

ch−2 ah−2

Figure 22. Maker plays x on level h or h + 1 (left) and
Maker plays on an intermediate level j < h (right).

We turn to the general case: Maker x on a level j with 1 ≤ j < h. In
this situation Breaker plays aj−1. See the right-hand side of Figure 22. As
in the previous situation, the ladder breaks up into a lower and an upper
part, the former again (after removal of the dangling path Fj−1) being a
shorter ladder on the 2-edge {a0, c0}, a loser by induction. The upper part
can be interpreted as a ladder on aj−1 and cj−1 with aj−1 already played
by Breaker and the vertex x (now on level 1) already played by Maker. A
loser by induction. �

Almost all arguments during our classification in Section 4 were in a
sense written out of Maker’s perspective. Usually, we proved that some
configuration cannot occur in a loser by presenting a winning strategy for
Maker. The case distinctions were set up in such a way that in each step we
could derive a Maker win with very few explicit moves—often just one—by
listing several threats in the form of paths and cycles, that could not all be
countered by Breaker at the same time.

The present situation is very different. We want to show that Maker
cannot win on certain hypergraphs. So we pick good Breaker moves and
must, in principle, provide counters against all possible Maker attacks. The
obvious problem here is: Breaker has no threats; by the very definition of
the game.

In the proof of the two preceding ladder lemmas, we could exploit the
strong symmetry of ladders, which allowed an induction. The question now
is: How to get control over all possible Maker strategies on the whole hyper-
graph H? The key is again the central role of the 2-edge φ. If we manage
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to get a Maker or Breaker move into that edge, the hypergraph will lose its
Maker-2-connectivity. Precisely, if β is taken then α becomes an articula-
tion vertex, which makes the hypergraph amenable to an application of the
Articulation Lemma to break it into smaller parts. The resulting compo-
nents will then be simple enough to be analyzed by the above lemmas about
paths, cycles, and ladders.

The basic components. Let us collect all such components that arise
when Breaker plays one vertex of the 2-edge φ, at β, say. Precisely, we list
all types of hypergraphs M such that H [−β] can be written as a union M∪D
with V (M)∩ V (D) = α and such that α is not an articulation vertex of M ,
i.e., we only consider minimal components.

First observe that such a component M contains no more than 3 docks
because any lower dock g is connected to at most two upper docks and
in H [−β] any upper dock vertex is connected to at most one lower dock.
Closed upper docks have unique lower partners anyway and all open docks
are destroyed at β so that they no longer link their partners on the lower
shore.

Out of the three connection types from the previous section, we assemble
again three essentially different types of such components M .

(i) Two connected closed docks, where the upper dock has been de-
stroyed. See the upper left of Figure 23.

(ii) A closed lower dock connected to an open upper dock. This is
simply a ladder, shown on the upper right of Figure 23.

(iii) An open lower dock between two closed upper docks, which both
have their base point a0 = β deleted. This is the union of two
ladders with the base point a0 deleted in each, glued together on
the first edge of their F1-paths. See the lower part of Figure 23.

The remaining possibilities of an open lower dock between two open
upper docks or one open and one closed upper dock, or an open lower dock
linked to just one upper dock, can be interpreted as subhypergraphs of
configurations covered by case 3 since a path to an open dock can be seen
as the first level of a ladder. So we omitted them from the above list since
it will suffice just to observe that all relevant properties of components of
type (iii) will carry over to them.

The base case. Our analysis of possible Maker moves begins with the
easiest situation, where Maker takes α and Breaker gratefully answers at β
so that afterwards everything is nicely decomposed. Although this is a very
special case, it forms the basic result to which we shall later reduce all the
other possible Maker plays.

45. Observation. If in the first move each player takes one vertex from
the 2-edge φ, the game is lost for Maker.

Proof. To go conform with the above classification, we assume by sym-
metry that Maker has played at α and Breaker has answered at β. We now
simply go through our list and verify for each type whether M [+α] is a loser.

Case (i). Two closed docks. Maker’s move has produced a 2-edge in
the lower cycle. Two applications of Corollary 41 remove the upper cycle
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Figure 23. Components of H [−β].

entirely, together with the path in the middle, leaving only the lower cycle
which is lost by Lemma 40.

Case (ii). A closed lower dock connected to an open upper dock. We
interpret the ladder as sitting on the two dock vertices of the lower dock,
which are now linked by a 2-edge. This is a loser by Lemma 43.

Case (iii). An open lower dock between two closed upper docks. The
two ladders overlap on the lower dock. We shorten one ladder by this edge
so that afterwards they only touch on one vertex. Then one ladder contains
the additional Maker vertex α while the other does not. Applying the Ar-
ticulation Lemma to this common point, we see that the whole component
must be a loser by Lemma 44.

The remaining cases are covered by case 3, as remarked above. �

Although Observation 45 deals with only two very special first Maker
moves, it is the essential step towards the proof of Theorem 38. In the
following we check all possible first Maker moves outside of φ. The analysis
is again split into the old three classes: whether Maker plays between two
open docks, between two closed docks, or between an open and a closed
dock; the classification above, into components M of H [−β], will be used as
a tool only.

The general scheme is the same for all cases. Breaker answers Maker’s
move x by a move in the 2-edge φ, at β, say. Then α has become an
articulation vertex, so we can write

H [−β] = M ∪D with M ∩D = {α}
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and such that M contains Maker’s vertex x, which we technically consider
as not deleted for a second to get a sound definition of M . The component
M is then of one of the three types in Figure 23.

Now comes the decisive trick. We show two things: M [+x] is a loser but
M [+x,+α] is a winner. Then by the Articulation Lemma, this implies that
the whole hypergraph H [+x,−β] is a winner if and only if D[+α] is a winner!
But D[+α] is by construction a subhypergraph of H [−β,+α]. Note that we
don’t have to put an additional +x in the exponent because the vertex x
lies not in D. Now Observation 45 tells us that this hypergraph is lost, so
we are done.

What we did in the previous paragraph could be termed less formally
in the following way. When we know that M [+x] is a loser but M [+x,+α]

is a winner, the Articulation Lemma tells us that α is a reasonable move
for Maker. Since he cannot win on M [+x] he makes the best of this part
by playing the threat α which turns it into a winner. Now, since we may
legitimately assume that Maker will play at α, the problem is reduced to
the question whether the rest D[+α] is a winner. Which, as we know, is not.

46. Observation. If Maker plays his first move between two open docks
(including the respective dock vertices) he loses.

Proof. Breaker answers Maker’s move x by playing at β, destroying
the upper docks. We write H [−β] = M ∪ D as described above, where M
contains two open docks, so it’s type is one of those subtypes of case (iii) in
our classification.

Clearly M [+x,+α] is a winner, and since M is a subhypergraph of a type-
(iii) component, Lemma 44 tells us that it is a loser. As described above,
we conclude that the whole hypergraph H [+x,−β] must be a loser. �

47. Observation. If Maker plays his first move between two closed docks
(including the respective dock vertices) he loses.

Proof. Breaker again takes a vertex from the 2-edge. He has to be a
little careful with his choice, however. Have a look at Figure 13 from page 48
again. If Maker’s first move x is a vertex of the lower path A then Breaker
replies at α, breaking the lower cycle. Likewise, Breaker answers a move in
the upper path B at β. In the remaining case x ∈ V (F ) he picks one of α
and β arbitrarily. (In the special case when F has length 0 and Maker plays
the unique contact vertex in V (A) ∩ V (B), we also let Breaker pick one of
α and β at will.)

Assume by symmetry that Breaker plays β, i.e., x was played on the
upper cycle or the connecting path F . (Have a look again at Figure 23,
where the vertex x was already marked.) As the upper cycle has been
broken, we can apply Corollaries 41 and 42 to replace the complete upper
part B ∪ F by a single Maker move at the contact point p ∈ V (B). Then
Lemma 40 tells us that the resulting cycle A[+p] is lost. In terms of our
general recipe, we have thus shown that M [+x] is a loser. On the other
hand, M [+x,+α] is clearly a winner. Again the general argument described
above now settles the issue. �
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The remaining closed-open case again bears a difficulty. The general
argument we used in the previous cases will only work for the special sit-
uation that Maker’s move is on the first level of the ladder. (Recall that
the core between an open and a closed dock is a ladder.) Plays at higher
levels require an inductive argument and are deferred to the moment when
we compile all our observations into a proof of Theorem 38.

48. Observation. If Maker plays his first move on the first level of the
ladder between a closed and an open dock, he loses.

Proof. Assume by symmetry that the lower dock is the open one.
Breaker plays at β, destroying all upper docks. Then we know that the
resulting component M that contains x is of type (iii) (or a subhypergraph
with just one ladder) with Maker’s move x on the first level of one ladder.
Lemma 44 tells us that M [+x] is a loser and M [+x,+α] is as always trivially
a winner. �

The alert reader might have noticed that case (ii) of our classification
did not show up in the last three observations. This does not mean that it
has been overlooked. It simply was not needed for the proofs. Remember
that Observations 46 to 48 are statements about the three connection types
from Theorem 38, they only used the three M -types from this section as a
tool.

Eventually, almost all details of Theorem 38 have been studied. It is
time to put our observations together.

Proof of Theorem 38. That the core of a loser can only have the
listed connection is obviously true, simply because they are just those types
that survived our lengthy discussion from Section 4.

The converse almost follows from Observations 45 to 48. They provide
successful Breaker counters against all first Maker moves except for a play
on a higher level of a ladder between a closed and an open dock.

This remaining case is the only situation where Breaker must not play
in the 2-edge φ. Instead, he chops a few steps off the ladder. We prove that
Breaker wins if Maker plays on a level j ≥ 2 of some ladder between a closed
and an open dock by induction on the sum S of the heights of all ladders in
the core.

At the induction base S = 0 there are no ladders, so the statement is
trivially true. For the induction step, we let Breaker answer Maker’s move x
at aj−1, just like in the proof of Lemmas 43 and 44. (See the right-hand side
of Figure 22 from page 57 again.) This decomposes the ladder into an upper
and a lower part such that the upper is lost by Lemma 44 and the lower
remains, after removal of the dangling path Fj−1, a ladder of smaller height.
Since Maker’s move x does not lie in the lower part, we have reduced the
original hypergraph to one that still satisfies all requirement of our Theorem
but has smaller ladder-height sum S. This finishes the proof. �

The algorithm. It is time to return to our initial complexity question.
In the following proof of Theorem 4 we compile the results of the preceding
sections into a polynomial-time algorithm for the decision problem of win-
ning and losing. This is a straightforward procedure, simply revisiting all
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reduction steps and showing that the core types from Theorem 38 are check-
able efficiently. We emphasize again that a detailed runtime analysis of the
below method is not our goal. Neither do we strive for an actual implemen-
tation of the described procedures nor for an improvement of asymptotic
runtime bounds. Theorem 38 is a purely qualitative result, identifying the
games at hand as a tractable subclass of general hypergraph games.

Proof of Theorem 4. Let H be the given almost-disjoint hypergraph
of rank-3. By Lemma 17 we can assume that H is connected. If H contains
more than one 2-edge, it is a winner by Corollary 11. If it contains no
2-edges, we create all first-move hypergraphs H [+x,−y] with x, y ∈ V (H)
as described in Section 3 in connection with Lemma 24. This produces a
quadratic number of hypergraphs, amongst which we have to check those
that contain a 2-edge for winning or losing.

All hypergraphs with one 2-edge can be severed at articulation vertices,
as described in Lemma 25, until we are left with Maker-2-connected hyper-
graphs only, each of which contains exactly one 2-edge. (Remember that
whenever this process produces two 2-edges, we are done by Corollary 11.)

The core of each of those Maker-2-connected hypergraphs is then de-
composed into links between the docks, as we did in Section 4. For each
such link we check whether it complies with the specifications of Theorem 38
to see if Maker can win. This is not a difficult task. Each admissible con-
nection type is expressed in terms of paths that are built upon each other.
We can use a simple greedy path-finding method to successively reconstruct
any required or allowed connection. Whenever we spot a violation of the
admissible topology we know that we face a winner. �

6. Almost-Disjointness

We promised some comments on the influence of the almost-disjointness
restriction on our games on rank-3 hypergraphs. Have a look at the two
overlapping 3-edges in Figure 24, who violate this condition. Assume this
configuration occurs within a hypergraph H in such a way that no further
edges touch upon the vertices a and b, so that our edge pair is linked to the
rest of H only through p and q. We claim that in such a configuration the
two 3-edges are of no use for Maker.

p q

a

b

qp

Figure 24. Two worthless 3-edges.

49. Lemma. A hypergraph H containing the left configuration of Fig-
ure 24 with no further edges connected to a and b is a winner iff H [−a,−b],
the same hypergraph with this configuration replaced by the one to the right,
is a winner.
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Proof. The hypergraph H [−a,−b] is a subhypergraph of H, so if Maker
wins on the former he clearly also wins on the latter. We show that a mak-
ing strategy σ for H on the left yields also a Maker win on the reduced
hypergraph on the right. Therefore we follow this strategy on both hyper-
graphs, copying our Maker moves given by σ from the left to the right and
the Breaker answers, which are played on the right, back to the original
hypergraph H. This works fine as long as our strategy σ does not prompt
us to play at a or b. In that case, if we must play a, say, we actually do
so on the left and then—this is the trick—answer it immediately by a fake
Breaker move at b. In the reduced hypergraph on the right side, these two
half-moves are simply left out. After a and b are taken on the left, we can
continue with σ until the whole board is full.

Who has won? Since we followed the winning strategy σ on the left,
we must have won there, i.e., some edge e ∈ V (H) is completely ours. But
since we have given Breaker a vertex in each of the two 3-edges on a and b,
this winning edge is neither of them. Consequently, we have also occupied
all vertices of e on the right. �

A similar situation—or rather the opposite—is shown in Figure 25.
Again the two edges are part of some bigger hypergraph H in such a way
that no further edge contains a or b and everything else is linked through p
and q, who now are the inner vertices of this little cycle.

a

b

p qp q

Figure 25. Two 3-edges behave like a single 2-edge.

50. Lemma. A hypergraph H containing the left configuration of Fig-
ure 25 with no further edges connected to a and b is a winner iff H [+a,+b],
the same hypergraph with this configuration replaced by the one to the right,
is a winner.

Proof. Assume a making strategy σ for the left hypergraph H. As
above we follow σ on the right until a move in {a, b} is required. In this
case, play this vertex, a, say, and as above, reply by a fake Breaker move at
b. This deletes one of the two 3-edges and turns the other one into a 2-edge
on p and q. From then on we just pursue σ again on both sides to the end
of the game. As in the proof of Lemma 49, we conclude from the fact that
σ has lead to a win on the left that we have also won on the right because
all edges on the left are also present on the right. The newly created 2-edge
is just the one that was present on the right in the first place.

The other implication works very similar, with exchanged sides. Assume
we have a making σ on the right. Against Breaker on the left we also follow
σ—until Breaker takes one of the vertices a and b. (We won’t play there first
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because our strategy does not know those vertices.) In this case, we take
the other vertex and then resume our strategy σ again. Just as above the
two hypergraphs are now completely identical, so we win on the left because
we are sure to win on the right. �

Let us call a pair of two 3-edges that overlap on two vertices a diamond.
The previous discussions have shown again that the inner vertices are, as so
often, the valuable ones, while the outer vertices are of minor interest.

Assume we try to find out whether some given rank-3 hypergraph that is
not almost-disjoint is a winner. If we find a configuration like the one on the
left of Figure 26, Maker can win if the path P connecting the two diamonds
is almost-disjoint because the terminal diamonds behave like 2-edges. If P
is not so nicely behaved and there sits a diamond somewhere on P , as shown
on the right-hand side of the figure, we may assume that this diamond has
some further edge f attached to one of its inner vertices because otherwise,
we could just remove that diamond without changing the value of the game.
From where f is connected, the new diamond looks like a 2-edge again; so
if we trace a path from f back to one of the two terminal diamonds (using
Maker-2-connectivity) we win as soon as we meet another diamond at an
inner vertex.

P

P

P

f

Figure 26. Two diamonds connected at their “good” vertices.

Though we have only just started the discussed of a simple example,
it appears as if the presence of only two or three diamonds in a Maker-2-
connected rank-3 hypergraph create an influence of “pseudo 2-edges” that
should, in general, lead to a win like in the left of Figure 26. What this
“general case” should precisely be, is of course unclear and a proper analysis
appears to bring a lot of case distinctions about. Yet, this brief discussion
might indicate that the problem might be solvable in a way that rids a given
hypergraph from its diamonds so that we may afterwards apply Theorem 4
directly, as a black box, without unrolling the tedious proof of Theorem 38
again.

7. Comparing Games

We close this chapter by introducing a new view on positional hyper-
graph games that incorporates several concepts we have met so far.

Let us have a closer look at our favorite tool, the Articulation Lemma.
Intuitively, it tells us that the two halves of a hypergraph that are only
connected through a single articulation vertex, can interact in only three
different ways. So in a sense, seen through an articulation, there exist only
three different types of hypergraphs: those halves A that win on their own,
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those that do not help the B on the other side at all, and those “semi-
winners” who are not winners themselves but for which A[+p] is a winner.
Cutting such a hypergraph in two at the articulation, we get an isolated
“half” with a marked contact point.

51. Definition. A pointed hypergraph is a pair (H, p) of a hypergraph
H = (V,E) and a point p ∈ V . The one-point union (A, p) t (B, q) of two
pointed hypergraphs (A, p) and (B, q) is the pointed hypergraph(

(A ∪̇B)/{p = q}, {p, q}
)
,

meaning that we take the disjoint union of A and B and then identify the
two points p and q, choosing this merged vertex as the point of the union.

The term “one-point union” is borrowed from topology, confer [10,
Chp. 1, Sec. 13]. Sometimes, when the precise choice of the point is not
relevant, we shall treat a pointed hypergraph just as a hypergraph, simply
ignoring the point, speaking of winners and losers, for example.

p p

Figure 27. Two equivalent pointed hypergraphs.

Of course, we want to play on such one-point unions. Compare the two
pointed hypergraphs in Figure 27. We claim that with respect to composi-
tion at the point p, these pointed hypergraphs have the same value in any
game. Whatever partner (X, q) you plug in at p from the right, either you
win on both one-point unions or on neither of them. We defer the proof of
this statement until we have prepared suitable notions, which shall allow for
a much more general result.

The partial order H1. Define a partial quasi-order on the class of all
pointed hypergraphs by letting

A ≤ B

for two pointed hypergraphs A,B iff

(13) A tX is a winner ⇒ B tX is a winner

for all pointed hypergraphs X.
This relation is obviously reflexive and transitive but clearly not anti-

symmetric. Call A and B equivalent if A ≤ B and B ≤ A, denoted by
A ≡ B. We define H1 to be the partially ordered set that results from
identifying equivalent pointed hypergraphs.

This notion of equivalence captures all information about a pointed hy-
pergraph with respect to its impact on winning and losing when plugged
into some other pointed hypergraph. In the union AtX we may replace A
by any B ≡ A without changing Makers prospects of winning—independent
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of the partner X. Note that by the very definition of ≤, two pointed hyper-
graphs A and B are not equivalent iff there exists some “separating” pointed
hypergraph Z such that AtZ is a winner but B tZ is a loser or vice versa.
So with respect to this Z, the pointed hypergraphs A and B show a different
behavior.

What can we say about H1? First note that it contains a maximal and
a minimal element. Any winner A with any vertex p ∈ V (A) as its point,
is greater or equal than any other pointed hypergraph. Hence, there is a
maximal element 1 in H1 that contains all pointed winners. To see that it
contains only winners, consider some winner A together with an arbitrary
loser B and let U be a pointed hypergraph without any edges. Then A tU
is a winner while B t U is still a loser. Hence, A 6≤ B. This means that
no loser lies above any winner and consequently the class 1 contains only
winners (each with an arbitrary vertex as point). This observation allows
us to abbreviate the expression “A is a winner” as A ∈ 1.

A similar argument shows that H1 has a minimal element, 0, which
contains all absolute losers—pointed hypergraphs that do not contribute
anything. All empty graphs, like U from above, fall into this class. Trivially,
because whenever U tX becomes a winner for such a U and some X then
X alone must already be a winner. Hence, for any pointed C the one-point
union C tX is also a winner and thus U ≤ C. Note that unlike the case of
the maximal element, 0 is not the class of all losers but much smaller. So
U ∈ 0 is really a stronger statement than saying that U is a loser!

What lies between 0 and 1 in H1? The answer is simple, we already
know. The following theorem is the Articulation Lemma in disguise.

52. Theorem. The poset H1 is a linear order of exactly three elements.

Proof. We show that A ≡ B for any two arbitrary pointed hyper-
graphs, neither of which is a winner nor an absolute loser, i.e., A,B 6∈ {0, 1}.
Then we know that there can be at most one further class besides 0 and 1.

Since B 6∈ 0, there exists a Y 6∈ 1 with BtY ∈ 1. Then the Articulation
Lemma tells us that B[+q] must be a winner, where q be the point of B. On
the other hand, we know that for any X with AtX ∈ 1 the reduction X [+p]

must be a winner (p being the point of X), also by the Articulation Lemma,
because A 6∈ 1. Together this means that for any such X the composition
B t X is also a winner. Hence, A ≤ B. Exchanging the roles of A and B
we also obtain the converse relation and therefore, A ≡ B.

To see that a third class in H1 exists at all, simply note that the 2-edge
in Figure 27 is neither a winner nor an absolute loser. �

Our original claim about the two pointed hypergraphs from Figure 27 is
now almost proven. We just argued that the single edge lies in the unique
intermediate class of H1. By Lemma 40 the cycle on the left is no winner
either and it also no absolute loser because it gives a win if composed with
itself. Hence, by Theorem 52 the two pointed hypergraphs must lie in the
same equivalence class. The whole order H1 is shown in Figure 28, with a
typical representative for each class.
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0

1

Figure 28. The poset H1.

Merging along many points. One can generalize the union at just
one point to amalgamations along larger sets. Actually, the index of H1

already calls for the following definitions.

53. Definition. A k-pointed hypergraph is a tuple (H, p1, . . . , pk) con-
sisting of a hypergraph H = (V,E) and a list of distinct vertices p1, . . . , pk ∈
V called points. The k-point union (A, p1, . . . , pk) t (B, q1, . . . , qk) of two
k-pointed hypergraphs is the k-pointed hypergraph(

(A ∪̇B)/{pi = qi : 1 ≤ i ≤ k}, {p1, q1}, . . . , {pk, qk}
)
,

meaning that we take the disjoint union of A and B and then merge each
individual point pair {p1, q1} through {pk, qk} into a single new point.

Our partial quasi-order generalizes naturally by letting A ≤ B for two
k-pointed hypergraphs iff (13) holds for all k-pointed hypergraphs X. Then
Hk is defined as the partially ordered set of equivalence classes of k-pointed
hypergraphs with the order induced by ≤.

As an example for 2-pointed hypergraphs we remark that we have al-
ready worked with the partial order H2: in the previous section on almost-
disjointness. The reader will have already noticed the similarity of Figure 27
with Figures 24 and 25 from pages 62 and 63. This is, of course, no coinci-
dence. Phrased in our new terminology, the respective Lemmas 49 and 50
are actually equivalence proofs for 2-pointed hypergraphs.

As with H1 we observe that each Hk has a maximal element 1, which
contains exactly all winners, and a minimal element 0, the class of absolute
losers. The respective arguments are exactly the same as for the case k = 1
above. We note that the degenerate case k = 0 has already appeared, in
form of Lemma 17. With no points, A t B is just A ∪̇ B and therefore the
dichotomy of Lemma 17 applies: H0 consists of only two classes, 0 and 1.
(Here losers are always absolute losers.)

Can we say anything more about Hk for k ≥ 2? Unfortunately, our
knowledge amounts to pretty little. We have the following basic lower
bounds.

54. Proposition. For each k ≥ 0, the partial order Hk contains a chain
of length k + 2.
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E1 E2 E3 Ek

Figure 29. Some basic k-pointed hypergraphs.

Proof. From the basic k-pointed hypergraphs Ei in Figure 29 we con-
struct a chain of length k + 2 in Hk as follows. Let Ur denote the k-point
union E1 t · · · t Er of the first r such hypergraphs, 0 ≤ r ≤ k. So the k-
pointed hypergraph Ur contains exactly r independent 2-edges on the points
p1 through pr, and k − r isolated points. Further let Uk+1 be an arbitrary
k-pointed winner. We have

U0 < U1 < · · · < Uk < Uk+1 in Hk

because for each r ≤ k the k-point union UrtEr is a winner while Ur−1tEr

is obviously lost; and Uk+1 is larger than all the other Ur. �

55. Proposition. For each k ≥ 1, the partial order on Hk contains an
antichain of length

(
k

bk/2c
)
.

Proof. For each index set I ⊆ {1, . . . , k} of cardinality bk/2c we let
UI denote the composition of all Ei with i ∈ I. For any pair J 6= J ′, the
k-pointed hypergraphs UJ and UJ ′ are incomparable because for r ∈ J \ J ′

the composition UJ tEr is a winner but UJ ′ tEr is not, i.e., UJ 6≤ UJ ′ ; and
likewise, any Er′ with r′ ∈ J ′ \ J shows that UJ 6≥ UJ ′ . �

These basic calculations might give us some first feeling for the com-
plexity of the Hk. However, they do not address the important point. The
crucial question is:

Are all Hk finite?

If some Hk is finite then so are all Hj with j ≤ k, obviously, because
any Hj is embeddable in Hk by adding k − j isolated dummy points to
any j-pointed hypergraph. We know that H1 is finite. Is there a level in
the hierarchy (Hk) where the complexity explodes from finite to infinite? If
so, this should probably happen quite early, maybe on level two or three.
However, any such statement appears to be difficult to prove.

The finiteness of Hk would have strong implications on the complexity
of weak positional games on hypergraphs that are only Maker-k-connected.
Such a hypergraph H can be written as a nontrivial union of two subhyper-
graphs A and B who overlap on no more than k vertices. If we interpret A
and B as k-pointed hypergraphs with these vertices as points, we can write
H = AtB. If Hk should be finite we could, in principle, identify the equiva-
lence classes of A and B independently—by solving the k-point unions AtX
and B tX for a complete set of representatives X of Hk. The outcomes of
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those subproblems would then tell us the value of H. This way we decom-
pose the big problem whether H is a winner into a constant number of such
questions for smaller hypergraphs. (Note that the size of the representatives
is bounded.) For a decision problem that is PSPACE-complete in general,
this would be quite a remarkable result: we could divide and conquer with
very little overhead.

Actually, we have used this principle already extensively throughout this
chapter—for the case k = 1. In Section 3 we repeatedly cut at articulations
until we obtained Maker-2-connectivity. Each decomposition step used im-
plicitly, through the Articulation Lemma, the fact that H1 contains only
three classes, one of which could always be excluded because of the exis-
tence of a 2-edge in one half.

I have constructed an approximation of H2 that carries a lot of symme-
tries and which might already be the complete picture but I see by now no
way of proving such a statement. Intuitively, finiteness of Hk means that
through only k points, the two halves cannot exchange an arbitrary amount
of information. It should be that during a play across a small interface,
the points soon get congested—until the graph eventually decomposes into
completely disjoint parts. I am strongly convinced of the following.

56. Conjecture. The poset Hk is finite for every k ≥ 0.




