9 Anhang

9.1 Photolumineszenz-Meßplatz

Abb. 9.1 zeigt eine schematische Darstellung des Photolumineszenz-Meßplatzes. Als Anregungsquellen standen ein Argon-Ionenlaser (coherent innova 90) mit Emissionslinien im sichtbaren (450 nm bis 514 nm) und UV-Spektralbereich (330 nm bis 360 nm) sowie ein Halbleiterlaser (668 nm) zur Verfügung. Untersuchungen in Abhängigkeit von der Anregungsleistungsdichte wurden in der Regel unter Verwendung der 514.5 nm-Linie des Ar⁺-Lasers durchgeführt, da diese die höchste Ausgangsleistung besitzt. Mit Hilfe von Graufiltern konnten so Variationen der

Anregungsdichte im Bereich von etwa 1 mW/cm² bis zu einigen 100 W/cm² erreicht werden.

Die Proben wurden in einem Helium-Durchflußkryostaten (Oxford) gekühlt. Sie wurden auf einem Probenhalter befestigt, der über Schrauben in vertikaler Richtung justiert werden konnte und durch Drehung um seine Achse wahlweise in die Anregungsstrahlengänge des Ar⁺- oder Halbleiterlasers gebracht wurde.

Das von der Probe emittierte Licht wurde durch ein optisches Linsensystem auf den

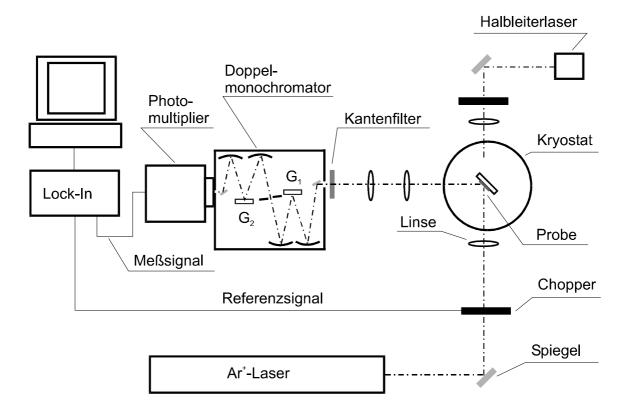


Abb. 9.1: Experimenteller Aufbau für Photolumineszenzuntersuchungen.

Eintrittsspalt eines Doppelmonochromators mit 0.22 m Brennweite (Spex 1680) abgebildet. Für den Meßbereich zwischen 700 nm ein Gitter und 1200 nm wurde 600 Strichen/mm und einer Blazewellenlänge von $\lambda_{Blaze} = 1000 \text{ nm}$ verwendet. Die lineare reziproke Dispersion betrug 3.6 nm/mm, was zu einer spektralen Auflösung von 0.36 nm bei einer Spaltbreite von 100 µm führte.

Das spektral zerlegte Licht wurde mit einem stickstoffgekühlten Photomultiplier (Hama-

matsu R3236) detektiert. Die Photokathode bestand aus einer Ag-O-Cs-Verbindung (S1-Kathode), mit einer Empfindlichkeit im Bereich zwischen 380 nm und 1150 nm. Die Signalverarbeitung erfolgte mittels Lock-In-Technik. Die Ansteuerung des Monochromators und die Aufzeichnung der Meßdaten erfolgte über Labview®-Programmroutinen. Die Spektren wurden anschließend mit der spektralen Empfindlichkeit der Meßapparatur, der Apparatefunktion, korrigiert, die in Kalibrierungsmessungen bestimmt wurde.

9.2 Symbolverzeichnis

Tab. 9.1: Liste der verwendeten Symbole

Tab. 9.1: Liste of	der verwendeten Symbole
$a_{\rm eff}$	effektiver Bohrradius
A_{B}	Fehlbesetzung des Gitterplatzes B durch Atom A
A_{i}	Atom A auf Zwischengitterplatz
$\mathrm{BE_{CL}}^{\mathrm{VBM}}$	Bindungsenergie eines Rumpfniveaus bezüglich E _{VBM}
C_{ij}	Elastizitätstensor
d_c	kritische Schichtdicke
$E_{A,D}$	Aktivierungsenergie eines Akzeptors, Donators
E_{C}	Coulombenergie
E_{F}	Fermienergie
E_{FX}	Exzitonenbindungsenergie
E_{g}	Bandlücke
E_{LBM}	Leitungsbandminimum
E_{VBM}	Valenzbandmaximum
f	Gitterfehlanpassung
FF	Füllfaktor
\hbar	Planck`sche Konstante
hν	Photonenenergie
jsc	Kurzschlußstromdichte (short circuit)
K	Kompensationsgrad
k	Boltzmann-Konstante
k	Exponent im Zusammenhang zwischen PL-Intensität und Anregungsleistung
n	Nettoladungsträgerkonzentration (Elektronen)
N	Störstellenkonzentration
N_c	Konzentration geladener Störstellen
N_{M}	Mott-Konzentration
p	Nettoladungsträgerkonzentration (Löcher)
P_{exc}	Anregungsleistung
p_{exc}	Anregungsleistungsdichte
$p(T_Q)$	Dampfdruck bei T _Q
Q_{m}	molarer Fluß
R	Relaxationsgrad
R_a	mittlere Rauhigkeit
R_{A-B}	Bindungslängen zwischen Atomen A und B
$r_{\rm g}$	Wachstumsrate
R_S	Abschirmradius
R_T	Tunnellänge
T	Temperatur
T_{Q}	Betriebstemperatur der Quelle
u	Anionenauslenkung (Kristallparameter)
V_A	Leerstelle des Atoms A
V _{OC}	Leerlaufspannung (open curcuit)

Fortsetzung	Tab.	9.	1:

α	lineare thermische Ausdehnungskoeffizienten
$\Delta_{ m so}$	Spin-Bahn-Wechselwirkung
$\Delta_{ m cf}$	Kristallfeldaufspaltung
ΔE_L	Leitungsbanddiskontinuität
ΔE_{V}	Valenzbanddiskontinuität
$\Delta H_{ m f}$	Bildungsenthalpie
ε	charakteristische Energie der Niederenergieflanke von QDAP-Emissionsbanden
ϵ_{ij}	Deformationstensor
ε(ω)	dielektrische Funktion
γ	Amplitude der Potentialfluktuation
$\lambda_{ m exc}$	Anregungswellenlänge
μ	Beweglichkeit
η	Wirkungsgrad
$\eta = c/2a$	tetragonale Verzerrung
η_{g}	Wachstumseffizienz
$\phi_{n,p}$	Quasi-Fermi-Niveau der Elektronen, Löcher
ρ	spezifischer Widerstand
σ	charakteristische Energie der Hochenergieflanke von QDAP-Emissionsbanden

9.3 Abkürzungsverzeichnis

Tab. 9.2: Liste verwendeter Abkürzungen

AM	Air Mass
BX	gebundenes Exziton
CuAu	Strukturphase: Kupfer-Gold-Ordnung
CuPt	Strukturphase: Kupfer-Platin-Ordnung
CL	Core Level
CpCuTEP	Cyclopentadienyl-Kupfer-Triethylphosphin
CpCuCNtB	Cyclopentadienyl-Kupfer-Tertiärbutylisocyanid
DAP bzw. DA	Donator-Akzeptor-Paar-Übergang
DTBSe	Ditertiärbutylselenid
ECP	Electron Channeling Pattern
EDX	Energy Dispersive X-ray Analysis
EPD	Etch Pit Density
FB	Free-to-Bound-Übergang
FX	freies Exziton

Fortsetzung Tab. 9.2:

XRD

For	rtsetzung Tab. 9.2:	
FW	/HM	Linienbreite, Full Width at Half Maximum
IR		Infrarot
JCI	PDS	Joint Committee on Powder Diffraction Standards
KC	ľN	Kaliumcyanid
KL	,	Kathodolumineszenz
LB		Leitungsband
LC	AO	Linear Combination of Atomic Orbitals
LO	1	longitudinal optisch
ME	BE	Molecular Beam Epitaxy
MC	OVPE	Metal Organic Vapour Phase Epitaxy
MC	OCVD	Metal Organic Chemical Vapour Deposition
PL		Photolumineszenz
PV		Photovoltaik
QD	OAP	Quasi-Donator-Akzeptor-Paar-Rekombination
SE	M	Secondary Electron Microscopy
TE	D	Transmissionselektronenbeugung
TE	Ga	Triethylgallium
TE	M	Transmissionselektronenmikroskopie
UH	IV	Ultrahochvakuum
UP	S	UV-Photoelectron Spectroscopy
UV	7	Ultraviolett
VB	1	Valenzband
XP	S	X-ray Photoelectron Spectroscopy

X-Ray Diffraction