
Appendix A

Calculations

Distribution comparing measures

Overview. At this point, distribution comparing measures shall be reviewed

and characterized. Depending on the syntax used within the community in ques-

tion, these measures are designed to determine either the proximity, similarity,

distance or divergence of the two considered probability distributions f1 and f2.

Following the characterization (c.f. [143, 171]) they can be grouped into mea-

sures related to the Kullback–Leibler distance, as a representative of the

Ali-Silvey class (c.f. [9, 145, 146]), which is also known as relative entrophy,

DKL(f1||f2) =

∫
f2(x) log

f2(x)

f1(x)
dx, (A.1)

and into ones related to the Bhattacharyya measure [30]

DB(f1||f2) =

∫ √
f1(x)

√
f2(x) dx. (A.2)

Bhattacharyya related and beyond. At least, two other measures should

mentioned that are closely related to the Bhattacharyya one. The first one is

the Matusita metric (c.f. [169])

DM(f1||f2) =

∫ (√
f1(x) −

√
f2(x)

)2

dx, (A.3)

which is related to the (A.2) by∫ (√
f1(x) −

√
f2(x)

)2

dx = 2 − 2

∫ √
f1(x)

√
f2(x) dx

DM(f1||f2) = 2 − 2DB(f1||f2)
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and the second one is the Hellinger distance

DH(f1||f2) =

√∫ (√
f1(x) −

√
f2(x)

)2

dx, (A.4)

which is related to the (A.2) and (A.3) by

DH(f1||f2) =
√

DM(f1||f2) =
√

2 − 2DB(f1||f2).

The Bhattacharyya measure can be interpreted as a special case of the Cher-

noff distance (c.f. [56])

DC(f1||f2) = max
0≤t≤1

{− log µ(t)} , µ(t) =

∫
[f1(x)]1−t [f2(x)]t dx, (A.5)

which coincides for t = 1/2 with the Bhattacharyya measure.

Properties. Both families of measure, the (A.1) as well as (A.5) are additive in

the sense that the measure of two joint distribution of statistically independent,

identically distributed random variables can be represented as the sum of the

marginal measures. If the random variables are not identically distributed, the

Chernoff measure in (A.5) for t �= 1/2 is not additive, whereas the Kullback–

Leibler and Bhattacharyya remain additive (c.f. [129]).

When fitting a set of data to a distribution from a family of distributions, the

one with the minimal Kullback–Leibler distance is the maximum likelihood

estimation, assuming that the true distribution exists among the family. For

comparing two normal distribution, the t−test as well as Kullback–Leibler

distance are equal. Further, the χ2 − −function is the first term of the Taylor

expension of the Kullback–Leibler distance (c.f. [64]).

Applications. The Bhattacharyya measure and its relatives are successfully

been used for example in quantum mechanics (c.f. [219]), in objection recognition

and feature tracking (c.f. [147, 229]) as well as in automatic self generation in

neural networks (c.f. [228]). There, model selection is performed by comparing

data and model prediction. In the latter case, Poisson distributions, representing

frequency distributed data, are compared with each other (c.f. [3]). Since Poisson

distributions have equal mean and variance, it could be shown that the Bhat-

tacharyya measure compensate the bias of the χ2 − −statistics. However, for

arbitary distributions, the Bhattacharyya measure does not eliminate the bias

within the χ2 −−model–fitting.
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Bhattacharyya for Gaussians. The Bhattacharyya measure for two

Gaussian distributions f1 and f2 with f1 ∼ N (µ1, σ
2
1) and f2 ∼ N (µ2, σ

2
2)

f1(x) =
1

2πσ2
1

exp

{
−(x − µ1)

2

2σ2
1

}
(A.6)

f2(x) =
1

2πσ2
2

exp

{
−(x − µ2)

2

2σ2
2

}
(A.7)

The integral
∞∫

−∞

(f1(x))n (f2(x))n dx =

√
2πσ2

1σ
2
2/n

(2πσ2
1σ

2
2)

n
√

σ2
1 + σ2

2

exp

{
−n (µ1 − µ2)

2

2 (σ2
1 + σ2

2)

}
(A.8)

For n = 1/2, this results in
∞∫

−∞

√
f1(x) f2(x) dx =

√
2σ1σ2√
σ2

1 + σ2
2

exp

{
− (µ1 − µ2)

2

4 (σ2
1 + σ2

2)

}
. (A.9)

Linear overlap

In the following section, the linear overlap functional FL shall be derived. Let

therefore the parameter distribution be normally distributed as well as the im-

posed model variability distribution, as the parameter and model variability dis-

tributions are linear transforms of each other. In order to interpret the overlap

according to (4.1), one has to enforce ‖M‖2 = ‖D‖2 = 1.

For that reason the normalization factors have to be calculated. For the reason,

the integral of two normally distributed densities f1 and f2 are calculated. With

the notation of (A.6) and (A.7) as well as the integration of (A.8), one gets

〈f1, f2〉 =
1√

2π (σ2
1 + σ2

2)
exp

{
− (µ1 − µ2)

2

2(σ2
1 + σ2

2)

}
. (A.10)

Therefore the normalization factor for the variabilities has to be chosen according

to

〈f, f〉 =
1

2σ
√

π
(A.11)

resulting in the data and model variabilities

D =
1

4
√

π
√

σD

e
− (x−µD)2

2σ2
D (A.12)

M =
1

4
√

π
√

σM

e
− (x−µM )2

2σ2
M . (A.13)
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by dividing the densities (A.6) and (A.7) through the corresponding square root

of (A.11). Even more, the dividing (A.10) through the factors results in the linear

overlap functional

〈D,M〉2 =

√
2 σD σM

σ2
D + σ2

M

e
− (µD−µM )2

2(σ2
D

+σ2
M

) . (A.14)

In comparison to the Bhattacharyya measure in (A.9), the mean deviation

is divided only by factor 2 instead of 4. Therefore a larger mean deviation is

”punished” more in the overlap setting.

Maximal Overlap

Equation (A.14) can be used to derive a necessary condition for a maximal overlap

in the linear case of section 4.4 for a constant mean deviation and constant data

variability. Therefore, the overlap is considered to be a function of the variance

of the data σM only. By choosing

u(σM) =

√
2 σD σM

σ2
D + σ2

M

and v(σM) = e
− (µD−µM )2

2(σ2
D

+σ2
M

)

and applying the product rule, considering

d

d σM

u(σM) =
1

u(σM)

σD(σ2
D − σ2

M)

(σ2
D + σ2

M)2
and

d

d σM

v(σM) = σM
(µD − µM)2

(σ2
D + σ2

M)2
v(σM),

the first derivative of the overlap

d

d σM

〈D,M〉 =
d

d σM

u(σM) v(σM)

=
u(σM) v(σM)

2σM(σ2
D + σ2

D)

(
σ4

M − 2(µD − µM)2σ2
M − σ4

D

)

= e
− (µD−µM )2

2(σ2
D

+σ2
M

)

√
σD

2σM (σ2
D + σM)

3

(
σ4

M − 2(µD − µM)2σ2
M − σ4

D

)
.

Since the functions u and v as well as σM are supposed to be positive, the neces-

sary condition for σM maximizing the overlap is

σM =

√
(µD − µM)2 +

√
(µD − µM)4 + σ4

D ≥ σD. (A.15)

Since the overlap is continuous and vanishing for values close to zero and infinity,

equation (4.11) is also sufficient.


