
Chapter 3

Existing approaches for model

discrimination and selection

Introductory comments. The forthcoming chapter shall provide just a brief

but general survey on model discrimination and selection as well as on the

preceding parameter estimation. It is not intended to fully cover all aspects

of the state of the art research. For an extended general reading, literature

like [14, 15, 234, 238] is recommended. Nevertheless, the review should create

awareness of the surfacing problems.

The main focus here will be the strategies or internal characteristics that are

applied to either discriminate or select models. The statistically experienced

audience, familiar with the existing concepts as well as their application poten-

tialities, might want to skip this chapter. For the others, it is worthwhile reading

it before returning to the in-depth motivation of overlap concept and its inter-

pretation in chapter 4.

After these introductory comments, frequently employed methods are presented

that can roughly be contributed either to the frequentist (section 3.1 and 3.2)

or Bayesian school (section 3.3). It shall be stressed here, that neither of the

schools is either favored or declined. The distinction was only chosen to struc-

ture the survey. A reflection on both types of approaches follows in section 3.4,

trying to focus on the differences between the two concepts and showing some

application challanges. Additionally, sensitizing for algorithmic aspects later, the

implementation is also reviewed within each section.
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14 3. Existing approaches for model discrimination and selection

3.1 Parameter estimation and model discrimi-

nation for regression models

In the typical situation of model discrimination, one has to either select the best

or eliminate the worse models from a pool of candidates. They can be repre-

sented as a parameterized family, a nested hierarchy of models or structurally

non-nested.

The classical process of model discrimination is based on a set of given param-

eters. Therefore, the entire process starts with a parameter estimation for each

model that is under consideration. In a second step, the actual discrimination

step, the quality of the goodness–of–fit, resulting from the parameter estima-

tion, is evaluated. Therefore, this section also starts with reviewing parameter

estimation.

Linear regression models

In the majority of every day statistical applications, regression models are con-

sidered (c.f. [197, 223]). They describe the causal relationship of a known form

between random variables. The relationship is given in terms of a model, concate-

nating the dependent (endogenous) variable d, which is explained by the model,

and the independent (exogenous, explanatory) variable X, which explains or pre-

dicts the dependent variables through the model. For the following, a general

linear regression model is given

d = Xθ + ε. (3.1)

To revert to a notation set in reference literature and to be consistent with the

notation introduced in chapter 2, let X ∈ �
D×P , d ∈ �

D, the parameters

θ = (θ1, . . . , θP )T ∈ �P and ε the error term. The last mentioned error term

indicates that every single measurement will be accompanied by some measure-

ment error. For theoretical reasons and necessities, it is usually assumed to be

normally distributed. The distribution’s expected value is associated with the

measurement data itself; the possible data derivation by the standard deviation

of the normal distribution.

Parameter estimation (PE). Conducting a parameter estimation for linear

regression models in (3.1) means to solve an optimization problem for θ, namely

to minimize the distance between the measured data d and the model values Xθ

FLS(θ) = min ‖d − Xθ‖2. (3.2)
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The distance between the measured data and model is taken in the L2 sense. It

is also referred to as the residual. Therefore, the optimization is also referred to

as least square estimation or residual optimization

θLS = arg min ‖d − Xθ‖2 (3.3)

= arg min FLS(θ). (3.4)

The solution θLS of (3.2) is on the one hand a deterministic result of the op-

timization problem but on the other hand also a statistical result, namely the

result of an estimator θ̂ for the parameters with respect to (3.1).

Analytical solution. Assuming that the variance of the data, representing

measurement uncertainty, is known and given by the variance-covariance matrix

ΣD, in terms of ε ∼ N (0,ΣD), then it can be shown (c.f. [25, 84]) that the

weighted least squares estimation for parameters θLS (3.4) can be calculated

analytically by

θ̂LS =
(
XTΣ−1

D X
)−1

XTΣ−1
D d. (3.5)

The estimator θ̂ in (3.5) happens to be the one with the smallest variance of all

unbiased linear estimators (BLUE-estimator), namely (c.f. [25])

Var(θ̂LS) =
(
XTΣ−1

D X
)−1

. (3.6)

Equation (3.6) can be used to link the variance data ΣD to the quality of the

estimated parameters θLS, which is expressed by the variance of the estimation of

θ̂. Thus, equation (3.6) characterizes the closeness of the estimated parameters

to the assumed to be ”true” parameters1 in the proposed model.

Maximum likelihood estimation (MLE). Another estimation method in

parameter estimation is the maximum likelihood principle. It is based on the

likelihood function FML which measures the probability of the distance between

model and data. In case of the considered linear regression models, it can be

expressed by

FML(θ) = P (‖d − Xθ‖)
and

θML = arg min P (‖d − Xθ‖)
= arg min FML(θ). (3.7)

1Question on the existence of true parameters is revisited in section 3.4.
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The statistical setting, namely determining or defining the employed probability

measure P, must be done in advance. Similar to (3.4), parameter estimation

means to solve an optimization problem, namely to chose the parameters θML

so that they maximize the likelihood function FML(θ). Thus, the parameters

θML are chosen so that the deviation between data and model is most probable.

However, the general setup of maximum likelihood estimations allows for a much

broader field of applications.

If the model is linear with respect to the parameters θ like in (3.1) and the

data errors are assumed to be normally distributed with known covariance, then

the maximum likelihood estimation coincides (c.f. [25]) with the weighted least

squares estimation of (3.5).

Significance interpretation. The most common approach to asset the uncer-

tainty or quality of the estimates of θ̂ is the confidence interval or region concept,

respectively (c.f. [55]). The underlying concept is usually tailored to suit linear

regression models like in (3.1), which results in the definition of the confidence

interval or region as

I =

{
θ ∈ �P | (θ − θ̂)T (XTΣ−1

D X) (θ − θ̂)

P
≤ F(α)

}
. (3.8)

For linear models of the form (3.1), the confidence region I therefore consists of all

parameters θ for which the data–model–deviation can be statistically explained

by considering a certain tolerance level (F -distribution) in terms of the rejection

probability α. The confidence region or interval translates data variance into

parameter variance.

Nonlinear regression models

The class of linear regression models only represents a small portion of real–world

problems. In many scientific and engineering applications, nonlinear regression

models are used that carry the time t as an independent variable. Since that type

of models is used later in chapter 5 and 6, the following notation is introduced

d = φ(t; θ) + ε, (3.9)

where φ is a nonlinear regression model function. A common class of nonlinear

regression models are solutions to ODE systems as in (2.1). Their trajectories

are prominent examples for nonlinear models

φ(t, θ) = Φt y0. (3.10)
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A good review on nonlinear regression modelling can be found in [234].

Linearization. In many applications, it is necessary to locally approximate

the nonlinear models by a linear one, namely by using the first term of its Taylor

expansion

X = J(t, θ0)(i,j) =
∂ φ(t, θ)i

∂ θj

∣∣∣∣
= 0

(3.11)

resulting in the linear approximation

φ(t, θ) ∼= φ(t,θ0) + J(t, θ0) · (θ − θ0) . (3.12)

To complete the notation and be consistent with chapter 2, the measured

data d is taken at the time points t = (t1, . . . , tN) and is abbreviated by

d = (d(t1), . . . ,d(tN)). The measurement errors represented by the correspond-

ing variances σ2 are abbreviated by σ2 = (σ2(t1), . . . , σ
2(tN)). With all the

notation, the commonly suggested weighted residual for data with non–constant

data variance (c.f. [25]) can be formulated in analogy to (3.2):

FNLS(θ) =
D∑

j=1

N∑
i=1

[
dj(ti) − (φ(ti; θ))j

σj(ti)

]2

. (3.13)

All measures FNLS, FML and FLS are from now on referred to as goodness–of–

fit measures and are unless specified abbreviated as FR as they are used within

residual fitting context.

Fit and performance. Writing the least square functionals differently shows

an additional challange within the parameter estimation. It can be written in the

probabilistic version as the mean squared error (MSE)

FMSE = E

(
1

n
‖f̂ − f‖2

)
, (3.14)

where f̂ is the estimated function and f the ”true” one. The expectation E is

taken for the preset probability measure, representing the error model of the data.

The equation (3.14) can be decomposited into

FMSE = E

[
1

n
‖(Ef̂ − f) + (f̂ − Ef̂)‖2

]

=
1

n
‖Ef̂ − f‖2 +

1

n
E‖f̂ − Ef̂‖2

= Bias2 + Variance (3.15)
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The first term, namely the Bias2, measures how well the model approximates the

”true” function. The second term, the variance, describes how well the function

can be estimated.

Applying the same arguments to the predictive squared error (PSE), one could

assess the predictability based on the estimation

FPSE = E

[
1

n
‖y+ − f̂‖2

]
(3.16)

= σ2 + FMSE, (3.17)

where y+ are new observations of the form y+ = f + η+ with η+ being a com-

ponentwise independent and identically distributed vector with ηi ∼ N (0, σ2),

which predicts the performance of the model for new observations.

Problems regression models. Even though the parameter estimation meth-

ods are well established, several problems can surface (c.f. [82]) and fallacies can

happen (c.f. [179]), which result in statements like: ”The whole area of guided

regression is fraught with intellectual, statistical, computational and subject mat-

ter difficulties.” A more historical review on inference problems can be found in

the articles by Freedman, where he deals with the uncritical use of regression

models and data modelling (c.f. [93, 94]).

The following example is taken from [54]. A bivariate random sample is investi-

gated with one response variable d and one explanatory variable θ combined in a

linear regression model of the form E(d|θ) = y + Xθ. A common procedure for

regression is to firstly estimate θ, namely by a least-squares estimator for θ̂ and

then secondly to fit the regression line, assuming that θ̂ is significantly different

from 0. Assuming

E
[
θ̂ | θ̂ is significantly different from 0

]
(3.18)

means that this conditional expectation is not equal to θ. The occurring bias of

the result, as shown in (3.15), can be neglected when θ is large. It cannot be

neglected when the residual distance is large or when the sample size is small.

Other bias sources lies in an underparameterization of the model. Generally, the

bias will vanish asymptotically.

Regard the special case θ = 0 then the (unconditional) estimator can be shown

to be

θ̂PT =

{
θ̂ is significant

0 otherwise.
(3.19)
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The construction (3.19) is referred to as pretest estimator (c.f. [130]). Two morals

can be learnt from it:

(a) A least squares theory does not apply when the same data are used to

formulate and fit a model

(b) to the analyst it must always be clear what any inference is conditioned on.

Model discrimination for regression models

As mentioned before, the classical process of model discrimination starts with

a parameter estimation for each model. In a second step, the quality of the

goodness–of–fit is evaluated. As the error ε in (3.1) is mostly normally dis-

tributed, the deviation between model and data within the least squares frame-

work in (3.2) is statistically described by the χ2− statistics. Therefore, the ratio

of the deviation, in terms of the F−test can be used to decide on the better

model–data–fit for model discrimination (c.f. [26, 37, 159, 197, 240]).

F–Test for non–nested models. For non–nested2 models the goodness–of–fit

in terms of the sum of squares S1 and S2 with S1 > S2 is taken as a ratio

Fnon−nested =
S1

S2

(3.20)

and tested according to the F−statistics with Fα(N−P, N−P ), where N denotes

the numbers of observations and P the number of parameters (c.f. [40]).

F–Test for nested models. For nested models, that means for models where

one model is extended by an additional effect and parameters, also ratio of the

sum of squares is taken, however, corrected

Fnested =
(S1 − S2)

S2

· N − P1

P2 − P1

. (3.21)

The ratio is supposed to be distributed according to Fα(P2 − P1, N − P2), where

P1 and P2 are the numbers of the parameters for each model, respectively.

For nested model, the general likelihood test is commonly employed (c.f. [31, 178,

117]).

2Nested models are models where one is a part of the other. Two models are non–nested
models if one model is not the extention of the other one.
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Optimal design for regression models

Literature. Optimal or optimum design, both terms are used in literature,

is meant to improve the goodness–of–fit and therefore also improve afterwards

inference by conducting specific measurements. Optimal design is founded on the

works of Atkinson in [17], Box and Lucas in [41], Chernoff in [57], Dette

and O’Brien in [73], Kiefer in [135, 136, 137, 138], Kiefer and Wolfowitz

in [139] and Smith in [217]. It was first derived for linear models and later

extended to generalized linear and nonlinear ones. Good reviews can be found

in [18, 19, 20, 87, 187, 192, 216]. For reason of better readability, the citation

references mentioned in the paragraph are omitted in the following as long they

have already been mentioned here in this introduction.

Idea. The strategy of the optimal (experimental) design for regression models

is to choose and weigh the measuring points ti in such a way that the parameters

are estimated best. For example, one could aim at achieving a low uncertainty in

the parameters as defined in (3.8) and therefore improve the prediction quality

of the model.

Especially in the case of nonlinear regression models, not all measured data points

equally influence the result of the parameter estimation. This is due to a inho-

mogeneous data–parameter–sensitivity–structure within the model’s state space.

Therefore, according to the idea of optimal design, one would choose the mea-

suring points in such a way that they have the highest possible impact on the

parameter estimation’s quality if the underlaying model is supposed to be true.

Speaking in mathematical terminology, optimal design involves finding a design ξ

consisting out of data points ti and associated weights ωi, which are non-negative

real numbers summing up to one (
∑

ωi = 1)

ξ =

(
t1 t2 t3 . . . tN
ω1 ω2 ω3 . . . ωN

)
. (3.22)

The Fisher information matrix M describes the parameters’ influence on the

model’s trajectory at the measuring points in terms of their linear sensitivity. On

the theoretic level, the matrix is defined in terms of the log-likelihood

M(ξ; θ0) = E

[
−∂2l(ξ; θ)

∂θ∂′θ

]
. (3.23)

The likelihood function l is the joint probability function of the sample, given the

probability distributions that are assumed for the errors. For complex models,
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the likelihood is often computationally impractical. Therefore, its linear approx-

imation is used

M(ξ; θ0) =
N∑

i=1

ωi
∂ φ(ti; θ0)

∂ θ

∂ φ(ti; θ0)

∂ θT
= JTΩJ, (3.24)

with Ω = diag(ω) being the diagonal matrix, composed of the weights and J the

Jacobian with respect to the parameters as defined in (3.11). The matrix M−1

happens to be the first order approximation of the covariance of the maximum

likelihood estimator for the parameters θ, as it can be seen for the linear case

in (3.5) and (3.8). Therefore, the prediction variance function [20] is defined as

DV(ξ; θ) =
∂ φ(t; θ)

∂ θT
M−1(ξ, θ)

∂ φ(t; θ)

∂ θ
. (3.25)

The very design ξG maximizing the prediction variance function of (3.25)

ξG = arg max DV(ξ, θ) (3.26)

is called G−optimal design. Three other optimizing strategies are based on the

Fisher information matrix M. The D–optimal design ξD, which maximizes the

logarithm of the determinant, the A–optimal the trace and the E–optimal the

eigenvalue of M. These three designs can be integrated into the so called local

Φ−design, which minimizes

ξΦ = arg min

{
1

P

(
λ1(ξ, θ)k + . . . + λP (ξ, θ)k

)}1/P

, (3.27)

where λ1(ξ, θ), . . . λP (ξ, θ) are the P eigenvalues of M(ξ, θ)−1 and k ∈ (0,∞).

The criteria (3.27) corresponds to the D−optimal design for k → 0, to the

A−optimal for k = 1 and E−optimal for k → ∞.

The general equivalence theorem establishes the equivalence of ξD and ξG for

linear and nonlinear models. Another reason for the D−optimum design’s pop-

ularity is that it remains invariant to an even nonlinear reparameterization of

the model function and that it is easy to illustrate: The theory of D–optimal

experimental design chooses a new design ξ in such a way that the volume of the

confidence region in (3.8) is minimized in order to guarantee a high significance

of the estimated parameters θ̂.

Other designs. Besides the mentioned design criteria for parameter estimation

introduced, other ones do exist and are based for example on the F− or T−tests

in [26, 52].
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Model discrimination. The main work in the field of optimal design focuses

on parameter estimation. Nevertheless, there are also some design criteria for

model discrimination. The most prominent one, is the T−optimum design and

was introduced by Atkinson and Federov in [21, 22] for nonlinear models.

Later, it was extended to multiresponse dynamical models in [233]. The duality

of optimum design for model discrimination problems and parameter estimation

problems was proven by Fedorov and Khabarov in [88]. For reasons of com-

pleteness, it shall be mentioned that another approach for combining designs for

parameter estimation and model discrimination in one step instead of consecutive

ones exists in [35, 188]. Further, a review on the differences on sequential verses

non–sequential designs for discrimination is documented in [71].

In case of two models φ1 and φ2, one of the models is assumed to be true with

known parameters (in our case φ1 and the parameter dependency is omitted).

Then the T−optimal criteria can be written as

ξT = arg max

{
min

2

T (ξ, θ2)

}
(3.28)

with

T (ξ, θ2) =
N∑

i=1

ωi‖φ1(ξi) − φ2(ξi, θ2)‖2. (3.29)

Surfacing problems. For linear regression models, the Fisher information ma-

trix of (3.24) is independent of the true parameter values θ0 of the unknown

parameters θ. For nonlinear models, the Jacobian J in (3.11) depends on the

unknown parameters θ, as the first partial derivatives have to be calculated.

Consequently, in order to get a suitable next design ξ, one has to adopt a best

guess for the parameters θ0 (see [23]: ”... This sensitivity of locally optimum de-

signs to the choice of the parameter value, θ0, presents problems since on the one

hand a poor guess for the true parameter value will lead to an inefficient design

and on the other hand a guess close to the true value is overprecise and may result

in a non-informative optimum design.”). Also due to this linear approximation

approach, symbolized by the Fisher matrix M, the designs perform poorly when

the model is quadratic (c.f. [244]).

In many applications in chemical and biochemical reactions, experimental opti-

mal design is used (c.f. [46, 72, 226]). However, one should not forget, firstly, that

it is sometimes not possible to measure at the points that are suggested by the

design and, secondly, in an iterative process of repeated designs, also referred to
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as sequential design, the cost of real-world experiments sometimes do not allow

such experiments.

When the model is unknown, the design criteria must work well regardless of

which model is the true one. However, the robustness towards model uncertainty

means they do not only work well on average. More, the estimator has to perform

well over all models and shall not vary amongst those models with high posterior

probability. In [161, 162], Läuter included model uncertainty in the choice of

design by averaging the design criteria function over a finite set of possible points.

Implementational aspects

Formulating either the parameter estimation or the optimal design problem re-

sults in an optimization problem. For the vast majority of present real–world

application, especially in biokinetic or pharmacokinetics applications, the op-

timization problem itself turns out to be nonlinear. The algorithm has to be

tailored to the demands of the problem. A good review on advantages and disad-

vantages of several nonlinear numerical optimization for biokinetics and metabolic

simulations can be found for example in [172].

A prominent problem in optimization refers to the problem of local and global

convergence. To put it in a nutshell: Deterministic methods experience a lo-

cal convergence, whereas there exists stochastic methods that converge globally.

However, algorithms allowing for global convergence result in higher computa-

tional effort. A good review on present possibilities on computational stochastic

optimization can be found in [220]. In the following paragraphs prominent deter-

ministic methods are presented.

Numerical solutions. Unlike in the linear case, an analytical solution to (3.5)

is almost always impossible. Therefore, the optimization problem

θNLS = arg min FLSN(θ) (3.30)

has to be solved numerically. For nonlinear regression problems, Newton and

quasi-Newton methods are the numerical recipe of choice for conducting the

parameter estimation. Good and very comprehensive review on these methods

can be found in [74]. For all these methods, the target functional F needs to be

differentiable, not all target functionals are suitable for the method.
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Newton method [74, 134]. Newton method is a gradient based method and

calculates the root of a nonlinear functional F
F(w∗) = 0 (3.31)

by translating the originally nonlinear problem in (3.31) into a sequence of linear

problems and then solving them, where the iteration step winc is the solution of

F ′(w)winc = −F(w), wnew = w + winc. (3.32)

In order to guarantee the method’s convergence, F ′(w)−1 must exist within the

vicinity of the solution w∗.

Gauss–Newton method [74]. For nonlinear least square problems, the target

functionals F , as defined in (3.13), has to be optimized

‖F(w∗)‖2 = min
w

‖F(w)‖. (3.33)

By considering the necessary condition for extreme points, (3.33) gets reformu-

lated into

1

2
grad‖F(w)‖2 = F ′(w)TF(w) = 0. (3.34)

Applying the Newton–method to (3.34) and neglecting the Hessian F ′′, results

again in a sequence of linear problems as for the Newton–method(F ′(w)TF ′(w)
)
winc = −F ′(w)T F (w), wnew = w + winc. (3.35)

Levenberg–Marquardt method [158, 165]. Depending on the approxima-

tion quality of F ′(w)TF ′(w) and the current iteration values for w, the prob-

lem (3.35) can become ill–conditioned. By introducing a limit to the increment

vector winc

‖winc‖2 ≤ δ (3.36)

and incorporating it as an Lagrange multiplier p = p(δ), (3.35) is formulated as(F ′(w)TF ′(w) + pI
)
winc = −F ′(w)T F (w), (3.37)

where I is the identity matrix.

Due to the restriction in (3.36), the iteration step is contracted or damped. In-

deed, the Levenberg–Marquardt can be reformulated into a damped Newton

method (F ′(w)TF ′(w)
)
winc = −F ′(w)T F (w), wnew = w + λwinc, (3.38)
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for some λ depending on the restriction enforced in (3.36). The user has to choose

the appropriate λ. The most successful empirical strategy is the so–called Armijo

strategy (c.f. [13]).

The Levenberg–Marquardt shows two interesting limiting cases for p

(c.f. [74]). Choosing p → 0+ with nonsingular F ′(w), one gets the Gauß-

Newton-method and for p → ∞ the steepest descent method.

Miscellaneous. Over the past years, a heavy used hybrid method has sur-

faced, the so called EM–algorithm. It goes back to early works in [70]. A good

review can be found in [33, 184]. The EM–algorithm is most widely based on the

Gauss–Newton–optimization techniques. It considers unknown parameters as

distribution, averages the target functional (expectation step) and maximizes the

functional (maximization step) afterwards. The algorithm converges globally, is

sensitive to statistical outliers and has successfully been used for estimating den-

sity mixtures structures (c.f. [198]) .

Literature shows that for each application, the optimization methods and al-

gorithms are tailored and usually employ an intrinsic treat of the problem to

optimize. Such blueprints could be the penalized likelihood (c.f. [105]), some free

energy analogies ([177, 222]), annealing schedules ([45]) via simulated annealing

or Markov chains in ([236]).

3.2 Model selection

Occam’s razor. In addition to classical model discrimination presented earlier,

not only the goodness–of–fit is used to access the suitability of a model. Addi-

tional criteria and measures are included in the model selection process. Many

of those are subsumed under the group of information theoretic criteria (c.f. [47])

and are commonly based on the Occam’s razor. It says that the very model should

be selected which fits the observations sufficiently well in the least complex way

(c.f. [238]).

It means that, within the process of model selection, one has to compromise be-

tween the two aspects: First, how well does the data fit to the model and second

how complex the models needs to be in order to reach that fit.

Goodness–of–fit. As in section 3.1, the measures that assess how well the

model fits to the data is referred to as goodness–of–fit measures. Most commonly,
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derivation of a least squares in (3.2) are used. Measures for other application

classes are for example the likelihood for density estimation problems and the

classification error for pattern recognition problems.

Model complexity. The measure for model complexity must be tailored for

each application individually, since the definition of ”complexity” is rather sub-

jective. For parametric models, the complexity is translated into the degrees of

freedom and can be expressed by the number of parameters of the model for

example. In the case of nonparametric regression models, penalty terms like

smoothing terms are used (c.f. [108]).

Trade-off. As mentioned before, goodness–of–fit and model complexity are op-

posite aspects in model selection. By adding degrees of freedom to a model, for

parametric models this means to add parameters. By allowing for more flexibility

and adaptability, the approximation quality increases. This procedure might lead

to immensly complex models. However, the interpretation possibilities certainly

deteriorate. Therefore, both effects have to be considered at the same time, for

example by summing up both entities

goodness of fit + γ model complexity, (3.39)

where the constant γ weights both influencing factors. It is a subjective factor

that has to be chosen by the user beforehand. Looking back on the discrimination

strategy listed in the introduction on page 3, γ weights the strategies (D5) and

(D6).

Example periodic splines. For periodic splines (c.f. [106, 237]), the model of

the following class

S = {f : f and f ′ are absolutely continuous,

f(0) = f(1), f ′(0) = f ′(1),

1∫
0

(f ′′(t))2
dt < ∞

⎫⎬
⎭

is chosen, that is selected by the following trade–off

Fγ = min
f∈S

⎧⎨
⎩ 1

n

D∑
i=1

(yi − f(ti))
2 + γ

1∫
0

(f ′′(t))2dt

⎫⎬
⎭ .

The first summand is a least–squares measure, representing the goodness–of–fit.

The second one is a penalty term that punishes the ”roughness” or oscillations of
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the model. In this context, the weighting factor γ is also referred to as smoothing

parameter. For γ = 0 the roughness is maintained, for γ = ∞ the function is

forced to stay constant. Therefore, this non–parametric model selection example

heavily depends on the choice of γ. Consequently, the result also varies with the

selection of γ.

General information criteria. For regression models, a very general

goodness–of–fit and model complexity trade–off can be written as

Ftrade off = −2l(θ) + γP, (3.40)

where P the number of parameters and

l(θ) = log P[d|θ] (3.41)

is the log–likelihood, which is maximized for the maximum-likelihood estimation

of the parameters.

Akaike Information Criteria. The criterion for γ = 2 is the Akaike informa-

tion criterion (AIC) (c.f. [4, 5, 6, 7])

FAIC = −2l(θ) + 2P. (3.42)

The AIC is a large sample approximation of the discrepancy between the assumed

true model and the fitted model in terms of the Kullback–Leibler distance

(c.f. [146], appendix A). Model selection in terms of AIC means to choose the

very model among the candidates that is closest in the Kullback–Leibler

sense. However, the AIC tends to accept the more complex model (c.f. [193]).

The following criteria does not.

Schwarz or Bayesian Information Criterion. Substituting the logarithm

of the sample size γ = log N in (3.40), one gets the Schwarz’s (SIC, [214]) or

Bayesian information criteria (BIC)

FBIC = −2l(θ) + P log N. (3.43)

Minimum description length. A last model selection criteria shall mentioned

here. It is the minimum description length (MDL) originated in field of data

compression (c.f. [107, 201, 202])

FMDL = −l(θ) +
k

2
log

( n

2π

)
+ log

∫ √
|M(θ)| dθ, (3.44)



28 3. Existing approaches for model discrimination and selection

where M is the Fisher matrix also surfacing in experimental design (3.24). Model

selection by means of MDL is more accurate than AIC and BIC, however, de-

mands higher computational effort (c.f. [180]).

Before continuing, two remarks shall be stated. First, for constant data vari-

ance likelihood function in (3.40) can be exchanged by a residuum measure

like (3.30). Second, further information on similarities and differences between

the AIC and BIC criteria concerning their reasoning and interpretation can be

found in [49, 144].

Model selection problems. In many applications, models selected based on

criteria like (3.39), are object to further statistical inference (c.f. [61]). Since this

is then a concatenation of two statistical decisions, both incorporate statistical

uncertainties. Therefore, the consequence of possible error made in the first

decision, on the second one is of interest. However, only a few papers can be

found on this interaction (c.f. [191]) showing results like

– model parameter estimates are asymptotically consistent (corresponding to

a asymptotically vanishing bias) when model selection criteria are consistent

like the AIC and BIC criteria (c.f. [59]) or

– the asymptotic distribution of parameter estimators is unaffected by model

selection if the selection procedure is consistent but in some cases, for

exmaple AIC or Mallow’s Cp, the asymptotic distribution will be differ-

ent from the ’usual’ distribution.

As intuitively expected, the transported uncertainty from the model selection

process results in higher variance of the succeeding estimation. This can also be

seen as an analogy of the FPSE in (3.16). But even more, the asymptotic results,

usually considered to cope with bias (see (3.14)), do not match with the actual

one. This has also been observed by Zhang for linear regression models with

final prediction error criterion (c.f. [67, 243]). In other words, the model selection

bias is therefore not merely a result of small sample size but also an inherent one,

as the property of the estimators may depend not only on the selected model,

but also on the selection process (c.f. [113, 114]). Several approaches have been

proposed to ease the problem, like a partitioning the sample into two disjunct

subsets (c.f. [112, 114]).

Within the statistics community, this fact is also referred to as the ”optimism

principle” (c.f. [189]). It states that the model prediction is too optimistic on a

new set of data.
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Underestimation and cross-validation. This section is continued with a

comment on cross-validation, a method that is also used within the model selec-

tion process. The goodness–of–fit–measures generally tend to underestimate the

error of the model (c.f. [81, 109]). This can be seen in comparing FMSE (3.14)

and FPSE of (3.16), where the first underestimates the second, when it comes to

model prediction.

The mentioned effect results from using the same set of data for calibrating and

validating the model. In order to avoid such types of underestimation, one could

split the data set into one for calibration and one for validation. Therefore, the

idea of cross-validation recycles the data by switching the role of training and

test samples (c.f. [224]): One repeatedly omits some data points, calibrates the

model and tests the prediction with respect to the left out ones. However, unless

the available data sample is sufficiently large, this approach is not applicable.

The effect of under- and even overfitting also surfaces in the previously men-

tioned selection criteria, resulting in advanced criteria like unbiased risk method

(c.f. [237]) or bias correcting AIC criteria like the AICC in [124].

Remark. Reviewing the two previous sections, one realizes that one has to be

very careful when conducting statistical inference in the field of model selection

and discrimination. One has to check, whether it is reasonable to apply the

concept in question and whether there are unexpected pitfalls resulting from the

intrinsic properties of the approaches.

3.3 Bayesian analysis

Literature. A good review on parametric Bayesian analysis can be found in [42,

100, 157]; for nonparametric Bayesian data analysis [176] is recommended.

Philosophy. The statistical concepts and methods for model discrimination

and selection methods (including the preceding parameter estimation), that have

been introduced in the previous sections, do all belong to frequentist methods.

There, all statistical inferences are solely done on the basis of the measured data,

the model and some significance level.

On the contrary, the Bayesian methods (c.f. [15, 65, 66]) of this sections, addition-

ally incorporate gained knowledge from other sources, namely apriori information

for the parameters or the models, respectively. This extra information is given in
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terms of a distribution and is built into the target functional. By means of the

Bayesian theorem, one can then calculate an aposteriori distribution, the result

of the estimation, for the entity of interest:

aposteriori density = standardized likelihood × apriori density. (3.45)

The Bayesian paradigm distinguishes itself from other statistical approaches by

demanding that prior to obtaining the data, the statisticians considers his de-

grees of belief for the circumstance and represents it in the form of probabilities

(c.f. [157]). The fundamental tenet of the Bayesian approach: The data does not

create beliefs; they rather modify existing beliefs.

Critics. The challenge within the Bayesian framework lies in the provision of

this very prior information. This necessity is a main source for the critics for the

Bayesian approach (c.f. [8]).

Bayesian parameter estimation.

Calculation. For Bayesian parameter estimation, the aposteriori distribution

for the parameters θ is calculated

P[θ |d] =
P[d |θ]∫

Θ

P[d |θ]P[θ]dθ
· P[θ] =

P[d |θ]

P[d]
· P[θ], (3.46)

where the first factor of (3.46) is the standardized likelihood, P[θ] is the prior

distribution for the parameters and P[d |θ] the likelihood.

Influence of the prior. The choice of the prior distribution depends on indi-

vidual judgement in the light of the information and experience available at the

time. This somehow involves the trust in the parameters or the model.

For the following illustrations, a one-dimensional example is used, where one is

measuring the identity. This means, the parameters and data should ”coincide”.

In an experiment, an entity for θ is measured. Let its value be 11. The ex-

perimenter assumes that the measurement’s realization was drawn from a normal

distribution. Two cases have been prepared, one case with a large likelihood vari-

ance, representing a case where the measurement is uncertain and one case with

a small deviation, where the measurement is certain. Let therefore the likelihood

function P[d |θ] be normally distributed with

Puncertain[d |θ] ∼ N (11, 1) (3.47)

Pcertain[d |θ] ∼ N (11, 0.1). (3.48)
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Additionally, two different parameter priors PA[θ] and PB[θ] are investigated.

Similar to the beliefs in the variance interpretation, A represents a strong belief,

B a weak one in the parameter range

PA[θ] ∼ N (12, 0.4) and PB[θ] ∼ N (10, 3). (3.49)

The result of the aposterior estimation can be graphically displayed: The ”uncer-

tain” likelihood scenario, in figure 3.1, the ”certain” one in figure 3.2.
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Figure 3.1: Prior, posterior and likelihood distribution for a Bayesian estimation with a large
likelihood variance

The illustrations truly support that the data do not create believes, they just

modify existing ones: In figure 3.1 the variance of the parameter prior PA is

larger than the one of the likelihood. Consequently, the posterior belief is close

to the ”more likely” likelihood. On the contrary, the strong prior ”absorbs” the
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likelihood. Generally, this can also be turned into an advantage, as a single,

rather inaccurate, observation cannot have much impact on relatively strongly

held aprior beliefs.

For a small variance of the likelihood function in figure 3.2, the aposterior distri-

butions is close to the likelihood belief. If the variance of prior and likelihood are

of the same magnitude, then the belief ends up in the ”middle”.

As a result of the little illustration, one has to admit, that the result of the es-
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Figure 3.2: Prior, posterior and likelihood distribution for a Bayesian estimation with a small
variance

timation strongly depends on the choice of the prior. Reversely speaking, this

estimation method can be interpreted as a sensitivity analysis.
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Weak prior. With a more drastic assumptions of weak prior information, the

Bayesian approach is transferred into maximum likelihood estimation. With no

prior information available, one is tempted to assume an uniform distribution on

some interval. The situation of a ”flat”prior distribution but ”peaking” likelihood

also occurs when a moderate size of experiments is paired with diffuse prior

beliefs, or even when a very large experiment is paired with moderately strong

prior beliefs. In either ways, inserting a constant prior in (3.46), the aposterior

distribution simplifies to

P[θ |d] ≈ P[d |θ]∫
Θ

P[d |θ] dθ
∼ P[d |θ], (3.50)

being the standardized likelihood function.

As a consequence, Bayesian analysis is only helpful, when the prior is known
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Figure 3.3: Weak prior and ”peaking” likelihood

and sensible. Otherwise, the frequentist methods have to be favored. Parame-

ter estimation strongly depends on the prior. In applications when dealing with

physiological data, which are based on inhomogeneous populations, the Bayesian

approach can be applied, as the prior then is interpreted as an ensemble of indi-

viduals among the population.
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Bayesian averaging

One elegant way to consider model uncertainty for predicting responses is the

Bayesian averaging (c.f. [116]). After for example a model elimination process, a

pool of candidate models

M = (M1,M2, . . . ,Mk)

remains. If one can no further eliminate, but wants to predict an observable

Γ, one could calculate a prediction for every model Mi and average on them.

Assigning a model uncertainty in terms of a model priors P[Mi] (c.f. [60]), one

can consider the entire pool M of the models and average in the ”Bayesian way”.

The very parameter vector θ, associated with the model Mk, is abbreviated θ(k).

As in the parameter estimation setup, one again assumes that the observed data d

are generated, however, now by each model in question separately. Analogously,

the model likelihood for model Mi is defined as

P[d |Mk] =

∫
P[d |θ(k),Mk]P[θk |Mk] dθk, (3.51)

where θ(k) denotes the parameters corresponding to the model Mk, P[d |θ(k),Mk]

the likelihood and P[θ(k) |Mk] the parameter prior under model Mk. Then the

posterior probability for model Mk is calculated by

P[Mk |d] =
P[d |Mk]

K∑
k=1

P[d |Mk] P[Mk]

, (3.52)

where the model priors P[Mk] assumes that Mk is the true model (given that

one of the considered models is true).

Let Γ be a future observable. Then the posterior distribution as well as the

posterior mean and variance are (c.f. [78, 194])

P[Γ |d] =
K∑

k=1

P[∆ |Mk,d] P[Mk |d],

E[Γ |d] =
K∑

k=1

E[∆ |d,Mk] P[Mk |d],

Var[Γ |d] =
K∑

k=1

(Var[∆ |d,Mk] + E[∆ |d,Mk])P[Mk |d] − E[∆ |d]2.
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In contrast to FPSE, Madigan and Raftery showed in [163] that averaging

over all models provides a better predictive ability as it decreases the prediction

variance. However, the prediction for Γ depends on the choice of the candidate

model pool.

Model discrimination

The first approaches to Bayesian model discrimination were done by Box and

Hill in [39]. Today, the most commonly employed method is the Bayesian factor

introduced by Kaas and Raftery in [131] and is the analogue of likelihood ratio

tests within the frequentist framework.

A Bayesian factor B(Mi,Mj) for two models Mi and Mj is defined as the

ration of the posterior odds and the model priors resulting in the ratio of the

model likelihoods for two models

B(Mi,Mj) =
P[Mi |d] P[Mj]

P[Mj |d] P[Mi]
=

P[d |Mi]

P[d |Mj]
, (3.53)

where P[Mi] is the model prior for Mi, P[d |Mi] the model likelihood for model

Mi. The marginal distribution of the data d under model M, the Bayesian

factors, therefore, choose the very model for which the marginal likelihood of the

data is maximum. The value of a factor gives evidence of the preference between

two models (see table 3.1).

Bayes factor Interpretation

B(Mi,Mj) < 1/10 Strong evidence for Mj

1/10 < B(Mi,Mj) < 1/3 Moderate evidence for Mj

1/3 < B(Mi,Mj) < 1 Weak evidence for Mj

1 < B(Mi,Mj) < 3 Weak evidence for Mi

3 < B(Mi,Mj) < 10 Moderate evidence for Mi

B(Mi,Mj) > 10 Strong evidence for Mi

Table 3.1: Bayes factors scale by Jeffrey [128], adapted by Wassermann [239]

As in the case of parameter estimation, the Bayesian factors are sensitive to the

choice of the model priors.
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Approximation. As the model likelihood P[Mi |d] is very hard to compute,

often an approximation is used (c.f. [180]). For example, the difference of the

BIC (3.43) for two models is

FBICMi
−FBICMj

= −2 log (B(Mi,Mj)). (3.54)

Bayesian experimental design for model discrimination. Over the past

years, the classical optimal design framework has been enriched by a Bayesian

perspective (c.f. [215]). In comparison to the experimental design approach in-

troduced in section 3.1, the prior knowledge is incorporated in terms of a proba-

bilistic model P(Z|θ,d), where � denotes the experiment or model, respectively,

and Z the observed data under experiment ξ. Similar to the classical approach, a

target function, in this context referred to as utility function, is maximized with

respect to new measurement candidates ξ. Let U be such a utility function. Most

commonly the shannon information and or the quadratic loss criteria (c.f. [53])

is used. Than the optimal design or decision rule problem means to maximize

the posterior expected utility. Assuming a collection of possible experiments,

abbreviated by d, the Bayesian solution to the experimental design problem, is

the very experiment ξ∗ maximizing the gained decision

F(ξ∗) = max

∫
Ω

max
d

∫
Θ

U(d, θ, �, Z) p(θ|Z,d) p(Z|d) dθ dZ. (3.55)

Miscellaneous. Beyond Bayesian factors, there are other methods. As in sec-

tion 3.2 concepts respecting the trade–off between model fit and model complexity

do also exist within the Bayesian framework (c.f. [221]). They are referred to as

the deviance information criterion (DIC). Another less sophisticated approach

is using the Bayesian approach as a sensitivity analysis in [186]. General for

non–nested model it is advisable to apply the Bayesian concept.

Computational Advances. The computation of the model likelihood is very

demanding. Due to the general increasing computation performance and algo-

rithmic techniques, the Bayesian approaches got revitalized. Good review articles

are [12, 58, 203].

Bayesian analysis heavily depend on Monte Carlo experiments (c.f. [99, 110, 141]).

For estimating of the likelihood, more recent methods like the harmonic mean es-

timator (c.f. [183]), important sampling (c.f. [95]), reciprocal importance estima-

tor (c.f. [98]), bridge sampling (c.f. [96, 173]) or a reverse jump MCMC strategy

(c.f. [104]). A comparison of these algorithmic alternatives can be found in [174].
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Bayesian vs. frequentists. This section shall be closed with some remarks

on the comparison of Bayesian factors and frequentist model testing framework.

For frequentist testings, one of the models has to be the null hypothesis. A com-

mon practise to get around it, is to switch and test both. Then both models

may or may fail to be rejected. Therefore, a clear result is not guaranteed. Fre-

quentists tests tend to reject the null hypotheses almost systematically in very

large samples, whereas Bayesian factors do not (c.f. [131]). Further, frequentist

tests are hard to implement for non–nested models. Bayesian factors are easy

to apply for nested as well as non-nested models and allow for a broader field of

applications.

A last remark refers to the type of statement one generates. Both approaches

involve a pool of models. Multiple frequentist tests guide a search for the best

model that can give very misleading results (c.f. [92]). Since Bayesian factors

take model uncertainty into account, this problem can be avoided (c.f. [195]).

In [199], the authors Ren, Sun and Dey showed that even in the simple case

of estimating and predicting normal populations, it strongly depends upon the

setup whether a Bayesian or Frequentists approach is more suitable. Bayesian

model selection results in better decisions in favor of the true model than maxi-

mum likelihood (c.f. [174]).

In classical or frequentists approach, it is somehow assumed that the correct

structure of the model is known and the ”true” parameter value of the model

parameters were to be estimated. Within the Bayes framework, there is no ”true”

parameter value. The posterior density is a quantitative, probabilistic description

of the knowledge about the parameters in the model (c.f. [28]).

A very interesting comparison between AIC and BIC can be found in [49]. It

is shown there, that actually the differentiation between the frequentist and

Bayesian interpretation does not apply to both of the criteria.

3.4 Miscellaneous

In the previous sections, several model discrimination and selection methods have

been presented. However, now it is time to take a closer look at the method’s

assumptions. Therefore, they are now reviewed to see the problems of the existing

ones and to understand later in the next chapter how the model–data–overlap is

going to cope with the challanges of the existing approaches.
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Is there a true model? In the presented concept of the previous sections,

the model in question is somehow assumed to be existing and to some extent

correct. Within the statistical community, the discussion whether there is such

an object like a true model is controversial.

reality

theory /

model

data

true?problem /

Figure 3.4: Constellation between reality, model and data. The communication between reality
and model takes place only indirectly through the data.

The reality and the model do not communicate directly with each other, but

instead only indirectly through the measured data. Therefore, one cannot assume

that the data represent all aspects of the reality and that the measured data are

without any measurement error.

Looking from an application point of view, the dilemma can be put into the

following nutshell: On the on hand, one has to rely on something, especially a

model, when performing some calculations, simulations and prediction. On the

other hand, however, one can actually never be sure whether the reality is either

described, explained or predicted by the model correctly. This thesis paper is

not the suitable place to enter that discussion, nevertheless, some statements on

the topic should be itemized here as well as the consequences for the statistical

inference (c.f. [54]):

– Fildes and Howell in [91]: ”It is a truism of forecasting that the model

chosen is misspecified”

– Tiao and Tsay in [231]: ”If one accepts the premise that any model is, at

best, an approximation, then parameter estimation should be treated more

in the context if the use for which the model is to be put rather than as an

end in itself.”

– Tsay in [230]: ”Since all statistical models are wrong, the maximum likeli-

hood principle does not apply”

– Tukey in [232]: When dealing with statistics we are ”assuming that we

always know what in fact we never know”
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As a consequence many statisticians suggest to rather search for a parsimonious

model that gives an adequate approximation for the investigates circumstance

(c.f. [38, 152, 182]). One should concentrate on determining the model’s accuracy

and usefulness rather than testing it (c.f. [151]). The best summary for that

attitude is the well-known statement by Box: ”All models are wrong, but some

are useful” (c.f. [38, 68]), which takes the problem of model uncertainty to the

point.

Sources model uncertainty. As model uncertainty is surfacing frequently,

the reseaons for it shall be reviewed systematically. According to [54, 79, 115],

there are three main sources for model uncertainty

(U1) Uncertainty about the structure of the model;

(U2) Uncertainty about estimates of the model parameters, assuming that one

knows the structure of the model;

(U3) Unexplained random variation in the observed variables even when one

knows the structure of the model and the values of the model parameters.

According to [54], model uncertainty based on nescience in model structure of

(U1) can be broken down further, namely

(S1) Model misspecification (e.g. omitting a variable by mistake),

(S2) Specifying a general class of models of which the true model is a special,

but unknown case or

(S3) Choosing two or more models of quite different structures.

A broad selection of statistical methods for dealing with the aspects (U2), (U3)

as well as (S2) is available. However, for cases like (U1), (S1) or (S3), the existing

concepts do not allow strong inference possibilities as in the previously mentioned

cases. When occurring, the errors arising from sources like (U1), are hard to han-

dle and are worse than the errors from the sources that can be handled easily

(c.f. [54]).

For example in the case of multiple-regression models this means: The theoret-

ical statements document the very errors that result from having estimates of

regression coefficients, rather than their true values. In comparison to the errors

resulting from misspecification, like omitting a variable or neglecting non–linear

terms, these errors are much smaller in many application contexts.
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Model building process. The general aim of modelling is to gain information

from the measured data, more precisely: Firstly, to extract information on the

interdependence between response and input variables, and secondly, to predict

the responses of the investigated circumstance in the future or of other input

variables. The model building process consists out of the consecutive steps:

(M1) model formulation (or model specification),

(M2) model fitting (or model estimation),

(M3) model checking (or model validation) and

(M4) the combination of data from multiple sources (e.g. meta-analysis).

By iterating through them, the modeler tries to reduce model uncertainty and

to gain as it is has been previously mentioned, a parsimonious model. He can

choose between three main strategies to reduce model uncertainty (c.f. [43]):

(R1) Data investigation as well as isolating and incorporating additional effects

(R2) Considering a pool of plausible models

(R3) Algorithmic modelling

From the modelling aspect, the first two approaches belong to the concept of

data modelling in contrast to algorithmic modelling. From the point of model

discrimination at early stage modelling as well as enhancing intermediate models,

only (R1) is of interest. Therefore, it is the question of how to incorporate the

sources of model uncertainty into the discrimination process. The alternative

(R2) is taken care of by Bayesian model averaging (as shown on page 34).

Algorithmic modelling. In case of algorithmic modelling, only the measured

data but no specific model is given at the beginning. By means of an iterative

algorithm, one wants to find a suitable model function that predicts the data

response. The models are validated by measuring the predictive accuracy. It is a

very direct and intuitive implementation of the inductive nature of statistics (data

→ model) in comparison to the deductive nature of probability theory (model →
behavior).

Algorithmic modelling is not very commonly applied within the statistical com-

munity, but very widely used in engineering, for example in neural networks,

learning machines, decision trees or splines. It is sometimes also referred to

as automated model generation (c.f. [164]). Meanwhile many applications like
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speech recognition, image recognition or handwriting recognition are based on

this modelling concept. More generally, it is very fruitful when the problem un-

der consideration is very complex and cannot be modelled by summing up single

effects. Further, one needs many observations to calibrate (train) the model in

order to make decisions, whether the model are more or less reliable within the

calibrated area.

The result of algorithmic modelling is a model showing data–model interdepen-

dencies that cannot directly be associated with certain scientific documented

effects and mechanisms. The algorithm abandons interpretability and favors

goodness–of–fit to rule out model uncertainty. Therefore, the reliability on long

term forecasts is controversial. As the model’s goodness–of–fit is guaranteed by

the algorithm itself, additional criteria, as suggested in section 3.2, have to be

taken into consideration for model discrimination and selection.

Data modelling. In contrast to algorithmic modelling, data modelling assumes

that the data is generated by some stochastic data model. More specifically, the

data is generated by independent draws from the response variable, which is a

function of the input variables, parameters and random noise. The parameters

are estimated for the measured data as well as the given model by means of some

estimator and are then used for information and prediction. This data modelling

approach dominates within the statistical community for analyzating effect and

was therefore described in detailed in the previous sections.

In data modelling, the appropriate goodness–of–fit is usually checked by some sta-

tistical test. Unfortunately, those tests often have little power unless the direction

of the alternative is precisely specified. Therefore, defects are hard to detect and

models will not be rejected unless the lack of fit is seizable (c.f. [32, 43]). An-

other problems is the statistical indistinguishability of two models with different

structure. In [170] it is explicitly stated: ”Data will often point with almost equal

emphasis on several possible models, and it is important that the statistician

recognizes and accepts this.” For small dimensional models, it is often observed

that the tests result in a large number of models whose fit is acceptable. A third

point that is often being raised when criticizing data modelling is that selecting

and calibrating the model as well as making prediction is done on the same set of

data. To overcome this source of bias, cross validation, as introduced in [179], is

a ”natural route” to reduce the bias. This, however, requires a large sample size

(see page 18).

In comparison to algorithmic modelling, the question of true models surfaces here.
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Data modelling does not guarantee the ”exact” model in terms of goodness–of–

fit, but checks on the already known effects that are given in algebraic terms.

Therefore, model–data–deviations are expected and model uncertainty must be

taken into consideration.

The strategy can be summarized: In data modelling, one has a model and asso-

ciates an effect a known and interpretable one to it. In this context, testing means

to decide on an effect. By isolating the effects, one hopes to make trustworthy

predictions. Knowing that not all effects can be detected, unmeasured variables

are subsumed as noise and the prediction is most certainly not perfect.

Pool of plausible models. As an alternative and a comparison between the

two positions (R1) and (R3) shown so far, one can consider a pool of models that

has been identified as ”useful” in the sense that they represent a sufficiently close

approximation of the data (c.f. [190]). This idea is the motivation for Bayesian

model averaging (see page 34), an approach frequently employed in time series

analysis, where different models describe different sequences. This shows the

belief that a single model cannot describe all data alone.

Optimism vs. pessimism. Looking at both opposite modelling philosophies

(R1) and (R3), one could call the algorithmic to be the optimistic and the data

modelling to be the pessimistic approach. It means that the algorithmic modelling

trusts the data as they are, whereas for data modelling, one only accepts the

things that can be statically proven and interpreted. In both cases, however, one

is never certain whether the model is true or not.

Sensitivity analysis. Reflecting all the approaches in this section with all the

advantages and disadvantages, it shows that no general master approach exists.

One needs a mixture of tailored solutions, which depends on the stage of mod-

elling, on the type of model uncertainty one expects and on the strategy one

chooses to cope with it.

Within the last years, it was suggested, that sensitivity analysis should be in-

cluded in all parts of modelling (see (M1) - (M4)), especially in model validation

(c.f. [205, 206, 208, 207]): ”I propose a form of organized sensitivity analysis in

which a neighborhood of alternative assumptions is selected and the correspond-

ing interval of inference is identified.” This idea is based on works by Leamer

in [153, 154, 155]: ”Conclusions are judged to be sturdy only if the neighborhood

of assumptions is wide enough to be credible and the corresponding interval of
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inference is narrow enough to be useful.” It is therefore worthwhile to follow up

this suggestion and treat sensitivity analysis as uncertainty analysis.

In the next chapter, it is going to be shown how the model–data–overlap inco-

porates model sensitivity into the model discrimination process and that it is a

suitable tool for analyzing and coping with model uncertainty settings like (S3)

and (U3).
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