
Chapter 2

The overlap – a new approach for

model discrimination

Introductory comments. In this chapter, the model–data–overlap concept

for model discrimination is demonstrated directly after introducing some nota-

tion. The chapter is closed by an illustrative example. The differentiation from

existing model discrimination concepts as well as the explanation of and justifica-

tion for the overlap approach is given later in chapter 4, after reviewing existing

concepts in model discrimination and parameter estimations in chapter 3.

Notation and setting. The type of models considered in this chapter are

D−dimensional initial value problems, characterized by a set of ordinary differ-

ential equations (ODE) with parameters θ = (θ1, θ2, . . . , θP ) and initial values y0

d

dt
y(t) = f(y(t); θ), y(t0) = y0. (2.1)

Their solutions at time t are denoted by Φt y0. That model type is frequently

used in chemical reaction kinetics, biokinetics, systems biology or polymerization

processes and is going to resurface in chapter 5 and 6.

Assume that experimental data, associated to the system under consideration,

is available at times t = (t1, . . . , tN). The measured data d = (d(t1), . . . ,d(tN))

in general corresponds to measurements of some model sensors d = G(y). For

simplicity, one may assume that d means some (if not all) of the components of

y. If the right side f of the ODE, the initial values y0 and the experimental data

d are given, one additionally needs a concept of measuring the deviation between

model and data, for example, by means of a functional

F(θ) = deviation between (d(t1), . . . ,d(tN)) and
(
Φt1y0, . . . , Φ

tN y0

)
,
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where a deviation can be understood in a very broad sense, for example, ranging

from weighted residua to overlaps of probability distributions, as it will be illus-

trated in the following.

In order to distinguish between matrices, vectors and scalars, the following calli-

graphic notation is chosen. Matrices are abbreviated by capital and bold letters,

like M, vectors by small and bold letters, like v, and scales by small and normal

letters like n. When a component of a vector is abbreviated by some index, the

letter appear in normal fonts.

Model variability. The model–data–overlap approach directly incorporates

the sensitivity of the parameters as well as of the initial values in case of ordinary

differential equations like (2.1). The expression model variability shall reflect this

very ability of the model’s trajectory to change by means of parameter as well

as initial values perturbations. For reasons of simplicity, only model variability

due to parameter sensitivity is considered in the following. By letting the initial

values becomes parameters themselves, both scenarios can be unified.

As a consequence, one introduces a distribution πθ governing the statistics of the

parameters in subsequent realizations. In each single realization, θ is selected due

to πθ resulting in a single trajectory Φt
θy0. Thus, the parameter distribution πθ

induces a distribution of trajectories Φt
θy0 in the state space, developing simul-

taneously from the joint initial state y0. This model variability, denoted Mt in

the following, is compared to the variability Dt of the measured data.

The model variability Mt is a positive measure defined as (c.f. [149])

M : Γ ×�→ [0, a] a ∈ �+ \ {0}
Mt(A) =

1

C(t)

∫
Θ

1A(Φt
θy0)πθd θ (2.2)

for any set A ⊂ Γ, where Γ denotes the entire state space, πθ the parameter

distribution. The characteristic function 1A(x) is given by

1A(x) :=

{
1 if x ∈ A

0 else
(2.3)

In order to interpret (2.2) as a distribution later, one normalizes the model

variability by a function C(t) ∈ L∞, which is specified later in section 4.2.

Through the construction in (2.2), one also attaches a stochastic interpretation
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to the purely deterministic setting of (2.1). The definition of Dt is analogously

to that of Mt, but realized by means of data variances. The specifications are

also given later in section 4.2.

With these definitions, one can illustrate the model–data–overlap as seen in

figure 2.1 and 2.2.

t

y(t)

Figure 2.1: Model variability validates model–data–reproducibility: The black dots are mea-
sured data d(t) with attached error bars representing some confidence interval of the data
variability Dt. Each measured data point can be explained by a single trajectory, represent-
ing a realization for θ from πθ. Additionally, these trajectories also ”pass” through confidence
intervals of other data points and therefore validate the corresponding data also.

Model–data–overlap. Matching model and data variability reveals the in-

formation on the model–data–fit. In other words, this idea of assessment and

validation allows for a new approach in model discrimination as the overlap of

the model variability Mt and the data variability Dt describes the data–model–

reproducibility. Having a pool of candidate models, one can discriminate between

them by ranking and picking the one with the highest overlap value. As a result,

one chooses the very model with the highest probability that the data distri-

bution can be explained by the model variability with respect to its parameter

distribution.
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Figure 2.2: Overlap of model variability distribution Mt and data distribution Dt of measured
data at a single time t.

Embedded parameter estimation. The overlap approach embeds the pa-

rameter estimation in the model validation and discrimination process. The pa-

rameters are chosen, more exactly the distributions π of parameters, such that

the overlap between data and model FO

FO = overlap of data and model variability (2.4)

is maximal.

Example. In the following, model discrimination by means of the overlap is

demonstrated for a special class of systems (2.1), namely linear initial value prob-

lems,

d

d t
y(t,θ) = J(θ)y(t) + b(θ) with y(0) = y0, (2.5)

with the analytical solution

Φt y0 = exp (tJ(θ))y0 + J(θ)−1 (exp (tJ(θ)) − 1)b(θ). (2.6)

The two candidate models M1(
ẋ

ẏ

)
=

( −2θ 2

−1 2

)(
x

y

)
+

( −6

1

)
,

(
x(t0)

y(t0)

)
=

(
8

2

)
, (2.7)

and model M2(
ẋ

ẏ

)
=

( −2 2θ

−1 2

)(
x

y

)
+

( −6

θ

)
,

(
x(t0)

y(t0)

)
=

(
8

2

)
, (2.8)
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are to be discriminated. Both models coincide for θ = 1 (see figure 2.3).

0 0.5 1 1.5
0

5

10

15

20
original model with measured data

time t

X
(t

),
 Y

(t
)

Figure 2.3: Model and data plot: For θ = 1, the trajectories of M1 and M2 coincide. These
trajectory values were taken and then perturbed to produce the data. The data, used for
illustrations later, is symbolized by points with attached error bar.

As mentioned before, the parameter θ is interpreted as a distribution within the

overlap concept. They can for example be modelled as a normal distribution with

its hyperparameters θO and ∆θO, namely symbolizing the mean and the standard

deviation:

θ ∼ N (θO, ∆θO) .

Due to the different parameter–model–structures of M1 and M2 with respect to

its parameter θ, the model variability might take different shapes during its time

propagation.

Looking at figure 2.4, the following scenario is possiblewithin the overlap frame-

work: To favor a model, where the distance between the model and data is larger

but there model and data variabilities match better. On the contrary, there might

be cases, where model and data coincide completely, but are rejected, since for

example the model variability is much larger than the data one.

The phenomena described above results in a different model–data–reproducibility.

The results of the overlap optimization for the model M1 and M2 are shown in

table 2.1. Whereas the overlap in the y-component is roughly the same for both

models, the x-component clearly favors the model M1 to M2.



12 2. The overlap – a new approach for model discrimination

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2
model and data variability M

1

state space X

de
ns

ity
 a

t t
im

e 
0.

7 
in

 X

model
data

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5
model and data variability M

1

state space Y
de

ns
ity

 a
t t

im
e 

1.
2 

in
 Y

model
data

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
model and data variability M

2

state space X

de
ns

ity
 a

t t
im

e 
0.

5 
in

 X

model
data

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
model and data variability M

2

state space Y

de
ns

ity
 a

t t
im

e 
0.

7 
in

 Y

model
data

Figure 2.4: The shapes of the model variability can take different forms during a propagation,
even though the initial parameter distribution is normal. Therefore, the overlap also incorpo-
rates linear and non–linear parameter sensitivity effects on the model.

θO ∆θO FO in x FO in y FO total

M1 0.916 0.312 80.0 % 73.2 % 76.8 %

M2 0.978 0.540 47.9 % 74.2 % 61.3 %

Table 2.1: results of overlap FO for models M1 and M2.

A more detailed analysis of the model along with a comparison of the overlap

approach to traditional ones, is shown later in section 6.1, after reviewing other

concepts and introducing implementation concepts.


