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1 Introduction

For biomedical research it is of major interest to identify the activity of genes in specific
tissues of an organism. The gene’s activity is determined by the amount of the gene’s
primary products, the transcripts. Transcript abundance is quantified with experimental
technologies and noted as gene expression. However a gene does not always produce
the same transcript but may encode several different variants by a particular pooling
mechanism of the genetic sequence, called alternative splicing. Such a pooling mechanism
is necessary to explain the comparatively low number of genes: ∼25 000 genes in humans
vs. ∼20 000 in the nematode worm caenorhabditis elegans [63]. Alternative splicing
controls condition dependent expression of specific variants. It is not surprising that
even minor splicing disturbances can have pathological effects, i.e. may cause certain
diseases [279].

Since organisms like human contain ∼25 000 active genes it is essential to use high-
throughput data generation techniques for analysis of global gene expression. Conside-
ring alternative splicing, all these genes stand for ∼100 000 transcripts to be analysed
[38]. Only recently the necessary amount of data can be generated by technologies like
microarrays or RNA-Seq. Along with technological progress the large-scale data analysis
methods have to advance to cope with new research subjects like alternative splicing.

In the course of my work I have developed a software pipeline for the analysis of alterna-
tive splicing and differential gene expression. It was developed and implemented within
the statistical processing language R/BioConductor [238, 108] and comprises several steps
such as quality control, preprocessing, statistical evaluation of expression changes and
gene set evaluation. For the detection of alternative splicing a new method based on
an information theoretic concept is introduced to the field of gene expression analysis.
The method consists of a modification of Shannon’s entropy to detect altered transcript
abundance and is called ARH – Alternative splicing Robust prediction by Entropy.

The methods and their implementation have been applied to the disease domain of type-
2 diabetes mellitus. First, a set of marker genes is identified by data integration and
meta-analysis of diverse data resources using the differential expression pipeline. Second,
alternative splicing is analysed with the alternative splicing pipeline with special focus
on a set of marker genes and on functional sets of genes, i.e. pathways.

My thesis has a truly interdisciplinary character relating the fields of information theory
and statistics with alternative splicing and type-2 diabetes mellitus. As a consequence
it combines the mathematical goal of splicing detection with the implementation of a
processing pipeline for standardised microarray analysis as well as the joined application
to type-2 diabetes mellitus.
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1 Introduction

1.1 Alternative splicing

The genetic code is the archived storage form of biological construction plans for proteins,
a hard disk in analogy to computer science. The hard disk is the DNA, instead of files
the genes are written to the DNA. However the genetic information is not saved in one
piece but is organised in units called exons. These exons are separated by introns not
encoding a protein. The gene sequence is transcribed to RNA, similar to a read-out of
a file to the short-term memory. In this short-term memory the code is modified by
splicing out the introns. The splicing process is very precise by assembling the exons to
one transcript. But it may happen that exons are rearranged by selecting alternative
splice sites along with the introns. Through alternative splicing the read-out system
comprises a multiplexing process for sharing different construction plans in one gene.

For example a gene may contain four exons (e1, e2, e3, e4) (see Figure 1.1). It produces
two transcripts, transcript A with the exons (e1, e2, e3, e4) and transcript B with the
exons (e1, e2, e4). This effect is called exon skipping with an alternative splicing event in
exon 3.

After splicing the transcript is translated to a protein. The protein is the final pro-
duct of the original construction plan and a functional component of the biological cell.
Alternative splicing allows to encode several different proteins from the same gene se-
quence.Thereby it also allows to change or to modulate the function of proteins suitable
for the current biological condition. Furthermore, alternative splicing determines binding
properties, intracellular localisation, enzymatic activity, protein stability and posttrans-
lational modifications of a large number of proteins, for example reviewed in Stamm
et al. [272]. Recent studies estimate alternative splicing to occur in about 92-98% of
human multi-exon genes [306, 228]. Even taking into account non-effective splicing, a
considerable number of transcripts contribute to the functional diversity of the proteome.

Since alternative splicing is a key mechanism of protein diversity the question follows
what happens in the case of splicing aberration. Indeed alternative splicing is the cause
of a variety of diseases like spinal muscular atrophy, myotonic dystrophy, premature
ageing phenotypes or cystic fibrosis [2]. The number of gene alterations involved in the
development of any type of cancer is so high and diverse that there are many opportunities
for erroneous splicing events.

With experimental technologies it is possible to determine the abundance of trans-
cripts, the gene expression. Similarly, the exon expression is the abundance of trans-
cripts containing a certain specific exon segment. The relationship of gene and exon
expression is accented by a suggested coupling of transcription and splicing regulation
[196, 206, 111, 190]. Consequently, the analysis of the two aspects of expression should
be performed in parallel, as implemented in the alternative splicing pipeline presented in
Section 3.3.
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1.2 Experimental techniques

DNA

gene sequence

exon 1

transcript A

intron
exon 2 exon 3 exon 4

transcript B

exon 1 exon 2 exon 3 exon 4

exon 1 exon 2 exon 4

intron intron

Figure 1.1: Example of an alternative splicing event. The gene is dispersed in exons over the
DNA, separated by introns. The genetic sequence is transcribed and spliced to transcripts. In the process
of splicing the introns are excised. Sometimes not only introns are excised but also one or more exons.
The result are two transcripts encoded by the same genetic sequence.

1.2 Experimental techniques

Several experimental platforms for the analysis of alternative splicing exist such as mi-
croarrays (for example Affymetrix Exon Arrays), RNA-Seq (for example the Illumina
sequencing system) and EST/mRNA libraries. The first two technologies, microarrays
and RNA-Seq, are common in current laboratory facilities. Commercial providers of-
fer complete systems with specific protocols, laboratory kits and necessary consumable
articles.

Affymetrix GeneChip microarrays

Affymetrix microarrays consist of probes of 25 nucleotides length corresponding to trans-
cript sequences that are synthesised on a slide with a photolithographic method. A dye
labelled sample is injected on the slide. Labelled transcripts in the sample will hybridise
to the corresponding probes. Afterwards the slide is scanned on the wavelength of the
dye and the light intensity of the spots allows quantification of transcript abundance in
the original sample, the gene expression.
The GeneChip© system comprises a number of technologies, design criteria and fixed
protocols described in detail in Dalma-Weiszhausz et al. [78]. For this system several
platforms are available depending on the intended use: Transcriptome mapping, gene
expression profiling or genotyping accompanied by a custom array program. In the
following the focus is on expression arrays.
Affymetrix arrays have been successfully used for analysis of gene expression for more
than a decade. Rich experience is available for the interpretation of the data, see Cle-
vert and Rasche [65] for an outline. Due to selection of probes and labelling protocol
former microarray platforms have not been useful for detection of splice variants. As a
consequence, existing alternative splicing in the samples under study imposes a severe
and undetectable bias to those experiments. With the Affymetrix Exon Arrays this tool
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1 Introduction

is expanded from gene to exon level for quantitative studies of alternative splicing on a
genome-wide scale. Although the alternative splicing detection bias is removed these new
arrays pose additional hard challenges to the statistical analysis, namely the expression
analysis on two information levels, gene and exon expression.

Illumina sequencing

Another technology facilitating alternative splicing analysis is RNA-Seq. The mRNA is
sequenced by 2nd generation sequencing technology, for example Illumina sequencing (i.e.
Solexa technology) [142]. It is a variant of the shotgun sequencing approach providing a
huge number of small sequences with 25 to 100 nucleotides.

Sequencing templates are immobilised on a suitable flow cell surface designed to present
the DNA in a manner that facilitates access to enzymes while ensuring high stability of
surface-bound template and low non-specific binding of fluorescently labelled nucleotides.
Bridge amplification is employed to create up to 1000 identical copies of each single nu-
cleotide sequence in close proximity. Illumina sequencing technology can achieve densities
of up to ten million single nucleotide sequence clusters per square centimetre.

Illumina sequencing uses four fluorescently-labelled modified nucleotides to sequence the
millions of clusters present on the flow cell surface. These nucleotides, specially designed
to possess a reversible termination property, allow each cycle of the sequencing reaction to
occur simultaneously in the presence of all four nucleotides. In each cycle, the polymerase
is able to select the correct base to incorporate, with the natural competition between
all four alternatives leading to higher accuracy than methods where only one nucleotide
is present in the reaction mix at a time.

The Illumina sequencing approach is built on a very large number of short sequence reads.
Deep sampling allows the use of statistical analysis, similar to conventional methods,
to identify transcripts and to distinguish sequencing errors. Each raw read base has
an assigned quality score so that the software can apply a weighting factor in calling
differences and generating confidence scores.

1.3 Concepts of information theory as a measure of exon
diversity

Information and entropy

A source of information sends symbols from a discrete alphabet A = {a1, ..., aD} with
probabilities p(a1), ..., p(aD). The probabilities suffice the equation

∑D
d=1 p(ad) = 1. The

information content of a single letter ak of the alphabet is defined as I(ad) = − log2 p(ad).
This definition of the information content is motivated by the following characteristics:

• Non-negativity: The information content of a single letter is non-negative because
0 ≤ p(ad) ≤ 1 for 1 ≤ d ≤ D.

10



1.3 Concepts of information theory as a measure of exon diversity

• Monotony: Rare symbols shall have a high information content because they are
unexpected, whereas frequent symbols shall have low information content. Thus
information content has to increase reciprocally with its probability.

• Additivity: Information of D independent symbols a1, ..., aD should be equal to
the sum of information of the single symbols. This is implied in the functional
characteristic of the logarithm

I(a1, a2) = − log2 p(a1, a2) = − log2 p(a1)− log2 p(a2) = I(a1) + I(a2)

The base of the logarithm, i.e. base 2, is motivated from information theory where in-
formation is stored in bits. The more bits are stored in a memory unit the higher is its
information content. For example a unit of N bits can store one of 2N binary coded
digits which has an information content of − log2

1
2N

= N .
To characterise the information source completely the information content of the single
letters is not sufficient. Therefore entropy is introduced which is defined by the expected
information content or mean information content with respect to the probabilities of the
alphabet A, i.e.

H(a1, ..., aD) = −
D∑
d=1

p(ad) log2 p(ad). (1.1)

This definition is motivated by the following characteristics:
• Continuity: The measure should be continuous, so that changing the values of the

probabilities by a very small amount should only change the entropy by a small
amount.

• Symmetry: The measure should be unchanged if the outcomes are re-ordered:

H(a1, a2) = H(a2, a1).

• Maximum: Uncertainty is highest when all possible events are equiprobable:

H(a1, a2) ≤ H(a′1, a
′
2) with p(a1) 6= p(a2) and p(a′1) = p(a′2).

For equiprobable events the entropy should increase with the number of outcomes,
i.e. for i = 1, ..., D, j = 1, ..., D + 1:

H(a1, ..., aD) < H(b1, ..., bD+1) with p(ai) =
1

n
and p(bj) =

1

n+ 1

It is important to note that the maximum of the entropy does not depend on the proba-
bilities but only on the number of symbols:

max(H) = H(a1, ..., aD) = log2 (D) with p(ai) = p(aj) for i, j ∈ {1, ..., D} (1.2)

An example illustrating the definitions would be a fair dice with 6 possible outcomes
{1, 2, 3, 4, 5, 6}. The probability for the 6 events are 1

6 each. Information content of the
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1 Introduction

events is about 2.58 each. The entropy of the dice also is about 2.58. In contrast a
non-fair dice with probabilities 1

2 ,
1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10 has information contents 1, 3.32, 3.32,

3.32, 3.32, 3.32 and an entropy of 2.16.
Entropy is a measure of uncertainty in the information source. When letters are equipro-
bable the uncertainty is highest, as is entropy. If all but one letter have small probabilities
the information source has low uncertainty and small entropy. The concept of information
and entropy was introduced by Shannon [261] in the context of communication theory,
see also Cover and Thomas [71].
Entropy was previously used in alternative splicing for quantification of global splicing
disorders [247]. For the transcript fractions of a gene the entropy is calculated in normal
and cancer tissue. Entropy of such transcript fractions is higher in cancer tissues than in
normal tissues, indicating general splicing disruption in cancer. Here, entropy is applied
to splicing prediction, analysing exon expression ratios.

Exon expression deviations as a source of information

A splicing event can be viewed as a disturbed exon expression between two biological
samples. Disturbed exons contain information about the splicing which is measured in
an information theoretical way. Exon expression ratios are contrasted by entropy taking
noise into account. Extreme ratios deviating from the average ratio indicate splicing.
Looking at the example of an alternative splicing event in Section 1.1 there is a gene
with four exons. In one sample transcript A is expressed comprising all four exons. In
a different sample transcript B is expressed with exon 3 missing. Looking at the exon
expression ratios the three constitutive exons, ratios will scatter around 1. For exon 3
the ratio deviates strongly from 1. With the gene as an information source the ratios are
taken as letters. Scaling the ratios to a sum of 1, probabilities are derived for the four
letters, i.e. exons. The ratio of exon 3 dominates the probabilities and the entropy of
the information source is small. Thus splicing events correspond to small entropies. This
basic idea is extended and adapted to practical needs in Chapter 4.
The need of prediction methods is two-fold. First, gene level predictions are needed to
identify spliced genes and quantify the global amount of splicing between two biological
conditions. Secondly, the exon level predictions are needed to identify the exact splicing
event in the gene sequence. Although many isoforms and splicing events are known from
EST/mRNA collections current databases do not cover all possible biological conditions.
Therefore the presented method provides de novo predictions of splicing events not taking
into account previous knowledge about transcript structures.

1.4 Type-2 diabetes mellitus

Type-2 diabetes mellitus is a rapidly increasing disease with more than 170 million per-
sons affected worldwide, constituting more than 90% of all diabetic patients [283]. Type-2
diabetes mellitus poses a huge burden for the health care systems and is, thus, subject

12



1.4 Type-2 diabetes mellitus

genes
exercise
nutrition

genes
age diabetes

obesity

Figure 1.2: Main risk factors of type-2 diabetes mellitus. Missing physical exercise with over-
nutrition in a disadvantageous genetic background leads to obesity. Obesity in a disadvantageous genetic
background leads to diabetes at an early age.

to intensive biomedical research. Type-2 diabetes mellitus is a multigenic disease invol-
ving a high number of susceptibility genes and causes alteration of an entire network of
genes. Several environmental and nutritional risk factors have been identified for type-2
diabetes mellitus, the most relevant being obesity where multiple molecular mechanisms
have been proposed to link obesity to insulin resistance and β-cell failure (see Figure
1.2) [283]. Increased availability of food and reduced physical activity as consequences
of modern lifestyle are the main drivers for an anticipated epidemic increase in type-2
diabetes mellitus patients in the years to come.
In the pathopysiology of type-2 diabetes mellitus, impaired insulin sensitivity and glu-
cose intolerance are early phenomena, leading to hyperglycaemia, hyperlipidemia and,
eventually, to a failure of pancreatic β-cells to produce and secrete a sufficient amount
of insulin. However, most genes and their associated molecular network contributing to
the onset and course of the disease are yet unknown. For example it is not clear which
molecular effects lead to β-cell dysfunction [269], how enlarged fat mass causes insulin
resistance [153] or what promotes the pathogenesis of the inflammation [79].
In the context of type-2 diabetes mellitus, a broad range of experimental techniques
were applied for identification of disease genes reviewed in Rasche (2009) [239]. Genetic
variation studies cover monogenic approaches with transgenic or knock-out mouse mo-
dels and genome-wide approaches with association or linkage studies [64]. Such analyses
have shown that several quantitative trait loci interact with each other and an effect of
these variants on disease susceptibility is generally low. Multiple studies on the trans-
criptome level have been performed that emphasise the diversity of the disease and the
complex pathophysiological interactions between different tissues, including fat, muscle,
liver, pancreatic β-cells and brain [283, 285]. In several human studies, tissue biopsies
from diabetic and normoglycaemic individuals have been profiled [117, 207]. In mouse
studies differences in diet or mouse strains have been used to identify distinct expression
profiles [35, 177, 211]. In the context of the onset of diabetes, several studies on the
proteomic level have revealed differential expression of intracellular proteins as well as
of secretory proteins in adipose tissue [58, 291]. A systematic evaluation of these large
amounts of data, their common content as well as their specific differences, in particular
in gene sets between human and rodent studies is performed in Rasche et al. [240].
Little is known about the role of alternative splicing in the onset and progression of
type-2 diabetes mellitus. Functional effects of different isoforms Minn et al. [203] report
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1 Introduction

for the key player insulin. Similarly, isoform expression changes are found in signalling
pathways and protein hubs [94, 95, 186]. Thus, splicing potential is given for type-2
diabetes mellitus markers. However, global analyses of splicing are still a gap in type-2
diabetes mellitus research and would complement available data sources.
The two mouse strains NZO and NZL are particularly interesting due to a polygenic
background for type-2 diabetes mellitus similar to human [226]. The NZL mouse is a
near relative to the NZO mouse with a higher prevalence of hyperglycaemia. The two
strains are contrasted by the genetically different SJL mouse. The SJL strain stays lean
and non-diabetic even on high-fat diet.
In this work the established alternative splicing analysis framework is applied to type-
2 diabetes mellitus with a genome-wide assay. In a comprehensive study splicing of
disease markers and global splicing states are assessed. Experiments are performed on
the glycaemic and genetic background of two complementary mouse models NZL and
SJL in the relevant tissues fat and liver.
To assess type-2 diabetes mellitus disease markers a robust list of such genes has to be
established. Candidate gene lists are mainly focussed on special experimental approaches
like sequencing [230, 298] or interactions between transcription and protein networks
[191]. In Rasche et al. [240] the aim was to aggregate different heterogeneous resources
and a list of 213 disease markers was established by conducting a statistical meta-analysis.
For the purpose of the thesis the list was augmented for including the NZO mouse, with
time series on disease stages and early stage expression experiments. Thus, the published
approach has been extended and resulted in a list of 655 marker genes which is the starting
point for the alternative splicing analysis.

1.5 Aims of the thesis

Merging information theory and statistics with molecular biology, the thesis tackles the
challenge to achieve several aims. The interdisciplinary task balances applied mathe-
matics and theoretical elegance vs. biomedical research to return practical, verifiable
results. Here the detection of different isoforms between different biological conditions is
the main mathematical objective. The thesis has three main purposes:

• Introduction of elements of information theory to the prediction to alternative
splicing as a new statistical method.

• Implementation of a differential expression pipeline and alternative splicing pipeline
in order to provide a standardised evaluation of Affymetrix 3’ arrays and Exon
Arrays.

• Assessment of genome-wide alternative splicing states in type-2 diabetes mellitus.
The differential expression pipeline enables marker identification and is the basis for the
development of the alternative splicing pipeline. The information theoretical element in
alternative splicing is elaborated for fast and robust splicing prediction. In the alternative
splicing pipeline the splicing prediction joins the differential expression experience. These

14



1.5 Aims of the thesis

Information theory

differential
expression
pipeline

Statistics

alternative splicing type-2 diabetes

alternative splicing pipeline

alternative splicing in
type-2 diabetes mellitus

marker identification

splicing prediction

Figure 1.3: Objectives and their relations. The thesis relates information theory and statistics
with alternative splicing and type-2 diabetes mellitus.

products are applied in type-2 diabetes mellitus for marker identification and analysis of
global splicing states as depicted in Figure 1.3.

In Chapter 2 basic aspects of the complex field of alternative splicing are introduced.
Alternative splicing is a mechanism to increase the proteome from a smaller than expected
code basis on the level of genes. A fraction of transcript variation is biologically relevant
and related to functional changes. The precise splicing process is accompanied by an
amount of splicing errors partially leading to a number of known splicing based diseases.
Established therapies are rare but several approaches are available.

Global analysis of alternative splicing is performed with three technologies: EST or
mRNA based alternative splicing databases, microarray experiments and RNA-Seq. All
these technologies provide global estimates of alternative splicing and in the review the
estimates are consolidated to estimate the prevalence of splicing. Specially designed
splicing data sets are missing for exon arrays. In my work this is circumvented by
contrasting a data set to a database. A manual selection and collection of literature
based alternative splicing events in the AEdb is the necessary test set for the prediction
evaluation in Section 4.4 [274].

In Chapter 3 the implementation of the microarray analysis pipelines is elaborated.
Comparison of results between different data sets and meta-analysis requires a standar-
dised and controlled data analysis processing both for alternative splicing and differential
expression [147]. Methods for differential expression analysis established for Affymetrix
3’ gene expression arrays have been adapted to the specific design of the Exon Arrays.
The alternative splicing pipeline consists of two branches, differential expression analy-
sis and alternative splicing analysis. No method evaluation or accepted procedures are
available for splicing evaluation. Thus, the alternative splicing analysis is developed in
Chapter 4 and then implemented as a module in the pipeline.

Guidelines for the pipelines are implementation in R/BioConductor [238, 108], internal
handling on Ensembl genes or exons with gene-wise analysis [38], modular design as well
as division of complex experimental settings into different test cases. The application
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1 Introduction

of statistics depends on the experimental technology and the analysis objective [304].
Thus, the particular design of the Affymetrix 3’ gene expression and Exon Array is
introduced [97, 194]. The chip design allows to reinterpret the probe assignment to genes
and transcripts in the light of the advancement of the genome sequence.
The processing of the arrays follows two fundamental principles: First, only biologically
motivated corrections on the data are allowed with statistical models. Second, compa-
rability between experiments is essential. The processing is highlighted with the steps
quality control, test case determination, preprocessing and data evaluation [239]. Where
research on 3’ arrays is settled, the analysis of exon microarrays has posed new challenges
to the computational analysis like data normalisation and presence tag calculation. Probe
binding affinity is corrected by GC content of the probe sequences and intensity distribu-
tions are adjusted by quantile normalisation. Data evaluation establishes an array-wide
gene analysis followed by the isolation of a set of alternatively spliced genes as well
as a set of differentially expressed genes. It follows the gene set evaluation with over-
representation analysis and group testing on a diverse set of functional resources like
pathway databases, transcription factor targets, drug targets and tissue expression.
In Chapter 4 the concept of entropy is introduced to the field of alternative splicing
prediction. It develops a new method called ARH – Alternative splicing Robust pre-
diction by Entropy [241]. The primary goal is to develop a method which is robust in
the number of replicates and independent from the number of exons. For comparison,
eight different methods proposed for splicing prediction on exon arrays are presented.
In a broad evaluation the performance is assessed on several aspects like dependency
on the numbers of exons, splicing prediction in the case of differential expression or no
differential expression and robustness in the numbers of replicates. The evaluation runs
on a tissue data set and in an artificial setting with a spike-in experiment resulting in a
total of four different test settings: pairwise tissue comparison with database confirmed
events, tissue specificity with database confirmed events, tissue specificity with RT-PCR
validated events as well as the in vitro samples with generated events. The focus is on
detection of exon skipping events. Design of the exon arrays is just adequate for this
type of splicing events (see subsections 2.1.1 and 3.1.2).
In Chapter 5 the power of the pipelines and the ARH prediction is shown with an
application in the context of type-2 diabetes mellitus. An introduction to type-2 diabetes
mellitus elucidates the interplay of different organs and factors to highlight two major
organs for disease progression, adipose tissue and liver.
For marker identification a meta-analysis is performed on diverse qualitative and quan-
titative sources Rasche et al. [240]. The quantitative sources are microarray data sets
processed with the differential expression pipeline. In every source disease relevance of
genes is scored. Scores are summed up to a gene score rating the general relation of a gene
to type-2 diabetes mellitus. Assessing consistency in the gene score another use arises
of the entropy introduced in Section 4.1. High entropy identifies genes with consistent
type-2 diabetes mellitus relevance over many sources.
For two mouse models of type-2 diabetes mellitus hybridisations on exon arrays have
been performed at the German Institute of Human Nutrition (DIfE). Mice are all fed on
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1.5 Aims of the thesis

a high-fat diet and on this dietary background NZL animals develop obesity. Diabetic
mice are separated by levels of blood glucose. In contrast the SJL animals do not develop
obesity by genetic reasons. Samples of fat and liver tissue are prepared and with the
alternative splicing pipeline spliced genes are identified and attributed to glycaemic or
genetic causes.
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2 Aspects of Alternative Splicing

In Chapter 2 basic aspects of the complex field of alternative splicing are introduced.
Alternative splicing is a mechanism to increase the proteome from a smaller than expected
code basis on the level of genes. A fraction of transcript variation is biologically relevant
and related to functional changes. The precise splicing process is accompanied by an
amount of splicing errors partially leading to a number of known splicing based diseases.
Established therapies are rare but several approaches are available.
Global analysis of alternative splicing is performed with three technologies: EST or
mRNA based alternative splicing databases, microarray experiments and RNA-Seq. All
these technologies provide global estimates of alternative splicing and in the review the
estimates are consolidated to estimate the prevalence of splicing. Specially designed
splicing data sets are missing for exon arrays. In my work this is circumvented by
contrasting a data set to a database. A manual selection and collection of literature
based alternative splicing events in the AEdb is the necessary test set for the prediction
evaluation in Section 4.4 [274].

2.1 Biological background

DNA is the basic storage form of genetic information. Due to its double-strand nucleotide
structure it is possible to copy or inherit the information and provide repeated read-outs
from the storage. The read-out process transcribes the DNA information to RNA. RNA
is a short-term memory for biological information. On the one hand RNA is continuously
processed and on the other hand RNA is permanently degraded. Newly transcribed RNA
is called pre-mRNA.
Information on the DNA is structured in genes. Genes are segments on the DNA consis-
ting of information blocks called exons. Exons are divided by introns, long DNA stretches
which do not contribute to functional information. These introns are excised from the
pre-mRNA by splicing. The RNA product after splicing is called mRNA. Finally,the
mRNA is translated to a protein.
The vertebrate splicing machinery is not only capable of accurately recognising the small
exons within the larger intron context, but is also able to recognise exons alternatively.
In this process, an exon is incorporated into the mRNA, excised like an intron or exon
bounds are varied. This process is called alternative splicing and is abundantly used in
higher eukaryotes [295, 22]. For more information about the biochemical mechanisms
of alternative splicing, readers may refer to some excellent reviews by Black [40], Nil-
sen [216], Matlin et al. [199], Hertel [125], Maniatis and Tasic [196]. The alternative
transcripts or proteins encoded from the same gene are called isoforms.
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Figure 2.1: From DNA over RNA to protein. In the course of splicing from the same gene read-out
different mRNA variants are processed for translation to different isoforms.

2.1.1 Alternative splicing patterns

Alternative splicing events can be subdivided into different classes (see Figure 2.2). Exons
can be skipped at any position within the transcript. This is a simplifying view with mi-
croarrays in mind. Alternative transcription start (alternative first exon) or alternative
transcription end (alternative last exon) are not alternative splicing in a proper sense
but relate to the transcription process. The events are detectable by exon expression
changes and thus are included in this work. Skipping one exon the event is called exon
cassette mode. Database analysis from human curated sets revealed that cassette exons
are the most common type, representing about half of alternative exons [295]. Additio-
nally skipping adjacent exons it is a multiple exon skipping event. Several transcript
variants can be present in a sample with skipping events in different exons constituting
a mutually exclusive exon event. More splicing classes use different splice sites or ignore
these sites resulting in alternative acceptor or donor sites or complete intron retention in
the transcript.

Most alternative splicing patterns involve the choice of splice sites competing against
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Constitutive Splicing (reference)
Exon Skipping (exon cassette mode)

Intron Retention

Alternative Donor Site (End of Exon)

Alternative Acceptor Site (Start of Exon)

Multiple Skipped Exons

Mutually Exclusive Exons

Alternative Transcription Start (Alternative First Exon)

Alternative Transcription End (Alternative Last Exon)

Figure 2.2: Splicing scope. From all splicing possibilities only the exon skipping events are detectable
with exon arrays. They are visualised on the right part of the figure.

each other. One alternative splicing pattern in which this may not be the case is intron
retention. Here, the choice is between splicing with intron excision and no splicing with
the retention of an intron in the final mRNA [40]. The partially spliced RNA must
then be exported to the cytoplasm. Thus for intron retention, the competition may be
between splicing and mRNA transport rather than between two splicing patterns.
Not all splicing patterns are conserved between different species [40]. Even within a
species, there appears to be remarkable variation in the use of particular splice variants
[215]. A possible explanation for this is that alternative splicing provides an advantageous
mechanism for testing new protein sequences during evolution. A transcript may be
varied by a single point mutation extending an exon or creating a new exon. Encoding
a new protein, it may comprise only a few percent of the original mRNA. Mutations
altering the splicing allow the production of new proteins without crucial loss of the
original protein.

2.1.2 Increase of the proteomic diversity

A major undertaking of the post-genomic era will be the description and functional cha-
racterisation of the proteome [115]. The number of proteins in the proteome is by no
means equivalent to the number of genes, but can exceed it by orders of magnitude.
Mechanisms that increase protein diversity in all metazoans include alternative polyade-
nylation, post-translational protein modifications as well as the use of patterns listed
in Figure 2.2. Among these mechanisms, alternative pre-mRNA splicing is considered
to be the most important source of protein diversity in vertebrates [196]. An overview
about the number of consolidated transcripts per gene is depicted in Figure 2.3 for the
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Figure 2.3: Ensembl 53 statistics. Ensembl gene identifier are filtered for known protein coding
genes. The blue dashed line indicates the average. Left: Histogram of the number of exons per gene.
Right: Histogram of the number of transcripts per gene.

Ensembl database [38]. 20 852 Ensembl genes have on average 13 exons (12.94) encoding
2 proteins (2.22).
How many alternatively spliced transcripts can be synthesised from a single gene? If
each gene produces two isoforms, the proteome would be twice as big as the genome.
The complexity of the proteome would be significantly higher if alternative splicing can
create a much greater extent of transcript diversity [115]. It turns out that several genes
do encode transcripts that are alternatively spliced to produce a vast number of different
mRNAs. Mathematically the upper bound is given by the number of combinatorial
combinations of the above listed alternative splicing patterns with the number of exons
in the gene. However studies imply that in most of the splicing events only one or a few
exons are affected [115, 319].
The regulation of alternative splicing producing this number of proteins under different
biological conditions is still under intense investigation [295, 93]. The relative concentra-
tion of splicing-associated proteins can regulate alternative splice site selection. These
proteins are often combined in complex ways into multiple layers of regulation. Many of
these proteins can act either positively or negatively depending on their binding context.

2.1.3 Function and biological relevance

It is unquestionable that alternative splicing can generate mRNAs with important and
distinct biological functions [29]. The more difficult question is what fraction of the ex-
tensive transcript variation generated by alternative splicing is truly biologically relevant
and what fraction may be due to stochastic noise in the splicing process. Bioinformatic
analyses indicate that 75% of alternative splicing events affect coding regions, with pre-
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dicted effects ranging from subtle amino acid substitutions to removal of protein motifs
or protein truncations [29].

By far the best-understood system of splicing regulation comes from the somatic sex deter-
mination pathway in Drosophila melanogaster [40]. A series of genetic studies identified
the key regulators of the somatic sex determination pathway as RNA binding proteins that
alter the splicing of particular transcripts.

Stamm et al. [272] review the function of alternative splicing. Three different main
categories are listed:

• Introduction of stop codons

• Addition of new protein parts

• Influence on mRNA function

The function with most obvious biological consequences seems to be the introduction of
stop codons. About 25-35% of alternative exons introduce frameshifts of stop codons
into the pre-mRNA and 18-25% of transcripts will be switched off by stop codons caused
by alternative splicing and nonsense-mediated decay [272].

A major part of splicing events leads to the addition of new protein parts. Changes
in the protein primary structure can alter the binding properties of proteins, influence
their intracellular localisation and modify their enzymatic activity or protein stability by
diverse mechanisms [272]. One commonly found mechanism is the introduction of protein
domains that are subject to posttranslational modification. The range of changes spans
from a complete loss of function to very subtle modulations of function that are only
detectable by specialised methods. Consistent with the idea that alternative splicing
plays important roles in cellular function, bioinformatic and array data indicate that the
process is more prominent in tissues with diverse cell types and among genes playing
regulatory functions [29].

2.1.4 Splicing errors

A fundamental problem in pre-mRNA splicing is ‘exon recognition’, the process by which
exons are distinguished from introns, and intron–exon boundaries are accurately defined.
The average size of a human exon is 150 nucleotides, whereas introns average around
3500 nucleotides [196]. Thus, the splicing machinery must recognise small exon sequences
located within vast stretches of intronic RNA. Moreover, splice sites are poorly conserved,
and introns contain large numbers of cryptic splice sites. Cryptic splice sites are normally
avoided by the splicing machinery, but can be selected for splicing when normal splice
sites are altered by mutation. Mutations that alter splicing can allow production of new
proteins without essential loss of the wild-type protein [40]. Although this might be
advantageous for protein evolution, the high degree of variability in splicing makes it
difficult to prove the significance of a splice variant that is not conserved across species.

Most of the known splicing errors are caused by mutations in the genomic DNA that
destroy a normal splicing signal or create a new one [115, 141]. Other instances of
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splicing errors are caused by mutations in splicing regulatory proteins or their binding
sites. There are two possible fates for inappropriately spliced transcripts:

• translation or
• degradation.

In the first case these transcripts result in the production of aberrant proteins. Mostly
these useless proteins will not affect the cell. In the second case erroneous spliced trans-
cripts are just degraded.
Eukaryotes possess an mRNA surveillance system that scans newly synthesised mRNAs
for the presence of premature stop codons and, if detected, degrades the defective mR-
NAs to prevent their translation [115]. A number of different splicing errors leads to
the insertion of premature stop codons in a transcript. For example, improperly inclu-
ding exons or retaining introns that contain stop codons can direct a transcript to the
mRNA surveillance pathway. In any case many alternatively spliced transcripts pass the
surveillance system and are translated on a large scale [301].
Only for a handful of alternative splicing events a clear function and biological relevance
is described today. However, experiments that address functional differences between
protein isoforms encoded by alternatively spliced transcripts have not even been perfor-
med [227]. However, perhaps not all splicing events have functional consequence and
may be considered to be splicing noise. Comparative genomics is a way to determine
whether an alternative splicing event is real or represents noise. The nucleotide sequence
of functionally neutral alternative exons will not be under selective pressure and should
not be conserved in distantly related species, whereas functionally relevant alternative
exons should be. However, alternative exons not evolutionarily conserved are not neces-
sarily unimportant but might have evolved recently. This is not that far-fetched because
single point mutations may create new splice sites [54, 141] and potentially introduce a
new alternative exon. In fact, there are documented cases in which the splicing patterns
of paralogous genes differ across species [115].

2.1.5 Alternative splicing in disease

A mounting body of evidence implicates splicing defects and altered splicing regulation
as causes or modifiers of numerous pathologies [29, 218]. Both computational predictions
and microarray experiments have identified hundreds of alternative splicing and aberrant
splicing events associated with disease states, particularly various cancers [29]. Cartegni
et al. [54] points to a misunderstanding of point mutations in the DNA possibly affecting
splicing signals. Most splicing mutations affect the standard consensus splicing signals,
and typically lead to skipping of the neighbouring exons. Less frequently, the mutations
create an ectopic splice site or activate a cryptic splice site, thereby changing the overall
splicing pattern of the mutant transcript [54]. Consequently Pagani et al. [227] link
genomic changes in introns and exons to disease by several mechanisms.
These add to a growing list of alternative splicing changes and aberrant splicing events
known to affect cellular features relevant for tumor growth, including cell transformation,
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motility, invasiveness, and angiogenesis [29]. Consistent with the notion that changes in
alternative splicing can be influential to cellular phenotypes French et al. [99] report
correlations between transcript features and lymphoma grade, proper classification of
histological distinct tumors, using Affymetrix Exon Arrays. As examples for diseases
caused by alternative splicing the following have been described [2, 69, 91]: cystic fibrosis,
spinal muscular atrophy, familial isolated growth hormone deficiency type II, Frasier
syndrome, Frontotemporal dementia and parkinsonism linked to chromosome 17, retinitis
pigmentosa and myotonic dystrophy.
Wang and Cooper [307] dissect the alternative splicing in cis-acting and trans-acting mu-
tations as well as trans-dominant effects causing alternative splicing in disease [307, 91].
The mechanisms causing altered splicing involve disruption of either cis-acting elements
within the affected gene or trans-acting factors that are required for normal splicing or
splicing regulation. Effects in cis have a direct impact on the expression of only one gene
whereas effects in trans have the potential to affect the expression of multiple genes.
Detailed knowledge about isoform expression provides the possibility to identify novel,
more specific, and safer targets for drug design. In this regard, individual variation in
splicing patterns related to population haplotypes may add yet another dimension to
personalised medicine [29]. Recent analyses of HapMap cell lines document variations
in alternative splicing among different individuals, an observation with significant basic
and medical implications [29].

2.1.6 Therapy of diseases caused by alternative splicing

The proteome of a cell can rapidly change in response to extracellular stimuli through
complex signal-transduction pathways [196]. Changes in protein composition can be
regulated on many different levels, but have been studied primarily at the level of trans-
cription and posttranslational protein modification. Stamm [271] describes several signals
changing the selection of splice sites. Signalling pathways are activated for example by
neuronal activity or stress. Yeo complementary reviews two high-throughput data sets
for RNAi as well as compounds identifying targets and drugs directing alternative splicing
events [318].
These studies call for the development of diagnostic and therapeutic means targeted
at alternative splicing. Stoilov et al. [280] list six approaches as therapeutic strategies,
namely antisense oligonucleotides, RNAi, ribozymes, SMaRT, low molecular weight drugs
and expression of trans-acting factors.
More in detail Garcia-Blanco et al. [103, 102] describe the different approaches divided in
conventional therapeutics, oligonucleotide-mediated therapies and RNA-based corrective
therapy. The conventional therapeutics use small molecules to target specific isoforms of
proteins or the gene expression. Antisense oligonucleotides were first used in the 1970s
to inhibit a virus in tissue culture [277, 322]. A potential in human therapy has remained
anticipated but unrealised. A group of methodologies has been developed to reprogram
mRNAs to modify the outcome of alternative splicing decisions. E.g. splicing reactions
can be redirected in the nascent primary transcript to prefer certain isoforms over others
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Technology Estimate Cit.

alternative splicing database 40-60% [183]
microarray 74-88% [183, 149]
RNA-Seq 92-98% [306, 228]

Table 2.1: Global splicing estimates. Current studies of different high-throughput technologies show
different ranges of genome-wide alternative splicing prevalence.

(SMaRT).

2.2 Global analysis with high-throughput technologies

Currently three technologies facilitate genome-wide analysis of alternative splicing: EST
or mRNA databases, splicing-sensitive microarrays as well as RNA-Seq experiments [29,
41]. EST/mRNA are collected in huge databases and already helped to determine the
gene structure of the DNA. Sequence analysis shows that alternative exons often have
unusual lengths, suboptimal splice sites and characteristic nucleotide patterns. Despite
this progress alternative exons cannot be predicted ab initio from genomic data, which
is due to the degenerate nature of splicing signals [115].
Often the interest is to analyse alternative splicing in a special sample under study.
One would like to examine whether a particular exon is coregulated with others, and to
test how a whole ensemble of splice variants is altered by a particular condition. Such
condition specific analysis is possible in modern lab environments with microarrays and
RNA-Seq.
Stating the existence of alternative splicing the question arises how widespread it is in the
genome. Alternatively spliced exons can be found by sequence comparison of genomic,
mRNA and EST sequences. Furthermore, a large number of alternative exons have been
described in the literature [115]. The current state of databases lists 68% of all genes to
be alternatively spliced with about 9 exons per gene [38, 273, 296]. Using a variety of
experimental designs and biological samples, splicing-sensitive microarrays studies have
produced consistent estimates of 74% to 88% of alternatively spliced genes in the human
genome [149, 156]. Global splicing estimates are increasing in time and technology (see
Table 2.1). Since the maximal bound is practically reached (with 98%) in RNA-Seq
studies, estimates will probably converge in future.

2.2.1 Alternative splicing databases

The research on alternative splicing first was the domain of EST libraries. EST/mRNA
databases are important to structure the genome sequences and identify genes. The goal
of finding the exon-intron structure goes hand in hand with splice site detection. It was
on this task when slowly the community realised that alternative splicing occurs, not
rarely but for the majority of genes [205, 157, 149]. This opened the research field of
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alternative splicing variant detection and was accelerated by the complete sequencing of
the human genome [178].
The alternative splicing databases discussed in this Chapter are indispensable for desi-
gning arrays. The use of microarrays depends on accurate prediction of the gene and
exon sites. Further the databases may help to support detected splice variants, as the
most common variants are already listed in the databases. In this thesis the databases
are also used for validation of splicing predictions (see Section 4.4).
The NAR database issue lists 24 databases for splicing [101]. Here the focus is on 17
databases for human or mouse using EST and mRNA sequences for splicing prediction.
Excluded are special web services or databases which are not available at the time of
writing or have not been updated for more than 6 years. An overview of the discussed
databases is given in Table 2.2 with an associative visualisation in Figure 2.4.
Genome-wide analyses of alternative splicing are mainly based on publicly available se-
quence databases such as GenBank, UniGene, dbEST. Some databases also use protein
sequences from RefSeq and Swiss-Prot/TrEMBL. EuSplice uses EST/mRNA data only
for the validation of splicing events predicted by protein sequences. An exception is
the H-DBAS database which relies solely on the H-Invitational project data [143], using
manually annotated cDNA sequences. Most of the databases align the sequences to a
genomic reference: NCBI, UCSC or Ensembl genome build.
Some early databases do not base on a genomic reference but align the EST and mRNA
sequences with each other, e.g. use UniGene clusters as reference (STACK, PALS db,
Xpro, EuSplice, EASED). Predictive methods based on EST and mRNA comparison
have limited power, since they do not use information in the intronic part of the genome.
Indeed, the splicing process is controlled by specific sequence motifs in the DNA flanking
most of the intron sequences. These motifs, surrounded by a longer conserved consensus,
provide valuable information for the location of splice sites through the alignment of EST
and genomic sequences. Due to the above reasons, algorithms based on EST – genome
pairwise comparison have provided more reliable tools for the detection of splice sites.
An in-depth discussion of the methods and associated problems is available in a review
of Bonizzoni et al. [47]. Aligning the EST/mRNA sequences to the genome mostly al-
gorithms like BLAST, BLAT or sim4 are used [23, 163, 96]. sim4 provides some quality
indication for the alignment. Since these algorithms are very general several more spe-
cified methods have been developed and are often the basis for a database (ASPicDB,
ECgene). The result of the alignment may now be used for two tasks: (1) deriving trans-
cripts for genes taking alternative splicing into account as well as (2) exon and splice
site definition. Some of the challenges described in the Subsection above are tackled
with multiple alignment algorithms (ASPIC, ASAP) loosing some features like sensiti-
vity scores or special sequences. The EST/mRNA sequences may also be assembled to
full-length transcripts. The goal is to minimise the number of predicted transcripts that
do not occur in nature. PALS db takes the longest mRNA sequence in each UniGene
cluster as the reference sequence, which is aligned with ESTs and mRNA sequences in
the same cluster to predict alternative splicing sites. Recently, several studies have sug-
gested graphical methods to identify gene structure [217]. Splice graphs are constructed
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2.2 Global analysis with high-throughput technologies

Figure 2.4: Relations of the alternative splicing databases. Alternative splicing databases assess
the the same resources for different aims and use.

in which exons and introns constitute nodes and edges, respectively. However, genera-
ting all possible isoforms by graph traversal can produce many false transcripts. Many
singular splicing examples are dispersed in the literature. Two databases try to gather
a thimble of this knowledge by manual curation (AEdb, MAASE). Annotation of new
results together with the publication will be crucial [133]. The era of high-throughput
data has to be accompanied by in depth assays.

Only a few of the methods care about validation. For example EuSplice derives its
prediction from protein sequences but uses EST/mRNA sequences for validation, similar
for Xpro. SpliceNest is the only database, which performed PCR validation for their
predictions [119, 120]. Comparing the databases with each other the results are often
strongly discordant due to differences in the input, the genomic reference, the algorithms,
alignment filtering and stringency as pointed out in [47]. A completely different approach
is used in AEdb by manually collecting alternative splicing events from literature [274].
Therefore it is a consequently validation based database. Meanwhile it is integrated in
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Figure 2.5: RNA degradation plots. RNA degradation plots are a quality control attribute for
assessing microarrays. Due to the whole-transcript random primer protocol degradation now is rather
constant. Left: RNA degradation in 3’ gene expression arrays. Probes are chosen from the 3’ end of
the gene (see Section 3.2). Right: RNA degradation in exon arrays. Probes are dispersed over all exons
(see Section 3.3).

ASTD [273].
Large differences are also in the presentation of the results. Four databases try to re-
late the genes and transcripts to different resources by connecting respective databases
(Ensembl, ECgene, EuSplice, PALS db). Especially a functional characterisation of the
genes or splice variants is provided by Ensembl, ASPicDB, H-DBAS and EuSplice. The
input database may be stratified for sequences related to tissues or diseases. Taking this
information into account some databases filter their results for tissue splicing or similar
(SpliceNest, STACK, ASAP, ASPicDB, TISA, EASED). Results may also be compared
between species. Five databases confine to human - mouse orthology (SpliceNest, Holly-
wood, TISA, PALS db, MAASE). More databases incorporate different genomes partially
with the goal to study the evolution of splicing (Ensembl, ASTD, ASAP, ECgene, EUS-
plice, EASED, Xpro). Xpro is a comprehensive analysis of the splice sites themselves.
MAASE focuses specifically on results for microarray design.
Focussing on genome-wide splicing prediction, a number of helpful studies is aside. The
following selection are data sets which build on the above databases for splicing analyses
with different research questions. T-STAG for example is a thorough tissue and cancer
study relying on the SpliceNest database [118, 72]. HS3D is a selection of splice events for
the training of machine learning algorithms [235]. SpliceInfo relates alternative splicing
to RNA secondary structures [136]. ProSAS relates alternative splicing to changes in
protein structures [39]. ASG provides a gallery of graph visualisations for alternative
splicing [187].
In summary the databases cover a wide range of alternative splicing effects. However
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2.2 Global analysis with high-throughput technologies

Species Topic Cit.

human transcript spike-in on HeLa cells,
latin square design

[5]

human colon cancer [104]
human 11 tissues,

muscle enrichment
[61, 80]

Table 2.3: Affymetrix Exon Array data sets. The three data sets are used in the validation of
splicing prediction methods, see Section 4.4.

there is low consensus information over all resources. To proceed with a conservative
selection of tissue splicing events, the AEdb is chosen as true positive set for the method
evaluation in Section 4.4. Spliced exons in the AEdb are annotated to Ensembl, which
is also the database used for annotation in the microarray pipelines in Chapter 3.

2.2.2 Microarrays

One recent development has been the transition of microarray studies of alternative
splicing from the prototype stage to a tool for large-scale analysis of alternative splicing
[184, 48] (see Table 2.4). Microarray techniques facilitate the detection of regulated
splicing in large candidate pools and the identification of regulated splicing in biological
contexts [183]. The design of most of the current microarrays has one basic flaw: the
majority of the probes are not specific for different products from the same gene. The
construction of splicing arrays requires sequence information uniquely associated with
specific isoforms [48].

Spotted oligonucleotide microarrays employing probes designed to detect unprocessed
and processed RNA have been used to monitor pre-mRNA splicing in yeast [62]. Conven-
tional microarray-based approaches utilising oligonucleotides have been used for monito-
ring alternative splicing in mammalian cells [149, 53, 156, 134, 308, 180, 229]. The most
extensive use of the latter approach was the application of „exon-junction” microarrays
for the discovery of exon skipping events in human tissues and cell lines in Johnson et al.
[149]. The authors used custom microarrays containing oligonucleotide probes comple-
mentary to mapped exon-exon junction sequences in RefSeq genes for the main purpose
of discovering new alternative splicing events in human transcripts. Three data sets used
Affymetrix custom arrays introducing the short oligonucleotide platform for alternative
splicing [156, 308, 134].

The traditional labelling protocols necessitated the design of the probes toward the 3’
end of the transcript in order to optimise the match of the labelled targets with the
probes and thus were not all suited to detect alternative splicing events [48]. For the
introduction of exon arrays monitoring the expression on the full length of a transcript
Affymetrix had to develop and introduce the Whole Transcript Sense Target Labelling
Assay. Using a random priming strategy, in combination with in vitro transcription-based
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2 Aspects of Alternative Splicing

Species Size Probe placement Manufacturer Cit.

human,
chimpanzee

2647 genes exon body and
splice junction

Agilent [53]

human 316 genes exon body and
splice junction

Agilent [180]

mouse 2647 genes exon body and
splice junction

Agilent [229]

human 990 genes tiling array Affymetrix [156]
human 10 000 genes splice junction Agilent [149]
human 21 genes exon body and

splice junction
Affymetrix [308]

yeast 933 genes exon, intron and
splice junction

cDNA spotted array [62]

human 23 genes exon body fiber-optic microarray [317]
rat 1600 genes exon body Affymetrix [134]

human 364 genes splice junction fiber-optic microarray [324]
human 86 genes exon body and

splice junction
Geniom OneR [243]

human 17 939 exon body and
splice junction

Agilent [55]

Table 2.4: Alternative splicing microarray data sets. Low coverage microarrays have already
been used for different splicing analyses.
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2.2 Global analysis with high-throughput technologies

Species Coverage Manufacturer Cit.

human 10 tissues Illumina [306]
human 6 tissues Illumina [228]
human 2 cell lines Illumina [289]
mouse 1 tissue 454 [190]

Table 2.5: mRNA-Seq data sets. First data sets explore splicing by deep sequencing of the
transcriptome.

linear amplification and a novel end-point fragmentation and labelling assay scheme, it
provides a robust method for target labelling (see Figure 2.5). Exon Arrays meanwhile
are used in different experimental settings, where data sets used in the thesis are listed
in Table 2.3.
The current design of the Affymetrix Exon Arrays facilitates the analysis of exon skipping
events. This type of splicing events covers more than 50% of all known splicing events
[273]. On the other hand some splicing events are missed due to the selection of the
probe position in the genome. Intron retention is not recognised at all. Changes in the
splice boundaries are identifiable depending on the exact probe positions.

2.2.3 RNA-Seq

The introduction of 2nd generation sequencing technologies opened new doors into the
field of genomic sequencing. As understanding of these technologies becomes more wides-
pread and new tools are being developed, so are new innovative ways of applying these
technologies being created [197].
Given the low requirements of the new technology for a nucleotide sequence product,
together with its deep coverage and base-scale resolution, its use has expanded to the
field of transcriptomics [309]. However quantitative studies still need high number of
replications [198].
Although a field recently opened three genome-wide sequencing studies are listed [208]
in Table 2.5. Deep sequencing of cDNA from multiple human tissue types revealed
thousands of new splicing junctions [306, 228]. Both studies conclude that approximately
92-98% of human multi-exon genes are subject to alternative splicing. That means at least
86% of all human genes. Wang et al. [306] identified over 22 000 tissue-specific alternative
transcript events. These events cover alternative splicing, alternative polyadenylation and
alternative promoter usage. Correlation between the tissue-specific patterns of alternative
splicing and alternative polyadenylation events led the authors to the hypothesis, that
these mechanisms might be coregulated.
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3 Computational Analysis of Affymetrix
Arrays

Comparison of results between different data sets and meta-analysis requires a standar-
dised and controlled data analysis processing both for alternative splicing and differential
expression [147]. Methods for differential expression analysis established for Affymetrix
3’ gene expression arrays have been adapted to the specific design of the Exon Arrays.
The alternative splicing pipeline consists of two branches, differential expression analy-
sis and alternative splicing analysis. No method evaluation or accepted procedures are
available for splicing evaluation. Thus, the alternative splicing analysis is developed in
Chapter 4 and then implemented as a module in the pipeline.

Guidelines for the pipelines are implementation in R/BioConductor [238, 108], internal
handling on Ensembl genes or exons with gene-wise analysis [38], modular design as well
as division of complex experimental settings into different test cases. The application
of statistics depends on the experimental technology and the analysis objective [304].
Thus, the particular design of the Affymetrix 3’ gene expression and Exon Array is
introduced [97, 194]. The chip design allows to reinterpret the probe assignment to genes
and transcripts in the light of the advancement of the genome sequence.

The processing of the arrays follows two fundamental principles: First, only biologically
motivated corrections on the data are allowed with statistical models. Second, compa-
rability between experiments is essential. The processing is highlighted with the steps
quality control, test case determination, preprocessing and data evaluation [65]1. Where
research on 3’ arrays is settled, the analysis of exon microarrays has posed new challenges
to the computational analysis like data normalisation and presence tag calculation. Probe
binding affinity is corrected by GC content of the probe sequences and intensity distribu-
tions are adjusted by quantile normalisation. Data evaluation establishes an array-wide
gene analysis followed by the isolation of a set of alternatively spliced genes as well
as a set of differentially expressed genes. It follows the gene set evaluation with over-
representation analysis and group testing on a diverse set of functional resources like
pathway databases, transcription factor targets, drug targets and tissue expression.

1Parts of this Chapter appear in the Handbook of Research on Systems Biology Applications in Medicine
edited by Dr. Andriani Daskalaki [65]; Copyright 2009, IGI Global, www.igi-global.com. Posted by
permission of the publisher.
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3 Computational Analysis of Affymetrix Arrays

DNA

transcribed sequence

probes

Figure 3.1: Probe placement 3’ gene expression array. Probe sequences are selected from the
transcribed regions of the coding sequence, preferably near the 3’ end of the gene sequence.

3.1 Design of the GeneChip array

The basic element of the chip are probes of 25 basepair length spotted on quartz wafer
slides with a photolitographic method [97]. In an experiment dye-labelled RNA from the
sample under study is injected on the slide. The hybridisation depends non-linearly on
the amount of transcripts in the sample [123, 213, 76]. The comparison between different
samples is done by using several chips with multiple replicates per biological condition.
The chip with the hybridised solution is scanned to the absorption spectrum of the dye.
Analysis starts by exploiting the scanner image. From this image approximate hybridi-
sation values are inferred for each probe. An exhaustive description of the technology is
available in Dalma-Weiszhausz et al. [78] of by manufacturers manuals [10, 7, 194].

3.1.1 The 3’ gene expression array

In the chip design, every probe is spotted with its perfect match probe (PM) and the
so-called mismatch probe (MM). The PM have complete complementarity to their target
sequence. In the MM sequence the 13th nucleotide is altered to its basepair complement.
The idea is, that the MM measures the background expression. The PM signal than is
composed by the background expression plus the gene specific expression.
The expression of a gene is measured by several probes with sequences unique to the
respective transcript sequence. Reference transcript sequences are assembled from public
sources like UniGene, GenBank, dbEST or RefSeq. A number of such probes collected
in probe sets stands for independent measurements of the amount of transcripts for the
gene. The number of probes in a probe set varies between chip platforms. For example
in the popular mouse 430 2.0 array there are eleven probes in one probe set. Samples
are prepared with the in vitro transcriptase protocol and expression is more independent
from RNA degradation at the 3’ end where the probe sequences are selected (see Figure
3.1).

3.1.2 The exon array

The exon arrays are an advancement of the 3’ gene expression array but differ in two
major points from the above described design:
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DNA

transcribed sequence

probes

Figure 3.2: Probe placement exon array. Probe sequences are selected from the transcribed regions
of the coding sequence, preferably four on each exon.

• Probes are distributed over all the exons;
• MM are replaced by a selected set of control sequences.

The first difference concerns the probe placement. With random primers in the whole-
transcript protocol degradation is constant over the transcript and probes are not pressed
to the 3’ end. Instead of a probe set targeting one gene, now a probe set measures the
expression of one exon of a gene. With the dispersion of the probe sets over all exons
the hybridisation returns a more fine-grained picture of the gene expression (see Figure
3.2) [18, 13].
Due to a better sensitivity of the probes the number of probes is decreased in a probe
set. Where the mouse 430 2.0 array has eleven probes in a probe set, the mouse exon
array has four probes, sometimes less in a probe set. Still the exon arrays have a better
coverage of probes per gene. In the mean a gene has about 13 exons, with one probe set
per exon an average of 52 probes hit a gene.
The second difference are the drop of the MM. In the classic design, half of an array is
reserved, one MM per PM. The amount of control probes is now reduced to a selected set
of non-coding probe sequences. The control sequences are either chosen from non-coding
regions of the genome (genomic controls) or randomly generated probe sequences not
hitting any genomic sequence (antigenomic controls). The control sequences are selected
for varying GC content with the goal of more than 1000 control sequences per possible
GC number. On the mouse exon array are 20 744 genomic control and 16 943 antigenomic
control probes.
Altogether the coverage of the genome by the arrays increases, continuing the whole-
genome strategy. The mouse exon array measures 22 798 Ensembl genes, where the
mouse 430A 2.0 measures 15 695 genes using the alternative assignments described in the
next Subsection.

3.1.3 Alternative probe-gene assignments

Probes are assigned to probe sets. Probe sets are annotated to genes and transcripts in
diverse databases and current annotation can be retrieved from the NetAffx homepage
[4]. Since often several probe sets are mapped to one gene, the annotation introduces
ambiguity into expression results. A probe that not completely hits its target gene
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Histogram of the No of Probes in a Probe Set

No of probes in probe set

F
re

qu
en

cy

0 10 20 30 40 50

0
10

00
20

00
30

00
40

00
50

00

Figure 3.3: customCDF results vs. original annotation. Left: Histogram of the number of probe
sets in the customCDF. Right: Probe set mean expression values plotted for customCDF assignment
vs. Affymetrix original assignment.

sequence is supposed to introduce noise. The advancement of the sequence databases
leads to altered gene sequence and extensive libraries for single nucleotide polymorphisms
(SNP) are available. A probe can become obsolete because the probe sequence is not
contained in the gene sequence anymore or its specificity is reduced by a SNP. It has
come up, that probe to probe set annotation does not have to be fix but the probes can
be reattached.
Dai et al. [77] – customCDF – presented new assignments and their purpose is three-fold:

• An injective mapping is possible from probes to genes of a specific sequence data-
base;

• Probes not completely aligning to a gene are skipped;
• Probes aligning to a SNP position are skipped.

Affymetrix original annotation vs. customCDF

Because of differences between the original annotation and customCDF there are different
results in the interpretation of the data. Since, in the customCDF, there is no fix number
of probes in the probe set anymore statistical criteria may depend on the probe set size.
In the following the differences between the assignments are elucidated on the Affymetrix
mouse 430A 2.0 array.
The original probe sets are assigned to Ensembl genes in NetAffx resulting in 16 466
Ensembl genes (version 28 from 12.03.2009). The customCDF results in 15 768 genes
(version 10 on Ensembl 46). From originally 496 468 probes on the array with the cus-
tomCDF remain less than a half, 227 156 probes, in the new assignment. Probe set size
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3.1 Design of the GeneChip array

Figure 3.4: Coefficient of variations and presence tags. Left: In black is a scatterplot of the
coefficient of variation vs. probe set size. A bigger probe set size leads to a smaller coefficient of variation.
In dark orange is the histogram of coefficient of variations for the manufacturers annotation and in dark
green the histogram of coefficient of variations for customCDF. Right: Scatterplot of -log10(presence
p-values) vs. probe set size in customCDF annotation for exon arrays; In dashed orange is the histogram
for the presence tags.

strongly vary around the original number of probes per probe set, in fact multiples of 11.
To compare the computations on the two assignments the intersection of 14 911 Ensembl
genes is used. Calculation differences between the assignments are low. Expression
log2-transformed values correlate with 0.92 (see Figure 3.32). The fold-changes between
treatment and control have the same distribution and a correlation coefficient of 0.95. The
coefficient of variation is lower for customCDF with 0.269 compared to 0.278 (see Figure
3.4). The set of present genes has 8115 genes with NetAffx and 8393 with customCDF
ending in an intersection of 7620 genes, a Jaccard index of 0.86 (the ratio |A∩B||A∪B|).
Since the probe set size is not constant anymore, calculations could depend on the number
of probes. Due to a robust computation expression values and presence tags have cor-
relation values near zero (see 3.4). Often values scatter around multiples of the original
probe set size.
Differentially expressed genes are identified running the pipeline from the next Section
3.2 on both assignments. There are 996 differentially expressed genes on the original
assignment and 964 differentially expressed genes on alternative assignment with an
overlap of two-third of each differential expression set or a Jaccard index of 0.55.
In the exon arrays the number of probes depends on the number of exons in the gene and
is thus highly variable. Both assignments have variable probe set size. Expression values

2If not differently noted for 3’ gene expression array evaluations and images following versions are used:
R 2.6.0, BioC 2.1.0, customCDF 10, Ensembl 46, Affymetrix mouse 430A 2.0 array. Original data is
from a type-2 diabetes mellitus experiment introduced in Section 5.2.
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and coefficient of variations show similar behaviour as above in the 3’ gene expression
comparison. A scatterplot of exon array presence tags vs. the higher and more variable
number of probes per gene is provided in Figure 3.4 and has a correlation value of 0.068.
Finally customCDF 11 covers 21 994 Ensembl genes vs. 27 006 genes in NetAffx 21.
The advancement of the probe - gene assignments is continued by groups assessing the
cross-hybridisation potential of the probes [160, 315].

3.2 Differential expression (DE) with 3’ gene expression
arrays

The pipeline presented is composed by standard tools and covers considerations eluci-
dated in Clevert and Rasche [65]. The DE pipeline is applied in the meta-analysis for
type-2 diabetes mellitus in Section 5.2 and is used as a standard operating procedure for
various projects [86, 81, 240]. The analysis process is composed in R/BioC [238, 108]. As
the different tools are available as BioC packages it is straightforward to keep the whole
implementation of the pipeline in R. For a general discussion of differential expression
analysis readers may refer to a number of excellent reviews [275, 173, 6, 126, 140, 145].

The pipeline workflow consists of the standard steps for processing microarrays and the
steps are described in separate subsections (see Figure 3.5):

• quality control of raw data

• determine test cases

• preprocessing

• evaluation of the data and differential expression filter

• gene set evaluation: over-representation and group testing

The process is semiautomatic in the sense that only the test cases are manually specified.
The combination of different tools and methods with several input and output formats
requires a stringent handling of the identifier. The whole processing script depends
exclusively on Ensembl genes leading to a massive reduction in the complexity of the
processing and the script. Ensembl identifier are particularly simple to handle due to the
BioMart interface and the biomaRt package [38, 162, 88]. Any resources, e.g. the gene
sets, are mapped to Ensembl genes before evaluation.

In complex experiments it is not possible or advisable to preprocess all of the chips
together. Thus the pipeline follows the guideline only to join for preprocessing what is
later evaluated in conjunction. Thus experiments are divided in test cases and processing
is looped for each test case.

For clarity reasons I follow some conventions. Hybridisation values are the raw probe
signal values derived from the scanner image, i.e. the CEL file level. Intensity is the
normalised probe signal and expression is the normalised and summarised value on the
exon or gene level.
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DE Analysis

quality control of raw data

determine test cases

microarray data

expression values
(raw, normalised)
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      Reactome, BioCyc)
* transcription factor targets
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(normalisation and summarisation for the 
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Figure 3.5: The 3’ gene expression DE pipeline. A scheme for the analysis workflow. After manual
determination of the test cases the data is processed automatically. Interfaces which need a mapping of
Ensembl genes to probes or different gene identifier are marked with a red dotted line.
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3.2.1 Experimental setup

Probe intensities and gene expressions show a variability which cannot always be attribu-
ted to specific biological or technical effects and thus is considered to be noise. Not only
data preprocessing but also experimental planning has to account for this noise. A solid
statistical analysis requires replicates. In technical replicates the same sample is used
on several chips resulting in low noise levels. In biological replicates different samples
are prepared from the same biological condition, e.g. different patients or animals are
hybridised each on a single chip. The following empirical numbers of biological replicates
are recommended by the manufacturer:

• Cell culture: 2-3 replicates;
• Animal system: 4-5 replicates;
• Human system: 5-6 replicates

Some problems and challenges accompany the current application of microarrays. A set
of guidelines called Minimum Information about a Microarray Experiment - MIAME - is
introduced by the International Microarray Gene Expression Data Society [50, 170, 224].
The MicroArray Quality Control (MAQC) project assesses inter- and intraplatform re-
producibility of gene expression measurements [262]. The MAQC was initiated to ad-
dress concerns about noise and preprocessing problems and more issues. The study is
an important first step pushing microarrays toward clinical and regulatory settings. The
experimental setup is described in Shi et al. [262]. Microarray products from different
manufacturers are compared. Affymetrix products are presented with a very high repro-
ducibility in- and across test sites with low variance in measurements.
Due to the noisy data microarray results always have to be verified. In the lab this is
normally done with complementary RT-PCR experiments for selected genes. Without
experimental validations statistical means for the consistency with other published data
could serve, although this consistency is often low. The amount of verification is alleviated
by the use of statistics in the analysis of the hybridisation results.

3.2.2 Quality control of raw data

A variety of errors from sample generation to scanning can lead to erroneous hybridisa-
tions. Most of these errors are detectable by checks within and between experimental
arrays. All checks return images for a direct visual impression. A first test for the
consistency is to correlate the hybridisations between the different chips. A correspon-
ding heatmap facilitates the view, see Figure 3.6, for example to see if the different
phenotypes cluster together [232].
Three images compare the chips by cumulative statistics. The histogram or boxplots
for the hybridisation values and the RNA degradation assessed by controls on the chip.
Often for the images it is helpful to use logarithmic data.
From the position of the probes on the chip and the hybridisation values visualisation of
the chips hybridisation can be reconstructed [105]. This idea is continued by using a linear
model for the expression of a probe set and highlight the positive and negative residuals
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Figure 3.6: Intensity heatmap and histogram. Left: Heatmap of intensity correlations between
chips. Right: Overlay of intensity histograms of the hybridisation intensities for different chips.

of the probes with red and blue [43, 42, 44]. Particular flaws during the hybridisation
are identified. GeneChip arrays are very robust against such flaws, due to their design
with several probes in a probe set dispersed over the whole chip.

The last images relate probes between chips. The hybridisation values of one chip are
compared to the probe-wise median over all chips for (a) normal scatterplot, (b) quantile-
quantile-plot and (c) MA-plot. The first plot is provided with linear and logarithmic
values. The latter plots the difference to the mean of the logarithmic values.

3.2.3 Determine test cases

The DE pipeline is developed for case control studies where two groups of samples are
compared with each other. Without loss of generality (W.l.o.g.) these groups are denoted
as treatment and control. In terms of the wet lab experiment the treatment samples are
any sort of modified or similar samples of interest, some special differentiation or cell
types, e.g. disease samples. For the comparison one assumes some normal state of the
tissue whereof the control samples are prepared.

Preprocessing for each test case may result in different expression values for the same
gene and chip in different test cases. This is rarely the case but hinders the compara-
bility of expression values. But the chips cannot be normalised in one batch, because
an experiment may comprise several tissues. The processing would need another step to
identify normalisation groups. This implementation follows the principle only to norma-
lise what is compared. This has the advantage that other chip intensities do not disturb
the expression results under study. The following steps of the pipeline are processed in
a loop for every test case.
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raw hybridisation values

background correction for GC content

customCDF

customCDF

RMA, quantile normalisation

summarisation

normalised expression values

presence tag

Figure 3.7: Steps in the preprocessing procedure. The right branch is the GC-RMA method
using a three step procedure to calculate normalised expression values from raw hybridisation values.
The left branch is the fourth step for calculating detection p-values for the genes. In both branches the
customCDF probe-gene assignment is applied which is designated in the figure in green.

3.2.4 Preprocessing

The composition of the gene signal is not yet completely understood, although seve-
ral groups develop mathematical models [189]. Such models are applied to correct the
hybridisations. Preprocessing has to account for three major disturbing factors, the back-
ground signal, the probe binding affinity and the variance of the measurements resulting
in noisy data. After several years of research for the optimal preprocessing a variety
of methods are available for this task. The GC-RMA [312, 311, 313] accounts for the
GC content of the probe sequences. The preprocessing is here elucidated as a four step
procedure (see Figure 3.7):

1. Intrachip normalisation: The background correction removes unspecific intensities
from the scanner images;

2. Interchip normalisation: Reduce non-biological differences between chips;

3. Summarisation: Probe intensities are combined into a single probe set expression
value.

4. Presence tag: A detection p-value is computed from the probe hybridisations for
every probe set.

Errors introduced in the preprocessing may corrupt further analysis. With the large
number of genes on the array there may be low correlation between the samples when
using few arrays. This has to be addressed in the experimental planning, see Subsection
3.2.1.
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3.2 Differential expression (DE) with 3’ gene expression arrays

Intrachip normalisation

The hybridisations are affected by technical artefacts from protocol and image scanning,
chemical background and optical background respectively. The optical background de-
rives from the technical range of the scanning device eventually supplemented by the
over-shining of the neighbouring spots not corrected by image analysis. The chemical
background is explained by the probe hybridisation consisting of gene specific binding
and unspecific binding. The unspecific binding, or cross hybridisation, comes from dif-
ferent RNA snippets, e.g. RNA from other genes. Unspecific binding has shorter binding
times at the probes. By hybridisation over time unspecific binding faster reaches its equi-
librium of hybridising and dissolving at the probe as gene specific binding does [76]. Thus
the equilibrium is lower than for gene specific binding. MM were originally introduced to
account for unspecific binding. However the MM intensities contain more gene specific
binding than expected [325, 46, 146, 144].
The gene specific binding is target of all normalisation methods. Background signal and
binding affinity differ from probe to probe and thus average estimates over all probes
had little success. More success have models accounting for the nucleotide content of the
probe sequence for estimating disturbing factors [123, 212, 263]. A higher GC content -
higher number of G or C nucleotides in the probe sequence - is associated with a higher
binding affinity due to three instead of two covalent bindings for a single nucleotide.
The higher affinity leads to higher hybridisation values and increased variance. Position-
specific probe affinity assigns every nucleotide an affinity depending on the position in
the probe sequence. Dinucleotide models estimate affinity by neighbouring nucleotides
[325]. However the dinucleotide models do not add much predictive power [313, 212].
The GC-RMA method assumes optical noise and unspecific binding to be independent
and proposes the following statistical model [313, 312, 311, 310]:

ηp = ιp +O +Np, (3.1)

where
• ηp is the measured hybridisation for probe p,
• ιp is a quantity proportional to RNA expression - the quantity of interest for probe
p,

• O is optical noise and
• Np is unspecific binding for probe p.

In the following the description is focussed on perfect match intensities ι, if neces-
sary corresponding mismatches are denoted with index MM. Due to ignorable variance
the optical background O is treated to be constant estimated with the minimal hy-
bridisation observed over the whole array with subtraction of 1 for avoiding negatives:
Ô = min(min(ηPM,p),min(ηMM,p))− 1.

It is assumed that the logged unspecific binding log(Np) follows a bivariate-normal dis-
tribution with mean µp and variance σ2

p = var (log(Np)). The mean µp depends on
the binding affinity αp with a smooth function h: µp = h(αp). Probe binding affinities
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αp are defined in the next paragraph. The function h is estimated as a loess curve on
log(ηMM− Ô) vs. αMM, the binding affinities of the MM, resulting in ĥ. Consequently
µp is estimated with µ̂p = ĥ(αp). With more than 100 000 probes enough data is available
for precise estimations of ĥ and σ.
The binding affinity model incorporates a modified variant of the position-specific model
from Naef and Magnasco [212]. It is a sum of base effects:

αp =
25∑
j=1

∑
k∈{A,T,G,C}

aj,k · 1bj=k, (3.2)

where
• j = 1, ..., 25 designates the position along the probe p,
• k indicates the base letter,
• bj represents the base at position j,

• 1bj=k is an indicator function, that is
{

1, j − th base is of type k
0, else and

• aj,k represents the contribution to affinity of base k in position j.
Originally aj,k is estimated with a polynomial of degree 3, in GC-RMA it is estimated
from the array data with a spline with 5 degrees of freedom [313]. In sum 100 affinity
contributions aj,k are to estimate. The authors of Wu et al. [313] propose a maximum
likelihood estimation or empirical bayes estimation; Explanations are skipped as standard
models are used without details. Probe sequences are available in R/BioC via the package
matchprobes [139].

Interchip normalisation

A chip specific bias is introduced in the experiment by RNA extraction, pipetting, tem-
perature fluctuations, hybridisation efficiency and more. Possible sources are discussed
in Hochreiter et al. [127] in more detail. Normalisation is the step to account for this
bias and reduce the unwanted effects between the chips. Here the normalisation is done
by quantile normalisation as proposed and implemented in Bolstad et al. [46], similar to
RMA from the affy package [144, 105].
The hybridisation distribution of the arrays is corrected by an empirical distribution
determined by ranking the intensities for each array. Then at each rank the probe
intensities are set to the mean of the intensity values over the arrays. All arrays now
have the same intensity distribution but for different genes and different positions within
probe sets. Changes are visible in Figure 3.8.
At this step in different methods the PM are corrected by the MM values. Unfortunately
this leads to a higher variance in the results especially for low intensities. RMA, like most
of the current methods, ignores the MM information. Affymetrix indirectly supports this
aspect by retiring the MM in the exon arrays.
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3.2 Differential expression (DE) with 3’ gene expression arrays

Figure 3.8: Boxplots for eight arrays during preprocessing. On the left hand side is the distri-
bution of raw hybridisations for eight chips, in the centre distributions after background correction and
on the right hand side expression distribution after preprocessing.

Summarisation

The summarisation is the last preprocessing step the corrected probe intensities are
combined into a single probe set expression level. Integrated in RMA is the method
medianpolish. Medianpolish is a multi-array method taking into account probe infor-
mation across arrays. Examination of probe patterns show that the variability of probe
intensities is lower across the arrays for a single probe than for probes in the same probe
set. The medianpolish method proposes the following model [146]:

log2 (ηp,r) = µ+ αp + βr + εp,r, (3.3)

where
• ηp,r are the hybridisations,
• µ is a baseline constant,
• αp is a probe effect,
• βr is an array effect and
• εp,r is a random error term.

The model is fitted robustly as a median decomposition with an algorithm from Tukey
[302]. After model fitting the output is the gene expression Φ = µ+ βr.

Presence tag

In the analysis it is recommendable to filter for expressed, i.e. present, genes. Not
expressed genes confuse the results because small changes in low intensities lead to high,
unmotivated fold changes. The „detection p-value” is based on a comparison of raw PM
hybridisations ηPM,p to corresponding raw MM hybridisations ηMM,p (see Figure 3.9)
[16, 17, 7, 8, 9].
In a first step a Discrimination score is calculated for probe p:
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Figure 3.9: Distribution of probes and presence tags on 3’ gene expression arrays. Left:
Distribution of PM in black and MM in dotdashed red. Right: Distribution of presence tag p-values on
-log10 scale. The dotdashed line represents the 0.05 threshold usually used for the detection.

Rp =
ηPM,p − ηMM,p

ηPM,p + ηMM,p

(3.4)

The Discrimination score tends to 1 if the PM hybridisation ηPM,p exceeds its MM
hybridisation ηMM,p and decreases if the intensities of the probe pair do not differ.
The second step is to compare the Discrimination scores of all probe pairs in the probe
set to a predefined τ (the default is τ = 0.015). The one-sided Wilcoxon signed rank test
returns the p-value called the detection p-value. It is tested for the null hypothesis, that
the discrimination scores are less or equal than τ :

H0 : medianp∈{probe set}(Rp) ≤ τ (3.5)

The alternative hypothesis is the discrimination scores are greater than τ :
HA : medianp∈{probe set}(Rp) > τ .

3.2.5 Evaluation of the data and differential expression filter

After the calculation of gene expression follows the gene-wise comparison of treatment
expressions vs. control expression. The genes are assessed by the following criteria:

• presency
• variation
• alteration
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The presency is evaluated with the detection p-value described in the preceding Sub-
section 3.2.4. Beside providing the mean of the treatment and control expressions the
variation is analysed with the standard error of the mean and the coefficient of variation.
The coefficient of variation is a mean-corrected standard deviation and facilitates a gene
independent measure of variation. Finally the alteration is assessed with the fold change
and statistical tests. The fold change, or ratio, indicates biological relevance of the obser-
ved expression change and is amended with the standard error of the fold change [169].
Statistical tests assess the significance of the change by combining the alteration and the
variation. It may be a matter of taste to choose the t-test, Welch test or Wilcoxon test
but the rank tests like Wilcoxon or permutation test require more replicates [128]. Ties
are possible in the tests and exact calculations for rank tests are applied [132]. Specialised
rank tests for the case of differential expression are still under investigation [51, 52, 130].
Due to the high number of statistical comparisons (∼8000-22 000 depending on the chip
platform) often a multiple testing correction is applied for the statistical tests [275,
173, 126, 140]. Because most corrections analyse the distribution of p-values over the
array results these corrections would be test case bounded. Evaluation results would
not be comparable to other test cases and experiments. Since the pipeline is applied
for evaluation with different pipeline outputs in Section 5.2 multiple testing is avoided
in the above criteria in favour of a consequently gene-wise analysis. However for single
experiments q-values are provided by Storey in the output [282, 281, 75].
Differential expression is filtered gene-wise by the three following criteria:

• The gene is expressed in at least one of two samples, treatment or control, with a
p-value of at most 0.05;

• The ratio is minimally 4/3 or maximally 3/4 between treatment and control sample:34 ≤
Φt
Φc
≤ 4

3 ;
• If calculable, the Wilcoxon-test between the expressions for the two samples is

significant with a p-value of at most 0.05.
The Wilcoxon-test is applied for settings with at least four replicates in both, treatment
and control group. For at least three replicates the Welch test is applied. For less, the
last criteria is skipped.
The filter for differential expression combines all the three evaluation criteria to decide
about differential expression. Of course these criteria may be adjusted for the experimen-
tal setting. The list of differentially expressed genes may be very long, depending on the
strength of the difference between the treatment and the control group. E.g. comparing
tissues strong differences are expected.

3.2.6 Gene set evaluation: Over-representation and group testing

At this stage the analysis lead to a list of differentially expressed genes. Gene set eva-
luation is a way to ascend from the gene expression results to different biological levels.
Gene sets are any sets of functionally related genes. Two approaches are implemented in
this workflow:
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Type Resources Cit.

Pathways KEGG, Transpath,
Reactome, BioCyc

[158, 249, 155, 174, 248]

transcription factor
target sets

TransFac, ChIP-on-Chip [200, 219, 220]

Genomic regions QTL regions [288]
GO categories gene ontology database [26]
Drug targets [175]

Tissue expression [286, 287]

Table 3.1: Gene set resources. The first column shows possibilities to define sets of functionally
related genes. Implemented resources are listed in the last column.

• Over-representation
• Group testing

Both methods may address different biological questions. The gene sets can be defined
by any functional genomics resource see Table 3.1.
Gene set analysis poses some intricate statistical challenges, especially when testing re-
sources with tree structure like the gene ontology [26, 122]. Issues have been addressed
by Goeman and Buhlmann [110].

Over-representation analysis

The over-representation analysis is based on the hypergeometric distribution. The over-
lap of the differentially expressed genes and the predefined gene set is assessed vs. the
total number of genes on the array (see Figure 3.10) [169]. If there are n differentially
expressed genes and W genes in the gene set the overlap of the differentially expressed
genes and genes of the gene set is k. A the same time k is the number of successes in
an urn model. The hypergeometric distribution describes the chance of k successes in n
draws to hit W genes without replacement [252]. That is the probability

P (X = k) =



 W
k

 N −W
n− k


 N
n

 , max (0,W + n−N) ≤ k and k ≤ min (n,W )

0, else

,

(3.6)
where

• N is the number of genes analysed on the array,
• W is the number of genes in the gene set,
• n the number of differentially expressed genes (the number of draws) and
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N

W
n

k

Figure 3.10: Sets compared by the hypergeometric distribution. The hypergeometric distribu-
tion quantifies the probability of an overlap k of n differentially expressed genes in a gene set with W
genes within N analysed genes.

• k the number of differentially expressed genes in the gene set.
From the differential expression evaluation in Subsection 3.2.5 the number N of total
genes under study is derived and n the number of differentially expressed genes. The size
of the gene set W is available from the gene set resource. Now the overlap k is computed
for the analysis. As output the p-value is provided, i.e. the probability P (X ≥ `) to hit
at least an overlap of ` by chance:

P (X ≥ `) =

min(n,W )∑
k=`

P (X = k) (3.7)

The number N constitutes a background where the gene sets are tested against. However
different backgrounds come into question and lead to varying p-values in the test outcome.
For example array generations cover different sets of genes and vary greatly in size. Thus,
the same sample tested on different arrays results in differing over-representation results.
Another possible choice for a background on an array is the set of present genes. But
this introduces ambiguity as rarely the exactly same set of genes is expressed in the
two conditions of a case study. This ambiguity necessitates to generate a consensus for
the present genes. In fact the biggest set possible to argue about are all genes on the
array. These are genes which have been evaluated and contain all present genes. Over-
representation analysis has originally been introduced in Mootha et al. [207] as „gene set
enrichment analysis” (GSEA).

Group testing

Group testing follows Makrantonaki et al. [195] and considers expression changes for all
genes in the gene set by computing the gene-wise average over the replicates. The result
are two vectors of expression means, i.e. µT for the treatment expressions and µC for
the control group. The alteration is assessed for the complete gene set with a two-sided
Wilcoxon signed rank test. The null hypothesis is

H0 : median (µT − µC) = 0. (3.8)
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The alternative hypothesis is HA : median (µT − µC) 6= 0. The p-value is computed if
the gene set contains a minimal number of 3 expressed genes. Only expressed genes in
the gene set are considered because, like in the case of fold changes, low intensities for
not expressed genes lead to confusing results. The group testing is more sensitive for
expression changes in the gene sets indicating biological aberrations below differential
expression level.

3.3 Alternative splicing (AS) and differential expression with
exon arrays

The exon arrays allow an analysis of the transcriptome on two different levels: the exon
and the gene level. For the concept of the analysis pipeline this has two consequences:

1. The preprocessing has to be adapted due to the modified design (see Subsection
3.1.2) and the need to summarise and evaluate on exon and gene levels.

2. The evaluation cycle is extended by a completely new branch: alternative splicing
analysis.

The concept of the expanded analysis pipeline is illustrated in Figure 3.11. The two
chip generations, 3’ gene expression and exon array, use the same technology and do well
correlate in terms of expression [222, 5], thus it is reasonable that central conclusions are
transferable. For example quality control is skipped, since the same procedures apply [15].
Optional approaches for a work flow are presented by several groups [20, 27, 161, 28, 223].
The parallel assessment of differential expression and alternative splicing has another
advantage. The relation between alternative splicing and differential expression is an
exciting field of research and the presented interpretation of the data enables a tight
study of this subject.

3.3.1 Experimental setup and determination of test cases

Case studies are the most prevalent experiment design currently used, for example com-
paring disease - healthy tissues or altered transcript structure. Here the exon arrays can
provide genome-wide splicing event search and are a straightforward expansion of normal
expression experiments.
As in the DE pipeline, two groups of samples are compared with each other. W.l.o.g. the
groups are denoted as treatment group and control group. The strength of alternative
splicing analysis with exon arrays, is the individual preparation of the samples.

3.3.2 Preprocessing

The preprocessing challenges are similar to 3’ gene expression arrays. Only the loss of
the MM makes changes to the computation necessary. The preprocessing here focuses
on four steps:
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quality control of raw data
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(normalisation and summarisation for the 
batch of data in the test case)

evaluation of the data
(genewise assessment of altered expression)
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(filter evaldata for differentially expressed 
genes)

gene set evaluation
(differentially expressed genes 
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gene set have altered expression?)
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(genewise assessment of alternative splicing)

alternative splicing
(filter evaldata for alternatively spliced 
genes)

gene set evaluation
(alternatively spliced genes 
overrepresented in gene sets?)

DE branch AS branch

microarray data

gene sets
* pathways (KEGG, Transpath, 
      Reactome, BioCyc)
* transcription factor targets
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(with annotation)

quality control norm.
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Figure 3.11: The exon array AS pipeline. A scheme for the analysis workflow. After manual
determination of the test cases the data is processed automatically. Interfaces which need a mapping of
Ensembl genes to probes or different gene identifier are marked with a red dotted line.
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1. Intrachip normalisation that corrects for the GC content of the probes;
2. Interchip normalisation that reduces non-biological differences between chips;
3. Summarisation that combines the probe intensities into single gene or exon expres-

sion values;
4. Presence tag that computes a detection p-value from the probe hybridisations for

every gene or exon.

Intrachip normalisation

Several studies highlight the GC content of the probe sequence as a major effect to correct
[313, 212, 325]. Models for correction can be divided in three categories:

• content-dependent correction, the total number of G or C nucleotides in the probe
sequence [12, 150];

• position-dependent correction, the binding affinity of a G or C nucleotide differs
with the position within the probe sequence [311, 312, 313, 150];

• neighbour-dependent correction, the binding affinity of a G or C nucleotide in
respect to the neighbouring nucleotides [325].

Affymetrix proposes a content-specific correction called PM-GCBG (Perfect Match minus
GC Background Correction) [12]. The background probes are divided in so-called GC
bins, where control probes are collected with the same GC content in the probe sequence.
For a probe with a certain GC content the median of the corresponding GC bin is
subtracted.
For the 3’ gene expression arrays GC-RMA used a position dependent model to correct
the hybridisation values for the GC content of the probe sequences [312, 311, 313, 310].
Since the model was developed for the 3’ based in vitro transcriptase protocol the model
is not necessarily appropriate for the new generation of whole-transcript protocols.
Genome tiling arrays use the same protocol and Johnson et al. [150] presented a mo-
del, the Model-based Analysis of Tiling-arrays (MAT) to tackle this task. The method
combines content and position dependency of probe sequences in a linear model.

log(αp) = t · np,k=T +

25∑
j=1

∑
k∈{A,C,G}

βj,k · 1p,j,k +
∑

k∈{A,C,G,T}

γk · n2
p,k + εp (3.9)

where
• αp is the affinity of probe p,
• np,k is the nucleotide k count in probe p sequence, with k in {A,C,G, T},
• t is the baseline value based on the number of T nucleotides in the probe sequence,
• 1p,j,k is an indicator function with

1p,j,k =

{
1, if the nucleotide at position j is k in probe p sequence
0 else ,
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Figure 3.12: MAT GC-correction. On the left hand side are the distributions of the GC bins, orange
the PM bins and blue the control bins. On the right hand side visualised the same bins with MAT affinity
correction.

• βj,k is the effect of each nucleotide k in {A,C,G} at each position j,
• γk is the effect of nucleotide k count squared and
• εp is the probe-specific error term following the assumption of a normal distribution.

The model comprises 80 parameters: 1 for t, 25×3 for β and 4 for γ. The parameters are
estimated from the genomic background probes on the array. The performance of MAT
can be assessed visually in Figure 3.123.
MAT is a probe affinity model. On linear intensity scale, the probe intensities are divided
by an estimated probe affinity. It is not a model for background signal:

ιp =
ηp
αp
, (3.10)

where
• ηp is the measured hybridisation of probe p,
• ιp is the GC-corrected intensity of probe p and
• αp is the binding affinity of probe p.

The parameters of the model are easy to estimate from the control probes and sub-
sequently the probe affinities are easy to calculate for the PM. It is implemented for
intrachip normalisation, similar to Kapur et al. [161], since it provides the most advan-
ced GC correction for whole-transcript prepared samples.

3If not differently noted for exon array evaluations and images following versions are used: R 2.8.0,
BioC 2.3.0, customCDF 11, Ensembl 49, Affymetrix Mouse Exon 1.0 ST Array. Original data is from
the GGSC data set introduced in Subsection 5.3.1.

55



3 Computational Analysis of Affymetrix Arrays

●
●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●
●●
●

●●
●
●
●●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●
●
●
●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●●●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●●

●
●
●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●

●

●

●
●

●●●●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●●●
●
●●

●

●

●
●●

●

●

●
●●
●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●●
●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●
●
●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●●●

●

●
●
●

●●

●

●●●●●
●●

●

●●●
●

●

●
●
●

●●

●

●

●●

●

●●●●
●

●

●●●●●
●
●
●●

●

●
●●●

●

●

●●
●●●●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●●
●●

●
●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●
●●
●

●●

●

●
●●

●

●

●

●
●●●

●

●

●
●

●●

●

●●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●
●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●●

●
●

●
●

●

●

●●
●
●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●●

●
●●

●

●
●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●●●●
●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●●●
●

●

●

●

●

●

●

●●
●●
●

●

●

●
●●

●
●
●
●●●●

●
●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●
●
●●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●●

●●

●

●●●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●●

●

●●●●●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●
●
●●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●
●●

●●
●●●●
●
●●●

●

●

●
●
●●●●

●
●

●
●●

●

●

●

●

●

●●

●●●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●
●
●

●

●
●

●●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●
●●

●●

●

●

●
●●●●
●
●●

●

●

●

●

●
●●●
●
●

●

●●●
●●
●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●
●

●●●●

●

●●
●
●
●●●●
●●●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●
●

●

●●
●
●
●

●

●

●

●

●

Probes Chips

0.
0

0.
5

1.
0

1.
5

2.
0

Probe Variation vs. Chip Variation

replicate dimensions

di
st

rib
ut

io
n 

of
 v

ar
ia

nc
e

Figure 3.13: Expression variance in genes in two replicate dimensions. The predominant
variance is the variance over the probes in a gene compared to probe variance over the replicates.

Interchip normalisation

To reduce unwanted effects between arrays the quantile normalisation has been successful
with 3’ gene expression arrays, like in RMA. Therefore normal quantile normalisation
is applied from the limma package to adjust the intensity distributions over the arrays
[268].

Summarisation

The evaluation on two levels (gene/exon), makes two summarisations necessary. Ro-
bust estimates with medianpolish as median decomposition were successful in 3’ gene
expression arrays. The median is computed now over the intensities in both replicate
dimensions - arrays and probes. This provides robust summarised expression values also
for low-replicate settings on gene and exon level.
Some figures like the coefficient of variation were computed by probe set replication
over the arrays in the 3’ gene expression arrays. Now the figures are calculated before
summarisation on the probe level. To avoid summarisation means to use replication in
two dimensions: 1) The different probe intensities within the probe set, 2) the arrays
with the same biological condition. As the variation over the chips is smaller than over
the probes it should be more easy to ignore the chips than the different probes (see
Figure 3.13). This is straightforward with the need to compute the statistical numbers
in low replicate settings [237]. Recent papers indicate improved accuracy for probe level
analysis [188, 192, 193, 242].
In RMA, the summarisation uses a robust, median-based variant of ANOVA, called
medianpolish [144]. The result is a chip-wise summarisation, where the subsequent eva-
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3.3 Alternative splicing (AS) and differential expression with exon arrays

luation depends on the replicates. A well developed summarisation method FARMS
focuses on low-noise probes accompanied by a measure of variation within the probe set
[127, 294]. It is useful for data sets with more than six replicates. The manufacturer re-
commends the model-based PLIER [19, 14]. Originally developed for 3’ gene expression
arrays it is also applicable for exon arrays.

Presence tag

For the exon arrays the detection call is calculated by a Wilcoxon signed rank test.
Similar to the intrachip normalisation control probes in a chip are divided in GC bins
following the number of G or C nucleotides in the probe sequence, e.g. a probe is in
GC bin 5 because there are 3 G nucleotides and 2 C nucleotides in the 25 nucleotides
probe sequence. Every probe intensity ιr,g,b is directly compared to the 75%-quantile
Q0.75,r,g,b of its corresponding GC bin b within the chip r. Thus there is a pairing along
the gene g within the chip r. The pairings over replicates r are joined. The p-value of
the one-sided Wilcoxon signed rank test is then calculated using the chip-wise pairing of
probe intensities to control quantiles with the null hypothesis, that intensities are less or
equal to bin quantiles (see Figure 3.14):

H0 : medianr,p(ιr,p,b −Q0.75,r,p,b) ≤ 0 (3.11)

The only threshold in this computation is the height of the quantile (75%) in the GC
bin.
To calibrate the threshold various tissue experiments are compared (see Table 3.2). The
presented values are a comparison to previous 3’ gene expression presence tags from
Subsection 3.2.4. For no tissue a definite set of present genes is available. Exon arrays
cover more genes and although total numbers are higher, the ratios are often lower than
compared to the corresponding 3’ gene expression samples. In general about 90% of the
genes called to be present on a HG-U133 Plus 2.0 are also present on the exon array.
Thus, the 75% quantile of the control probe bins is an extrapolation of the 3’ gene
expression threshold to exon arrays.
As a replacement for the former detection calls from Subsection 3.2.4 Affymetrix intro-
duced DABG (Detection Above BackGround) [12, 20]. Control probes are divided in
GC bins following the number of G or C nucleotides in the probe sequence. For a single
probe the probe intensity is compared to the intensity distribution of its corresponding
GC bin. The quantile of the probe intensity within the GC bin is now treated like a p-
value for the probe (For example if a probe has rank 60 in 1000 bin probes, it is assigned
the p-value 0.06). The probe p-values are combined with the Fisher method to generate
an exon-level probe set p-value. The manufacturer recommends not to use gene level
detection calls due to the fact that not necessarily all exons are expressed. In fact a gene
is considered to be expressed, if a certain number (half) of the exons is expressed.
Several arguments contradict this position of Affymetrix. First, the Fisher methods is
very susceptible to the number of combined p-values. Since the number of probes in a
probe set is not equal, due to the design or alternative assignments, p-values decrease
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3 Computational Analysis of Affymetrix Arrays

exon array HGU133plus2 Novartis 2002 Novartis 2004
total ratio total ratio total ratio total ratio

breast 10 080 0.38 9703 0.56 – – – –
cerebellum 13 624 0.51 9894 0.57 3700 0.45 3366 0.21

heart 10 336 0.39 7722 0.44 2502 0.31 2347 0.14
kidney 11 093 0.42 9124 0.52 2515 0.31 2965 0.18
liver 10 951 0.41 8024 0.46 1884 0.23 2525 0.15

muscle 10 021 0.38 8512 0.49 – – 970 0.06
pancreas 10 060 0.38 7644 0.44 1778 0.22 2853 0.17
prostate 10 254 0.39 9732 0.56 – – 4485 0.27
spleen 12 745 0.48 9552 0.55 3051 0.37 – –
testis 14 261 0.54 11 105 0.64 4121 0.51 3933 0.24
thyroid 11 767 0.44 9830 0.56 4110 0.5 5583 0.34

total No genes 26 538 17 429 8148 16 437

Table 3.2: Tissue presence numbers. For different tissue data sets the number of present genes and
the corresponding ratio is computed. In the column ’total’ is the total number of present genes and in
the column ’ratio’ is the quotient of the total number of present genes divided by the total number of
genes on the array, the bottom row. Affymetrix used exactly the same samples for hybridisation on the
exon arrays and HG-U133 Plus 2.0. The Novartis data sets represent older platforms [286, 287]: For
Novartis 2002 the HG-U95A and for Novartis 2004 the HG-U133A as well as a custom array gnGNF1Ba.
Abbrv.: HGU133plus2, HG-U133 Plus 2.0.

severely with increasing probe set size. Second the primary interest is to know which
genes are expressed. If a gene is not expressed in any condition, evaluation may be
skipped. If a gene is only expressed in one condition this leads to differential expression.
Only if the gene is expressed in both conditions, it can be subject to alternative splicing.
Third the DABG uses several thresholds in one algorithm. The combination of p-values,
a cut-off of 0.05 for exon level p-values and the number of exons to be expressed in a
gene.

3.3.3 Differential expression evaluation and filter

The same evaluation as in the DE pipeline applies for the exon array results. First a
gene-wise assessment is computed by different statistical means for three criteria presency,
variation and alteration. Where in the calculation of the criteria in 3’ gene expression
arrays only replication over arrays is used, now both replicate dimensions are available,
over arrays and probes in gene/exon.

Differentially expressed genes are filtered combining the three criteria:

• The gene is expressed in at least one of two samples, treatment or control, with a
p-value of at most 0.05.

• A ratio of minimal 4/3 or maximal 3/4 between treatment and control sample.
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Figure 3.14: Distribution of probes and presence tags on exon arrays. Left: Distribution of
PM in black and control values in dotdashed red. Right: Distribution of presence tag p-values on -log10
scale. The dotdashed line represents the 0.05 threshold usually used for the detection.

• If calculable, the Wilcoxon-test between the expressions for the two samples is
significant with a p-value of at most 0.05.

Due to similar output as the DE pipeline the same gene set evaluation applies. That
is over-representation by hypergeometric distribution and group testing by expression
vectors. This shows a strength of the pipeline concept. Modules of the DE pipeline
directly apply to the AS pipeline.

3.3.4 Alternative splicing evaluation and filter

Assessing alternative splicing poses the intricate statistical question to jointly evaluate
gene expression and exon expression. Same criteria used for the genes may be applied
to exons but do not evaluate splicing. Thus it is necessary to develop and evaluate new
splicing criteria. This is performed in Chapter 4. Here the results are summarised for
splicing identification as incorporated in the AS pipeline. Implemented criteria are Spli-
cing Index/SI, MiDAS, PAC, ANOSVA and ARH. ARH provides gene-level predictions
with the basic ARH, the ARH p-values and q-values. The q-values are deduced from
the p-values similar as above by methods of Storey et al. [282]. ARH provides exon-level
predictions with the splicing deviation.
In the pipeline again three criteria are used to filter for a set of alternatively spliced
genes:

• Computation of ARH for exons present in at least one condition;
• ARH p-value is below 0.05;
• The gene is present in both conditions.
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Algorithm 3.1 Definition of test cases in R.
# --------------------------------------------------------------------
TestCases.append = function(TestCases, Name, chip_treat, chip_ctrl) {

NewCase = new("Case",
chip_treat = chip_treat,
chip_ctrl = chip_ctrl

)
TestCases.new = c(TestCases, list(NewCase))
names(TestCases.new)[ length(TestCases.new) ] = Name
return(TestCases.new)

}

phenoData = as.matrix(read.delim(phenoDataPath,
header = TRUE, quote = "", row.names = 1)

)

Name = "TestCaseName"
chip_treat = rownames(phenoData)[ phenoData[ , "mouse" ] == "strain_t" ]
chip_ctrl = rownames(phenoData)[ phenoData[ , "mouse" ] == "strain_c" ]
TestCases = TestCases.append(

TestCases = TestCases,
Name = Name,
chip_treat = chip_treat,
chip_ctrl = chip_ctrl

)

ARH combines the variation and alteration criteria. Presency is filtered on both levels.
Genes may only be spliced, if present in both conditions. Spurious results from non-
expressed genes are avoided before assessing splicing by ARH. To filter for the spliced
exons the following criteria is added:

• The splicing deviation is minimally 0.53 or the exon has maximal splicing deviation
within the gene.

The recommendation of Affymetrix follows similar criteria by using (1) absolute log2

value of the splicing index below 0.05 and (2) t-test of normalised intensities less than
0.005 or 0.001 [61, 104, 20]. The normalised intensity is the exon expression divided by its
gene expression. Finally for the set of alternatively spliced genes the over-representation
analysis is used to identify biological processes affected by splicing.

3.4 Use of the pipelines for different research projects

The microarray pipelines are applied in various projects. Table 3.3 lists the data sets
processed with one of the pipelines along the research projects. Altogether 74 data sets
have been processed with 1019 test cases and 2990 arrays. Focus on the Affymetrix
array platforms allowed automatic processing of 16 different chip types for the organisms
human, mouse and rat. From all the data sets 47.3% were processed by Dr. Andriani
Daskalaki, 13.5% by Reha Yildirimman and 8.1% by Dr. Mireia Vilardell.

60
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As an example for the R implementation in algorithm 3.1 the test case definition is
listed. A class Case was defined storing test case name and associated treatment as well
as control files. In the listing, the function TestCases.append appends a new test case
TestCaseName to the list TestCases. The phenotype information about two mouse
strains is saved in a text file and read to R in the phenoData object. Thus files are
selected by the mouse strain name.
The pipelines are implemented in R/BioC and run under any compilation of R provided
that the necessary packages are installed, i.e. Linux/Unix/Windows NT. The running
time of the DE pipeline is about half an hour per test case on a machine with AMD
Opteron 852 CPU and 16 GB RAM. The considerably higher amount of data in the exon
arrays leads to a running time of one hour per test case in the same technical setting.
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Table 3.3: Applications of DE/AS pipeline. The pipelines are applied in a series of projects for
various data sets. Abbrv.: TC, number of test cases; A, number of arrays; P, pipeline; Cit. citation of
related output publication.

Project Data sets Platform TC A Species P Cit.

AnEUploidy (EU) AltugTeber HG-U133 Plus 2 2 21 human DE

AnEUploidy (EU) Amano MG-U74Av2 2 25 mouse DE

AnEUploidy (EU) Bahn HG-U133A 1 15 human DE

AnEUploidy (EU) Doherty HG-U133A 4 3 human DE

AnEUploidy (EU) Mao HG-U133A 1 25 human DE

AnEUploidy (EU) Mulligan MG-U74Av2 1 8 mouse DE

carcinogenomics (EU) ConnectivityMap HG-U133A 307 546 human DE

carcinogenomics (EU) E-MEXP-438 Mouse 430A 2.0 2 12 mouse DE

carcinogenomics (EU) E-MEXP-82 MG-U74Av2 6 27 mouse DE

carcinogenomics (EU) E-TABM-89 Mouse 430A 2.0 15 57 mouse DE

carcinogenomics (EU) E-TOXM_11 RG-U34A 12 79 rat DE

carcinogenomics (EU) E-TOXM_17 MG-U74Av2 8 30 mouse DE

carcinogenomics (EU) E-TOXM_19 RG-U34A 6 58 rat DE

carcinogenomics (EU) E-TOXM_21 RAE230A 3 15 rat DE

carcinogenomics (EU) E-TOXM_28 RAE230A 6 27 rat DE

carcinogenomics (EU) E-TOXM_34 Mouse 430A 2.0 8 104 mouse DE

carcinogenomics (EU) E-TOXM_35 RAE230A 18 154 rat DE

cooperation DifE HM Mouse 430A 2.0 1 2 mouse DE

cooperation DifE pancreas Mouse 430A 2.0 1 2 mouse DE

cooperation DifE pancreatic islets Mouse 430A 2.0 12 12 mouse DE [86]

cooperation RichardYaspo2009 HuEx 1.0 ST v2 1 4 human AS [245]

EMBRACE (EU) Novartis Tissue 2002 HG-U95A 36 72 human DE

EMBRACE (EU) Novartis Tissue 2002 MG-U74A 35 79 mouse DE

EMBRACE (EU) Novartis Tissue 2004 HG-U133A 79 158 human DE

EMBRACE (EU) Novartis Tissue 2004 gnGNF1Ba 79 158 human DE

EMBRACE (EU) Novartis Tissue 2004 gnGNF1Musa 61 122 mouse DE

meta-analysis OI E-GEOD-10334 HG-U133 Plus 2 1 247 human DE [81]

meta-analysis OI E-GEOD-10526 HG-U133A 1 8 human DE [81]

meta-analysis OI E-GEOD-2525 HG-U133A 3 9 human DE [81]

meta-analysis OI E-GEOD-6751 HG-U133 Plus 2 2 59 human DE [81]

meta-analysis OI E-GEOD-6927 HG-U133A 3 12 human DE [81]

meta-analysis OI E-GEOD-7321 HG-U133A 1 2 human DE [81]

meta-analysis OI E-GEOD-9723 HG-U133A 3 12 human DE [81]

meta-analysis T2DM BiddingerKahn2005 MG-U74Av2 6 23 mouse DE [240]

meta-analysis T2DM GuntonKahn2005 HG-U133A, HGU133B 1 25 human DE [240]

meta-analysis T2DM LanAttie2003 MG-U74Av2 4 16 mouse DE [240]

meta-analysis T2DM MoothaGroop2003 HG-U133A 2 42 human DE [240]

meta-analysis T2DM NadlerAttie2000 Mu11KsubA, Mu11KsubB 1 10 mouse DE [240]

continued on next page
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Table 3.3: Applications of DE/AS pipeline. The pipelines are applied in a series of projects for
various data sets. Abbrv.: TC, number of test cases; A, number of arrays; P, pipeline; Cit. citation of
related output publication.

Project Data sets Platform TC A Species P Cit.

method comparison AbduevaTriche2007 HuEx 1.0 ST v2 10 15 human AS [241]

method comparison human tissue HuEx 1.0 ST v2 39 33 human AS [241]

method development GardinaTurpaz2006 HuEx 1.0 ST v2 1 20 human AS

method development human tissue HG-U133 Plus 2 11 33 human DE

PhysioSim (BMBF) ESGEC Mouse 430A 2.0 72 56 mouse DE

SysCo (EU) BALBc MoGene 1.0 ST v1 15 48 mouse DE

SysCo (EU) C57BI MoGene 1.0 ST v1 15 48 mouse DE

SysCo (EU) E-GEOD-10532 Mouse 4302 1 6 mouse DE

SysCo (EU) E-GEOD-10765 Mouse 4302 4 13 mouse DE

SysCo (EU) E-GEOD-11199 HG-U133 Plus 2 1 24 human DE

SysCo (EU) E-GEOD-11497 Mouse 4302 1 4 mouse DE

SysCo (EU) E-GEOD-13147 Mouse 4302 1 4 mouse DE

SysCo (EU) E-GEOD-14890 Mouse 4302 3 9 mouse DE

SysCo (EU) E-GEOD-14891 Mouse 4302 3 8 mouse DE

SysCo (EU) E-GEOD-2002 Mouse 4302 1 9 mouse DE

SysCo (EU) E-GEOD-2973 Mouse 4302 11 37 mouse DE

SysCo (EU) E-GEOD-360 HG-U95Av2 5 8 human DE

SysCo (EU) E-GEOD-411 MG-U74Av2 6 17 mouse DE

SysCo (EU) E-GEOD-4288 Mouse 4302 1 36 mouse DE

SysCo (EU) E-GEOD-477 MG-U74Av2 1 5 mouse DE

SysCo (EU) E-GEOD-5202 Mouse 4302 3 12 mouse DE

SysCo (EU) E-GEOD-5555 Mouse 4302 1 42 mouse DE

SysCo (EU) E-GEOD-5589 MG-U74Av2 10 34 mouse DE

SysCo (EU) E-GEOD-6690 MG-U74Av2 1 4 mouse DE

SysCo (EU) E-GEOD-7348 Mouse 4302 3 6 mouse DE

SysCo (EU) E-GEOD-7649 MG-U74Av2 1 2 mouse DE

SysCo (EU) E-GEOD-7769 Mouse 430A2 1 2 mouse DE

SysCo (EU) E-GEOD-8621 Mouse 4302 1 12 mouse DE

SysCo (EU) E-GEOD-9184 Mouse 4302 1 3 mouse DE

SysCo (EU) E-GEOD-9509 Mouse 4302 1 18 mouse DE

SysCo (EU) E-MEXP-1254 MG-U74Av2 2 12 mouse DE

SysCo (EU) E-MEXP-1290 HG-U133 Plus 2 1 7 human DE

SysCo (EU) E-TABM-102 Mouse 4302 1 30 mouse DE

SysCo (EU) E-TABM-310 Mouse 4302 9 29 mouse DE

SysCo (EU) IPP HuGene 1.0 ST v1 40 39 human DE

SysProt (EU) GGSC MoEx 1.0 ST v1 6 25 mouse AS
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4 Statistical Analysis of Alternative
Splicing

In this Chapter the concept of entropy is introduced to the field of alternative splicing
prediction. It develops a new method called ARH – Alternative splicing Robust pre-
diction by Entropy [241]. The primary goal is to develop a method which is robust in
the number of replicates and independent from the number of exons. For comparison,
eight different methods proposed for splicing prediction on exon arrays are presented.
In a broad evaluation the performance is assessed on several aspects like dependency
on the numbers of exons, splicing prediction in the case of differential expression or no
differential expression and robustness in the numbers of replicates. The evaluation runs
on a tissue data set and in an artificial setting with a spike-in experiment resulting in a
total of four different test settings: pairwise tissue comparison with database confirmed
events, tissue specificity with database confirmed events, tissue specificity with RT-PCR
validated events as well as the in vitro samples with generated events.
The focus is on detection of exon skipping events. Design of the exon arrays is just
adequate for this type of splicing events (see subsections 2.1.1 and 3.1.2). For a gene

with m exons this allows a combinatorial number of
∑bm2 c

e=1

(
m
e

)
events. Since the change

of a majority of exons constitutes a gene expression change the limit of spliced exons is⌊
m
2

⌋
.

4.1 Preliminaries

W.l.o.g. it follows the assumption of a two sample experiment, a case study design. This
is the basic setting also used in differential expression experiments and is probably the
most common experiment design. Methods for a 1-to-many design are proposed. But
this design mainly occurs in tissue experiments. The 1-to-many design is reducible to
the 1-to-1 design by taking all other conditions as controls.
On the array a set of probes is synthesised. The probes are mapped to exons. The
mapping from probes to exons is not injectiv as an exon is measured by several probes.
It is also not surjective as not all exons in a reference database have to be covered. On
the other hand exons are mapped to genes with a surjective mapping iff probes cover all
exons in the database. It follows a mapping from probes to genes. For all probes the
mapping probe7→exon7→gene is called an assignment.
To describe alternative splicing and splicing prediction a gene g is chosen. Gene g consists
of m exons indexed by e. Exon e is measured by ne probes, so g has ng =

∑
e=1,...,m ne
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4 Statistical Analysis of Alternative Splicing

probes. W.l.o.g. there is a two sample study with 2 conditions d = c, t for the control and
treatment case respectively. The treatment case d = t has q replicates and the control
case d = c has s replicates, both indexed with r.
For a probe p in the exon e in condition d and in replicate r there is the measured and
preprocessed intensity ιp,e,d,r , i.e.

ιp,e,d,r ∈ R+ (4.1)

Following an assignment exon or gene expressions can be computed from the set of
assigned intensities.
The exon expression φe,d or gene expression Φd is a computed value notated as a function
f of the probe intensities ιp,e,d,r for a condition d.

Φd ∈ R+ (4.2)
φe,d ∈ R+

where Φd = f(ιp,e,d,r) with f : Rng ·q+ → R+ and φe,d = f(ιp,e,d,r) with f : Rne·q+ → R+.
The expression corresponds to the summarised probe set value in 3’ gene expression
arrays.
If not differently noted the median is used for f with the median over the probes p and
replicates r.

Φd = medianp=1,...,ng ,r=1,...,q (ιp,e,d,r)

φe,d = medianp=1,...,ne,r=1,...,q (ιp,e,d,r) (4.3)

Certain methods may assume an expression computed only over the probes p namely
φe,d,r and similarly for Φd,r. Thus the replicate measurements are maintained and used
in the method. RMA is frequently used where a chip estimate is added to the median.
The median is a good choice for a robust expression value. In the following f(·) is avoided
by using median(·).
The necessary notation is summarised in the following table:

gene 1 gene g
exon m exons in gene g e = 1, ...,m
probe ne probes in exon e p = 1, ..., ne

ng probes in gene g p = 1, ..., ng ng =
∑

e=1,...,m ne
condition 2 conditions d = c, t c for control, t for treatment
replicate q replicates in condition c r = 1, ..., q

s replicates in condition t r = 1, ..., s
intensity probe intensity ιp,e,d,r ∈ R+

expression gene expression Φd,r ∈ R+

exon expression φe,d,r ∈ R+
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4.2 ARH

4.2 ARH

Looking at the expression ratios of the exons in a gene a concerted behaviour is expected
following gene expression changes. Now exons deviating from the concerted behaviour
attract attention. Using information theory the gene can be viewed as an information
source and the information content of the exons is assessed with the entropy to rate the
significance of a deviating exon. This is the core element of a splicing prediction method
noted as ARH – Alternative splicing Robust prediction by Entropy. Different challenges
in alternative splicing necessitate to embed the entropy into a five step splicing prediction
procedure.

4.2.1 Algorithm

Splicing assessment is provided in two steps. In the first step analysis is performed on the
gene level, i.e. ARH identifies spliced genes (see eq. (4.8)). In the second step analysis
is performed on the exon level, i.e. splicing deviation (see eq. (4.4)) ranks the exons
within a gene and identifies the skipped/included exons. For a gene g with m exons,
two biological conditions and corresponding exon expressions φe,t and φe,c, following
quantities are computed:

1. The exon splicing deviation, ζe, measures the individual deviation of each exon from
the median transcript change. Here, log ratios of exon fold changes are computed
to account for symmetric measurement of up- or downsplicing. From these log
ratios the median is subtracted to correct for global gene expression changes:

ζe = log2

(
φe,t
φe,c

)
−median

e=1,...,m

(
log2

(
φe,t
φe,c

))
. (4.4)

2. The exon splicing probability is computed as a weighted absolute value of the
splicing deviation ζe by

pe =
2|ζe|∑

e=1,...,m 2|ζe|
. (4.5)

Note that for each gene
∑

e pe = 1.
3. To measure whether the exon splicing probabilities are equally distributed or whe-

ther a single or a few exons dominate the probability distribution, the entropy is
computed for each gene:

Hg (p1, ..., pm) = −
m∑
e=1

pe · log2 (pe) . (4.6)

4. Entropy defined in eq. (4.6) is dependent on the number of exons and can not
be directly used for the comparison of different genes. Thus, in order to make the
measure independent of the number of exons for a given gene, entropy is subtracted
from its theoretical maximum:

max(Hg)−Hg = log2(m)−Hg (p1, ..., pm) . (4.7)
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4 Statistical Analysis of Alternative Splicing

5. Another necessary modification accounts for the strength of deviation within the
gene. This is robustly estimated with the interquartile range of exon expression
ratios, the 25%, Q.25,e=1,...,m

(
φe,t
φe,c

)
, and 75%, Q.75,e=1,...,m

(
φe,t
φe,c

)
, quantiles. A

robust estimate for the amplitude is the interquartile ratio Q.75,e

Q.25,e
. This ratio is

close to 1 for low splicing probability and increases with deviations of a number of
exons in the gene. The interquartile ratio is multiplied with the entropy index and
constitutes the ARH splicing prediction:

ARHg =
Q.75,e

Q.25,e
· (max(Hg)−Hg) . (4.8)

Thus, ARH is suitable to compare the predictions across different genes. Large
ARH values indicate splicing.

If a single exon deviates from the remaining exon expression ratios it dominates the
splicing probability distribution (eq. (4.6)) resulting in a low entropy and a high ARH
value. If a larger number of exons is spliced this measure is upweighted with an increased
interquartile ratio greater than one. On the other hand if all exons have similar expression
changes this leads to a high entropy with small interquartile ratio and consequently to a
small ARH value.
The ARH prediction is implemented in R as ARH (see Algorithm 4.1) [238]. ARH returns
gene level predictions, the outcome of equation (4.8). The function takes two input
vectors (x and y in the implementation) for the exon (or probe set) expressions and one
vector for the exon-gene grouping (f). To avoid division by zero the second vector is set
to a minimum of 0.0001. Genes with only one exon or non-finite exon expressions are set
to NA. The running time of the implementation is just a few minutes on a machine with
AMD Opteron 852 CPU and 16 GB RAM.

4.2.2 Characteristics of ARH

ARH background distribution

For a given experiment the ARH values show a rapid decline from many near-zero values
to few high ARH values. The ARH distribution shows little variation even between
tissues (see Figure 4.1). To derive a biologically motivated background distribution,
samples of the same biological conditions are compared. The human tissue data set
from Clark et al. [61] entails data from 11 human tissues with 3 replicates each. In each
tissue this allows three pairwise comparisons summing to 33 pairwise comparisons that
were used for defining a background sample of ARH values. The distribution of these
33 comparisons provides thresholds for significant ARH values. The 95% quantile of the
distribution is QARH,.95 = 0.031. The 95% quantiles of the 33 individual comparisons
also cluster around that value (see Figure 4.2). For the 90%, 99%, and 99.9% quantiles
of the background distribution the thresholds are QARH,.9 = 0.023, QARH,.99 = 0.057
and QARH,.999 = 0.13, respectively. The background distribution is also adequate to
calculate p-values. The generalised extreme value distribution was found to fit best to the
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4.2 ARH

Algorithm 4.1 Implementation of ARH in the R language.
ARH = function(x = "numeric", y = "numeric", f = "character", na.rm = FALSE) {

if(any(x < 0, na.rm = TRUE) | any(y < 0, na.rm = TRUE)) {
stop("What are negative expressions?")

}
y[ y < 0.0001 ] = 0.0001

splicingDeviations = log2(x / y)
splicingDeviationsMedian = split(splicingDeviations, f)
splicingDeviationsMedian = sapply(X = splicingDeviationsMedian, FUN = median,

na.rm = na.rm
)
splicingDeviationsMedian = splicingDeviationsMedian[

match(f, names(splicingDeviationsMedian))
]
splicingDeviations = 2^abs( splicingDeviations - splicingDeviationsMedian )
rm(splicingDeviationsMedian)
splicingProbabilitiesSum = split(splicingDeviations, f)
splicingProbabilitiesSum = sapply(splicingProbabilitiesSum, sum, na.rm = na.rm)
splicingProbabilitiesSum = splicingProbabilitiesSum[

match(f, names(splicingProbabilitiesSum))
]
splicingProbabilities = splicingDeviations / splicingProbabilitiesSum
rm(splicingDeviations, splicingProbabilitiesSum)

entropy = split(splicingProbabilities, f)
entropy = entropy[ match(unique(f), names(entropy)) ]
entropy = sapply(X = entropy, FUN = function(X)

return( -sum(X * log2(X), na.rm = na.rm) )
)
iqrQuotient = x / y
iqrQuotient = split(iqrQuotient, f)
iqrQuotient = iqrQuotient[ match(unique(f), names(iqrQuotient)) ]
iqrQuotient = sapply(X = iqrQuotient, FUN = quantile,

probs = c(0.25, 0.75), na.rm = TRUE
)
iqrQuotient = iqrQuotient[ "75%" , ] / iqrQuotient[ "25%" , ]
geneLength = table(f)
geneLength = geneLength[ match(unique(f), names(geneLength)) ]

arh = as.numeric(iqrQuotient * (log2(geneLength) - entropy))
names(arh) = unique(f)
good = split(is.finite(x) & is.finite(y) & is.finite(splicingProbabilities), f = f)
good = sapply(good, function(X) return(sum(X) >= 2))
good = good[ match(unique(f), names(good)) ]
arh[ !good ] = NA

return(arh)
}
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Figure 4.1: ARH histograms. Left: depicts the histograms for 33 two chip comparisons within one of
the 11 tissues. This reflects a true biological background distribution only containing individual splicing
variation. Right: Histogram of ARH background distribution derived from splicing predictions between
the same biological conditions (ARH values equal to zero were skipped) and the fitted generalised extreme
value distribution (red dashed line).

ARH background distribution due to a long heavy tail of large ARH values. Distribution
parameters were fit with Matlab resulting in location = 0.006338, scale = 0.005507 and
shape = 0.3329 (see Figure 4.1).

Exon-level analysis

In a spliced gene the splicing deviation ranks the exons in order to identify the most
altered exons. With this ranking exons can be selected for example for wet-lab validation.
Assessing the absolute splicing deviation as above, a global number of spliced exons is
determined with the following thresholds: QARH_sd,.9 = 0.43, QARH_sd,.95 = 0.53,
QARH_sd,.99 = 0.75 and QARH_sd,.999 = 1.07.

The exon-level splicing indication has to be symmetric in terms of up- or downsplicing.
The swap of treatment and control samples changes an upspliced exon to a downspliced
exon and vice versa. The absolute value of the log2 splicing deviation accounts for this
symmetry. The dependence of the splicing probability on the fold changes was simulated
for a gene with 13 exons, where log2 ratios are drawn from a normal distribution with
N (0, 0.68) (see Figure 4.3).
Spliced exons are not necessarily adjacent. In the liver vs. pancreas tissue comparison
the transcription factor HNF4A is an illustrative example depicted in Figure 4.9. Three
exons were predicted to be spliced on positions 1, 4 and 5 with one confirmed event in
position 4 in pancreas. The sum in the entropy formula is commutative and reflects the
position independence of the exons.
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Figure 4.2: ARH quantiles. Left: The curve visualises the cut-offs of the quantiles for Q.9 increasing
to Q.999. The maximal value constituting Q1 is 2.67. Right: This is a histogram of the 33 threshold
values for the 95% quantiles. The cut-off of the cumulative distribution is 0.03 and is the centre of the
threshold distribution.

Gene-level analysis

A gene-level splicing prediction method requires to be sensitive in the deviation of a
proportion of exons what is measured by ARH with the entropy and the interquartile
ratio as weighting factor. A simulation is performed with varying number of spliced
exons, where the linear ratio of the spliced exons is multiplied with a fold change of 3
(see Figure 4.3). ARH values reflected the number of spliced exons with a flat cap.

A strength of ARH is its low dependency on the total number of exons of a gene. In
ARH the genes are sorted in bins by exon number and gene predictions are compared to
the gene-bin maximal prediction. Comparing the entropy to the maximal entropy makes
ARH independent of the number of exons (see Figure 4.3). See discussion Subsection
4.5.2 for details.

Performance with low number of experimental replicates

Since the costs of experimental replicates are often a limiting factor methods favourably
require low number of replicates by computing robust predictions. Purdom et al. [237]
were the first to address this aspect for FIRMA. ARH and other methods are compared
using a single chip per condition (see Figure 4.4) highlighting the good performance of
ARH. ARH predictions are only dependent on the robustness of exon expression calcula-
tion. Using the median over the probes but also over the replicates the method is robust
in the number of replications.
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Figure 4.3: ARH simulations. Left: Simulation of ARH values (y-axis) with respect to number of
spliced exons (x-axis). A gene with 13 exons is used for simulation corresponding to the average exon
number in Ensembl for known protein coding genes. Log2 ratios were drawn from a normal distribution
with mean 0 and standard deviation 0.68 corresponding to the liver vs. pancreas comparison. Respective
number of exons were upregulated with a factor of 3 indicating splicing. Right: Exons are drawn from
the normal distribution and the 13th exon has varying fold change from log2 ratio -3 to 3.

4.3 Description of different methods

From a variety of prediction methods eight methods are gathered suitable for application
on Affymetrix Exon Arrays. All presented methods make de novo predictions on the
exon or gene level. Of course it is possible to check for known isoforms described in one
of the splicing databases. But the most interesting question will be to identify previously
unknown isoforms. Some methods are collected in the review of Cuperlovic-Culf et al.
[74] in favour of known isoforms or are proposed in Affymetrix whitepapers [11]. All
presented methods have been selected and eventually adapted to fit exon arrays. Other
array designs facilitate their own specialised methods [260]. If analysis resides on known
transcripts also isoform quantification is possible [308, 25].

4.3.1 Splicing index (SI)

The first presented method is an exon-wise prediction with a numerical index [270]. It
is similar to the fold change and allows a quantitative analysis of splicing. For exons,
normalised intensities (NI) are computed dividing exon expression by gene expression in
each biological condition: φe,d

Φd
. Then two biological conditions are compared by the ratio

of the NI.
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4.3 Description of different methods

PSIe = log

(
φe,t
Φt

φe,c
Φc

)
= log

(
Φc

Φt
· φe,t
φe,c

)
(4.9)

The splicing index is the most common method propagated by Affymetrix in combination
with MiDAS (s.b.) [61, 80, 104]. The method provides an appealing interpretation
quantifying splicing effects similar to a fold change in gene expression differences.

4.3.2 SPLICE

The second method is also a numerical index with exon-wise prediction from Hu et al.
[134]. A probe intensity ιe,p,d is divided by the median of all probe intensities of the
gene in the condition, medianp∈{1,...,ng} (ιe,p,d). The probe-wise ratio of median corrected
intensities is the predictor.

PSPLICEe,p = log


ιe,p,t

median
p∈{1,...,ng}

(ιe,p,t)

ιe,p,c

median
p∈{1,...,ng}

(ιe,p,c)

 = log

 ιe,p,t · median
p∈{1,...,ng}

(ιe,p,c)

ιe,p,c · median
p∈{1,...,ng}

(ιe,p,t)

 (4.10)

Originally developed for a 1-to-many approach on 3’ arrays, some adaptations are indis-
pensable. The difference PM −MM is replaced by the intensity ι, as there is no need to
subtract anything after the background correction. The denominator averaged all tissues
excluding the tissue under study. Here the average is replaced by the control values.
The method does not take into account any replicates, thus the index r is omitted. The
replicate probe values are condensed beforehand into a single probe value.
Originally, the protruding probes were clustered with an algorithm called NEIGHBO-
RHOOD. This step can be avoided with the pre-knowledge of the assignment and directly
deduce a prediction for the exon. An exon-level prediction is calculated from the probe
predictors by considering the median:

PSPLICEe = median
p∈{1,...,ne}

(
PSPLICEe,p

)
(4.11)

4.3.3 Pattern-based correlation (PAC)

The pattern-based correlation (PAC) compares the treatment exon expression φe,t to a
scaled treatment gene expression Φt [11]. The treatment gene expression Φt is scaled
by the quotient of the general exon expression, medianp,d,r (ιe,p,d,r), through the general
gene expression, mediane,p,d,r (ιe,p,d,r). The predictor PPACe is the scaled gene expression
subtracted from the treatment exon expression.

PPACe = φe,t − Φt ·
medianp,d,r (ιe,p,d,r)

mediane,p,d,r (ιe,p,d,r)
(4.12)
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PAC was also developed for 1-to-many experiments, where the minuend and the subtra-
hend can be correlated over all conditions. For the two sample setting, the correlation
is not applicable and is replaced by the difference. The presented variant was applied in
French et al. [99].

4.3.4 Analysis of splice variation (ANOSVA)

A two-way ANOVA is applied on log2 probe intensities ιe,p,d,r with a factor for the exon
αe in the gene and a factor for the biological condition βd. The interaction factor γe,d
between the exon factor and the condition factor indicates splicing [320, 66].

log2 (ιe,p,d,r) = µ+ αe + βd + γe,d + εe,p,d,r (4.13)

The εe,p,d,r is a gaussian error term in the probes p and replicates r. The null hypothesis
assumes the effects can be explained by exon effects in αe or overall gene effects in βd:

H0 : γe,d = γi,j for any (e, d) 6= (i, j) (4.14)

The alternative is HA : γe,d 6= γi,j for at least one pair of (e, d) and (i, j). The statistical
model is fit on the available probe intensities and thus does not need a summarisation
step. The resulting p-value is the predictor PANOSVA

g . Testing for the two main factors
facilitates analysis of exonic variation and differential expression. Due to the amount of
data available for the fit, tests for genes with many exons have higher power and are
more likely to return a significant p-value than shorter genes (see Figure 4.7). Using the
more robust Kruskal-Wallis rank test for the same null hypothesis increases sensitivity
by a drastic decrease of specificity.

4.3.5 Microarray detection of alternative splicing (MiDAS)

Beside the splicing index Affymetrix proposes an exon-level t-test between the conditions
[11]. Exon normalised intensities are the exon expression φe,d divided by gene expression
Φd. Logged normalised intensities log

(
φe,d
Φd

)
are compared between samples. A t-test is

applied over the replicates r between both conditions c, t:

H0 : µt,r=1,...,s

(
log

(
φe,t
Φt

))
= µc,r=1,...,q

(
log

(
φe,c
Φc

))
. (4.15)

Thus the exons are tested for differential inclusion between conditions and the resulting
p-values is the predictor PMiDAS

e .
Originally, the method was developed for 1-to-many experiments. In that case the nor-
malised intensities are compared with an ANOVA test over the different conditions. In
a 1-to-1 experiment setting the test reduces to a t-test. For expression estimates the
manufacturer proposes PLIER [19].
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4.3 Description of different methods

MiDAS is implemented in a command-line tool apt (Affymetrix power tools) [20]. After
preprocessing, the probe intensities are passed to apt for MiDAS computation. In the
description of apt, the inventors note that the output is not a p-value but similar to a
p-value. Characteristics of the output suggest some tuning of the test, for example for
multiple testing or exon number correction, not described in the above cited documen-
tation.

4.3.6 Microarray analysis of differential splicing (MADS)

The MADS splicing prediction is a four step procedure, following the same idea as MiDAS
[316]. For each probe, the ratio of probe intensity to the estimated gene expression index
is calculated:

ι̂e,p,d,r =
ιe,p,d,r

Φd
. (4.16)

Two separate one-sided t-tests assess whether the ratios of a probe are significantly higher
or lower in one sample group over another:

H0 : µe,p,t,r=1,...,s (ι̂e,p,t,r) = µe,p,c,r=1,...,q (ι̂e,p,c,r) (4.17)

with alternative hypotheses

HA1 : µe,p,t,r=1,...,s (ι̂e,p,t,r) > µe,p,c,r=1,...,q (ι̂e,p,c,r)

HA2 : µe,p,t,r=1,...,s (ι̂e,p,t,r) < µe,p,c,r=1,...,q (ι̂e,p,c,r) .

The obtained probe pe,p-values are summarised for each alternative hypothesis to exon
pe-values using the Fisher method as follows (Notation for the alternative hypotheses
is temporarily skipped). The pe,p-values for individual probes are transformed via the
formula x = −2 · ln(pe,p). Under the null hypothesis that the exon targets are not spliced,
the pe,p-values follow a uniform [0, 1] distribution, and the transformed p-values follow
χ2

2 distribution. The sum of the transformed p-values follows χ2
2·ne

distribution where ne
equals the number of probes. From the sum of the transformed p-values distribution the
exon pe-value is deduced.
For the two summarised p-values pA1,e, pA2,e corresponding to the two alternative hypo-
theses the lower p-value is chosen to be predictive for splicing:

PMADS
e = min

A1,A2
(pA1,e, pA2,e) (4.18)

For gene expression index computation, the developers propose an iterative probe selec-
tion algorithm [316].

4.3.7 Finding isoforms using robust multichip analysis (FIRMA)

The probe residues of the RMA gene expression estimation are proposed as predictors
for splicing in Purdom et al. [237]. RMA was mentioned in the preprocessing of 3’ gene
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4 Statistical Analysis of Alternative Splicing

expression arrays, see Subsection 3.2.4 and especially equation 3.3. In the final sum-
marisation step a gene expression is estimated for each replicate by fitting the following
additive model for each gene:

log2 (ιe,p,d,r) = µ+ αp + βr + εe,p,d,r (4.19)

where
• ιe,p,d,r is an intensity matrix of a particular gene,
• µ is a base line constant,
• αp is a probe effect,
• βr is an array effect and
• εe,p,d,r is a random error term.

The equation is fitted for both conditions separately. For the fit of the equation (4.19)
Purdom et al. [237] use an iteratively reweighted least squares method resulting in the
estimations µ̂, α̂p, β̂r. The residuals of the fit are the probe level splicing predictors:

Re,p,d,r = log2 (ιe,p,d,r)− µ̂− α̂p − β̂r. (4.20)

Still this is a probe prediction and an exon level prediction is computed by the median:

PFIRMA
e,d,r = median

p=1,...,ne

(
Re,p,d,r
s

)
, (4.21)

where s is an estimate of standard error.
The additional divisor s is estimated by the median absolute deviation of the residuals
and helps to make the scores comparable between different genes [237].
FIRMA is implemented using CEL file level, since the splicing prediction is a direct result
of the summarisation procedure. Computation is performed with the aroma package [31].
Thus it is the only method in the evaluation with its own preprocessing. The implemen-
tation of the authors also requires special annotation files. At the time of processing,
only a combined Affymetrix/Ensembl probe-exon-gene assignment was available.
In order to include FIRMA in the method evaluation the maximal prediction was selected
from the Affymetrix probe sets within an Ensembl gene, thus generating gene level esti-
mates. Furthermore the method provides chip-wise predictions remaining with varying
results across replicates. The average for the treatment replicates was found to perform
best as a final predictor:

PFIRMA = mean
r=1,...,s

(
max

e=1,...,m

(
PFIRMA
e,d,r

))
, (4.22)

4.3.8 Correlation

The correlation between the exon expression vectors for the two conditions is the predictor
[259]:

PCorrelationg = %e=1,...,m (φe,t, φe,c) (4.23)
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4.3 Description of different methods

Algorithm 4.2 Implementation of the splicing index in the R language.
gene_xpr_treat = split(probe_int[ , chip_treat ], f = probe_map[ , "gene_id" ])
gene_xpr_treat = gene_xpr_treat[ match(x = unique(probe_map[ , "gene_id" ]),

table = names(gene_xpr_treat))
]
gene_xpr_treat = sapply(gene_xpr_treat, median)
gene_xpr_ctrl = split(probe_int[ , chip_ctrl ], f = probe_map[ , "gene_id" ])
gene_xpr_ctrl = gene_xpr_ctrl[ match(x = unique(probe_map[ , "gene_id" ]),

table = names(gene_xpr_ctrl))
]
gene_xpr_ctrl = sapply(gene_xpr_ctrl, median)
exon_xpr_treat = split(probe_int[ , chip_treat ], f = probe_map[ , "exon_id" ])
exon_xpr_treat = exon_xpr_treat[ match(x = unique(probe_map[ , "exon_id" ]),

table = names(exon_xpr_treat))
]
exon_xpr_treat = sapply(exon_xpr_treat, median)
exon_xpr_ctrl = split(probe_int[ , chip_ctrl ], f = probe_map[ , "exon_id" ])
exon_xpr_ctrl = exon_xpr_ctrl[ match(x = unique(probe_map[ , "exon_id" ]),

table = names(exon_xpr_ctrl))
]
exon_xpr_ctrl = sapply(exon_xpr_ctrl, median)

SplicingIndex = { log2(exon_xpr_treat) - log2(exon_xpr_ctrl)
+ stretch(log2(gene_xpr_ctrl)) - stretch(log2(gene_xpr_treat))

}

Deviation of the correlation from 1 indicates splicing. The developers hypothesise that
in the absence of splicing the exon expression pattern between two conditions should
be highly correlated, with a Pearson correlation coefficient close to 1 [259]. Differences
in splicing and therefore differences in exon signal patterns between the conditions will
result in a decrease in the gene’s correlation. This decrease in correlation has again an
exon number effect in itself. For constant exon splicing deviation and increasing exon
number, the correlation will increase due to a decreasing effect of a single exon in the
Pearson estimator.

4.3.9 Practical implementation of the methods

All methods are implemented in R except MiDAS and FIRMA. MiDAS values were
calculated on the standard preprocessing with the Affymetrix Power Tools in version
1.8.0. FIRMA values were calculated with the package aroma.affymetrix using RMA
preprocessing. The running time of all methods in sum is about three hours on a machine
with AMD Opteron 852 CPU and 16 GB RAM.

Due to the character of the predictions the methods can be categorised into scores (Spli-
cing Index, SPLICE, PAC, FIRMA, Correlation) or tests (ANOSVA, MiDAS, MADS).
Also some methods provide exon level prediction (Splicing Index, SPLICE, PAC, Mi-
DAS, MADS, FIRMA) or gene level prediction (ANOSVA, Correlation). All methods
were implemented with the same preprocessing of data except FIRMA which requires
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ARH 0.83 0.86 0.84 0.80 0.96 0.86 0.86 0.97 0.99
SI 0.70 0.74 0.73 0.60 0.86 0.75 0.71 0.95 0.96

SPLICE 0.69 0.78 0.73 0.70 0.86 0.75 0.62 0.88 0.96
PAC 0.63 0.75 0.74 0.59 0.90 0.72 0.64 0.96 0.96

ANOSVA 0.76 0.78 0.72 0.73 0.86 0.7 0.6 0.84 0.98
MiDAS 0.68 0.71 – 0.59 0.83 0.62 0.48 0.85 0.95
FIRMA 0.69 0.73 0.69 0.72 0.73 0.75 0.74 0.92 0.75
MADS 0.68 0.69 – 0.48 0.88 0.71 0.49 0.67 0.98
Cor. 0.74 0.69 0.65 0.76 0.58 0.78 0.75 0.73 0.75

exon No. 0.83 0.79 0.79 0.77 0.81 0.84 0.92 0.93 –

Table 4.1: AUC for different test settings and methods. Exon number predictor (last row) refers
to the number of exons per gene. Abbrv.: Cor., correlation; SI, splicing index; exon No., exon number;
DE, differential expression.

RMA. The preprocessing follows Subsection 3.3.2.
As an example the implementation of the splicing index is provided in Algorithm 4.2.
The preprocessed intensities ιe,p,d,r are in the object probe_int with the arrays in the
column. The vectors chip_treat and chip_ctrl denominate the treatment and control
arrays respectively. The matrix probe_map reflects the probe - exon - gene assignment.
Exon and gene vectors have different length and the function stretch adapts gene numbers
to corresponding exons. Output is a vector with splicing indices for the exons.

4.4 Evaluation of alternative splicing prediction methods

In general systematic evaluations were thriving steps in method development [70, 145, 59].
ARH is compared with eight existing splicing prediction methods listed in Section 4.3.
All methods were compared with the same preprocessing of the data except FIRMA
which requires RMA. MiDAS values were calculated on the standard preprocessing with
the Affymetrix Power Tools in version 1.8.0.
Methods are evaluated in different test settings using true positive events from splicing
database AEdb, transcript spike-in experiment as well as RT-PCR validations. The
test settings thus span a broad range of challenges for splicing prediction. Ordering the
predictions by decreasing splicing indication constitutes a classifier that allows visualising
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4.4 Evaluation of alternative splicing prediction methods

the performance of the predictions with the receiver operating characteristic (ROC). ROC
curves are visualised with the ROCR-package in R [264, 265, 92]. Using the ROC the
performance was quantified with the area under the curve (AUC; see Table 4.1), likewise
AUC was computed with ROCR.

4.4.1 Probe assignment and selection of splicing events from the AEdb

For the human tissue data set, probe-exon assignments are drawn from latest genome
annotations of Dai et al. [77] in version 11 for Ensembl exons. Exon to gene assignment
was retrieved via BioMart from Ensembl 49 [162, 38] and resulted in 232 376 exons that
correspond to 26 538 genes.
AEdb contains confirmed splicing events extracted from the literature [274, 172]. The
AEdb sequence flat file was downloaded (http://www.ebi.ac.uk/asd/aedb/) and the spli-
cing events were filtered by splicing mechanism (cassette exon events), species (human,
mouse, rat) as well as the availability of a sequence for the events. Eight tissues overlap
in AEdb and the tissue benchmark data sets. Events attributed to these 8 tissues were
selected and the corresponding sequences of the alternative exons were aligned to exon
sequences from Ensembl 49 for exact matches. For each tissue this resulted in a list
of Ensembl exon identifier: heart 13, kidney 28, liver 27, muscle 26, pancreas 2, spleen
15, testis 43 and thyroid 12. Events may attribute to more than one tissue. For tissue
specificity such events are skipped. For pairwise comparison just the events specific to
either of the two tissues are used as true positive set. As an example in Table 4.2 is the
excerpt of confirmed events for the case of muscle specificity.

4.4.2 Test data set 1: Tissue data with literature confirmed events

As a true positive set for judging the methods performances, an independent data set is
chosen from the manually curated AEdb [274]. Experimental data was available for 11
human tissues with 3 experimental replicates per tissue. Confirmed events in AEdb were
available for 8 of these tissues what allows for 28 pairwise tissue comparisons (see Figure
4.4). Due to issues discussed in Subsection 4.5.1 it is possible to rank the performances
of the methods but not to assess the overall performance.
The benchmark test set was analysed with respect to different aspects. The pairwise
tissue comparisons correspond to highly diverse biological conditions leading to a lot of
variation in the benchmarks. In the analysis the average performance is provided across
the 28 pairwise comparisons (see Figure 4.4). For an in-depth discussion of alternative
splicing attributes the liver vs. pancreas test case is chosen because it is representa-
tive for the average performance. For this test case AEdb returns 27 exon events in
18 genes. The methods not only differ by performance but also by the predicted spli-
cing events. The commonality of the predictions is assessed by looking at the overlaps
between methods. The top 250 predictions constitute about ∼ 1% of all genes on the
array. The commonality Table 4.3 reflects a limited overlap between the methods. For
the 18 confirmed genes the ARH values and the corresponding quantiles in the ARH
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4 Statistical Analysis of Alternative Splicing

Figure 4.4: ROC curves for different aspects of methods performance. A: Overall performance
across the 28 pairwise tissue comparisons with respect to AEdb confirmed splicing events (performances
vertically averaged). B: HeLa cell line data with spiked transcripts as true positive set. C: Liver vs.
pancreas individual splicing predictions. D: Performance of methods with only 1 of the 3 replicates. E:
Performance for confirmed events in differentially expressed genes only. F: Performance for confirmed
events in non-differentially expressed genes only.
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4 Statistical Analysis of Alternative Splicing

ARH SI SPLICE PAC ANOSVA MiDAS FIRMA MADS Cor. exon No.

ARH - 0.58 0.59 0.27 0.31 0.3 0.06 0.19 0.04 0

SI 183 - 0.77 0.28 0.33 0.27 0.07 0.18 0.03 0.01

SPLICE 185 217 - 0.28 0.35 0.3 0.07 0.2 0.03 0.01

PAC 106 108 109 - 0.13 0.16 0.06 0.13 0.03 0.002

ANOSVA 118 123 129 59 - 0.25 0.03 0.23 0.02 0.05

MiDAS 115 107 114 70 101 - 0.04 0.17 0.02 0.02

FIRMA 27 31 31 29 13 20 - 0.04 0 0.02

MADS 80 78 83 57 93 73 17 - 0.01 0.02

Cor. 18 14 13 14 8 9 0 4 - 0

exon No. 1 5 5 1 22 9 8 10 0 -

Table 4.3: Overlaps for the top 250 genes of each prediction method. In the test case liver
vs. pancreas the top 250 predicted genes are compared between the methods. The lower left triangular
matrix contains absolute numbers and the upper right triangular matrix contains the Jaccard index.
Abbrv.: Cor., correlation; SI, splicing index.

background distribution, the p-values of the generalised extreme value fit and q-values
for FDR correction following Dabney et al. [75] are listed in Table 4.4.
Furthermore, tissue specificity is analysed by comparing a selected tissue against the 10
remaining tissues (see Figure 4.5). This leads to considerable variance in the intensities
for the control group. ARH is robust for such variance, as it works only with an overall
control exon expression ignoring the variation. For example comparing muscle to non-
muscle tissues this variance challenges the methods in their robustness for noise in the
measurements and results in a strong spread of performances. For muscle, the AEdb
contains 19 confirmed exon events in 10 genes (see Table 4.2). In Das et al. [80], the
authors use the same human tissue data set to establish a list of muscle-enriched exons
whereof 17 events have been validated with RT-PCR. Since the study was performed on
an older genome build, the probe set region of the 17 events was updated with the UCSC
Genome Annotations Lift Tool to the current genome build (Assembly Mar 2006) [164].
The original regions intersect with 13 Ensembl exons in 11 genes constituting the list of
validated events used for analysis. Since the RT-PCR assays are generated specifically
on the samples under study, the ROC are more specific than AEdb confirmed events (see
Figure 4.5). It is a major advantage of ARH that it is robust to noise within the samples.
The effect is exemplified in Figure 4.6 with two case studies of different prediction quality.

4.4.3 Test data set 2: Spike-in transcripts

In Abdueva et al. [5] another benchmark data set was presented with spike-in hybridi-
sations of 24 transcripts. For genes not-expressed in HeLa cells, the mRNA is added
at concentrations of 0, 2, 32, 128, 512 pM in a Latin square design by five groups (see
Table 4.5). The data set has the advantage, that expression strength is exactly known
in every sample. The samples have a very homogenous background such that noise can
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4.4 Evaluation of alternative splicing prediction methods

ARH ARH background ARH p-value ARH q-value

ENSG00000005471 1.75 3.23·10−6 8.12·10−7 0.00039
ENSG00000131979 1.33 3.23·10−6 1.86·10−6 0.00065
ENSG00000135447 0.50 2.91·10−5 3.31·10−5 0.0038
ENSG00000101076 0.37 5.65·10−5 8.01·10−5 0.0065
ENSG00000148584 0.31 8.07·10−5 0.00014 0.0089
ENSG00000015475 0.22 0.00023 0.00038 0.017
ENSG00000171105 0.14 0.00090 0.0015 0.042
ENSG00000143257 0.11 0.0017 0.0026 0.061
ENSG00000105325 0.023 0.10 0.12 0.68
ENSG00000183337 0.020 0.13 0.15 0.75
ENSG00000142192 0.016 0.21 0.23 0.92
ENSG00000170632 0.015 0.23 0.25 0.96
ENSG00000082701 0.011 0.35 0.38 0.99
ENSG00000197965 0.0084 0.46 0.50 0.99
ENSG00000100429 0.0078 0.49 0.54 0.99
ENSG00000163606 0.0069 0.54 0.60 0.99
ENSG00000106633 0.0034 0.73 0.84 0.99
ENSG00000010932 0.00036 0.87 0.98 0.99

Table 4.4: Table of ARH values for the liver vs. pancreas confirmed events. The AEdb
confirmed splicing events for the test case liver vs. pancreas are highlighted with their corresponding
ARH values. In ARH are the normal linear ARH values. In ’ARH background’ are the quantiles within
the background distribution with no biological splicing. In ARH p-value are the p-values of the fit with
the generalised extreme value distribution on the background distribution. In ARH_q are the q-values
of the ARH q-value p-value distribution (q-values are fitted to all genes).
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4 Statistical Analysis of Alternative Splicing

Figure 4.5: Tissue specificity. Left: Overall performance across the 8 tissue specificity comparisons
with respect to AEdb confirmed splicing events (performances vertically averaged). Centre: Compari-
son of muscle vs. non-muscle tissue data invoking additional experimental noise with AEdb confirmed
splicing events. Right: Muscle vs. non-muscle tissue data with RT-PCR validated true positive set.

be neglected. All true positives are known due to the closed collection of spiked genes.
Following the original handling of the data the Affymetrix probe-probe set-transcript
cluster assignment is used.
The 24 transcripts are not spliced by experiment. Generation of splicing events follows
an idea of Beffa et al. [27] and reassigns exons from one spike group to a different group.
The five experimental groups facilitate 10 pairwise comparisons. In each comparison
exons with 0, 2, 32, 128, 512 pM are assigned to genes with 2, 0, 512, 32, 128 pM concen-
tration respectively. The true positives in this data set are characterised by differentially
expressed genes with generically spliced exons at extreme fold changes. The environment
excluding the 24 transcripts has no expression change at low variability. The results show
a general increase in methods performance compared to the tissue data with ARH being
the best performing method (see Figure 4.4).

4.5 Discussion

Entropy was introduced to alternative splicing for quantification of global splicing disor-
ders [247]. Fractions of transcript variants for a gene are assessed by entropy. Computing
entropy ratios between conditions splicing disorders are quantified. Ritchie et al. [247]
state that fraction entropies are generally higher in cancer tissues compared to normal
tissues. This effect is observable for proper alternative splicing, not for alternative trans-
cription start site and not for alternative polyadenylation. It is the first study with a
quantitative estimate of splicing disruption in cancer.
Entropy in this study is computed on the fractions of transcript variants. Thus entropy
distribution depends on the number of possible transcript variants and possibly results
also may depend on the exon number. Unfortunately the authors of Ritchie et al. [247]
do not argue about such a possible dependency. Thus it is not sure if the entropy ratios
in the study not also show any tendency to high-number genes as discussed here in
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4.5 Discussion

HGNC TC ID Group Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

AAK1 2558150 1 0 2 32 128 512
COPS4 2733928 1 0 2 32 128 512
MRPS5 2564599 1 0 2 32 128 512

RUNDC3A 3722872 1 0 2 32 128 512
TRIM55 3101514 1 0 2 32 128 512
EDNRB 3518766 2 512 0 2 32 128
GALK2 3593339 2 512 0 2 32 128
KCNH6 3730698 2 512 0 2 32 128
KRT7 3415320 2 512 0 2 32 128

SEC22B 2355615 2 512 0 2 32 128
ARL6IP2 2548776 3 128 512 0 2 32
C1orf187 2320392 3 128 512 0 2 32
NOSTRIN 2514216 3 128 512 0 2 32
POU2F2 3863435 3 128 512 0 2 32
SNTB2 3666601 3 128 512 0 2 32
GFRA1 3308241 4 32 128 512 0 2

GLYATL1 3331822 4 32 128 512 0 2
MRS2 2898452 4 32 128 512 0 2

SERGEF 3365136 4 32 128 512 0 2
SNX24 2826343 4 32 128 512 0 2
INHBA 3047581 5 2 32 128 512 0
ARD1B 2774900 5 2 32 128 512 0
PAX9 3532793 5 2 32 128 512 0

SLC39A14 3089360 5 2 32 128 512 0

Table 4.5: The spike-in transcripts latin square scheme. For not present genes in HeLa cells,
the transcripts are spiked into the RNA sample. The numbers in the experiment columns refer to pM
for spike-in clone concentrations. Abbrv.: HGNC, human genome nomenclature ID; TC ID, transcript
cluster identifier; Exp., experiment.

85



4 Statistical Analysis of Alternative Splicing

subchapter 4.5.2.
In my work entropy is introduced to prediction of alternative splicing. Exon expression
ratios are calculated directly between conditions and later assessed by entropy. Also
ARH accounts for entropy distribution by subtraction from maximal entropy.

4.5.1 General performance of methods and study design

The prediction of alternative splicing remains a challenge. In general, performance of
all methods is not very good, in particular with respect to the tissue data set. This
is due to the fact that splicing prediction poses particular problems to the statistical
analysis. A gene encodes several transcripts on the one hand and consists of different
exons on the other hand. For each product or each exon a separate analysis is performed
to test potential splicing using the same measurements in several tests. Approaches for
the comparison of methods can be found in Purdom et al. [237] with a simulation model
and in Beffa et al. [27] with the re-ordering of spike-in data. The advantage of the human
tissue data set is the challenge to identify splicing events in a non-artificial, experimental
setting.
The confirmed events used for this study are in any sense independent from the compu-
tations. This has effects on the performance of the methods with respect to two aspects.
On the one hand the confirmed events are not generated from the tissue samples on the
chips. Thus, some of the AEdb splicing effects may be weak or not appropriate. For
example, if the splicing event is confirmed in one tissue but the isoform is not tested
specifically in the second tissue, then this result would turn into a false positive in the
light of the experimental data because the isoform may be present in both tissues. On
the other hand, strong splicing differences can be expected between tissues. The num-
ber of confirmed splicing events is low concerning recent predictions of up to 95% of
spliced human multi-exon genes [228]. With the AEdb there are only a few events of
unknown strength. The methods may predict successfully many real, existing events be-
fore marking the confirmed events. These aspects may in part explain low sensitivity of
the results. In particular the test settings only allow relative rating of the methods, not
computation of overall performance. In particular the test settings only allow relative
rating of the methods, not computation of overall performance.
A major advantage of ARH is the robustness concerning noise within the samples and
exon expression variability along the gene. This is probably the explanation of the
performance spread of the methods in the tissue specificity settings in Figure 4.5. To
elucidate this in detail the focus is on the muscle vs. non-muscle case with two case studies
in Figure 4.6. The prediction ranks for the case studies are in Table 4.6. Where HNF4A
in Figure 4.9 is an illustrative example easy to predict the genes CSDE1 and DYSF
have different prediction quality in the methods. Another advantage of ARH concerns
experimental design, not only prediction performance: ARH provides reliable predictions
for few replicates. This aspect is presented in Subsection 4.2.2. All of the analysed
methods are suitable for exon skipping prediction. This is by choice and adequate to the
Affymetrix Exon Array platform. Of course all of the methods are successful to identify
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Figure 4.6: Expression and splicing probabilities of CSDE1 and DYSF . The two examples
are from the muscle vs. non-muscle test setting. In both examples is a very high noise level within
the samples along the replicates. Left: The left example CSDE1 is a true positive from the RT-PCR
validated study. The ARH values is 0.47 for CSDE1. Right: The right example DYSF is an AEdb
confirmed event and ARH value is 0.058 for DYSF. The true positive exon in DYSF (vertical green
dotdashed line) has an ARH splicing deviation value of 0.474 and is thus significant on the 0.1 level (see
subsection 4.2.2).

HNF4A CSDE1 DYSF
rank total ratio rank total ratio rank total ratio

ARH 231 26 538 0.0087 71 26 538 0.0027 653 26 538 0.025
SI 266 232 376 0.0011 121 232 376 0.00052 11 742 232 376 0.051

SPLICE 279 232 376 0.0012 7491 232 376 0.032 9861 232 376 0.042
PAC 7401 232 376 0.032 725 232 376 0.0031 14 488 232 376 0.062

ANOSVA 638 26 538 0.024 2774 26 538 0.1 199 26 538 0.0075
MiDAS 1343 232 376 0.0058 19 095 232 376 0.082 5183 232 376 0.022
FIRMA 2173 26 538 0.082 3 26 538 0.00011 716 26 538 0.027
MADS 1527 232 376 0.0066 56 528 232 376 0.24 21 421 232 376 0.092
Cor. 5511 26 538 0.21 6780 26 538 0.26 6519 26 538 0.25

Exon No. 3892 26 538 0.15 2227 26 538 0.084 236 26 538 0.0089

Table 4.6: Ranks and quantiles for different case studies. For every method three columns are
introduced: In ’rank’ is the minimal rank of the method sorted for decreasing splicing indication (low
rank is better), ’total’ the total number of ranks, i.e. exon level or gene level prediction as well as ’ratio’
the quantile of the prediction, the rank divided by the total number of ranks. The third column is
comparable between all predictions. The expression and indication for HNF4A is visualised in Figure
4.9 and CSDE1 as well as DYSF in Figure 4.6. Abbrv.: SI, splicing index; Cor., correlation; Exon No.,
exon number.
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4 Statistical Analysis of Alternative Splicing

splicing events. The study is novel in the field by relating the new proposed method
ARH in competition to the existing methods.

4.5.2 Predictors vs. number of exons in the gene

In differential expression settings the number of probes are mostly constant across the
genes on the array. This is not true anymore with the exon arrays. Predictions are
calculated for genes with strongly differing number of exons. Ideally, a method is inde-
pendent on the number of exons in a gene. The performance of the different methods is
investigated with respect to this feature. The genes were partitioned in bins referring to
exon numbers. Boxplots for the distribution of the predictions were calculated per bin
and are shown in Figure 4.7. Here, genes with the same number of exons were assigned
to the same bin. With increasing number of exons the probability of a false positive
prediction increases. Focussing on the exon level does not avoid the problem. Sorting
the predictions by decreasing splicing indication, genes with high number of exons are
still preferred.
A majority of the methods shows a dependency on the number of exons. Especially
statistical tests are susceptible to the increasing splicing indication with increasing exon
number. Statistical tests become sensitive with increasing exon number and detect de-
creasing splicing differences. In the AEdb test setting this misleadingly improves per-
formance. In order to make the ARH gene level prediction independent of the number
of exons per gene the entropy values were compared to their possible maximum. This
maximum is only dependent on the number of exons and thus constant over the exon
bin. Thus, ARH corrects for the number of exons per gene.
Interestingly, Figure 4.4 and Table 4.1 demonstrate that the number of exons per gene
is per se already a well-performing splicing prediction exceeding several of the computa-
tional methods. This may be a consequence of exon number bias in the AEdb compared
to genome-wide data from Ensembl annotation. In the Ensembl database gene number
distribution decreases with increasing exon number in the genes with a mean of 13 exons
per gene. The AEdb, in contrast, shows a fairly differing distribution of number of exons
with a peak between 7 and 18 exons per gene and a mean of 25. This observation reflects
a selection bias of the manual curation. The AEdb genes show increasing coverage of
Ensembl genes with increasing exon number as visualised with the ratio of AEdb exon
number bins divided by the Ensembl exon number bins in Figure 4.8.

4.5.3 Alternative splicing and differential expression

Alternative splicing in the presence of gene expression changes demands the methods to
account for differential expression. Affymetrix, and several other groups, conceptualise
the ideal splicing events without differential expression [20]! Looking at the liver vs.
pancreas setting differentially expressed genes are filtered as denoted in Subsection 3.2.5.
From 23 confirmed exon events 12 events are in 6 differentially expressed genes and 11
events are in 9 genes without considerable expression changes. The DE pipeline identifies
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4.5 Discussion

Figure 4.7: Dependency of the different methods on the exon number. Boxplots of prediction
values (y-axis) with respect to genes with the same number of exons (x-axis). For the statistical tests
the red horizontal line indicates an 0.05 p-value.
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Figure 4.8: Exon number statistics in assignments. Genes are divided in bins by the number
of assigned exons. The histogram represents the number of genes in a bin. The blue, dashed line
indicates the mean of the exon number. Left: The Ensembl probe mapping comprises all genes and
corresponding exons from Ensembl 49 with assigned probes following the mapping of Dai et al. [76] in
version 11. Centre: From the AEdb all cassette exon events with known sequence are filtered. The
event sequences are compared to the Ensembl exon sequences and filtered for perfect matches. For the
resulting exons the corresponding Ensembl genes are drawn from Ensembl 49. Right: For every bin
the number of genes in the AEdb histogram is divided by the number of Ensembl genes. This illustrates
that genes in the AEdb tend to have more exons than genes have in general, i.e. a bias towards high
exon number genes.

4615 differentially expressed genes and 963 alternatively spliced genes with an intersection
of 719 genes. These numbers imply that alternative splicing cannot be modelled without
differential expression. A coupling of the transcription and the splicing machinery is
indicated in several studies [111, 206, 272]. However there is no genome-wide assessment
of this intersection.
The true positive set is split into the 12 differential expression events and 11 non-
differential expression events and subsequently the ROC curves are computed using only
the two subsets of confirmed events. Surprisingly all methods perform better to identify
splicing with differential expression (see Figure 4.4). In case of no differential expression
several methods are challenged to deviate alternative splicing from random. How do
methods take differential expression into account? Splicing Index calculates a normali-
sed intensity dividing the exon expression by its gene expression. ANOSVA introduces a
condition factor in its statistical test. In ARH the median of the log2 ratios is subtracted.

4.5.4 Predictions with two arrays

Since the costs for the arrays are always an issue in academic settings methods favourably
require low number of replicates. The methods shall be robust in the number of arrays.
Purdom et al. [237] are the first to address this aspect for FIRMA. Here it is addressed
by computing the ROC curve for only one chip per condition (see Figure 4.4). In liver vs.
pancreas are three chips in each condition allowing nine pairings of single chips. MiDAS
and MADS require replicates and are excluded from this test. ARH predictions are only
dependent on the robustness of exon expressions. Using the median over the probes but
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4.6 Approaches with negative results

also over the replicates the method is robust in the number of replications.

4.5.5 Exon expression variability

Exon expressions are variable across the gene. Figure 4.9 elucidates the complex nature
of exon expression. In previous gene expression experiments this variability was taken
into account to be noise in the probes. The exon arrays point to a deeper transcription
pattern in terms of splicing. Similar expression variability is found in RNA-Seq data.
This indicates that the driving element of expression variability is not just probe intensity
variance.
The variation can be decomposed into several dimensions: For example variation in
replicates, within exon/gene probe variation as well as exon expression variation within
a gene. The replicate variation is low compared to the within exon or gene variation
as already pointed out in the preprocessing in Figure 3.13. The probe variation within
exons is lower than within genes (see Figure 4.10). These two aspects already show that
intensities or exon expressions are probably not drawn from a single gene population.
For seven of the human tissues RNA-Seq is available from Wang et al. [306]. Reads
from the public available Illumina sequencing lanes are aligned to Ensembl database1.
Reads aligning within Ensembl exons denote an expression level called the exon read
count. The third dimension of variation is compared on the gene variation over exon
expressions using array expression and read counts (see Figure 4.10). The coefficient of
variation in RNA-Seq data is even bigger than in exon arrays, in general for about 90% of
the genes. Thus, the exon expression variability seems not to be a technological artefact.
In summary, the assumption that all exons in a gene have the same expression does not
hold in general. Thus, a uniform distribution cannot be assumed. Similar observations led
Shah and Pallas [259] to the identification of the correlation as an indicator for splicing.
ARH has been shown to cope with variable exon expression. Taking the ratio of the
exon expressions between the biological conditions levels out the expression changes.
The logarithm to the base 2 of the ratios saliently reflects splicing peculiarities in the
exon expressions. With the entropy ARH weights the expression ratios to each other,
identifying genes with deviating ratios.

4.6 Approaches with negative results

The track of research on the prediction methods was bordered by several trials with less
success. Major approaches are described to indicate possible pitfalls for follow-up studies.
Statistical tests have the nice attribute to increase power with increasing data. Increasing
data is in return a consequence of increasing exon number. Statistical tests for a given

1Tissues were aligned against all ENSEMBL 53 human cDNA sequences using bowtie v0.9.9.3 allowing
2 mismatches within first 24 bp and maximum number of mismatch maq like qualities of 70 [179].
For each tissue aligned reads were then counted into their specific contig (in this case transcripts)
afterward, not keeping track of the uniqueness. Reads are not normalised according to the length of
the exon but a simple scaling in terms of using the overall reads of the two states was performed.
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4 Statistical Analysis of Alternative Splicing

Figure 4.9: Singular examples for tissue exon expression. A: HNF4A is a gene with a confir-
med splicing event between liver and pancreas (exon 4, green dot-dashed line). The lines (y-axis, left
scale) show the exon expressions ordered by genomic position (x-axis). The bars (y-axis, right scale)
correspond to the splicing probability values of the respective exons. The ARH value for HNF4A is 0.37,
corresponding to a p-value of 8.01 · 10−5. C, E: The lines in red and blue show the exon expressions
ordered by genomic position and in green and orange show RNA-Seq exon counts. To compare the
expression measures on the scale sequencing counts are divided by their median and multiplied with the
array expression median. B, D, F: For one tissue the distribution of probe intensities is depicted as
exon-wise boxplots.
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Figure 4.10: Different dimensions of variation. Variation is quantified with the coefficient of
variation. Left: The probe variation within the exons is in blue and within the genes in dashed orange.
Right: The exon expression variation within genes is compared between technologies. In blue is the
gene variation in exon arrays and in dashed orange the variation in RNA-Seq.

p-value threshold tend to be significant for gene with more exons. Genes with same exon
number can be sorted in bins. Only for the genes in one bin the tests are comparable.
This problem is inherent to statistical tests and attempts to circumvent this problem did
not work (correction of z-score, divide test estimate by its exon number bin average).
One branch of development was an ANOVA test on the differences of probe intensities
between biological conditions. Despite of considerable performance of the test the deve-
lopment was stopped due to a severe exon number dependency. Performance of the test
could not be separated from the performance of the exon number estimator.
Normal ANOVA works with the assumption of a gaussian distribution within the data.
One attempt was to use more robust tests with rank methods like the Kruskal-Wallis
test. The robustification indeed lead to better performance in the method evaluation.
Unfortunately this improvement was on cost of specificity. The robust tests were far to
sensitive with arbitrarily small p-values.
The idea behind such a test was to use probe level data instead of summarised exon and
gene expressions. Probes correspond to the level of the measurements free from any sum-
marisation effects. Therefore analysis could start one level lower before summarisation.
This idea is supported by the observation of improved accuracy for probe level analyses
[188, 192, 193, 242]. However, for the prediction methods there was no advantage using
probe level data.
With a variety of prediction methods available in Section 4.3 it could be straightforward
to combine available predictions, joining the strengths of different methods improving
the performance. Predictions were ranked from best to worst splicing indication. Using
the ranks commonality predictions are defined by applying geometrical means, e.g. the
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4 Statistical Analysis of Alternative Splicing

best rank for every gene/exon. Several means like the sum of the ranks, the mean rank or
the euclidean norm on the ranks were applied. These combination methods had average
performance compared to the original methods.
Now ARH is applied on linear data. Logarithm is often recommended in gene expres-
sion analysis (see Section 3.2). ARH and other methods were also applied on logged
data without improvement. Computation of the entropy directly on log2 ratios lead to
severely increased sensitivity also for minor ratio changes. Thus the log2 is only used
for the distinction of up- and downsplicing. After this distinction, ratios are linearised
robustifying the proposed method.
ARH corrects for exon number by subtraction from the maximal entropy. The theoretical
goal is to compare the entropy in terms of length of the random vector. Two types
of normalisation are proposed in information theory: (1) the normalised entropy with
division by maximal entropy and (2) the entropy rate with division by the random vector
length. Both types of normalisation were not successful. This observation indicates a
major importance for the prediction in the deviation from maximal entropy. Just the
deviation seems to be invariant from exon number.
Finally, in the method evaluation the number of confirmed or validated events is quite
low for all of the three test data sets. For the tissue data set one of the tissue EST
databases was selected from Subsection 2.2.1, the T-STAG/SpliceNest database [118,
72]. The database predicts splicing events from the EST collections and comprises a
high-throughput prediction in itself. Although the qualitative statements about the
performance of the methods were similar, the ROC and AUC characteristics did not
convince. Thanks to a suggestion of Dr. Stefan Haas the method evaluation was switched
to the AEdb with manually curated splicing events [274].
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5 Alternative Splicing in Type-2
Diabetes Mellitus

In Chapter 5 the power of the pipelines and the ARH prediction is shown with an
application in the context of type-2 diabetes mellitus. An introduction to type-2 diabetes
mellitus elucidates the interplay of different organs and factors to highlight two major
organs for disease progression, adipose tissue and liver.
For marker identification a meta-analysis is performed on diverse qualitative and quan-
titative sources Rasche et al. [240]1. The quantitative sources are microarray data sets
processed with the differential expression pipeline. In every source disease relevance of
genes is scored. Scores are summed up to a gene score rating the general relation of a gene
to type-2 diabetes mellitus. Assessing consistency in the gene score another use arises
of the entropy introduced in Section 4.1. High entropy identifies genes with consistent
type-2 diabetes mellitus relevance over many sources.
For two mouse models of type-2 diabetes mellitus hybridisations on exon arrays have
been performed at the German Institute of Human Nutrition (DIfE). Mice are all fed on
a high-fat diet and on this dietary background NZL animals develop obesity. Diabetic
mice are separated by levels of blood glucose. In contrast the SJL animals do not develop
obesity by genetic reasons. Samples of fat and liver tissue are prepared and with the
alternative splicing pipeline spliced genes are identified and attributed to glycaemic or
genetic causes.

5.1 Biology and genetics of type-2 diabetes mellitus

Type-2 diabetes mellitus (T2DM, formerly called noninsulin-dependent diabetes mellitus
(NIDDM), or adult-onset diabetes) is a disorder that is characterised by high blood
glucose in the context of insulin resistance and relative insulin deficiency. While it is
often initially managed by increasing exercise and dietary modification, medications are
typically needed as the disease progresses.
The polygenic nature of type-2 diabetes mellitus is now well established and several
mouse models including NZO, BTBR etc. have been studied to analyse diabetes suscep-
tibility on a complex genetic background [64]. Linkage analyses have shown that several
quantitative trait loci interact with each other and with the environment to elicit obesity

1Parts of this Chapter appear in the Handbook of Research on Systems Biology Applications in Medicine
edited by Dr. Andriani Daskalaki [239]; Copyright 2009, IGI Global, www.igi-global.com. Posted by
permission of the publisher.
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5 Alternative Splicing in Type-2 Diabetes Mellitus

(blood glucose mmol / l) Fasting 2h after 75g
oral glucose load

Diabetes mellitus ≥ 7.0 or ≥ 11.1
Impaired glucose tolerance < 7.0 and 7.8 – 11
Impaired fasting glucose 6.1 – 6.9 and < 7.8

Normoglycaemia < 6.1 and < 7.8

Table 5.1: Diagnostic classification of type-2 diabetes mellitus. Diagnostic criteria of diabetes
mellitus and other categories of hyperglycaemia [283].

syndromes that are potentially diabetic. Several recent genome-wide association studies
have identified novel candidate genes for type-2 diabetes mellitus but the effect of these
variants on disease susceptibility is generally low, with odds ratios mostly around 1.5
[98, 114, 253, 256, 266, 276, 323]. Multiple studies on the transcriptome level have been
performed that emphasise the diversity of the disease and the complex pathophysiological
interaction between different tissues, including fat, muscle, liver, pancreatic β-cells and
brain [283]. In several human studies, tissue biopsies from diabetic and normoglycaemic
individuals have been profiled [117, 207]. In mouse studies differences in diet or mouse
strains have been used to identify distinct expression profiles [35, 211, 177]. Complemen-
tary ChIP-on-Chip studies reveal the associated gene regulatory network of important
transcription factors active in the relevant tissues [219, 220]. In the context of the onset
of diabetes, several studies on the proteomic level have revealed differential expression of
intracellular proteins as well as of secretory proteins in adipose tissue [58, 291]. Despite
the availability of these large amounts of data, their common content as well as their
specific differences, in particular in gene sets between human and rodent studies, has not
been systematically evaluated until recently with Rasche et al. [240].

5.1.1 Diabetes mellitus

Abnormally high level of glucose in blood are the main characteristic of diabetes mellitus
[83, 283]. Healthy people mediate blood glucose, whereas in diabetics glucose levels
remain high. Insulin regulates the blood glucose level. In diabetes insulin is not produced
at all, insufficiently or not as effectively as needed. Most common forms are type-1
diabetes (5% of the cases, an autoimmune disorder) and type-2 diabetes (95%, obesity
associated). Some rare variants exist, e.g. by single gene mutations.

Type-2 diabetes mellitus generally occurs in obese adults. Many underlying factors
contribute to high blood glucose levels. Resistance of the body to insulin is an important
factor, ignoring its insulin secretions. Therefore type-2 diabetes mellitus is a combination
of deficient secretion and deficient insulin action. The rise of obesity in the population
is the driving force behind the increase of diabetes. Today it can be difficult to maintain
healthy body weight in the presence of abundant food and a sedentary life.
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Fat
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Figure 5.1: Insulin as main regulator of energy balance. The transition from insulin resistance to
insulin production deficiency is a major aspect in type-2 diabetes mellitus progression. The progression is
accelerated by factors like adipokines, inflammation, glucose overflow and free fatty acids. FFA denotes
free fatty acids.

Diagnosis

Being overweight or obese is defined by looking at the Body Mass Index:

BMI =
weight in kg
(height in m)2

. (5.1)

A Body Mass Index of 18-25 is healthy, 25-30 overweight and above that level obese.
Diabetes mellitus is diagnosed on the basis of WHO recommendations from 1999, in-
cluding two criteria: fasting glucose and 2h after 75g oral glucose load (see Table 5.1)
[283, 269]. Criteria are combined into a practicable diagnostic classification. Impaired
fasting glucose and impaired glucose tolerance are conditions predisposing overt diabetes
mellitus. A substantial part of people with these problems will progress to overt diabetes
if not treated [283].

5.1.2 Physiology

Describing the physiology of type-2 diabetes mellitus means talking about the energy
control in an organism. Three molecules are the substantial interactors regulating the
energy supply in the body [83, 283]:
Glucose is an essential energy source for the body.
Insulin is the regulator of circulating glucose levels and energy balance (see Figure 5.1).

Insulin increases uptake of glucose into fat and muscle tissue, and formation of
glycogen in the liver and skeletal muscle.

Glucagon is the opponent of insulin and rises in scarcity. Glucagon activates glycogen
breakdown. Glucagon also helps the body to use alternative resources such as fat
and proteins.

Blood glucose levels are variable depending on the needs of metabolism, rising for three
reasons: diet, breakdown of glycogen or hepatic synthesis of glucose. Glycogen is a short-
term energy reserve generated from glucose. Glucose is regulated by insulin and some
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other hormones. Glucose abundancy releases insulin from pancreatic islets β-cells and
stimulates the following:

• liver to store glucose as glycogen;
• muscle to absorb glucose from the blood and store glucose as glycogen and
• cells to convert glucose in ATP.

Fasting results in reduced blood glucose level, leading to lower insulin and higher glu-
cagon. Glucagon raises blood glucose by calling of glycogen from the liver short term
reserve and glucose production by converting amino acids in the liver. Glucagon level
is stimulated by several causes, like protein-rich food or stress. When fasting for some
time, the liver is exhausted by glycogen but continues to make glucose from amino acids.

Tissues

In every tissue inside the cell, glycolysis uses some of the glucose. Glycolysis is a cen-
tral pathway of carbohydrate metabolism which occurs in all body cells and releases
energy and carbohydrate intermediates for use in metabolism. Four tissues are of major
importance for glucose management:
Liver produces and consumes glucose and buffers glucose levels. It is one of the most

important organs in this interplay. From digestion the liver receives glucose-rich
blood and removes large amounts of glucose to mediate the blood glucose level.

Fat stores energy as fat. Fatty acids are assembled to triglycerides.
Skeletal muscle stores energy as glycogen.
Pancreatic islets Pancreatic α-cells produce glucagon and pancreatic β-cells produce

insulin. Pancreatic β-cells detect the rise of blood glucose and respond with the
release of insulin and at the same time α-cells lower the release of glucagon and
thus the production of glucose from other sources.

5.1.3 Pathogenesis

Impaired insulin sensitivity and peripheral insulin resistance are central factors in the
pathogenesis of type-2 diabetes mellitus [269, 283, 284]. In Insulin resistance a normal
insulin concentration returns a subnormal biological response. In carbohydrate metabo-
lism insulin insensitivity leads to insufficient glucose usage in muscle and fat as well as
increased glucose production in the liver. In protein and fatty acid metabolism insulin
insensitivity leads to decreased intracellular uptake of amino acids and increased lipid
breakdown and thereof increased free fatty acids.
In insulin resistance hepatic glucose production is insufficiently suppressed. Insulin in-
sensitivity is balanced by the β-cells with additional insulin production. Eventually the
β-cells are not able to produce and secrete a sufficient amount of insulin probably due to
genetic defects. Long term glucose overflow (hyperglycaemia) leads to decreased sensiti-
vity of the β-cells and to its apoptosis. Free fatty acid overflow (hyperlipidemia) provokes
insulin secretion and consequently the decline of insulin storages. Abnormal levels of free
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Figure 5.2: Pathogenesis of type-2 diabetes mellitus. The figure is sort of a visual linear ap-
proximation of the disease progress in type-2 diabetes mellitus. Peripheral insulin resistance and β-cell
insufficiency lead to increased insulin and free fatty acid levels. Advanced insulin resistance leads to
impaired glucose tolerance. Glucotoxicity and lipotoxicity constitute cycles worsening the basic insulin
resistance and β-cell dysfunction. Abbreviations: IR, insulin resistance; hyperglycaemia, glucose over-
flow; glucotoxicity, toxic effects of glucose; hyperlipidemia, free fatty acid overflow; lipotoxicity, toxic
effects of free fatty acids; hyperinsulinaemia, insulin overflow.

fatty acids are a consequence of impaired fatty acid metabolism. Due to massive increase
of fat in type-2 diabetes mellitus patients the free fatty acid release is increased. Free
fatty acids accumulate in muscle and disturb carbohydrate metabolism as well as glucose
uptake aggravating insulin resistancy. Furthermore free fatty acids increase the glucose
production in liver.

Open questions

However, most genes and their associated molecular network contributing to the onset
and course of the disease are yet unknown. An understanding of the interplay between
obesity and insulin resistance is crucial but not completely resolved [64, 21, 89, 210].
There is a strong correlation between obesity and diabetes. In fact, for every kilogram
gained on a population level, diabetes rates increase linearly [305]. Many details are
unknown how enlarged fat mass causes insulin resistance [153, 221]. Obesity is associa-
ted with an increase in adipocyte secretion of chemokines, which promote macrophage
infiltration. In addition to increased macrophage infiltration, obesity is associated with
increased macrophage activation. Activated macrophages produce cytokines that can ne-
gatively impact on insulin sensitivity. Does insulin resistance cause inflammation or vice
versa [79]? One major hypothesis is, when maximal fat tissue expandability is reached
the inflammation is started due to a stress reaction [116]. Inflammation in adipose tissue
promotes insulin resistance in different organs, like liver, by several pathways [221, 251].
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Muscle cells ingest major amounts of glucose via the Slc2a4 transporter mediated by insu-
lin. In type-2 diabetes mellitus translocation is impaired of Slc2a4 to the cell membrane
and accounts for the malfunctioning glucose usage. Exact molecular characterisation of
the defect was not possible yet [269].

In addition it was not possible to identify the molecular defects leading to β-cell dys-
function despite intense research on the complex intramolecular network of the insulin
secretion cascade. Pancreatic islets try to compensate for higher insulin requirements
by increasing β-cell mass. Maximal cell mass seems to be genetically bounded and after
reaching this maximum β-cell mass declines [154, 209]. This cell mass decline is caused
by apoptosis of β-cells and followed by decreased insulin capacity. One hypothesis sees
glucose overflow leading to excessive deposit of reactive oxygen species causing β-cell
death [283].

In summary type-2 diabetes mellitus has a complex pathogenesis with insulin insensitivity
in different organs and β-cell secretion aberration. This effects are amplified by disturbed
fatty acid metabolism.

5.1.4 Genetics

The role of genetics in type-2 diabetes mellitus is indicated by the familial clustering of
insulin sensitivity and insulin secretion, the higher concordance rate of type-2 diabetes
mellitus in monozygotic vs. dizygotic twins and the high prevalence of type-2 diabetes
mellitus in certain ethnic groups [84]. Concordance rates were 88% in monozygotic twins
compared to dizygotic twins for impaired glucose tolerance. A positive family history is
related to a 2.4 fold increased risk [283]. Two main strategies seek to identify genetic
factors: the genome-wide scanning and the candidate gene approach. In genome-wide
scanning for the same species genotypes are compared to each other to narrow down
disease related regions. In the candidate gene approach gene sequences of physiologically
important proteins are compared among population samples.

Mutations of a single gene can result in disease. This happens in rare forms of diabetes.
Such mutations can be investigated with sequencing to find the responsible SNP in the
DNA. Type-2 diabetes mellitus is assumed to be polygenic. Disease genes may show
subtle but common differences in the gene sequence. It is difficult to link these common
gene variations to an increased risk of developing type-2 diabetes mellitus. Therefore
it is a remarkable result, that microarray study results converge on the same functional
modules by deriving metabolic pathways from expression results [299].

Genome-wide scanning

Association studies are performed on patient cohorts raised over years. Genotyping mi-
croarrays isolate chromosomal regions or SNP [256, 266, 276, 323, 98, 114, 253]. Positive
associations are found in one or more studies. However the following functional cha-
racterisation or positional cloning of causative genes has mostly been unsuccessful [84].
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The major genome-wide association studies settled down on 15 genomic loci with 20
candidate genes reviewed for example in Doria et al. [84] or Stumvoll et al. [285].
In the linkage approach the genome of affected family members is compared using genetic
markers. This locates genes by the rationale, that family members not only share the
phenotype but also chromosomal regions surrounding the involved gene. Alterations are
combined with the family genealogy over several generations and affected sibling pairs
linking parts of the genome to the risk of developing diabetes.
The genome-wide scan is also used in mice. So-called quantitative trait loci are isola-
ted through backcrossing between susceptible and unsusceptible strains. Such studies
demand a much smaller number of individuals as in the human case due to genomic
homogeneity of in-bred strains [231]. It is easier to follow or direct the family history in
animal models. The genetic component may be linked to the expression level combining
expression microarrays and genotyping arrays [176]. Thus, it integrates two different
information levels and results in narrow genomic candidate regions.
Genetic linkage and association studies often have poor replicability. Because of the late
onset of type-2 diabetes mellitus, susceptibility gene variants may exist in the control
group and reduce the power of the studies. Beside some more factors are attributed
to low replicability like ethnic stratification or gene-by-gene and gene-by-environment
interactions.

Candidate gene approach

In the candidate gene approach specific genes are selected preferably due to their functio-
nal role in type-2 diabetes mellitus [83, 230, 24]. In unrelated individuals, the statistical
association of an allele and the phenotype is tested. But also the candidate gene approach
had minor success in identifying causative factors. Variants were extensively analysed
in many candidate genes but the initial association could mostly not be replicated in
follow-up studies [225].
The candidate gene approach is scientifically more simple focussing on disease status and
alleles or haplotypes in insulin signalling or glucose metabolism. Dean and McEntyre
[83] as well as Parikh and Groop [230] describe work and results performed on the most
promising candidates. An exhaustive collection of genome regions and assured genetical
factors is provided by OMIM under the identifier #125853 [225]. A consequent step after
selecting candidate genes is to generate animal models by genetic manipulation. Such
models are reviewed in Nandi et al. [214] or Clee and Attie [64].

5.1.5 Animal models

Type-2 diabetes mellitus affects the basic metabolic process and therefore is traceable in
all organisms from human over mice and rats down to caenorhabditis elegans, where the
most relevant pathways are found as ageing pathways. Collection of human tissue samples
demands the cooperation of many medical institutions. In addition, nutrition and lifestyle
are not under control in contrast with lab animal models. With animal models more
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finegrained study designs are possible by controlled environments with regard to nutrition
and lifestyle but also genetics. Time series for different disease states and backcrossing
experiments for genetical insight are further features. In the following some strains
are presented. Although rat models for type-2 diabetes mellitus exist like the Zucker
Diabetic Fatty rat or Zucker Fatty rat the focus remains on mouse models with view on
the generated data sets in Subsection 5.2.1 and Section 5.3.
A complete overview about the mouse models used in type-2 diabetes mellitus research
is provided by [64] highlighting the history of the mouse strains and their susceptibility
to impaired glucose tolerance or type-2 diabetes mellitus. For example the C57BL/6
is the most important mouse model accounting for 14% of all experiments. It shows
diabetes-susceptible and diabetes-resistant aspects [300]. With a so-called ob mutation
in the Leptin gene, the same mouse strain becomes obese and develops hyperglycemia.
These mice compensate insulin resistance by making more β-cells and insulin. Most
other strains except C57BL/6 do develop diabetes with Leptin defect. The BTBR strain
shows strong diabetes-susceptibility. Crossings of BTBR and C57BL/6 are more glucose
intolerant than either parental strain, suggesting interactions between strain specific
alleles. Insight into the metabolism and insulin resistance drawn from mouse models
is described in Nandi et al. [214]. The authors break down the plurality of knock-out and
transgenic mice by phenotypes and tissue to find unsuspected players, e.g. transcription
factors, which emerge from the underlying studies.
The project in mind needs an animal model reflecting the human metabolic syndrome.
Such a model is the New Zealand obese (NZO) mouse strain, an in-bred polygenic mouse
model [37, 36]. This strain is characterised by several features:

• Morphologic changes in the pancreas with an altered number and size of the islets,
• early signs of insulin resistance in the first weeks in white and brown adipose tissue,

muscle as well as liver,
• hepatic glucose overproduction and impaired first-phase insulin secretion [303] and
• similar characteristic of the human metabolic syndrome like hypertension elevated

cholesterol, hyperglycemia and hyperinsulinemia [226, 73].
The NZO mouse separates from the New Zealand black mouse, its nearest relative, by
reduced body temperature, increased nutrition intake in portion and frequency as well
as lower activity [152].
The NZL/Ltj (NZL) mouse strain was developed in the Jackson Lab in 2004 with a
genome consisting of 96.88% NZO and 3.12% New Zealand black genome. The new
NZL strain develops obesity with severe hyperglycaemia, as known from the NZO strain.
Prevalence for hyperglycaemia is higher with 79% of the NZL mice compared to 50%
in NZO at week 20 and for blood glucose more than 250 mg/dl [202, 3]. Therefore
the NZL mouse differs weakly from the NZO strain with main differences higher rate
of hyperglycaemic animals and a higher reproduction rate. For backcrossings performed
in the NZO mouse with a genetically different, completely lean and non-diabetic mouse
the Swiss Jackson laboratory (SJL) strain is mostly used. With NZO and SJL crossings
several loci have been localised for type-2 diabetes mellitus in the mouse genome [233, 57].
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In summary, major findings can arise from a variety of organisms to understand human
metabolism. A caveat is, that the disease in the animal models may have causes different
from the human setting. So the results lack comparability and have to be reproduced in
different models. All of the described mice models are available from the Jackson Labs
including the focussed type-2 diabetes mellitus models [3].

5.2 Marker identification for type-2 diabetes mellitus by
meta-analysis

The goal of this meta-analysis approach is to generate additional value by combining
individual studies and by extracting consistent information [240]. Several meta-analysis
studies have been previously applied within other disease domains, such as cancer [244] or
Alzheimer [33] using different types of data [68]. With respect to type-2 diabetes mellitus
some recent approaches have been published: In Tiffin et al. [298] several computational
prediction methods have been combined in order to identify a common set of type-2
diabetes mellitus genes. The authors assessed the accordance of the prediction methods
resulting in a candidate gene list of 99 different genes. For type-1 diabetes mellitus a web-
resource tracks the expression behaviour of genes in several tissues [267]. Liu et al. [191]
applied enrichment analysis to previously defined gene sets and protein-protein interac-
tions using data from different species and tissues from the Diabetes Genome Anatomy
Project [1] and identified a subnet of insulin signalling proteins and nuclear receptors. In
contrast to Liu et al. [191] or Rhodes et al. [244] the presented approach is not limited to
transcriptome studies. Data is accumulated from different levels of molecular interaction
such as genetic information using knock-out mice and SNP, gene regulatory and gene
expression information as well as information on protein signalling and protein interac-
tions. In order to reduce technical bias of transcriptome measurements this data type
is restricted to experiments that were performed on the Affymetrix GeneChip platform.
Involving several parts of the body a common signature for type-2 diabetes mellitus can-
not be found with a single tissue. Therefore, similar to Liu et al. [191], relevant tissues
are combined such as liver, muscle, adipose tissue and pancreas. Although mouse models
are available for aspects of the disease, it is unclear, whether these mice have diabetes
for the same reason as humans do. With a span over human and several mouse models
a more global view of the disease is generated.

Using a Bootstrap [49] scoring approach a core set of 655 genes is computed that shows
significant disease relevance in the data sets under study. Here, the gene expression
profiles are used along with qualitative data comprising literature, genetic and proteomic
sources. Besides known genes this approach exhibits a large fraction (499) of yet barely
characterised novel candidate genes. These genes have been further validated in the
functional context of networks and exhibit high potential for understanding pathways and
pathway crosstalk associated with type-2 diabetes mellitus. Gene set over-representation
analyses infers the deranged parts of the physiology by type-2 diabetes mellitus using
gene ontology terms [26], common pathway resources [151, 158, 249] and information on
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week liver muscle fat

4 2 HFD / 3 SD 2 HFD / 2 SD 2 HFD / 3 SD
5 1 HFD 1 HFD
7 1 HFD 1 HFD
8 2 HFD / 4 SD 2 HFD / 2 SD 2 HFD / 4 SD
9 1 HFD 1 HFD
10 1 HFD 1 HFD
11 1 HFD 1 HFD
12 2 HFD / 4 SD 2 HFD / 2 SD 2 HFD / 4 SD

Table 5.2: Study design of the ESGEC data set. The data set has three dimensions: time, tissue
and diet. Abbrv.: HFD, high-fat diet; SD standard diet.

the associated gene regulatory network [219, 220, 201].
The Section follows the work presented in Rasche et al. [240] but comprises new data sets
specific for the alternative splicing analysis in Section 5.3. The project data is introduced
in the next Subsection 5.2.1, it is focussed on time series correlated to disease stages as
well as early stage expression alterations on the NZO mouse.. Different sources are joined
in Subsection 5.2.2 and the identification of the marker set follows in 5.2.3. Considering
many years of research on diabetes candidate genes relate to diverse established resources.
Here the marker set is related to networks in Subsection 5.2.4.

5.2.1 Early stage gene expression changes

DNA microarrays have been used to dissect various aspects of type-2 diabetes mellitus
reviewed by Sun [290]. Inside physiologic and pathologic conditions transcriptomics
permits a more comprehensive understanding of gene sets involved in the mechanisms
of type-2 diabetes mellitus. In human studies are conducted for example in adipose
tissue returning disperse results, i.e. linking genes to lipid and glucose metabolism,
membrane transport and promotion of the cell cycle. In skeletal muscle probably the
most important finding is the upregulation of the oxidative phosphorylation pathway in
accord with rat results [207].
A variety of studies applies microarrays to animal models and cultured cells. In type-2
diabetes mellitus they returned a tremendous amount of information about the patho-
physiology. Studies in vivo and in vitro profiling adipocytes from intra-abdominal and
subcutaneous adipose tissue lead to coordinated depot-specific differences in expression of
genes in embryonic development and pattern specification. Diet effects alter the expres-
sion of hundreds of genes primarily related to lipid metabolism and transcription factors
in adipocyte differentiation. In rat skeletal muscle the activation of the nutrient-sensing
hexosamine biosynthesis pathway decreased genes involved in oxidative phosphorylation
confirming results from human studies. In mouse assays unfortunately all of the mice
were at least 14 weeks of age and thus provide little insight into the early phase of
pathogenesis.
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Figure 5.3: Physiological parameters for the ESGEC mice. Red curves visualise the development
of high-fat diet animals and blue curves of standard diet animals. Left: On the x-axis is the time in
weeks and on the y-axis the body weight in gram. Right: On the x-axis is the time in weeks and on
the y-axis the blood glucose level in mg/dl.

Microarrays allow the categorisation of disease stages according to the changes in the
mRNA expressed. This is used in parallel in several tissues at the same time or in the
same tissue at several time points. The NZO mouse shows the main characteristics of
the human metabolic syndrome as introduced in Subsection 5.1.5. Project data was
generated on the NZO mouse with the aim to characterise early stage gene expression
changes and the acronym ESGEC − Early Stage Gene Expression Changes − refers to
this data set in the remain of the work. Study design follows the idea to choose time
points before and during obesity development to identify candidate genes and metabolic
processes contributing to adiposity.
The ESGEC data set comprises samples with variation in three dimensions: time, tissue
and diet and is outlined in Table 5.2. Male NZO animals were separated from its mothers
in week 3 and set on the respective diets, high-fat diet and standard diet, and characte-
rised up to week 12. High-fat diet contains 15.3 MJ/kg by 32.5% sugar, 17.1% protein,
and 14.6% fat and standard-diet contains 12.8 MJ/kg by 36.5% starch, 19% protein,
4.7% sugar and 3.3% fat among others. Characterisation includes body weight, body
fat, blood glucose, blood plasma insulin and cytokines. Dr. Tanja Dreja characterised
and prepared the samples in the group of Dr. Hadi Al-Hasani at the German Institute
of Human Nutrition (DIfE) in Potsdam-Rehbrücke [85]. After preparation the samples
were passed to a company for hybridisation on Affymetrix mouse 430 2.0 arrays. This
data set complements the study on the exon arrays in Section 5.3 by identifying a marker
gene set for the NZO and NZL model mice.
For comparison of diet changes the data listed in Table 5.2 facilitates six simple cases.
Differential expression results at week 8 and 12 in each of the three tissues between
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high-fat and standard diet. As high-fat samples are underrepresented at week 8 and 12
exactly the samples are joined from week 7 to 9 and from week 10 to 12 respectively.
Additionally, a time series analysis is performed over all available time points in each
tissue on the high-fat diet. In the time series expressions are correlated with the weeks
of age representing disease stage for the mice.

5.2.2 Mapping, preprocessing and categorisation of data

Data sets were selected from heterogeneous sources that target different levels of cellular
information. Data categories are either binary or quantitative. An overview about the
type-2 diabetes mellitus specific data sets is given in Table 5.3.
Binary data was introduced by incorporating medical reviews, phenotype information
(for example from knock-out genes), results from proteome analysis [283, 58, 83, 225,
204, 3, 214] as well as published candidate gene lists from previous studies or models
[298, 1, 230, 168]. Binary information was assigned according to the fact whether the
gene had been identified in the study or not.
Quantitative data was incorporated by evaluating data from differential gene expression
and time series microarray studies [117, 207, 35, 177, 211]. In order to extract compa-
rable information across the different studies data is restricted to the same technological
platform (Affymetrix GeneChip studies). Furthermore, in order to conduct standardised
data normalisation only studies were taken into account that published and provided the
raw data (CEL file level). Each individual microarray study was normalised using the
pipeline described in the chapters 3.2 with customCDF in version 8.
For transcriptome studies that are targeting differential expression three bits of informa-
tion are stored – the fold-change indicating the alteration of the gene when comparing
the diabetic state with the normal state, the standard error of the fold-change computed
from the replicated experiments in that study and the expression p-value (presence-call)
that indicates whether or not the gene is expressed in the target samples under study.
In time series studies the correlation is stored between phenotypic characteristics, for
example blood glucose, and the gene expression levels with the coefficient of variation
and the expression p-value.
However, some issues are to consider applying and integrating microarrays. The total
number of probes on a microarray and the selection of the probe sequences from the
gene/transcript sequences differs between the chip manufacturers and therefore hinders
comparability. Data analysis is complex due to the large amount of genes and possible
study designs. Therefore, the focus is on case-control and time series in vivo studies on
Affymetrix platforms in this project as well as in the public studies.
A central pre-requisite of any meta-analysis approach is the consolidation of the different
identifier types, for example coming from different organisms and from different versions
of chips. The Ensembl database was used as the backbone annotation for all studies
(see Figure 5.4) [38]. Any identifier are mapped on their mouse Ensembl gene identifier
(version 44). Mapping and merging of the information has been done within R and
the BioConductor package collection [238, 108]. The total number of genes under study
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5.2 Marker identification for type-2 diabetes mellitus by meta-analysis

Data set Category Species Tissue Study research question Cit.

StumvollGoldstein2005 Qualitative human medical review about T2DM [283]

DeanMcEntyre2004 Qualitative human medical review about selected

candidate genes

[83]

OMIM Qualitative human medical review about T2DM [225]

PubMedGeneRIF Qualitative human/

mouse

text mining in the

NCBI geneRIF

[204]

KOmiceJAX Qualitative mouse mouse models with phenotype

T2DM

[3]

NandiAccili2004 Qualitative mouse mouse models with phenotype

Insulin Resistance

[214]

ChenHess2005 Qualitative rat fat Secretory proteins in

adipose tissue

[58]

SundsenBergsten2006 Qualitative human blood differential protein expression [291]

MoothaGroop2003 Quantitative human muscle patients with T2DM/impaired

glucose tolerance and controls

[207]

GuntonKahn2005 Quantitative human pancreas patients with T2DM vs.

controls

[117]

LanAttie2003 Quantitative mouse fat/muscle/liver/

pancreas

diabetic mice vs. controls [177]

BiddingerKahn2005 Quantitative mouse fat/muscle/liver diabetic mice vs. controls [35]

NadlerAttie2000 Quantitative mouse fat diabetic mice with different

level of hyperglycaemia

[211]

ESGEC 2006 Quantitative mouse fat/muscle/liver diabetic mice vs. controls

week 8 and 12

(5.2.1)

ESGEC 2006 Quantitative mouse fat/muscle/liver time series week 4 to 12 (5.2.1)

Table 5.3: Overview on the data sets used for the T2DM meta-analysis. The table lists the
heterogeneous set of data sets and resources combined in the meta-analysis. Abbrv.: T2DM, type-2
diabetes mellitus.
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Figure 5.4: Identifier mapping scheme. For the different type-2 diabetes mellitus data sources the
identifier are mapped to Ensembl mouse gene identifier. Then follows score calculation and for public
use annotation of different identifier. With a similar procedure the functional annotation and gene set
resources are mapped to Ensembl mouse for subsequent analysis. The assembly is the tabular output of
the collected source data annotated with gene sets as well as score and entropy. Abbrv.: ID, identifier.

comprises 18 439 Ensembl mouse genes representing the union of the homologue genes
from all data sources.

5.2.3 Identification of marker genes – generality vs. specificity

Numerical scores were computed for all genes in each individual study, the scores were
summarised and the summarised scores were compared against a random sample at the
99.9 percentile. This procedure determines a cut-off score value of 4.3 and identifies
a set of 655 genes with a score exceeding this cut-off. In the following this procedure
is explained in four steps. (1) Generating gene scores, (2) isolate candidate genes by
resampling, (3) relate to different candidate gene studies and (4) account for consistency
in gene scores.

Scoring type-2 diabetes mellitus relevance of genes across studies

In order to score the different categories of information, i.e. binary counts and quantita-
tive gene expression values, for each category the scores are summarised of the individual
experiments. For binary information the counts were grouped in sub-categories, for
example knock-out mice described in two reviews only get a single count.
For quantitative information, the score of the g-th gene in the u-th study, sg,u, was
computed as follows:

sg,u =

{
|log2(fg,u)|

(
1− ζg,u

fg,u

)
(1− pg,u), pg,u ≤ 0.1 and ζg,u

fg,u
≤ 1

0, else
. (5.2)

Here, fg,u is the fold change, pg,u is the average detection p-value and ζg,u is the standard
error of the ratio derived from the experimental replicates of the study. Thus, the fold
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change is weighted with its reproducibility across the experimental replicates and with
the likelihood of the gene being expressed in the study’s target samples. A similar formula
applies for correlation studies:

sg,u =

{
|cg,u| · vg,u · (1− pg,u), pg,u ≤ 0.1

0, else . (5.3)

Here, cg,u is the correlation to a certain phenotypic parameter, vg,u the coefficient of
variation of the gene’s signal across experimental replicas. The formula is applied on the
data of Nadler et al. [211] and ESGEC time series project data. In Nadler et al. mice
from three different strains (B6, BTBR and F2 intercrosses) are separated in five classes
with increasing hyperglycemia. The Kendall rank correlation between the classes and
the gene expression is calculated.
The total score of the gene was computed as the sum across all individual study scores.
A common approach in meta-analyses is to apply the same statistical test to congeneric
studies and combine the resulting p-values by the Fisher method or z-Score. This is not
practicable in the case at hand, since the experimental sources are too heterogenous and
not for every study integrated a p-value can be calculated.
To contrast the different data sources a correlation heatmap is provided in figure 5.5. In
order to measure the dependency of the scoring method on published data – particularly
review papers – the correlation is computed between the scores derived from the quali-
tative and quantitative data. The correlation is 0.08 indicating that the transcriptome
data is rather independent of the published review knowledge. In the ‘qualitative’ cate-
gory of the study, comprising reviews/OMIM, knock-out models and PubMedGeneRIF
[283, 58, 83, 225, 204, 3, 214, 230], 507 genes are related with the disease. Only a small
proportion (108 corresponding to 16.5%) of those genes were also found in the type-2
diabetes mellitus candidate list, so that the computed scores do not replicate literature
knowledge to a dominating extent.
Using a leave-one-out cross-validation with these studies the significance is measured of
the overlap of each of these studies with the candidate list. The qualitative studies are the
benchmark for the scoring approach. The scoring is calculated without the respective
qualitative study. The hypergeometric distribution of the qualitative study gene set
and the notional candidate set assigns a p-value. This p-value reflects the success of
the score to identify the genes from the qualitative study. For all of the qualitative
reference sets highly significant p-values are computed (for example Stumvoll et al. [283]:
1.1 ·10−13, Dean and McEntyre [83]: 0.011, OMIM [225]: 0.0026, PubMedGeneRIF [204]:
1.83 · 10−50).

Sampling for significance

Summarised scores are compared against a random sample at the 99.9 percentile. This
procedure determines a cut-off score value of 4.3 and identifies a set of 655 genes with a
score exceeding this cut-off. Randomly, one would expect 18 out of the 18 439 genes to
exceed the threshold. Cutting at the 99 percentile results in 1808 genes (expecting 184 by
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Figure 5.5: Correlation of data sources. The image visualises the scorepoint correlations between
the sources as a heatmap with light yellow for maximal correlation. Both categories of sources are
intermingled.

chance), cutting at the 98, 97, 96 and 95 percentiles would result in 2412, 2811, 3125 and
3403 selected genes (305, 553, 738 and 922 randomly expected genes). Thus, the ratio of
detected vs. expected significant scores increases with percentile of the random sample
from 3.7 to 36.4, indicating a necessary precondition for the validity of the selection
procedure, see Figure 5.6.
In order to assess the significance of the overall gene scores generated gene scores are
computed. For this bootstrap [49] random score are drawn from each study. The sum
of the drawn study scores determines the score for a virtual gene. The distributions of
the original scores (black line) and the random scores (blue dotdashed line) are shown
in figure 5.6. Using the random distribution as background sample genes are assigned to
be “significant” that are above the 99.9 percentile of the background distribution.

Overlap to previous predictions of type-2 diabetes mellitus genes

In the original publication Rasche et al. [240] a first marker list with 213 genes was
established with the same method. That first study excludes nine microarray data sets
derived from the ESGEC data and one proteomic study from Sundsten et al. [291].
However both studies overlap by 184 marker genes and therefore the additional data sets
are a specific refinement of the marker set (see Figure 5.7). The score vectors over the
genes correlate with a Pearson correlation of 0.78 and a Kendall rank correlation of 0.6.
From seventeen genes in the OMIM description of type-2 diabetes mellitus (Diabetes
mellitus, noninsulin dependent, #125853, [225]) four genes have a significant score in this
study: Retn, Gpd2, Vegfa and Akt2 (see Table 5.4). Retn represents an adipocytokine
which has been implied to play roles in obesity, diabetes, and insulin resistance [278, 321].
Interestingly, Retn is only deregulated in one of two studies involving adipose tissue. In
contrast, differential expression for Vegfa was observed in pancreatic islets whereas Gpd2
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Figure 5.6: Score histogram & TP-FP characteristic of the score. Left: Histogram of gene
scores (black line) and background distribution of scores derived from bootstrap sampling (blue dotda-
shed line) [49]. The vertical red-dashed line marks the cut-off for the type-2 diabetes mellitus candidate
gene list. Right: Compare the sampled false positive rate to the assumed true positives. The image
is derived from the left figure. It shows on the y-axis the formula y = x−S

S
with x the gene score and S

the sampled background distribution at x.

did not show tissue-specific expression.

Several previous studies already published type-2 diabetes mellitus candidate lists al-
lowing us to assess common content. The overlap to the list of the Diabetes Genome
Anatomy Project [1], being also the source of some of the transcriptome data sets used
for this meta-analysis [117, 207, 35], results in a p-value of 0.002. Using the same re-
source, with a less conservative selection of data sets, Liu et al. identified 82 genes related
to insulin signalling with an overlap of 18 genes to the candidate list containing several
strongly connected proteins [191]. More selective is a review of sequencing candidates
by Parikh and Groop [230] leading to a p-value of 3.1 · 10−9. In Tiffin et al. [298] 99
candidates were published as partial overlap of several electronic candidate prediction
methods. This results in a p-value of 1.8 · 10−8 comparing it with the marker list. In
summary, the type-2 diabetes mellitus candidate gene list includes a small amount of
candidate genes from previous studies and, further, leads to an additional set of 589
genes not identified in the other studies. Subtracting those genes for which disease infor-
mation is available from the incorporated reviews the presented approach identifies 499
novel type-2 diabetes mellitus candidate genes.

Biological validity of the type-2 diabetes mellitus candidate set is assessed by comparison
to existing studies and disease gene repositories such as OMIM and genome wide asso-
ciation studies. The union of the medical reviews [283, 83], genetic sources [225, 3, 214]
and the PubMed hits [204] contains 507 genes with an overlap of 108 genes (16.5%) to
the candidate genes. However, at present only a few genes from genome-wide association
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original
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292929 184 471

original ∪
ESGEC
655

Figure 5.7: Overlap of original and expanded marker set study. The 213 original marker genes
were published in Rasche et al. [240] and in the study under discussion original transcriptomic sources
were expanded by nine additional project specific microarray data sets.

studies have been functionally characterised in humans [84].
Since the contribution of most of the known risk alleles to the development of type-2
diabetes is rather small, one might conclude that many additional genetic factors are
still unknown. Therefore, and since there is no unambiguous set of candidates that
defines truly positive disease genes in a polygenic context, this analysis may provide
guidance for future systematic investigation of candidate genes and further validation
studies.
Table 5.5 reflects a limited overlap of the type-2 diabetes mellitus genes predicted by
this study with those predicted by other bioinformatics methods. This difference can be
explained by the differences in the data domain used for the predictions (for example,
sequence data, gene expression data, PPIs) and differences in the methods themselves.
The lack of overlap is not unique to this study and seems to be a common problem with
any two prediction studies. In particular, one study – Tiffin et al. [298] – compared seven
different analysis methods and found that there was no gene common to all studies.

Accounting for experimental study bias

Since data from multiple tissues is analysed in human and mouse, it is likely that for
some cases an individual experiment is dominating the score, for example, if the gene is
active only in a single tissue. In order to identify those genes an entropy-based numerical
criterion is computed. Entropy is used as an indicator for measuring generality and
specificity of a candidate gene with respect to the different studies.
Let be sg,u the score of the g-th gene in the u-th study, then Hg is a measure for the
uniformity of the score distribution over the individual experiments:

Hg = −
∑
u

sg,u∑
k sg,k

log2

(
sg,u∑
k sg,k

)
(5.4)

Entropy is low if a single study has a major contribution on the overall score. On the
other hand, entropy is high if most of the studies account equally for the score.
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ENSMUSG00000026827 Gpd2 * 8.92 3.83
ENSMUSG00000004056 Akt2 * * * * 7.33 3.47
ENSMUSG00000012705 Retn * * 6.62 2.97
ENSMUSG00000023951 Vegfa * * 4.94 3.44
ENSMUSG00000038894 Irs2 * * * * 3.91 2.11
ENSMUSG00000041798 Gck * * * * * 3.86 2.22
ENSMUSG00000037370 Enpp1 * * 3.59 2.91
ENSMUSG00000024985 Tcf7l2 * * * 3.5 2.86
ENSMUSG00000020679 Tcf2 * * * * 3.18 1.61
ENSMUSG00000017950 Hnf4a * * * * 3.11 2.35
ENSMUSG00000055980 Irs1 * * * * * * 3.06 1.71
ENSMUSG00000029556 Tcf1 * * * * 3 1.59
ENSMUSG00000073134 * * * * 3 1.59
ENSMUSG00000070561 Kcnj11 * * * * * 2.87 2.06
ENSMUSG00000034701 Neurod1 * * * 2.39 1.48
ENSMUSG00000029644 Pdx1 * * 2 1
ENSMUSG00000027223 Mapk8ip1 * 1 0

Table 5.4: Results for type-2 diabetes mellitus OMIM genes. The OMIM database associates 17
genes with type-2 diabetes mellitus. Some are discussed in different reviews. Not all genes are detected
in the meta-analysis, suggesting that expression differences are low in disease samples.

113



5 Alternative Splicing in Type-2 Diabetes Mellitus

th
is

st
ud

y

R
as
ch
eH

er
w
ig
20
08

T
iffi

nH
id
e2
00
6

D
ia
be

te
sG

en
om

eC
G

P
ar
ik
hG

ro
op

20
04

O
M
IM

D
or
ia
K
ah

n2
00
8

K
it
an

oM
ur
am

at
su
20
04

L
iu
K
as
if2

00
7_

IS

Ji
an

gH
an

co
c k
20
07

this study 655 0.27 0.02 4.5·10−3 0.01 0.01 3.0·10−3 0.03 0.03 0.01

RascheHerwig2008 184 213 0.03 0.01 0.02 0.03 0 0.04 0.02 0.01

TiffinHide2006 18 10 102 0 0.01 0.01 0 0.02 0.02 0.01

DiabetesGenomeCG 3 2 0 8 0.04 0 0 0.01 0 0.01

ParikhGroop2004 9 5 1 1 18 0.17 0.06 0.04 0.02 0

OMIM 4 6 1 0 5 17 0.06 0.03 0.04 0.02

DoriaKahn2008 2 0 0 0 2 2 19 0.01 0 0

KitanoMuramatsu2004 25 13 4 1 6 5 2 148 0.09 0.07

LiuKasif2007_IS 18 7 3 0 2 4 0 20 92 0

JiangHancock2007 6 2 2 1 0 2 0 14 0 68

Cit. [240] [298] [1] [230] [225] [84] [168] [191] [148]

Table 5.5: Commonality of different studies and models. In the lower left triangular matrix
are total numbers of overlap. In the triangular matrix part is the fraction of overlap to the union of
candidates, the Jaccard index. Identifier from the original studies are mapped to Ensembl 44 and small
differences in the number of candidates may apply.

For example, the gene Serpina1b has an outstanding score (7.713, rank 27/18 439) in
this study. This is due to a very high fold-change in a single experiment; consequently,
entropy is low (1.14, rank 11 014/18 439). In contrast, other genes show more consistent
alteration across many different studies, for example Pdk4 (9.39, rank 8/18 439) indicated
by higher entropy (3.8, 214/18 439). Differential expression of Pdk4, a major regulator
of glucose metabolism, has been found in fat, pancreatic islets and skeletal muscle but
not in liver. The thirty genes with highest scores are listed in Table 5.6.
A plot of the entropy vs. the score is given in Figure 5.8. The Pearson correlation between
the score and the entropy is 0.79. Most of the type-2 diabetes mellitus marker genes have
high entropy and, thus, contribute to expression changes in many of the experiments.

5.2.4 Beyond the marker set

Genes do not act as individual units, they collaborate in overlapping pathways, the de-
regulation of which is a hallmark for the disease under study. In order to integrate
pathway information and to derive cellular network information on the selected genes,
functional annotation is added from pathway databases such as KEGG, Reactome, Bio-
Cyc [151, 158, 249], GO [26], protein-protein interaction databases such as IntAct [124]
and databases on transcription factors such as TransFac [201]. Genetic variation of a
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Rank MGI symbol Score Entropy

1 Cyp2e1 11.06 2.96
2 Elovl6 10.79 3.36
3 Tst 10.18 3.42
4 Thrsp 10.04 3.67
5 Fasn 9.93 3.55
6 Acly 9.88 3.76
7 Atf3 9.45 3.37
8 Pdk4 9.39 3.79
9 Lgals3 9.11 3.39
10 XR_003396 9.1 3.13
11 Gpd2 8.92 3.83
12 Scd1 8.75 3.38
13 Ccrn4l 8.56 3.46
14 Agt 8.51 3
15 Lgmn 8.43 3.51

Rank MGI symbol Score Entropy

16 Cstb 8.37 3.42
17 Dhrs7 8.28 3.79
18 Ctss 8.24 3.64
19 Ccl2 8.23 2.87
20 Apobec1 8.22 3.03
21 Pik3r1 8.17 3.93
22 Mod1 8.12 3.78
23 Cfd 8.09 3.35
24 Hsd11b1 7.92 3.27
25 Srebf1 7.87 3.66
26 Serpine2 7.8 3.32
27 Serpina1a 7.71 1.14
28 Ddah1 7.71 2.95
29 Cd14 7.56 3.65
30 Tyrobp 7.36 3.24

Table 5.6: Top 30 type-2 diabetes mellitus candidate genes. Top thirty type-2 diabetes mellitus
candidate genes out of the 655 markers

gene was described with the number of associated SNP. The number of SNP in the co-
ding and surrounding region of the gene is noted for mouse and human [38]. A particular
biomedical interest is on genes that can be used for drug development. This characteristic
has been previously assigned to the gene’s ability to provide binding sites for biochemical
well-characterised (i.e. druggable) compounds [131, 250]. The selected candidates were
evaluated with respect to this information. In this Subsection the computed type-2 dia-
betes mellitus gene set has been used to identify biological networks on different layers
of cellular information such as signalling and metabolic pathways, a comprehensive gene
regulatory network and protein-protein interactions.

Relation to monogenic mouse models for type-2 diabetes mellitus

A variety of genetic studies have been performed in the last decades. At least 22 ge-
netically engineered mouse models with type-2 diabetes mellitus phenotype have been
studied in detail [3, 214]. Of those, five genes show a significant score in the meta-analysis:
Akt2, Slc2a4, Ptpn1, Slc2a2 and Ppp1r3c. Consistent with previous reports, the insulin-
regulated glucose transporter Slc2a4 is down-regulated in the insulin resistant state in
adipose tissue but not in skeletal muscle. Likewise, down-regulation of glucose trans-
porter Slc2a2 in pancreatic islets confirms previous reports and reflects deterioration of
β-cell function in the course of insulin resistance and diabetes. On the other side Slc2a2
is also changed in liver. Ptpn1 is expressed in all tissues showing only small fold-changes.
Several genes from OMIM or KO-mice do not change at all on the expression level. This
indicates that only the complete loss of the associated protein alters the system whereas
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Figure 5.8: Dispersion of entropy. In the upper right corner are target genes related to type-2
diabetes mellitus by consistent and strong alteration in expression. In the lower right corner are genes
with strong alteration specific e.g. to tissue or species. The red-dashed line indicates the cut off for the
candidate genes.

the gene’s expression is not altered in type-2 diabetes mellitus.

Relation to human and rodent association and linkage studies

Recently, a total of 20 candidate genes for type-2 diabetes mellitus have been identified
and replicated in humans through multiple genome-wide association studies of common
variants by using high-density SNP mapping approaches [84]: Cdkal (score 0), Cdkn2a
(score 0)/Cdkn2b (4.0, 898/18 439), Fto (2.9, 2545/18 439), Hhex (4.3, 671/18 439),
Igf2bp2 (3.1, 2067/ 18 439), Kcnj11 (2.9, 2520/18 439), Pparg (4.3, 651/18 439), Slc30a8
(0.1, 12 895/18 439), Notch2 (0.14, 12 526/18 439), Thada (0.20, 12 176/18 439), Adamts9
(1.1, 8210/18 439), Jazf1 (0.28, 11 656/18 439), Cdc123 (3.5, 1500/18 439), Camk1d (2.0,
4622/18 439), Ide (5.0, 312/18 439), Kif11 (0.75, 9554/18 439), Tspan8 (2.1, 4352/18 439
), Lgr5 (0.53, 10 497/18 439) and Tcf7l2 (3.5, 1435/18 439). Interestingly, only two of
these genes show a high score in the meta-analysis, Pparg and Ide, although also Cdkn2b
and Tcf7l2 are significant on the less restrictive 0.01 level. On the other hand, from the
data one could infer that Fto and Hhex act in pancreatic islets. Cdkal1 and Cdkn2a are
not expressed in the transcriptional studies. These genes show very low expression levels
or might be active in tissues not included in the study. Since the meta-analysis approach
takes into account several data sets from DNA microarrays, the candidate genes have a
bias towards transcripts whose expression is changed in the context of type-2 diabetes
mellitus. Moreover, the gene variants from association studies may not result in altered
gene expression and, for most SNP found in association studies, there is a lack of functio-
nal information since the variation mostly occurs in non-coding regions of the genes. In
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Figure 5.9: Genetic variation & Chromosomal localisation of type-2 diabetes mellitus genes.
Left: On the x-axis is the score and on the y-axis is the number of identifier in the coding and surroun-
ding region of the gene. A general tendency of disease genes to high genetic variation is not observable.
This survey only relates the number of varied nucleotides. No conclusion is possible about single po-
lymorphisms. The red-dashed line indicates the cut off for the candidate genes. Right: In a picture
of the geneplotter package in R/BioC the set of significant genes has been marked with red [107, 106].
The significant genes are spread over the whole genome. It indicates that no genomic region can be
accountable for the heritable prevalence.

order to correlate the type-2 diabetes mellitus genes with genetic variation the number
of known SNP is plotted for the genes vs. the score (Figure 5.9). No general tendency to
highly variable genes is observable. Two genes of the candidate list show high variation
by high score, Sorbs1 (4130) and AI314180 (2523).
A further issue of the study was the chromosomal localisation of the type-2 diabetes
mellitus genes. The distribution of the genes over the mouse genome is displayed in
Figure 5.9. Using the hypergeometric distribution on local sliding windows across the
chromosome significantly enriched chromosomal regions are identified. However, none of
these regions convinced since they are sparsely occupied. Rather conversely, one observes
that type-2 diabetes mellitus affects a wide range of physiological phenomena spanning
loci in the entire genome.

Assessing functional annotation with over-representation analyses

Disease related networks were investigated with four different types of network infor-
mation – biological pathways [151, 158, 249], protein-protein interaction networks [124],
gene regulatory networks [219, 220, 201] and functional annotation using GO annotations
[26] (see Table 5.7). These networks define – by annotation – sets of associated genes.
The hypergeometric distribution compares the overlap between the superset and the gene
group to the overlap of a random selection of two gene groups with the same size. Thus
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Resource Species Resource content Version No. sets Cit.

KEGG mouse pathway 11.03.08 201 [158]
ConsensusPathDB human pathway 19.04.07 1617 [155]
OdomYoung2004 human study of selected TF

in liver and pancreas
publication 6 [220]

OdomYoung2006 human study of selected TF
in liver

publication 6 [219]

TransFac mouse sequence motifs for TF 10.2 187 [201]
GO molecular function mouse ontology Ensembl 44 1010 [26, 38]
GO cellular component mouse ontology Ensembl 44 366 [26, 38]
GO biological process mouse ontology Ensembl 44 2170 [26, 38]

Table 5.7: Overview about the network level. Overview about the network level, e.g. gene set,
resources used in the meta-analysis approach. Abbrv.: TF, transcription factor.

it is possible to assign each annotation item (pathway, GO term etc.) a p-value that
reflects enriched occurrence of candidate genes.

This analysis is facilitated by a product from the DE pipeline in Subsection 3.2.6 about
gene set evaluation. In case of GO terms only genes are included with evidence codes
IC, IMP, TAS or IDA to rely on the same confidence level as in the above mentioned
resources. The p-values are corrected for multiple testing using q-values following Storey
for the control of the false discovery rate [281, 282].

The over-representation analysis results provide confidence in the markers. Categories on
the physiological level span two pathway resources (KEGG, ConsensusPathDB) [158, 155]
and the GO tree [26]. Altogether, 5563 gene sets are analysed, whereof 799 (14.4 %) are
significant with a p-value below 0.05. As greater parts of the metabolism are affected
by type-2 diabetes mellitus, multiple pathways have a significant over-representation p-
value. For example, in KEGG 48 out of 202 pathways have a p-value lower than 0.05
(23.8%). However results for different pathways are not independent. For example, the
130 genes annotated with insulin signalling pathway and the 45 genes annotated with
type II diabetes mellitus share 31 genes.

Since several pathway resources are used in parallel, one can compare the findings for
consistency, assuming the resources are independent. Some of the top pathways PPAR si-
gnalling, adipocytokine signalling and insulin signalling pathway are well related to type-2
diabetes mellitus. The study identifies KEGG pathways Fatty acid metabolism and po-
lyunsaturated fatty acid biosynthesis in the enriched pathways what is complemented by
the ConsensusPathDB pathways fatty acid elongation – saturated, fatty acid b-oxidation
I/II/IV and by the GO categories fatty acid metabolic process, fatty acid biosynthetic
process, fatty acid beta-oxidation, fatty acid elongation, positive regulation of fatty acid
biosynthesis as well as positive regulation of fatty acid metabolism. The KEGG pathway
complement and coagulation cascades is complemented by the ConsensusPathCB path-
ways alternative complement activation, initial triggering of complement, complement
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SigSet Set Sig All p-value q-value Pathway description

21 75 655 18439 9.22·10−14 1.81·10−2 PPAR signalling pathway
17 71 655 18439 3.22·10−10 1.81·10−2 Adipocytokine signalling pathway
14 48 655 18439 7.00·10−10 1.81·10−2 Valine, leucine and isoleucine deg.
21 130 655 18439 6.14·10−9 0.02 Insulin signalling pathway
8 19 655 18439 1.30·10−7 0.02 Polyunsaturated fatty acid bios.
11 45 655 18439 3.53·10−7 0.02 Type II diabetes mellitus
11 47 655 18439 5.67·10−7 0.02 mTOR signalling pathway
13 69 655 18439 7.88·10−7 0.02 VEGF signalling pathway
22 186 655 18439 7.99·10−7 0.02 Focal adhesion
13 73 655 18439 1.54·10−6 0.02 Pancreatic cancer
15 110 655 18439 7.95·10−6 0.02 Leukocyte transendothelial mig.

Table 5.8: Gene set over-representation of the most significant KEGG pathways. All are
the genes under consideration, Sig the number of candidate genes, Set is the number of genes in the
pathway under study and SigSet the overlap of genes in the pathway and the candidate genes. p-values
were computed as in Subsection 3.2.6. q-values are the multiple testing corrected p-values [281, 282].

cascade, classical complement pathway, classical antibody-mediated complement activa-
tion, alternative complement pathway and the GO categories defense response, cellular
defense response, complement activation, classical pathway and complement activation,
alternative pathway.
For 281 type-2 diabetes mellitus gene candidates there is information on the associa-
ted biochemical pathways (using the KEGG database). Whereas most genes (271) are
associated with a single or a few (up to 11) pathways, some genes exhibit a higher in-
terconnection such as Mapk3 (32 pathways), Mapk1 (32), Pik3r1 (27), Akt2 (25), Akt1
(25), Prkcb1 (19), Ccnd1 (17), Aldh9a1 (16), Cdc42 (15) and Mapk9 (13). The im-
portance of Mapk1, Pik3r1, Rasa1 and Socs2 is also supported by Liu et al. [191] as
members of an insulin signalling subnet derived from protein-protein-interactions.

Type-2 diabetes mellitus-related protein-protein interactions

Protein-protein interactions have been taken from the IntAct database denoting the num-
ber of interactions and interactors registered for the type-2 diabetes mellitus candidate
genes. The ratio of interactors to interactions indicates whether the protein participates
in big complexes or binds with single proteins. Figure 5.10 shows the number of in-
teractions and the score for all genes under study. There is no trend for preferential
selection of highly interacting genes in this type-2 diabetes mellitus candidate list. The
high-scored genes comprehend a few genes with many interactions like Mapk1, Pik3r1,
Stat3, App, and Rela in mouse with at least 20 listed interactions. The large number of
interactions of Mapk1 and Pik3r1 is consistent with their participation in many of the
signalling pathways. Actb, Capza2, Myh11 and Myh9 have more than 700 interactors,
indicating big polymers. In human Tsc22d1, Tnfrsf1b, Ndrg1, App and Nfkbia have most
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Figure 5.10: Number of protein-protein-interactions vs. score. Scatterplot of the number of
mouse protein interactions in IntAct vs. the type-2 diabetes mellitus gene score. The vertical red-dashed
line indicates the significance cut-off value of the score. Mapk1and Pik3r1 are highlighted as genes with
more than 30 interactions.

interactions. Lmna is the only gene with more than 300 interactors.
Mapping the IntAct interactions on Ensembl genes and coerce the human net and mouse
net a graph is derived with 5975 nodes and 233 188 edges (data not shown). If one
considers the edges between significant genes and their non-significant nearest neighbours
there are still 2490 nodes and 32 727 edges. This shows that the disease genes strongly
interact with main physiological triggers and deregulate essential parts of the metabolic
network. Reducing the interactions on the 655 type-2 diabetes mellitus genes results in
173 nodes and 1293 edges visualised in Figure 5.11. Such a network constitutes the core
of a topological model as proposed in Schlitt and Brazma [254].
Protein-protein interactions are still very sparse or derived from high-throughput ex-
periments with low overlap and low reproducibility so that results have to be carefully
cross-checked. For example, a protein complex arises from one experiment of Collins et al.
[67] with vague relationship to type-2 diabetes mellitus in the network of the candidate
genes.

Type-2 diabetes mellitus-related gene regulatory network

In order to study the information content of the set of selected disease genes on gene
regulation, in the study are analysed a) the transcription factors present in the significant
set and b) known target sets of transcription factors for over-representation. Analysis
is often hampered because transcription factors are known to be expressed at a very
low level and fold changes are commonly low. Moreover, many transcription factors are
regulated by phosphorylation (e.g. Foxa’s) and/or ligand binding (e.g. Ppar ’s). As a
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Figure 5.11: Protein-protein interactions of type-2 diabetes mellitus marker genes. Protein
interaction network of the significant gene list. The arcs are the interactions in IntAct between significant
genes. The interaction network in mouse and human have been united. In the upper part is Mapk1 as an
intermediator between Pik3r1 and Irs1. In the lower part is a cluster stemming from a polymer binding
in mouse synapses.
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Ensembl HGNC SigSet Set Sig All p-value

ENSMUSG00000017950 HNF4A 224 4267 655 18439 3.98·10−11

ENSMUSG00000037025 FOXA2 58 857 655 18439 1.90·10−6

ENSMUSG00000029556 TCF1 56 964 655 18439 0.000204
ENSMUSG00000043013 ONECUT1 60 1247 655 18439 0.0101
ENSMUSG00000026641 USF1 67 1458 655 18439 0.0176
ENSMUSG00000025958 CREB1 88 2075 655 18439 0.0438

Table 5.9: Gene set over-representation of significant transcription factor target sets from
Odom et al. [219] (2006). The target sets with a p-value below 0.05 are displayed. In the rows are
the different transcription factors. Column identifier as in Table 5.8.

result, important core regulators including Onecut1 (score 1.3, rank 7311/18 439), Hnf4a
(3.1, 2033/18 439), Tcf1 (3, 2238/18 439), and Foxa2 (2.5, 3317/18 439) are not in the
candidate list. Collecting transcription factors from Odom et al. [219, 220], TransFac
[201] and the GO category GO:0003700 [26] in mouse and human with evidence codes IC,
IMP, TAS or IDA identifies 502 transcription factors. Thereof 30 transcription factors
received a high score in this type-2 diabetes mellitus set: Pparg, Sfpi1, Stat3, Srebf1,
Nr1d1, Fos, Epas1, Rela, Sp3, Ybx1, Bhlhb2, Cbfb, Cebpa, Irf8, Pura, Foxo1, Cebpb,
Nr1d2, Cited2, Klf7, Sox18, Max, Klf10, Ccrn4l, Cnbp, Drap1, Klf9, Nfil3, Hdac2 and
Atf3. Srebf1 and Ybx1 are expressed only in mouse but in every tissue. Cebp’s and
Srebp’s are important regulators of lipid metabolism and adipogenesis and were found
differentially expressed in the course of insulin resistance and type-2 diabetes mellitus.
Consistent changes could be identified in the tissues under study (fat: all but Nfil3 ;
liver: Srebf1, Ccrn4l, Ybx1, Bhlhb2, Klf10 ; muscle: Atf3, Klf10, Nfil3 ; pancreatic islets:
Ccrn4l, Atf3, Ybx1, Bhlhb2, Klf10, Nfil3 ). Pparg is expressed predominantly in fat where
its expression is altered.
In total, target sets of 199 transcription factors have been investigated as gene sets for
over-representation analysis. Table 5.9 shows the transcription factors from Odom et
al. [219]. For example, Cebpa is highly significant. It is expressed in adipose tissue
and modulates the expression of Leptin. Cebpa shows some correlation with the level of
hyperglycemia in [211]. Alteration is also observable in liver. A gene regulatory network
comprising the regulatory interactions of the significant genes and the significant and
enriched transcription factors is shown in Figure 5.12. Obvious are the five hubs, the
core regulatory circuit derived from [219]. Target and regulator at the same time are
Foxa2, Tcf1, Hnf4a, Onecut1, Creb1, Sfpi1, Stat3, Srf, Srebf1 and Cebpa.
The gene regulatory network associated with the type-2 diabetes mellitus candidate set
is generic in the sense that all interactions are displayed regardless whether the genes are
expressed in a specific tissue or not. This network can be tuned towards tissue specificity
by taking into account tissue-related gene expression and other characteristics. Using
tissue expression data sets (Su et al. [286]) the representation is assessed of the different
tissues in the type-2 diabetes mellitus candidate list. A total of 552 genes from the list
are included in the tissue expression panel, where 353 (64%) are expressed in fat, 210
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5.2 Marker identification for type-2 diabetes mellitus by meta-analysis

Figure 5.12: Gene regulations in the type-2 diabetes mellitus marker gene set. Gene re-
gulatory network composed of the significant genes. Significant transcription factors and transcription
factors with enriched target sets with respect to the type-2 diabetes mellitus candidate gene list. Thick
ends of the arrows point to transcription factors, thin ends point to target genes.
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strain/phenotype liver fat

NZL hyperglycaemic 2 4
NZL normoglycaemic 4 5
SJL normoglycaemic 5 5

Table 5.10: Study design of the GGSC data set. The table shows the number of replicates.

(38%) in muscle and 231 (42%) in liver. An intersection of 137 genes is expressed in all
three tissues (data not shown).

There are further limitations in analysing gene regulatory networks. Information of trans-
cription factor binding sites – besides computationally predicted sites – is sparse and the
knowledge on target sets of transcription factors is limited. In Table 5.9 the p-values for
six target sets of regulators are listed that have been derived from ChIP-on-Chip data.
The ChIP-on-Chip data might also help in characterising the 499 unknown type-2 dia-
betes mellitus genes as being potential transcription factor targets. The overlap between
this uncharacterised subset and the transcription factor target sets are: Hnf4a 224 genes,
Foxa2 58 genes, Usf1 67 genes, Tcf1 56 genes, Creb1 88 genes and Onecut1 60 genes.
However, this technique is still error-prone and generates a lot of false positive targets due
to the different steps in the experiment. Commonly, one ends up with large targets sets
containing thousands of genes [219, 220]. Here, new methods of computational analysis
that combine ChIP-on-Chip predicted targets with sequence analysis of their promoter
regions have to be developed.

5.3 Evaluation of alternative splicing with exon arrays

The meta-analysis provides a detailed picture of gene expression in type-2 diabetes mel-
litus. However in the marker list is for example Ppargc1a. In Monsalve et al. [206] the
authors point out that Ppargc1a is not only a transcription factor but also a splicing
factor. It is a coactivator of Pparg and the Pparg expression changes in fat and liver
were never subject of genome-wide splicing assays. Transcriptional or genetical changes
of factors may cause splicing changes. Therefore mouse experiments were performed with
a diabetic and a genetic dimension to separate respective effects.

Alternative splicing in type-2 diabetes mellitus was aside in the last years in terms of
high-throughput experimentation. Efforts focussed on genetics with association studies
and gene expression both using microarrays. This is in contrast to the observation, that
the relevance of splice variants is well known for several key players in type-2 diabetes
mellitus. Ratios of splice variants are correlated to insulin levels in type-2 diabetes
mellitus for genes like Tnfrsf1b, Ptpn1 and Insulin [257, 94, 95, 203]. The insulin receptor
(Insr) has two isoforms with different affinities to bind insulin. In human the low affinity
variant is reported to be increased in type-2 diabetes mellitus [258].
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Figure 5.13: Glycaemic and genetic splicing changes. Obese NZL mice separate in a hypergly-
caemic and a normoglycaemic group. Both groups differ from the always lean SJL strain. Abbrv.: hg,
hyperglycaemic; ng, normoglycaemic.

5.3.1 Glycaemic and genetic splicing changes

The polygenic mouse model NZO has been successful to identify type-2 diabetes mellitus
marker genes in the ESGEC data set. The closely related NZL mouse is applied to
generate another data set, now for the identification of spliced genes. The second data
set is called GGSC − glycaemic and genetic splicing changes.
The NZL mice on a high-fat diet all develop severe obesity but not all develop diabetes.
These two groups are separated by measurements on the blood glucose, i.e. in a hyper-
glycaemic and a normoglycaemic group. On the other hand the SJL mice on high-fat diet
do not develop obesity nor diabetes. This implicates distinct genetic differences between
NZL and SJL strains. Figure 5.13 visualises the experimental setting including test cases
for the glycaemic, the genetic as well as the combined glycaemic and genetic dimension.
The two experimental dimensions are analysed in the tissues with considerable changes in
the marker gene Pparg. Pparg regulates fatty acid storage and glucose metabolism. Many
insulin sensitising drugs used in the treatment of diabetes target Pparg as a means to
lower serum glucose without increasing pancreatic insulin secretion. The genes activated
by Pparg stimulate lipid uptake and adipogenesis by fat cells. Pparg knockout mice fail
to generate adipose tissue when fed a high-fat diet. Excess fat in obesity is known to
be associated with an inflammatory state of adipose tissue. It is not definite how the
inflammatory state causes type-2 diabetes mellitus or how some mice pertain normal
glycaemia levels. On the other hand for regulating glucose levels the key organ is the
liver. For the two tissues the numbers of arrays are listed in Table 5.10.
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Fat Liver
Rank MGI ARH p MGI ARH p

1 Tph2 1.9·10−6 1810049H19Rik 8.2·10−8

2 Itgad 0.0017 Ela2a 2.0·10−6

3 Matr3 0.0014 Ela1 6.5·10−5

4 Lamc1 0.017 Acot3 8.7·10−5

5 Cuzd1 0.0011 Pla2g1b 0.00017
6 Ctnna2 0.00063 Wdr47 0.00022
7 Reln 0.022 Upp2 0.00057
8 Fbln1 0.0085 Moxd1 0.00096
9 Fgf13 0.0055 Ugt2b37 0.0012
10 Kcnma1 0.047 Pnpla3 0.0013
11 Slc38a5 0.014 Prei4 0.0016
12 Actg2 0.0075 Mgst3 0.0017
13 Cilp 0.027 C730027P07Rik 0.0017
14 Ntrk3 0.011 Tsc22d3 0.0017
15 Pik3ap1 0.042 AC121985.3 0.0018
16 Zbtb16 0.0082 Aldh3a2 0.002
17 AC133081.4 0.0039 Egfr 0.0022
18 Zranb3 0.026 Txnrd1 0.0022
19 Rnf128 0.012 Il15ra 0.0025
20 Ankle1 0.0063 Tagln 0.0026
21 Cxcl10 0.0064 Cltb 0.0029
22 Nkain4 0.0099 Rcan1 0.0032
23 BC055004 0.01 Cyp7a1 0.0033
24 Ccl2 0.0027 Palld 0.0033
25 Capg 0.039 Dnajb1 0.0033
26 Clec12a 0.0077 B3galt1 0.0033
27 Mrpl37 0.018 Zbtb16 0.0037
28 Stab2 0.049 Gpr110 0.0039
29 Sgk1 0.0077 Mug2 0.004
30 Pctk3 0.048 Slc25a22 0.004
31 Mogat1 0.0093 1100001G20Rik 0.0042
32 Cldn10a 0.016 Morf4l2 0.0043
33 Ly9 0.037 Sds 0.0044
34 Mtap2 0.039 Acaa1a 0.0057
35 Fhl5 0.035 2310076L09Rik 0.0059
36 Rcan1 0.016 Ipo11 0.006
37 Il1b 0.022 Agpat5 0.0061
38 Nrg1 0.038 BC023882 0.0069
39 Sh3pxd2a 0.048 Snhg8 0.0076
40 Aif1l 0.034 Ide 0.0077

Table 5.11: Top 40 spliced genes in the glycaemic dimension. The spliced genes in the setting
NZL hyperglycaemic vs. NZL normoglycaemic for both tissues. Abbrv.: MGI, mouse genome informatics
identifier; ARH p, ARH p-value.

126



5.3 Evaluation of alternative splicing with exon arrays

fat tissue:

liver tissue:

Figure 5.14: Splicing overview. Following the scheme of Figure 5.13 the size of the alternative
splicing set of genes is visualised in blue. Alternatively spliced genes are related to the differentially
expressed genes in yellow by Venn diagrams. The three Venn diagrams stand for the three dimensions in
the data set. Top: Fat tissue. Below: Liver tissue. Abbrv.: hg, hyperglycaemic; ng, normoglycaemic.
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After weaning at week 3, male NZL and SJL mice were fed a high-fat diet and charac-
terised. high-fat diet contains 15.3 MJ/kg by 32.5% sugar, 17.1% protein and 14.6% fat
among others. Characterisation includes body weight, body fat and blood glucose. The
tissue samples were prepared at week eight. Dr. Tanja Dreja characterised and prepared
the samples in the group of Dr. Hadi Al-Hasani at the German Institute of Human
Nutrition (DIfE) in Potsdam-Rehbrücke [85]. After preparation the samples were passed
to a company for hybridisation on Affymetrix Mouse Exon 1.0 ST arrays.

5.3.2 Splicing states in type-2 diabetes mellitus

On the GGSC exon array data set the tools developed and arranged in the previous
chapters are applied with the AS pipeline. The ARH splicing prediction identifies sets
of alternatively spliced genes, see Table 5.11 for a selection of top candidates. The AS
pipeline with its parallel branches also identifies sets of differentially expressed genes for
direct comparison of alternative splicing and differential expression on the same biological
samples. The respective sets undergo functional evaluation with the gene set evaluation,
in particular over-representation analysis.

Fat

For the GGSC samples splicing differences are visualised in Figure 5.14. The test cases
for adipose tissue show little glycaemic splicing but more genetic splicing than in liver.
The latter corresponds to the fact that the SJL mouse strain does not increase adipose
tissue. In the NZL hyperglycaemic vs. SJL normoglycaemic test case the glycaemic and
genetic splicing effects sum up. From the 1185 alternatively spliced genes it shares 769
genes with NZL normoglycaemic vs. SJL normoglycaemic and 42 genes with the 72 genes
from the NZL hyperglycaemic vs. NZL normoglycaemic test case.
In the genetic dimensions the Pik3r1 gene is spliced. It is one of the type-2 diabetes
mellitus marker genes and is particularly interesting as it is a hub in the protein-protein-
network as pointed out in Subsection 5.2.4. It participates in several signalling pathways.
Pik3r1 encodes three transcripts and the respective expression levels are studied in Lefai
et al. [186] for muscle and fat tissue related to type-2 diabetes mellitus.
With the over-representation test the alternative splicing gene sets are linked to the func-
tional level. For example looking at KEGG pathways one pathway is notably significant,
the ECM-receptor interaction. the pathway has in the NZL hyperglycaemic vs. NZL nor-
moglycaemic test case a p-value of 0.031 (see Table 5.13). Seven out of 204 pathways have
a p-value below 0.05. The ECM-receptor interaction pathway is significant in all of the
three dimensions together with Leukocyte transendothelial migration. The pathways are
also significant in the differential expression gene set evaluation. The differential expres-
sion over-representation results closely corresponds to the ESGEC data set comparing
high-fat diet vs. standard diet at week 8. However for differential expression 44 out of
204 pathways are significant with an emphasis to inflammation pathways. Inflammation
or immune reactions are marginally affected by splicing.
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Ensembl gene MGI ARH ARH p Chr. Start Tissue

ENSMUSG00000035385 Ccl2 0.11 0.0027 11 81849079 fat
ENSMUSG00000019970 Sgk1 0.073 0.0077 10 21648148 fat
ENSMUSG00000012187 Mogat1 0.068 0.0093 1 78507744 fat
ENSMUSG00000021775 Nr1d2 0.049 0.021 14 19071325 fat
ENSMUSG00000036086 Zranb3 0.045 0.026 1 129998352 fat
ENSMUSG00000024397 Aif1 0.040 0.036 17 35309230 fat
ENSMUSG00000056737 Capg 0.038 0.039 6 72499267 fat
ENSMUSG00000001131 Timp1 0.036 0.045 X 20450494 fat
ENSMUSG00000028459 Cd72 0.036 0.046 4 43460607 fat

ENSMUSG00000027346 Prei4 0.13 0.0016 2 132413357 liver
ENSMUSG00000026688 Mgst3 0.13 0.0017 1 169323882 liver
ENSMUSG00000032085 Tagln 0.11 0.0026 9 45737711 liver
ENSMUSG00000047547 Cltb 0.11 0.0029 13 54698387 liver
ENSMUSG00000051748 1100001G20Rik 0.092 0.0042 11 83565996 liver
ENSMUSG00000036138 Acaa1a 0.082 0.0057 9 119256848 liver
ENSMUSG00000056999 Ide 0.073 0.0077 19 37388470 liver
ENSMUSG00000037071 Scd1 0.065 0.010 19 44481876 liver
ENSMUSG00000023087 Ccrn4l 0.058 0.014 3 51028855 liver
ENSMUSG00000029322 Plac8 0.057 0.015 5 100985499 liver
ENSMUSG00000026356 Dars 0.045 0.026 1 130311931 liver
ENSMUSG00000026739 Bmi1 0.040 0.035 2 18604996 liver
ENSMUSG00000068874 Selenbp1 0.040 0.035 3 94748328 liver
ENSMUSG00000038776 Ephx1 0.040 0.036 1 182947558 liver
ENSMUSG00000066441 Rdh11 0.038 0.040 12 80289976 liver
ENSMUSG00000032786 Alas1 0.035 0.046 9 106149505 liver

Table 5.12: Spliced marker genes in the glycaemic dimension. The spliced marker genes in the
setting NZL hyperglycaemic vs. NZL normoglycaemic. In fat are 9 spliced markers and in liver are
16. Abbrv.: MGI, mouse genome informatics identifier; ARH p, ARH p-value, Chr., chromosome; Start,
chromosomal start position.
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Consistent with these findings the gene Kcnma1 is spliced in the glycaemic dimension
with an ARH p-value of 0.047. It encodes a voltage gated ion channel and is known to be
spliced in type-2 diabetes mellitus [82]. Another example is Kcnd3, it is integral to the cell
membrane and is spliced in the NZL hyperglycaemic vs. SJL normoglycaemic test case
with an ARH p-value of 0.041. Kcnd3 is member of a gene family encoding potassium
voltage-gated channels. Voltage-gated potassium channels represent the most complex
class of voltage-gated ion channels from both functional and structural standpoints. Their
diverse functions include regulating cell volume among others. More importantly it is
known for two transcript variants differing by a protein kinase C site [234, 171, 314]. Such
sites are subject to phosphorylation, i.e. a posttranslational modification. Thus Kcnd3 is
an example where alternative splicing directs such posttranslational modifications [272].

Liver

As already noted the marker gene set comprises the splicing factor coactivator peroxisome
proliferator-activated receptor γ coactivator 1 α (Ppargc1a). It is spliced in NZL hyper-
glycaemic vs. SJL normoglycaemic. As type-2 diabetes mellitus is a polygenic disease it
cannot be expected that a splicing factor like Ppargc1a acts solely but interacts with dif-
ferent markers. In Subsection 5.2 a marker set was constituted. For example in the NZL
hyperglycaemic vs. NZL normoglycaemic condition 16 out of 195 alternatively spliced
genes are type-2 diabetes mellitus marker (see Table 5.12). In fact the proportion of alter-
natively spliced genes is generally higher in the marker set: 195

21994 = 0.0089 < 16
655 = 0.024.

In parallel another marker gene, the insulin degrading enzyme (Ide), is spliced between
NZL normoglycaemic and the two other conditions with ARH p-value 0.0077 (both)
visualised in Figure 5.15. Table 5.14 provides a detailed picture of exon expression and
splicing indication for NZL hyperglycaemic vs. NZL normoglycaemic. For Ide Farris et al.
[90] identify six distinct transcripts in human with most of the variance attributable to
alternative polyadenylation sites. At least one of the variants is catalytically inefficient.
Deletion of insulin-degrading enzyme (Ide) in mice causes hyperinsulinaemia and glucose
intolerance. Ide is also a candidate from association studies in humans [84].
Genome-wide association studies have been performed in humans to identify genetic
candidates for type-2 diabetes mellitus as described in Subsection 5.1.4 and reviewed in
Doria et al. [84]. Two such candidate genes are spliced in liver, Ide and Notch2. Notch2
is also spliced along the genetic dimension. Actually for most of these genes functional
validation was not possible. The genetic changes identified in the human genome are
mostly in non-coding parts of the DNA. Nonetheless it is particularly interesting to find
these genes again in context of genetic changes. Many of the splicing signals and splice
sites depend on nucleotide sequences in the introns as discussed in Subsection 2.1.5 [307].
Vegfa encodes a protein that is often found as a disulfide linked homodimer. This pro-
tein is a glycosylated mitogen that has various effects like promoting cell migration and
inhibiting apoptosis among others. Alternatively spliced transcript variants, encoding
either freely secreted or cell-associated isoforms, have been characterised. It is member
of the OMIM candidate list for type-2 diabetes mellitus as discussed in Subsection 5.2.3.
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Tissue SigSet Set Sig All p-value Pathway

fat 4 232 72 21 994 0.00709 Cytokine-cytokine receptor interaction
fat 2 82 72 21 994 0.0297 Hematopoietic cell lineage
fat 2 84 72 21 994 0.031 ECM-receptor interaction
fat 2 89 72 21 994 0.0345 ErbB signaling pathway
fat 2 94 72 21 994 0.0381 Toll-like receptor signaling pathway
fat 1 12 72 21 994 0.0386 Prion disease
fat 2 105 72 21 994 0.0465 Leukocyte transendothelial migration

liver 7 62 195 21 994 1.26·10−6 Metabolism of xenobiotics by cytochrome
liver 6 60 195 21 994 1.51·10−5 Retinol metabolism
liver 5 41 195 21 994 3.01·10−5 Linoleic acid metabolism
liver 6 69 195 21 994 3.39·10−5 Drug metabolism - cytochrome P450
liver 3 29 195 21 994 0.00212 Bile acid biosynthesis
liver 3 29 195 21 994 0.00212 Biosynthesis of unsaturated fatty acids
liver 4 72 195 21 994 0.00385 Arachidonic acid metabolism
liver 2 11 195 21 994 0.00408 Cysteine metabolism
liver 3 39 195 21 994 0.00496 Glycerolipid metabolism
liver 2 20 195 21 994 0.0134 Limonene and pinene degradation
liver 2 28 195 21 994 0.0254 Porphyrin and chlorophyll metabolism
liver 3 72 195 21 994 0.0262 PPAR signaling pathway
liver 2 32 195 21 994 0.0326 Alanine and aspartate metabolism
liver 2 33 195 21 994 0.0345 Lysine degradation
liver 1 4 195 21 994 0.035 Biotin metabolism
liver 3 84 195 21 994 0.0388 Pyrimidine metabolism
liver 3 90 195 21 994 0.046 Prostate cancer
liver 2 39 195 21 994 0.0468 Ribosome
liver 2 40 195 21 994 0.049 Valine, leucine and isoleucine degradation
liver 2 40 195 21 994 0.049 Drug metabolism - other enzymes

Table 5.13: Gene set over-representation of the most significant KEGG pathways. Listed
are the pathways with a p-value below 0.05. ’All’ are the genes under consideration, ’Sig’ the number
of candidate genes, ’Set’ is the number of genes in the pathway under study and ’SigSet’ the overlap
of genes in the pathway and the candidate genes. p-values were computed as in Subsection 3.2.6.
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Figure 5.15: Spliced events along the experiment dimensions. The lines (y-axis, left scale) show
the exon expressions ordered by genomic position (x-axis). The arrows visualise the median absolute
deviation around the median expression values. The bars (y-axis, right scale) correspond to the splicing
probability values of the respective exons. Left: Ide with a splicing event between NZL hyperglycaemic
and NZL normoglycaemic (exon 19, green dot-dashed line). Right: Vegfa with a splicing event between
NZL normoglycaemic and SJL normoglycaemic (exon 6, green dot-dashed line).

Consistent with the human genetic indication it is spliced in the GGSC mouse data set
along the genetic dimensions with a p-value of 0.00099 and 0.0015 (see Figure 5.15).
In general at least one fourth of the spliced genes are also differentially expressed. This
indicates a close link between alternative splicing and differential expression. Effects
detected as gene expression changes are probably often the up- or downregulation of
transcript variants. In particular Ppargc1a as transcription and splicing factor provides
a possible explanation linking the two regulation levels.
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6 Conclusion and Future Work

After developing and establishing several tools it was possible to perform genome-wide
analysis of alternative splicing in type-2 diabetes mellitus, especially in marker genes. A
combination of modules was necessary to achieve these results. As it was an interdis-
ciplinary work, the presented tools can be divided to pursue three different aims. The
methodological aim was to improve splicing analysis by information theory and evaluate
competing methods. The bioinformatic aim was to implement a pipeline for alternative
splicing analysis comprising the methodological advancement. The biological aim was to
apply method and implementation on the example of type-2 diabetes mellitus.

6.1 Expanding the splicing analysis

With ARH the concept of entropy is introduced to the field of splicing prediction. ARH
is based on a simple, robust model waging the exon expression ratio deviations in a
gene. A deviation in an exon leads to a dominating effect on the entropy and finally to a
significant ARH splicing indication. The exon expression ratios take into account probe
effects and variable exon mRNA abundances. ARH is rated in the method comparison
where it outperforms the existing methods.
This is the first study to comprehensively compare splicing prediction methods on the
same platform. In a broad evaluation the performance is assessed of the existing methods
on several aspects like robustness in the numbers of replicates, and the dependency on
the numbers of exons. The evaluation runs in a biological setting with a tissue data set
and in an artificial setting derived of a spike-in experiment.
The compared methods predict exon skipping events. This is in accordance with the
Affymetrix Exon Array design. Although many transcripts are already available in ma-
jor sequence databases in a specific sample under study a previously unknown transcript
variant can be present. ARH and the methods under discussion allow for de novo pre-
dictions amending the transcript databases. However, with a new class of methods
estimation of isoform ratios is possible [308, 25, 245]. For most genes the number of
combinatorial possible isoforms is far too large for such an isoform quantification. Using
the transcript sets from the databases united with ARH predictions the total number of
isoforms should be small enough for robust isoform ratio estimations.
Many possibilities of alternative splicing analyses are constrained by the design of the
exon arrays. Possibly the next chip generations allow new types of predictions like exon
junction analysis, intron retention or different exon splice sites. Assessment of these
splice events depends on adequate probe placement and constitution of probe sets. Thus
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assessment is ascribed to expression analysis and it is straightforward to use information
theory to expand the analysis.
The method evaluation rates pure prediction performance, ignoring the remaining pro-
cessing steps. In differential expression analyses the methods for assessing expression
changes are often evaluated in conjunction with the preprocessing methods. Also for
splicing predictions it is possible that the performance of the methods depends on data
preprocessing. This would mean to assess a combinatorial number of combinations bet-
ween preprocessing and prediction methods. The evaluation environment presented in
the thesis facilitates such combinations assessments replacing methods by preprocessing-
prediction pairs.
The ARH splicing prediction method is developed for exon arrays. However, another
high-throughput experimental technology facilitating expression analysis is RNA-Seq
[246, 245]. A tissue data set is already available by Wang et al. [306]. Thus, the whole
development and evaluation architecture also applies for RNA-Seq data. Actually not all
of the discussed methods can be applied. The different technology-dependent characte-
ristics of expression data make adaptations also for ARH indispensable. Efforts for such
an adaptation are ongoing.

6.2 Refinement of microarray analysis

Three gene expression evaluation pipelines are presented:
• A differential expression pipeline for 3’ gene expression arrays,
• a time series pipeline for 3’ gene expression arrays as well as
• an alternative splicing and differential expression pipeline for exon arrays.

Complex data sets are divided into different test cases, for example case control studies.
The pipelines have a modular structure allowing for improvements and adaptations for
new tasks in microarray analysis. The pipelines are used as standard evaluation tools
inside and outside of the Max Planck Institute for Molecular Genetics. Due to the
standardisation of the data processing, results are comparable between experiments.
Thus, it was possible to integrate different experiments and perform a meta-analysis.
In a test case of differential expression analysis two sets of hybridisations are compared.
This setting directly expands for alternative splicing analyses where the same sets of
hybridisations are evaluated for differential splicing between two biological conditions
with gene-wise and exon-wise evaluation. These two branches, differential expression,
and alternative splicing, are assembled into the alternative splicing pipeline for exon
arrays.
Due to the modular structure it was possible to adapt the pipeline to time series analyses
comparing one set of hybridisations to a phenotype. Thus, a different type of experiment
design is exploited with same procedures. Similarly, the pipeline may be adapted for
ANOVA. A statistical model using phenotypic parameters may be tested on a set of
samples. Genes are identified where expression follows the model, i.e. the combination
of phenotypic parameters.
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6.3 Type-2 diabetes mellitus with alternative splicing

For exon arrays, a preprocessing and statistical evaluation is developed on probe level
allowing for a decreased number of replicates in experiments. Improvement of analyses by
probe level evaluation is also suggested for 3’ gene expression arrays [188, 192, 193, 242].
By reimplementation of the 3’ gene expression preprocessing for probe level analysis
replicate numbers could be lowered.
The preprocessing of the 3’ gene expression as well as the exon arrays comprises four
steps which partially have the goal to alleviate experimental effects by statistical means.
Still intensities or expressions are quite abstract numbers well comparable for a probe or
exon across samples but difficult to relate among genes. The overall goal should be to
relate these expression levels to units of measurements, e.g. parts per million or mol per
litre. To achieve this goal it will be necessary to improve quantification of measurement
curves for optical and chemical estimation of hybridisation values. An example is the
probe intensity dependence on the GC content. The GC-RMA correction uses a model
for the probe background signal and the MAT correction models binding affinity by GC
content. Still probably not all of such effects are quantified and background modelling is
developing [109, 100, 255].
Current experimental designs of microarray experiments always relate different samples
with each other due to the abstract nature of expression levels. A tight correspondence
of expression levels to units of measurements would also advance the use of microarrays
for diagnostic applications or generally for analysis of a single biological condition. In
such an experiment one sample would provide a report of present genes and the activity
of present pathways.

6.3 Type-2 diabetes mellitus with alternative splicing

The tools developed for microarrays and splicing prediction are applied in order to assess
the role of alternative splicing in human disease pathology with respect to type-2 diabetes
mellitus. Sets of spliced genes are identified in key tissues for type-2 diabetes mellitus. In
the GGSC data set test cases relate splicing changes to glycaemic and genetic differences
in the samples. For selected results it will be necessary to perform validations by different
experimental techniques, e.g. RT-PCR.
Follow-up effects of splicing manifest on the level of proteins. Thus the sets of spliced
marker genes have to be compared with the Pfam database for protein families. Spliced
exons may contain functional or binding domains. Due to aspects discussed in Chapter
2, splicing changes are not necessarily functionally relevant. However, since distinct
biological conditions are compared within the same tissues a connection to type-2 diabetes
mellitus is probable.
A collection of genes connected to different biological and genetical context is presented.
Each of these results is worth to be continued. In particular some of the genes may relate
as targets to therapies presented in Chapter 2. Thus, new approaches for possible treat-
ments may arise from the identification of spliced genes. The comparison of genetically
different samples, also in human, could in part explain the genetic prevalence for type-2
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diabetes mellitus.
A core set of 655 type-2 diabetes mellitus candidate genes is identified by a meta-analysis
of existing data sources. The relation of these genes is explored for disease relevant infor-
mation and by using over-representation analysis, biological networks are identified on
different layers of cellular information such as signalling and metabolic pathways, gene
regulatory networks and protein-protein interactions. Still the current meta-analysis
strongly depends on transcriptome experiments and other biological levels could improve
the identification of marker genes. Since major genome-wide association studies perfor-
med in human finished recently it is possible to include genetic marker indication for
example by translating the LOD scores to gene score points as new summands for the
gene score [84].
The approach at hand includes both, genes with low but consistent expression changes
across the different studies as well as strongly differentially expressed genes with respect
to a single study. Entropy is an indicator for measuring generality and specificity of a
candidate gene with respect to the different studies. The correlation between the score
and the entropy is 0.80. However, most of the type-2 diabetes mellitus genes have high
entropy and, thus, contribute to expression changes in many of the experiments.
A simple over-representation analysis based on the hypergeometric distribution has been
applied in order to characterise the type-2 diabetes mellitus set on the network level in-
cluding pathways, regulatory networks and protein-protein interactions. In general, there
is a high consistency of the results of the overrepresentation analysis when screening dif-
ferent databases. In return the different networks are the base for raising a topological
model of type-2 diabetes mellitus, the union of interactions for the 655 marker genes.
Such a topological model is a step on a systems biology path for merging the functio-
nal genomics data into a mathematical model for type-2 diabetes mellitus and Anja
Thormann assembled the data from different databases. Subsequent analysis of the mo-
del revealed power law structure similar to the complete known human protein-protein
interaction network and low average for shortest paths [297].
Modelling approaches in type-2 diabetes mellitus have to tackle enormous challenges like
incorporating genetics, nutrition and mitochondria. For this challenges, no predecessors
exist in other diseases. With the advent of high-throughput experiments and the methods
of systems biology chances to resolve these issues arose. Partial models exist only for
isolated aspects of type-2 diabetes mellitus [168, 32, 148, 159, 191].
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Notation and Abbreviations

AS alternative splicing
c biological condition index: c = c for control, t for treatment
DE differential expression
ESGEC early stage gene expression changes, project data set
e exon index
η raw probe hybridisation value
GGSC glycaemic and genetic splicing changes, project data set
g gene index
ι normalised probe intensity
MM mismatch probe
NZL NZO derived in-bred polygenic mouse model for T2DM
NZO New Zealand obese, in-bred polygenic mouse model for T2DM
p probe index
φ exon expression
Φ gene expression
PM perfect match probe
r replicate index
SJL Swiss Jackson laboratory, in-bred lean non-diabetic mouse model
SNP single nucleotide polymorphism
T2DM type-2 diabetes mellitus
W.l.o.g. Without loss of generality

In all cases not introduced in the thesis statistical notation follows Sachs and Hedderich
[252] and information theoretical notation follows Cover and Thomas [71].

Trademark Notice Affymetrix® and GeneChip® are registered trademarks of Affyme-
trix, Inc., Santa Clara, CA, U.S.A.

Typesetting and Layout This document was created using the LATEX-Suite for layout
and typesetting as provided by MiKTEX 2.7 and operated through LYX 1.6.3.
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Zusammenfassung

Für die biomedizinische Grundlagenforschung ist es von besonderem Interesse, die Aktivi-
tät von Genen in verschiedenen Geweben eines Organismus zu bestimmen. Die Genaktivi-
tät wird hier bestimmt durch die Menge der direkten Produkte eines Gens, die Transkrip-
te. Die Häufigkeit der Transkripte wird durch experimentelle Technologien quantifiziert
und als Genexpression bezeichnet. Aber ein Gen produziert nicht immer nur ein Tran-
skript, sondern kann mehrere Transkripte herstellen mittels der parallelen Kodierung,
dem sogenannten alternativen Spleissen. Solch ein Mechanismus ist notwendig um die
grosse Zahl an Proteinen und die verhältnismässig kleine Anzahl an Genen zu erklären:
∼25 000 Gene im Menschen gegenüber ∼20 000 im Fadenwurm caenorhabditis elegans.
Alternatives Spleissen kontrolliert die Expression von verschiedenen Transkriptvarian-
ten unter verschiedenen Bedingungen. Es ist nicht überraschend, dass auch kleine Fehler
beim Spleissen pathologische Wirkung entfalten, d.h. Krankheiten auslösen können.
Da Organismen wie der des Menschen etwa 25 000 verschiedene Gene besitzen, war es
notwendig, für die Analyse der globalen Genexpression Hochdurchsatzmethoden zur Da-
tengenerierung zu entwickeln. Mit dem alternativen Spleissen stehen all diesen Genen
mehrere Transkripte gegenüber. Erst seit kurzem kann die notwendige Menge an Daten
generiert werden durch Technologien wie z.Bsp. Microarrays oder Sequenzierungstechno-
logie der neuesten Generation. Gleichzeitig mit dem technischen Fortschritt müssen die
Datenanalyseverfahren mithalten, um neuen Forschungsfragen zu entsprechen.
Im Laufe dieser Arbeit wird eine Softwarepipeline vorgestellt für die Analyse von alter-
nativem Spleissen sowie differentieller Genexpression. Sie wurde entwickelt und imple-
mentiert in der Programmiersprache und Statistik-Software R und BioConductor und
umfasst die Schritte Qualitätskontrolle, Vorverarbeitung, statistische Auswertung der
Expressionsveränderungen und Genmengenauswertung. Für die Erkennung von alterna-
tivem Spleissen wird die Informationstheorie in das Gebiet der Genexpression eingeführt.
Die vorgestellte Lösung besteht aus einer Erweiterung der Shannon-Entropie auf die Er-
kennung veränderter Transkripthäufigkeiten und heisst ARH – Alternatives Spleissen
Robuste Vorhersage mittels Entropie.
Der Nutzen der entwickelten Methoden und Implementierungen wird aufgezeigt am Bei-
spiel von Daten zum Typ-2 Diabetes Mellitus. Mittels Datenintegration und Metaanalyse
von unterschiedlichen Datenquellen werden Markergene bestimmt mit Fokus auf differen-
tielle Expression. Danach wird alternatives Spleissen untersucht mit speziellem Fokus auf
die Markergene und funktionelle Genmengen, d.h. Stoffwechselwegen.
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