Aus der

Medizinischen Klinik mit Schwerpunkt

Kardiologie, Angiologie, Pulmologie

der Medizinischen Fakultät der Charité - Universitätsmedizin Berlin

DISSERTATION

Komplexer in- vitro- Vergleich porciner und perikardialer Herzklappen- Bioprothesen

Zur Erlangung des akademischen Grades

Doctor medicinae

(Dr. med.)

vorgelegt der Medizinischen Fakultät der Charité

- Universitätsmedizin Berlin

von

Alexander Matthias Pohl

aus Berlin

Gutachter: 1.) Priv.- Doz. Dr. med. Th. Dschietzig

2.) Prof. Dr. med. R. Meyer

3.) Priv.- Doz. Dr. med. U. Stock

Datum der Promotion: 15.12.2006

Gliederung

		Seite
1.	Einleitung	10
2.	Herzklappenersatz- Gegenwärtiger Stand	13
2.1	Herzklappenerkrankungen	13
2.2	Diagnostik der Herzklappenerkrankungen	15
2.2.1	Druckdifferenz ΔP	15
2.2.2	Effektive Öffnungsfläche EOA	16
2.2.3	Transvalvulärer Widerstand TVR	17
2.2.4	Komplexes Stenosemodell	18
2.3	Arten des Herzklappenersatzes	19
2.3.1	Mechanische Klappenprothesen	19
2.3.2	Biologische Klappenprothesen	20
2.3.3	Vor- und Nachteile mechanischer- und biologischer Herzklappenprothesen	23
2.4	Schweine- und Perikardklappen- eine Gegenüberstellung	25
2.4.1	In- vitro Vergleiche	25
2.4.2	Klinische Vergleiche	26
2.5	Visualisierung der Herzklappenbewegung	28
3.	Aufgabenstellung	31
4.	Material und Methode	33

4.1.	Testapparatur	33
4.2	Videoaufzeichnung	36
4.3	Untersuchte Herzklappenprothesen	37
4.4	Testfluid	41
4.5	Hydrodynamische Messwerterfassung und- auswertung	43
4.6	Kinematografische Erfassung der Klappen-Öffnungsflächen, der	44
	Öffnungs- und Schließzeiten	
4.7	Statistik	48
5.	Ergebnisse	49
5.1	Ergebnisse der hydrodynamischen Klappentestung	51
5.1.1	Mittlere Druckdifferenz	53
5.1.2	Effektive Öffnungsfläche	54
5.1.3	Transvalvulärer Widerstand	56
5.2.	Ergebnisse durch Highspeed-Visualisierung	58
5.2.1	Klappenbewegung während der Systole	58
5.2.2	Sichtbare und mittlere Öffnungsflächen, Öffnungsflächen- Indices	63
5.2.3	Öffnungs- und Schließzeit, Systolischer Bewegungs-Index SMPI	67
6.	Diskussion	73
6.1	Druckdifferenz	74
6.2	Systolischer Gesamtleistungsverlust und Leistungsverlust durch Dehnung	78

6.3	Effektive Öffnungsfläche	79
6.4	Transvalvulärer Widerstand	81
6.5	Bewegungsanalyse	83
6.6	Öffnungs- und Schließzeiten	85
7.	Zusammenfassung	90
8.	Literaturverzeichnis	93
9.	Danksagungen	108
	Lebenslauf	109

Abkürzungsverzeichnis

Abkürzung	Erklärung	Einheit
СТ	Schließzeit	ms
ΔΡ	Mittlere Druckdifferenz	mmHg
EF	Ejektionsfraktion	
EKG	Elektrokardiografie	
EOA	Effektive Öffnungsfläche	cm²
ET	Ejektionszeit	ms
FDA	Federal Drug Administration	
HF	Herzfrequenz	Schläge / min
HKP+	Herzklappen-Prüfstand	
HMV	Herzminuten-Volumen	L/min
MF	Mittlerer Fluss	ml/s
MOA	Mittlere Öffnungsfläche	cm²
η	Viskosität	Pa * s
N	Gesamtverlustleistung	mW
ND	Verlustleistung durch Dehnung	mW
NYHA	New York Heart Association	
OD	Öffnungsdurchmesser	mm
OT	Öffnungszeit	ms
RV	Regurgitationsvolumen	ml
TVR	Transvalvulärer Widerstand	dyn * s / cm5

Q(t)	transvalvulärer Fluss	ml/s
Q_{rms}	Quadratwurzel des mittleren Flusses	ml/s
ρ	Dichte	g / cm^3
SD	Standardabweichung	
SI	internationales Einheitensystem	
SMPI	Systolischer Bewegungsmuster-Index	
SV	Schlagvolumen	ml
SVD	Strukturelle Klappenveränderungen	
TAD	Geweberingdurchmesser	mm
TEE	Transösophageale Echokardiografie	
TTE	Transthorakale Echokardiografie	
US	Ultraschall	
VOA	Sichtbare Öffnungsfläche	cm²

Lebenslauf (Curriculum vitae)

"Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht."

Erklärung

"Ich, Alexander Pohl, erkläre, dass ich die vorgelegte Dissertationsschrift mit dem Thema: "Komplexer in-vitro Vergleich porciner und perikardialer Herzklappen-Bioprothesen" selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer Arbeiten dargestellt habe."

Berlin,

Danksagung

Mein herzlicher Dank gilt PD Dr. Reinhard Moebes für die Bereitstellung des Arbeitsthemas,

PD Dr. Thomas Dschietzig, Dr. Ralph Kühnel und Prof. Johannes Albes für die Beratung in klinischen Fragen,

Dr. Max Otto Wendt und PD Dr. Manfred Pohl für die Betreuung, Durchführung und Auswertung der Experimente,

Jan Groth für die Datenverarbeitung und Beratung und Thomas Penczok für die einwandfreie Funktion und Wartung des Herzklappenprüfstands HKP+,

Doina Fischer und Ute Jainski für die technische Assistenz,

Prof. Hofmann, dass ich an seinem Institut diese Arbeit durchführen konnte,

Herrn Dr. Michael Schmauder (Firma REALTIME IMAGING) für die Klappenauswertungs-Software,

Firma Medtronic und Firma Edward Lifescience für die Bereitstellung der Herzklappenprothesen,

der Sonnenfeldstiftung für die Bereitstellung der Videoausstattung mit Highspeed- Kamera und PC.