Linkage Disequilibrium and Transmission Distortion Affecting Human Chromosome 6p

Dissertation

zur Erlangung des Grades des

Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht am Fachbereich Biologie, Chemie, Pharmazie

der Freien Universität Berlin

vorgelegt von Pablo Sandro Carvalho Santos aus Brasília

Februar 2010

Diese Dissertation entspricht der zwischen Februar 2006 und Februar 2010 im Institut für Immungenetik, Charité – Universitätsmedizin Berlin, unter Betreuung von Prof. Dr. rer. nat. Andreas Ziegler sowie von Dr. rer. nat. Barbara Uchanska-Ziegler durchgeführten Forschungsarbeit.

This thesis is based on research conducted between February 2006 and February 2010 at the Institut für Immungenetik, Charité – Universitätsmedizin Berlin, in Berlin, Germany, under supervision of Prof. Dr. rer. nat. Andreas Ziegler and Dr. rer. nat. Barbara Uchanska-Ziegler.

Gutachter

Erster Gutachter:	Prof. Dr. Andreas Ziegler Institut für Immungenetik Charité-Universitätsmedizin Berlin Freie Universität Berlin
Zweiter Gutachter:	Prof. Dr. Heribert Hofer Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V. Fachbereich Veterinärmedizin Freie Universität Berlin

Tag der Disputation: 9.9.2010

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig und ohne unzulässige Hilfe oder Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die vorliegende Arbeit wurde weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde zum Zweck einer Promotion oder eines anderen Prüfungsverfahrens vorgelegt. Alles aus anderen Quellen und von anderen Personen übernommene Material, das in der Arbeit verwendet wurde oder auf das direkt Bezug genommen wird, wurde als solches gekennzeichnet.

Berlin, den 9. Februar 2010

Pablo Sandro Carvalho Santos

Danksagung, Acknowledgements, Agradecimentos

An erster Stelle möchte ich mich bei meinem Betreuer Prof. Andreas Ziegler bedanken. Ich bedanke mich bei Ihnen, dass Sie mir in der Nacht des 14. August 2005 auf meine allererste Email, die ich aus Curitiba mit vielen Rechtschreibfehlern verfasst habe, antworteten, und damit den Anfang dieser Doktorarbeit bereiteten. In den vier Jahren hätte ich mir keine bessere Betreuung wünschen können. Durch Sie habe ich mich zum Beispiel für die t-Haplotypen begeistern lassen. Es war jedoch viel mehr als nur eine wissenschaftliche Betreuung und hat mir überdies auch auch viel Freude bereitet. Mittlerweile kann ich mich in der deutschen Sprache besser ausdrücken, und auch dafür muss ich mich bei Ihnen bedanken.

Ich möchte mich auch bei Frau Dr. Uchanska-Ziegler bedanken. Die Zeit mit Ihnen wird mir in guter Erinnerung bleiben. Ihre Kreativität hat mir so manches Mal neue Wege eröffnet, und wird mich auch in meiner professionellen und persönlichen Zukunft weiterhin begleiten. Ich danke Ihnen für die vielen guten Ideen, die Liebenswürdigkeit und Ihre Betreuung. Die Freiheit, die ich im Institut für Immungenetik hatte, war für diese Arbeit ausschlaggebend.

Herzlich bedanke ich mich auch bei Euch, den Mitarbeiterinnen und Mitarbeitern des Instituts für Immungenetik, Angelika Zank (Du warst ein Engel für mich), Christina Schnick, Hans Huser, Rolf Misselwitz, Caroline Backhaus und Alexander Ziegler, für Eure Freundschaft und Kompetenz.

Dem Berliner Senat bin ich für die finanzielle Unterstützung durch das NaFöG Stipendium zu Dank verpflichtet. In besonderer Weise, möchte ich hiermit die ewige Dankbarkeit, die ich der Berliner Krebsgesellschaft e.V. schuldig bin, ausdrücken. Für das keineswegs selbstverständliche Vertrauen und die finanzielle Unterstützung, möchte ich mich herzlich bedanken, insbesondere bei Frau Dr. Barbara Fey.

I am very thankful to the LIGH staff in Curitiba, Brazil, especially Rafael Vargas, Fernanda Ribas, Fabiana Poerner, Prof. Juarez Gabardo and my dear Prof. Maria da Graça Bicalho.

My dear Chee Seng Hee, Pravin Kumar and Thomas Kellermann, you have often been a light for me in these gray winter days of Berlin. I thank you for teaching me so much, and for your friendship. I feel lucky and grateful to have shared this PhD time with the three of you.

I am thankful to my co-authors George Füst, Zoltán Prohászka, Roger Horton, Chack-Yung Yu, Stephan Beck, Peter Schlattmann, Inke König, Andreas Ziegler (in Lübeck), Carolina Sens-Abuázar, Maria Luiza Petzl-Erler, Valéria Sperandio-Roxo, Fabiana Poerner and Clineu Julien Seki Uehara, with special mention to Armin Volz, Johannes Höhne, and Marcos Miretti, for your cooperation and kindness.

Danke an meine kleine Familie Katrin Krschak, Tales Alessandro, Annalisa Scozzari, Paola Gisela, Maria Alzira, Érgio Messias: ihr habt mir alles gegeben. Vocês me deram e são tudo o que eu tenho. Milan, você é o meu pequeno **sol**, um sol que completa hoje 9 anos! Worte sind zu wenig, auch die 32.660 dieser Arbeit.

I am eternally thankful to my dearest friends spread through this and other planets, for your love: Renata Oliveira de Souza, Rebeca und Bruna Pupatto Ruano, Jana Kruspe, Ulrike Vetter, Nora Rother, Nastasia Hase, Gabriel Nogueira, Maíra Tito, und die kleinen Levin, Kolja und Joschka aus der Lehrter Kommune. Sandra Kulik, for being a special chapter in my life, and for having taught me so many important things beyond genetics. Esta tese não teria sido escrita sem o amor de vocês – this thesis would not have been written without your support and love.

I also wish to thank all the colleagues at Metrinomics GmbH, und alle im Platzhirsch AG, for being so kind to me, and for being there.

Finally, from far away, you have accompanied me through these four years as well, giving me inspiration to look at the beauty of this world: Ms. Chan Marshall, Ms. Jenny Lou Ziegel, and Mr. Leonard Cohen.

Even if this is allegedly the most widely read part of a PhD thesis, I do encourage you all to dedicate some time to the next chapters. It took me four years to write it, and it is an interesting work, in my opinion.

Thank you all.

Zusammenfassung

Sowohl die jüngste Entwicklung neuer Technologien für die Hochdurchsatzsequenzierung und -genotypisierung von Organismen als auch die Erzeugung neuer Werkzeuge für großflächige genomische Analysen, die in letzter Zeit von verschiedenen Forschungsinstituten weltweit zur Verfügung gestellt wurden, haben die Art der Fragestellungen in den verschiedenen Arbeitsfeldern der Genetik stark beeinflußt. Die vorliegende Arbeit ist ein Beispiel für die Nutzung dieser Ressourcen in Verbindung mit traditionellen Labormethoden, um sich zwei Themenfeldern in den Bereichen Immun- und Populationsgenetik zu nähern: einerseits den mit dem Haupthistokompatibilitätskomplex gekoppelten Geruchsrezeptorgenen (aus dem Englischen, *major histocompatibility complex-linked olfactory receptor genes*, MHC-linked OR), und andererseits dem Phänomen der Allelweitergabedistorsion (*transmission distortion*, TD). Das Konzept des Kopplungsungleichgewichts (*linkage disequilibrium*, LD) ist für die Diskussion beider Themenfelder grundlegend.

Mit Bezug auf die MHC-OR Gene präsentiert diese Arbeit eine detaillierte Beschreibung des LD Profils innerhalb der OR Gene sowie zwischen ihnen und dem MHC. Durch Analyse der OR Polymorphismen und konservierter MHC-Haplotypen sowie der Genotypisierung einer Kohorte von Raucherinnen und Nichtraucherinnen konnten wir den Zusammenhang zwischen einem OR Polymorphismus und dem Rauchverhalten europäischstämmiger Frauen beschreiben. Wir schilderten genotypische und phänotypische Variationen der MHC-OR Gene bei achtzehn menschlichen Zelllinien, indem wir neue Polymorphismen und OR Allele bestimmten, und damit die Grundlage für die Einschätzung der funktionalen Partizipation von MHC-linked OR bei der Partnerwahl schufen. Darüber hinaus führten wir einen chromosomalen und phylogenetischen Vergleich von MHC-OR Genen bei vierzehn Wirbeltierspezien durch und konnten Schlussfolgerungen über die phylogenetische Geschichte der Genfamilien und Tierarten ziehen.

Bezüglich TD konnten wir dieses Phänomen durch eine reine *in silico*-analyse in einer Region des menschlichen Chromosoms 6p ermitteln, welche die Transkriptionsfaktorgene *SUPT3H* (suppressor of Ty 3 homolog), *RUNX2* (runt-related transcription factor 2) sowie mikro RNA *MIR586* beherbergt. In einer anschließenden Untersuchung, in der wir eine große unabhängige südamerikanische Kohorte genotypisierten, konnten wir die Anwesenheit von TD in diesem chromosomalen Segment, zumindest bei europäischstämmigen Populationen, bestätigen. Aufgrund der hohen Bedeutung von *RUNX2* (und den entsprechenden

Proteinisoformen) haben unsere Erkenntnisse Auswirkungen auf die Interpretation einer Reihe von früheren Studien, die dieses Gen mit verschiedenen Phänotypen wie Krebs, Knochendichte und Entwicklungsstörungen in Verbindung brachten. Diese Ergebnisse wurden in elektronischen Dateien für den Internet-basierenden Genome Browser des HapMap Projekts zusammengestellt, um sie im genomischen Kontext sichtbar werden zu lassen und folglich einen ersten Schritt in Richtung einer genomweiten TD Ressource zu unternehmen. Zusätzlich fanden wir heraus, dass TD mit LD korrespondiert und stellten die Hypothese auf, TD könnte die LD "Landschaft" des Genoms aktiv gestalten. Schließlich weisen unsere Ergebnisse auf ein potenzielles technisches Problem mit der Datenbank des HapMap Projektes hin, das wir vorschlugen bei zukünftigen Erweiterungen der Datenbank zu berücksichtigen.

Summary

The recent development of new technologies for high throughput sequencing and genotyping of organisms and individuals, as well as the generation of new tools for large-scale genomic analysis, all available through different research institutions world-wide, have changed the way questions from the different fields of genetics are addressed. This thesis is an example of the use of such resources in combination with traditional laboratory methods, in order to approach two themes belonging to immunogenetics and population genetics: on the one hand, the olfactory receptor genes linked to the major histocompatibility complex (MHC-linked OR) and, on the other hand, the allele transmission distortion (TD) phenomenon. The concept of linkage disequilibrium (LD) is regarded as a connecting subject, being fundamental for the discussion of both themes.

This thesis presents a detailed description of LD patterns both within MHC-linked OR genes, and between OR loci and the MHC. Through the analysis of OR polymorphisms and conserved MHC haplotypes and the genotyping of a known cohort of smokers and non smokers, we were able to describe the association of one OR polymorphism with smoking habits in Caucasian women. Furthermore, we analyzed genotypic and phenotypic variation of MHC-linked OR genes for 18 human cell lines based on the description of new polymorphisms and OR alleles, thereby forming a basis for the functional assessment of the participation of MHC-linked OR loci in mate choice. Moreover, we developed the most

comprehensive comparison performed to date – both chromosomal and phylogenetic – of MHC-linked OR genes in fourteen vertebrate species, enabling us to derive conclusions about the phylogenetic history of gene families and species.

Considering TD, we were successful in detecting this phenomenon, through a purely in silico analysis of healthy family trios, in a region of human chromosome 6p that harbours the transcription factor encoding loci SUPT3H (suppressor of Ty 3 homolog), RUNX2 (runtrelated transcription factor 2), and the microRNA MIR586. In a follow-up investigation in which we genotyped a large, independent South American cohort, we were able to confirm the presence of TD in that chromosomal segment, at least for populations of Caucasian ancestry. Given the high medial relevance of RUNX2 and the corresponding encoded protein isoforms, our findings have considerable implications for the interpretation of the many studies that found this locus to be associated with different phenotypes such as cancer, bone density and developmental disorders. These results were compiled into track files for uploading into internet-based genome browsers. These can thus be visualized in the genomic context, and provide a first step towards a genome-wide TD resource. We additionally found TD to be intimately associated to LD in the loci assessed, leading us to hypothesise that TD might be actively shaping the LD landscape of genomes. Finally, our results indicate one potential technical problem with the database of the International HapMap Project, which we suggest should be addressed in future updates of this database.

Resumo

O desenvolvimento de novas ferramentas para análises genômicas em larga escala, assim como a disponibilidade de uma grande quantidade de dados provenientes do sequenciamento e da genotipagem de vários organismos, produzidos e ofertados por diferentes instituições do mundo, tornaram possível uma nova maneira de abordar e de responder questões de diferents áreas da genética. Este trabalho é um exemplo do uso integrado de técnicas laboratoriais tradicionais com novos recursos eletrônicos disponíveis à comunidade científica, para abordar dois temas principais que se encontram entre a imunogenética e a genética de populações: de um lado, os genes de receptores olfatórios ligados ao complexo principal de histocompatibilidade (do inglês, *major histocompatibility complex-linked olfactory receptor genes*, MHC-linked OR), e de outro, o fenômeno da distorção de transmissão alélica

(*transmission distortion*, TD). O conceito de desequilíbrio de ligação (DL) fundamenta a discussão dos resultados e age assim como tema transversal.

Quanto aos genes MHC-linked OR, obtivemos evidência da associação de um haplótipo com o hábito de fumar em mulheres com ancestralidade européia. Geramos um panorama detalhado do desequilíbrio de ligação e variação genotípica/fenotípica entre haplótipos humanos, e desenvolvemos uma abrangente análise comparativa destes *loci* – tanto estrutural quanto filogenética – entre quatorze espécies de vertebrados.

Quanto a TD, tivemos sucesso em detectar evidência da presença deste fenômeno em uma região do braço curto do cromossomo 6 humano, correspondendo aos *loci SUPT3H*, *RUNX2* e *MIR586*, sendo os dois primeiros, fatores de transcrição, e o último, um microRNA. Estes resultados foram primeiramente observados em uma população já genotipada e com genótipos disponíveis através do banco de dados do projeto *HapMap*, e posteriormente confirmados em uma população independente. Os resultados mencionados têm implicações tanto para a gênese e manutenção do desequilíbrio de ligação em populações humanas, como também para a interpretação dos vários estudos que ligaram o *locus RUNX2* a diversos fenótipos, ignorando o fato de que esta região gênica está sob TD em populações de ancestralidade européia.

Esta dissertação está organizada de forma cumulativa, apresentada por meio de cinco artigos submetidos a periódicos científicos, e de um capítulo com resultados ainda não submetidos para publicação.

List of Publications that are Part of this Cumulative Thesis

- Santos PSC, Füst G, Prohászka Z, Volz A, Horton R, Miretti M, Yu CY, Beck S, Uchanska-Ziegler B, and Ziegler A (2008). Association of smoking behavior with an odorant receptor allele telomeric to the human major histocompatibility complex. *Genetic Testing*, 12: 481-486.
- Santos PSC, Höhne J, Schlattmann P, König IR, Ziegler A, Uchanska-Ziegler B, Ziegler A (2009). Assessment of transmission distortion on chromosome 6p in healthy individuals using tagSNPs. *European Journal of Human Genetics*, 17:1182-1189.
- Sens-Abuázar C, Santos PSC, Bicalho MG, Petzl-Erler ML, Sperandio-Roxo V (2009). MHC microsatellites in a Southern Brazilian population. *International Journal of Immunogenetics*, 36:269-274.
- Santos PSC, Höhne J, Schlattmann P, Poerner F, Bicalho MG, Ziegler A, and Uchanska-Ziegler B (2010). Presence of Transmission Distortion on Human Chromosome 6p Revealed by SNP Genotyping of Southern Brazilian Families. Submitted.
- Santos PSC, Uehara CJS, Ziegler A, Uchanska-Ziegler B and Bicalho MG (2010). Variation and linkage disequilibrium within olfactory receptor gene clusters linked to the human major histocompatibility complex. Submitted.

List of Abbreviations

ASW	African ancestry in Southwest USA (HapMap population)
Bta	Bos taurus (cow)
BLAST	basic local alignment search tool
bp	base pair
cen	centromere
CEU / CEPH	Utah residents with ancestry from Northern and Western Europe (HapMap population), from the <i>Centre d'Etude du Polymorphisme Humain (CEPH)</i> panel.
Cfa	Canis familiaris (dog)
СНВ	Han Chinese in Beijing, China (HapMap population)
Chr	chromosome
Chr6p / Hsa6p	short arm of human chromosome 6
CNV	copy number variation
СР	cytoplasmic domain
Dre	Danio rerio (zebra fish)
EC	extracellular domain
Eca	Equus caballus (horse)
F	frequency
Fca	Felis catus (cat)
Fig.	figure
GPCR	G-protein-coupled receptor
НарМар	international HapMap project
HLA	human leukocyte antigen
Hsa	Homo sapiens (human)
JPT	Japanese in Tokyo, Japan (HapMap population)
Kb	Kilobase (one thousand base pairs)
LD	linkage disequilibrium
LIGH	Laboratório de Immunogética e Histocompatibilidade (Immunogenetics and Histocompatibility Laboratory in the Federal University of Paraná)
MAF	minor allele frequency
Mamu	Macaca mulatta (rhesus macaque)
Mb	Megabase (one million base pairs)
Mdo	Monodelphis domestica (opossum)
MEX	Mexican ancestry in Los Angeles, California (HapMap population)

MHC	major histocompatibility complex
MHCHP	major histocompatibility complex haplotype project
MKK	Maasai in Kinyawa, Kenya (HapMap population)
μl	microliter (10 ⁻⁶ L)
Mumu	Mus musculus (mouse)
nsyn	non synonymous (nucleotide substitution)
OR	olfactory receptor / odorant receptor
PCR	polymerase chain reaction
Рру	Pongo pygmaeus (orangutan)
Ptr	Pan troglodytes (chimpanzee)
QC	quality control
Rno	Rattus norvegicus (rat)
SE	shared epitope
S-M-R	genomic region including the loci SUPT3H, MIR586 and RUNX2
SNP	single nucleotide polymorphism
Ssc	Sus scrofa (pig)
STR	short tandem repeat
tel	telomere
TD	transmission distortion
TDT	transmission/disequilibrium test
TM	transmembrane domain
trans	transcript specific (single nucleotide polymorphism)
Xtr	Xenopus tropicalis (frog)
YRI	Yoruba in Ibadan, Nigeria (HapMap population)

List of Online Resources

BioMart Project BLAST Alignment Tool Database of Drosophila Genes & Genomes dbSNP SNP Database EMBL Nucleotide Sequence Database **ENSEMBL** Genome Browser ePCR **European Bioinformatics Institute** GARField Cat Genome Browser GenBank Sequence Database GeneCards Human Gene Database HUGO Gene Nomenclature Committee Human Olfactory Data Explorer (HORDE) IMGT/HLA Database International HapMap Project InterPro JGI Frog Genome Browser MUSCLE Sequence Comparison Tool NCBI's Genome Project Resources Online Mendelian Inheritance in Man (OMIM) <u>http://www.ncbi.nlm.nih.gov/omim/</u> PubMed Life Science Database Reference Sequence (RefSeq) Database STRING Database for Protein-Protein Interactions The MHC Haplotype Project UCSC Genome Browser **VEGA Genome Browser** VISTA Genome Browser

http://www.biomart.org/ www.ncbi.nlm.nih.gov/BLAST/ http://flybase.org/ http://www.ncbi.nlm.nih.gov/snp http://www.ebi.ac.uk/embl/ http://www.ensembl.org/ http://www.ncbi.nlm.nih.gov/sutils/e-pcr http://www.ebi.ac.uk/ http://lgd.abcc.ncifcrf.gov/cgibin/gbrowse/cat/ http://www.ncbi.nlm.nih.gov/Genbank http://www.genecards.org/ http://www.genenames.org/ http://genome.weizmann.ac.il/horde/ http://www.ebi.ac.uk/imgt/hla/ http://hapmap.ncbi.nlm.nih.gov/ http://www.ebi.ac.uk/interpro/ http://genome.jgi-psf.org/cgibin/browserLoad/?db=Xentr4 http://www.ebi.ac.uk/Tools/muscle/ http://www.ncbi.nlm. nih.gov/ genomepri http://www.ncbi.nlm.nih.gov/sites/entrez http://www.ncbi.nlm.nih.gov/RefSeq/ http://string.embl.de/ https://www.sanger.ac.uk/HGP/Chr6/MHC/ http://genome.ucsc.edu/ http://vega.sanger.ac.uk/ http://pipeline.lbl.gov/

Table of Contents

Gutachter	1
Erklärung	2
Danksagung, Acknowledgements, Agradecimentos	
Zusammenfassung	5
Summary	6
Resumo	7
List of Publications that are Part of this Cumulative Thesis	9
List of Abbreviations	10
List of Online Resources	12
1. Introduction	15
1.1. Linkage Disequilibrium in the Human Genome	15
1.2. The Major Histocompatibility Complex (MHC)	
1.3. MHC-linked Olfactory Receptor Genes	
1.4. Online Resources for Genomic Variation Analyses	
1.4.1. Genome Browsers	
1.4.2. The International HapMap Project	
1.5. Transmission Distortion	
1.6. Aims and Scope of this Work	
2. MHC-linked Olfactory Receptor Genes and Smoking	
2.1. Summary	
2.2. Publication	
3. Variation and Linkage Disequilibrium within Olfactory Receptor Gene	Clusters
Linked to the Human Major Histocompatibility Complex	
3.1. Summary	
3.2. Manuscript	

4. Comparative Genomic Analysis of MHC-linked Olfactory Receptor	Repertoires
among Fourteen Vertebrate Species	65
5. Transmission Distortion in the Human Genome	76
5.1. Transmission Distortion in the Human Chromosome 6p	
5.1.1. Summary	76
5.1.2. Publication	
5.2. Transmission Distortion in Southern Brazilian Families	91
5.2.1. Summary	91
5.2.2. Manuscript	
6. Linkage Disequilibrium between Microsatellites and MHC Loci	113
6.1. Summary	
6.2. Publication	
7. Final Discussion and Conclusions	120
7.1. MHC-linked Olfactory Receptor Genes	120
7.2. Linkage Disequilibrium, the MHC, and Transmission Distortion	
7.2. Concluding Remarks	129
8. Bibliography	130
9. Oral Communications and Posters	

1. Introduction

This doctoral thesis is organized as a cumulative work presented in the form of five different manuscripts and one additional chapter with results not yet submitted for publication, having the subjects "linkage disequilibrium" and "transmission distortion" as a common focus. The five manuscripts, each of which are preceded by a short introductory summary, were written in the context of this doctoral work and submitted for publication to peer-reviewed journals within the last three years. While three of these articles have already been published and will therefore be shown here with the respective journal's layout, two further manuscripts are currently under review by the corresponding editorial boards.

The aim of this chapter is to present general concepts that will be referred to throughout this thesis.

1.1. Linkage Disequilibrium in the Human Genome

The term "linkage disequilibrium" (LD) is used in population genetics to refer to the nonrandom pattern of association between alleles at different loci. LD was first described fifty years ago [Lewontin & Kojima, 1960], and the term derives from the fact that when present, LD will prevent the combination of alleles from two or more neighbouring loci on a single chromosome, also termed haplotype, to reach that expected on the basis of the frequency of each individual allele [Slatkin, 2008]. In other words, LD can be described as the difference between the observed frequency of a haplotype and the frequency it would be expected to have, based on the individual allele frequencies [Nordborg and Tavaré, 2002; Slatkin, 2008].

LD is generally denoted by the letter D:

$$D_{AB} = F_{AB} - F_A F_B \tag{1}$$

where A and B are alleles from two different loci, and F stands for frequency.

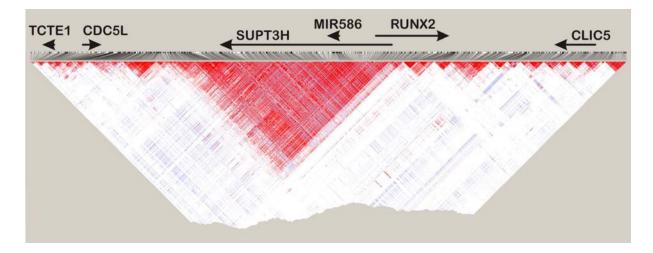
However, because the numeric value of D is strongly dependent on the individual allele frequencies, it is often not the best way to express LD when one is interested in comparing levels of LD between different regions or different pairs of alleles. In order to make this kind of comparison possible, the concept of D' was proposed four years after the first LD

description, taking into account the highest possible value that D can reach, given the frequencies of the alleles being considered [Lewontin, 1964]:

$$D' = \frac{D}{D_{max}} \tag{2}$$

D' is therefore a normalization of D, so that it takes values between 0 and 1 (or 0 and -1) without regard to the allele frequencies. D' has the property that when D' = 1, linkage of at least one of the four possible allele combinations will be absolute, and at least one of the four possible haplotypes will be absent. This way to quantify LD is often used in assessments of polyallelic loci, although many others have been proposed for these situations [Ardlie et al., 2002; Zaykin et al., 2008]. In the case of the assessment of single nucleotide polymorphisms (SNP), which are generally biallelic, an alternative way to measure LD is more commonly used, the correlation coefficient r^2 [Hill and Robertson, 1968], which is given by:

$$r^{2} = \frac{D^{2}}{F_{A}(1 - F_{A})F_{B}(1 - F_{B})}$$
(3)


Similarly to D', r^2 is based on D, and $r^2 = 1$ when alleles A and B are in complete LD with each other, but, differently from D', r^2 additionally requires A and B to have similar allele frequencies in order to equal 1 [VanLiere & Rosenberg, 2008]. In summary, r^2 is a generally more stringent LD measure than D', and it is the current standard measure of LD within genome-wide and other large scale LD assessments [Ardlie et al., 2002; Zaykin et al., 2008]. An example of an LD plot is given in Fig. 1.1.

LD is understood as a product of many interacting evolutionary forces such as natural selection, genetic drift, population bottlenecks, mixing of subpopulations, inbreeding, genomic inversions and gene conversion [Slatkin, 2008]. LD in humans in often understood from a genealogical point of view, according to which LD is the result of "remainders" of ancestral haplotypes, and tends to disappear as a function of time and recombination events. In this context, LD is traditionally believed to be stronger within population isolates (in which genetic drift and inbreeding are pronounced), but one recent study reveals that this might be a mistaken assumption [Bosch et al., 2009].

Based on LD, the human genome has been described as an assembly of more or less discrete blocks of high LD named haplotype blocks [Daly et al., 2001; Johnson et al., 2001; Patil et al.,

Chapter 1: Introduction

2001; Gabriel et al., 2002]. The low LD segments separating such blocks are predicted to correspond to recombination hotspots [Reich et al., 2001, Daly et al., 2001, Patil et al., 2001; Gabriel et al., 2002]. However, it is essential to bear in mind that haplotype blocks are rather a theoretical structure than a biological phenomenon [Blomhoff et al., 2006], since the borders of a haplotype block will diverge considerably, depending on the density of assessed markers [Ke et al., 2004] and on the algorithm used to define a haplotype block [Schulze et al., 2004].

Figure 1.1: LD plot of 1170 SNPs for a region of human chromosome 6p. The positions and lengths of the arrows correspond to those of the six loci (designations and transcriptional orientation are indicated) harboured in the region. Within the plot, each diagonal represents one single SNP, and each point in the plot (the intersection of two diagonals) represents LD between two loci. Red spots indicate strong LD (statistically significant D' = 1 and $r^2 > 0.8$), white indicates absence of statistically significant LD, while intermediate values (high D' but lower r^2) are indicated by the interspersed bluish spots. According to this graph, the whole reading frames of the loci *SUPT3H* and *MIR586*, as well as about one third of *RUNX2* are within one LD block. This plot was generated with genotyping data from the CEU population. (Modified from Santos et al., Eur J Hum Genet 2009).

Since LD provokes the association of alleles from different loci, it represents an obstacle for phenotype association studies, as it confounds the interpretation of results linking a region with high LD to a given phenotype. Depending on the extension of the LD block, a locus found to be linked to a disease, for instance, can be several megabases (Mb) distant from the locus responsible for the primary association [Zhang et al., 2004]. A classical example highlighting this problem is the case of the gene causing the disease haemochromatosis type 1 disease (hereditary iron overload). This medical condition was long believed to be associated with a gene-dense region on the short arm of human chromosome 6 (Chr6p) known as the

human leukocyte antigen (HLA complex), characterized by the high number of genes involved in immune responses and by extreme levels of LD. The real causative locus for haemochromatosis was later identified, and located four Mb telomeric to the HLA complex [Feder et al., 1996].

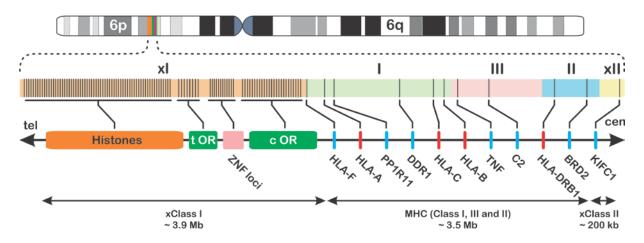
Despite this "drawback", the intelligent use of LD together with the development of new computational and statistical methods as well as the genotyping and the sequencing of the genomes of a large number of individuals over the last few years has opened new possibilities for association studies and population genetics based on LD. For example, LD can be used for selection of so-called tagSNPs. These are SNPs that are informative for a whole genomic region exhibiting high LD, in which many other SNPs with similar allele frequencies could be present [Johnson et al., 2001; Miretti et al., 2005]. With this approach, one is able to assess a given genomic segment through genotyping, using only a small subset of the many polymorphisms described for that region.

1.2. The Major Histocompatibility Complex (MHC)

The major histocompatibility complex (MHC) was first described over fifty years ago [Snell, 1968; Dausset, 1981]. It is a gene dense-region present in the genomes of all vertebrates studied so far, harbouring genes that make it the most important region with regard to normal immune responses, but also for autoimmune and infectious diseases [Ryder et al., 1981; Lie et al., 2005; Trowsdale, 2005; Fernando et al., 2008; Vandiedonck and Knight, 2009]. Extreme degrees of genetic diversity and LD are also features of the MHC [Horton et al., 2004; Lie et al., 2005; Trowsdale, 2005; Vandiedonck and Knight, 2009]. The number of scientific articles published on a subject is often used as a measure of the general interest end effort dedicated to it. A current literature search on the life science online database PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez) yielded 10.252 articles published with the expression "Major Histocompatibility Complex" on their titles or abstracts within the last ten years, revealing that the MHC is one of the most intensively studied areas in biomedical research today.

The classical MHC loci encode molecules that present auto- and alloantigens to T cells, building thus the immunological basis of self/nonself recognition. The human MHC is termed HLA complex. It is a ~ 3.5 Mb long region harboured on chromosome 6p (Fig. 1.2),

Chapter 1: Introduction


associated with far more diseases than any other region of comparable size in the genome [Horton et al., 2004; Trowsdale, 2005; Fernando et al., 2008].

The medical relevance of the HLA is additionally enhanced due to the role played by this gene system in allogenic tissue transplantations. Especially in the cases of kidney and stem cell transplantation, the selection of a donor with HLA alleles matching those of the recipient plays a determinant role in graft survival and transplant success. However, the exuberant polymorphism of this genomic segment has the consequence that the probability of two unrelated individuals to carry the same class I and class II alleles is extremely low, and the task of finding a compatible unrelated donor is a very hard one. For the three most polymorphic loci, 965 HLA-A, 1.543 HLA-B and 762 HLA-DRB1 alleles have been described, as of January 2010 [IMGT/HLA Database, 2010].

These alleles do not appear, however, in all theoretically possible combinations. Due to the strong level of LD that characterizes the MHC, some allele combinations are more frequent than expected under free recombination. In fact, some MHC haplotypes are so remarkably conserved that LD ranges beyond the borders of the MHC [Alper et al., 1989; Yunis et al., 2003]. Based on LD, a wider area including the MHC has been designated extended MHC (xMHC), including the "core" MHC, a large telomeric neighbouring segment (extended class I), and a shorter centromeric region (extended class II) [Alper et al., 1989; 1992; Ziegler, 1997; Horton et al., 2004]. This nomenclature is based on the traditional subdivision of the core MHC into the tree subregions, class I, class III and class II (Fig. 1.2). One example of a conserved haplotype is the case of the combination HLA-A1, HLA-B8, HLA-DR3, for which LD has been reported to be extreme over the entire length of the xMHC [Alper et al., 2006], and is therefore considered one of the ancient haplotypes of the human MHC.

Another key feature of the MHC is the role played by this gene complex for reproductive patterns such as pre- and post-copulatory mate choice. The first report associating the MHC with mating patterns was observed over thirty years ago in mice [Yamazaki et al., 1976]. According to this and other related studies, females are able to distinguish, most probably through olfactory cues, males that are MHC-similar to themselves from those which are MHC-dissimilar. Mate choice may thus be driven towards maximization or an optimization of the MHC heterozygosity of the offspring [Sommer, 2005; Ziegler et al., 2005; Milinsky, 2006; Eizaguirre et al., 2009; Woelfing et al., 2009]. Similar observations have been made since the initial observation by Yamazaki and co-workers [1976] for fish [Reusch et al.,

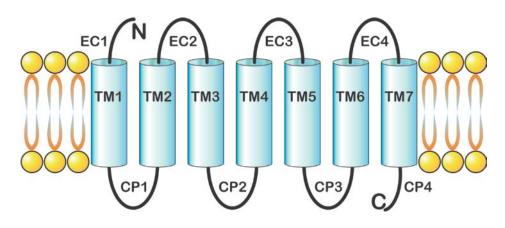

2001], lizards [Olsson et al., 2003], rats [Singh et al., 1987; Brown et al., 1989], lemurs [Schwensow et al., 2008] and humans [Wedekind et al., 1995, Ober et al., 1997; Jacob et al., 2002, Santos et al., 2005]. In this context, it is plausible that the olfactory receptor genes present within the class I region of the xMHC play an important role in odour- and MHC-dependent patterns of mate choice [Ziegler, 1997; 2000a; 2000b; 2002; Eklund et al., 2000; Thompson et al., 2010].

Figure 1.2: Map of the xMHC on human chromosome 6p. The localization of the region within chromosome 6 is given in the upper panel, while a representation of the five subregions: extended class I (xI, orange), class I (I, green), class III (III, pink), class II (II, blue), and extended class II (xII, yellow) is depicted in the middle panel. Selected loci or gene clusters are displayed in the lowest panel: a large histone cluster (orange box), two olfactory receptor clusters (green boxes), a zinc finger gene cluster (pink box), classical MHC genes (red ticks), and selected other selected MHC genes (blue ticks). The approximate length of each subregion is also indicated. (Generated according to genomic coordinates given by the ENSEMBL genome database).

1.3. MHC-linked Olfactory Receptor Genes

Olfactory receptors (OR) are G-protein-coupled membrane receptors that are responsible for the molecular basis of the ability to recognize odours. When expressed on the membrane of olfactory neurons present within the olfactory epithelium, these receptors are able to interact with odorant molecules dispersed in the air and provoke neuron firing and signal transduction into the olfactory bulb. OR consist of seven transmembrane domains, interspersed by four extracellular and four cytoplasmic regions (Fig. 1.3) [Lancet and Pace, 1987; Buck and Axel, 1991; Mombaerts, 1999].


Figure 1.3: Schematic representation of an OR within the cytoplasmic membrane, with the N terminus within the extra cellular space and the C terminus within the cytoplasm. The seven transmembrane domains (TM1 to TM7) are shown as blue cylinders. The four extracellular (EC1 to EC4) and the four cytoplasmic (CP1 to CP4) loops are also indicated. (Adapted from Buck and Axel, 1991).

Olfactory receptor genes belong to the largest gene families in vertebrate genomes, with around 100 genes in fish [Ngai et al., 1993], over one thousand in mice and rats [Zhang and Firestein, 2001; Young et al., 2002], and ~ 800 in humans [Glusman et al., 2001; Zozulya et al., 2001; Malnic et al., 2004; Nei et al., 2008]. These loci are normally organized in gene clusters which, in humans, are distributed throughout the genome, over almost all chromosomes [Glusman et al., 2001; Zozulya et al., 2001; Nei et al., 2001; Zozulya et al., 2001; Nei et al., 2008]. Two human OR gene clusters with 34 loci are located in the extended MHC class I region, between one large histone cluster and the telomeric border of the HLA class I region (Fig. 1.4) [Younger et al., 2001].

Following the completion of the human genome project, the sequencing of genomes of other vertebrates revealed not only strong homology between members of mammalian OR gene families in different species [Lane et al., 2001; Aloni et al., 2006], but also that the presence of OR clusters linked with the MHC is remarkably conserved, as in the case of human and mouse [Amadou et al., 2003]. As previously mentioned, the biological relevance of MHC-linked OR genes has increasingly been the focus of research due to its possible role for MHC-dependent mate choice [Ziegler, 1997; 2000a; 2000b; 2002; Eklund et al., 2000; Thompson et al., 2010]. Because of the close proximity and high LD with the MHC, it is plausible that MHC variations, which have been found to correlate with odour-driven mate choice patterns

Chapter 1: Introduction

or odour preferences [Yamazaki et al., 1976], correspond to variations within the linked OR clusters. Although a recent report [Thompson et al., 2010] indicates that MHC-linked OR genes do not directly drive odour preferences in humans, the suggestion that MHC-based cryptic or post-copulatory mate choice might be under the influence of these OR genes seems plausible. Several studies have shown that OR and other GPCR genes (including MHC-linked OR genes) are expressed in testis [Parmentier et al., 1992; Vanderhaeghen et al., 1997a; 1997b; Walensky et al., 1998; Tatsura et al., 2001; Volz et al., 2003; Fukuda et al., 2004], and sperm cells [Vanderhaeghen et al., 1993, Spehr et al., 2003; Fukuda et al., 2004].

Figure 1.4: Map (not to scale) of the region encompassing the two human MHC-linked OR gene clusters on chromosome 6p. In the upper panel, the relative position of the two OR gene clusters within the xMHC is given (green boxes), while the lower part of the figure shows the schematic positions of OR genes and pseudogenes (suppressing most of the intercluster region). Triangles indicate transcriptional orientation, and are filled in green (genes), red (pseudogenes) or in both colours (segregating pseudogenes). tel: direction to the telomere; cen: direction to the centromere; tOR: telomeric OR gene cluster; cOR: centromeric OR gene cluster. (Generated according to genomic coordinates given by the ENSEMBL genome database).

1.4. Online Resources for Genomic Variation Analyses

The genomic data available through the World Wide Web developed in the last few years to an indispensable resource for genetics research. Since the sequencing of the human genome [International Human Genome Sequencing Consortium, 2001], ongoing efforts of several institutions worldwide are currently directed at the generation of sequence data from many different organisms. Once the genome assembly of one species is complete, additional sequence and genotyping data are commonly generated, in order to provide more data on the variation among individuals of that species. This huge, and continuously growing amount of data is organized in different ways through databases, genome browsers, and online resources that combine both. In this context, the ability to extract specific data out of the immense datasets available plays a critical role, and can be aided by so-called "data mining" tools.

1.4.1. Genome Browsers

Genome browsers are online resources through which the user is able to interact with databases in a visual way, being able to observe a genomic region in its genomic context. Different browsers focus on different features of genomes, while some are specialized for different species. The genome browsers used in this work were ENSEMBL (comprehensive database gathering automatic annotated genomic sequences of over 40 vertebrate species, www.ensembl.org/), VEGA ("Vertebrate Genome Annotation", a resource based on manual annotation of genes from the genomes of human, mouse and other species, http://yega.sanger.ac.uk/), the Genome Bioinformatics Site of the University of California in Santa Cruz UCSC (http://genome.ucsc.edu/), the VISTA genome browser for comparative analyses (http://pipeline.lbl.gov/), the Genome Annotation Resource Field for Felis catus GARField (http://lgd.abcc.ncifcrf.gov/cgi-bin/gbrowse/cat/), the genome project resource of the National Center for Biotechnology Information (NCBI), which gathers information of over fifty vertebrate genome projects from different institutions (http://www.ncbi.nlm. nih.gov/ genomepri), the Frog Genome Browser of the Energy Joint Genome Institute (http://genome.jgi-psf.org/cgi-bin/browserLoad/?db=Xentr4), as well as the genome browser of the international HapMap Project (http://hapmap.ncbi.nlm.nih.gov/).

1.4.2. The International HapMap Project

The International HapMap Project (HapMap) is the result of an international venture aiming to generate a comprehensive online resource of haplotype variation in different human populations [International HapMap Consortium, 2003]. It is thus intended to promote an efficient approach for the discovery of markers associated with diseases through the use of a population-specific mapping of LD blocks and tagSNPs [International HapMap Consortium, 2003; 2005; 2007].

Until the final release of the last HapMap version (HapMap2), the project was focusing on individuals from the four following human populations: CEU (Utah residents with ancestry from Northern and Western Europe, 90 individuals from 30 family trios), YRI (Yoruba in Ibadan, Nigeria, 90 individuals from 30 family trios), CHB (Han Chinese in Beijing, 45

unrelated individuals) and JPT (Japanese in Tokyo, 45 unrelated individuals). All individuals were assessed with a high throughput SNP genotyping platform, for more than 3.1 million SNPs genome-wide [International HapMap Consortium, 2007]. This data has served as a reference for several population studies [Skelding et al., 2007; Mägi et al., 2007; Manolio et al., 2008; Gu et al., 2008], including some addressing the HLA complex, concerning its LD profile, haplotype variation, as well as genotyping efficiency [Miretti et al., 2005; de Bakker et al., 2006].

By the end of 2008, the HapMap entered a new phase (termed HapMap3). This new HapMap release, which is currently not completely established, involved an increase in the number of individuals of the "old" populations, as well as the inclusion of over one thousand new individuals from seven new populations: ASW (African ancestry in Southwest USA), CHD (Chinese in Metropolitan Denver, CO, USA), GIH (Gujarati Indians in Houston, TX, USA), LWK (Luhya in Webuye, Kenya), MEX (Mexican ancestry in Los Angeles, CA, USA), MKK (Maasai in Kinyawa, Kenya), and TSI (Tuscans in Italy). However, the panel of markers genotyped in HapMap 3 is somewhat reduced (around 50%), as compared to that of HapMap2.

1.5. Transmission Distortion

Transmission Distortion (TD) describes the situation in which the "normal" random segregation of alleles from parents to their offspring according to the Mendelian law of the independent assortment of alleles is violated [Lyttle, 1993; Pardo-Manuel de Villena and Sapienza, 2001]. The term is widely used as a synonym of "transmission ratio distortion" and "segregation distortion", although there is some dispute regarding which expression should be used in a given case of TD [Lyon, 2003].

There are several processes that can potentially distort segregation rates of alleles, LD blocks or whole chromosomes and thereby provoke TD. These include gamete selection (generally referring to the preferential fertilization of eggs depending on alleles or haplotypes carried by the sperm cells [Lyon, 2003]), meiotic drive (the asymmetric segregation of alleles during gametogenesis [Lyttle, 1993; Axelsson et al., 2010]), and embryonic selection (the genotype-dependent survival of embryos or foetuses [Murphy et al., 2008]).

Chapter 1: Introduction

The most notable case of TD has been described for the mouse t haplotypes, already over 70 years ago [Chesley and Dunn, 1936]. These are variants of the proximal one third of mouse chromosome 17, consisting generally of four non-overlapping inversions which appear with a frequency of around 15% in wild mice populations and which suppress recombination between t and wild-type haplotypes [Bennett, 1975; Willison and Lyon, 2000; Lyon, 2003]. The most important feature of t haplotypes is, however, their ability to violate Mendelian transmission in their favour. Although females segregate t- and wild-type haplotypes according to Mendelian expectations, more than 50% (in fact up to 99%) of the offspring from heterozygous t/+ males inherit the t-haplotype [Willison and Lyon, 2000; Lyon, 2003]. The balance equilibrates, keeping the locus in heterozygous state for basically two reasons: t/t homozygosity is either lethal or causes sterility [Lyon, 2003] and, as has only recently been demonstrated, t/+ heterozygous males face a strong reproductive disadvantage in comparison to wild-type homozygous males regarding their territorial behaviour [Carroll et al., 2004]. The genomic region "affected" by t haplotypes comprises up to 40 Mb of mouse chromosome 17 [Lyon et al., 1988]. This segment is largely syntenic to the short arm of human chromosome 6 and generally includes both the mouse MHC and the MHC-linked OR genes.

Other examples of TD have since been described for plants [Fishman et al., 2008], Drosophila [Ganetzky, 1977], birds [Aparicio et al., 2010; Axelsson et al., 2010], mice [Wu et al., 2005; Haston et al., 2007; Kriz et al., 2007; Purushothaman et al., 2008; Girirajan et al., 2009], cattle [Murphy et al., 2008] and also humans [Evans et al., 1994; Chakraborty et al., 1996; Naumova et al., 1998; 2001; Eaves et al., 1999; Lemire et al., 2004; Zöllner et al., 2004; Dean et al., 2006], including genes harboured within the HLA complex [Hanchard et al., 2006]. The statistical problem of multiple testing is, however, a constant obstacle preventing low levels of TD in large-scale investigations to be detected [Zöllner et al., 2004; International HapMap Consortium, 2005].

While the molecular mechanisms leading to TD in humans remain unknown, mouse t haplotypes are much better understood. In this case, the transcription of a t haplotype-associated variant of the sperm motility kinase-1 gene (*Smok1*) is enhanced specifically in t haplotype-carrying sperm cells, rescuing them from a "poisonous" effect that other t haplotype-associated genes (called t complex distorters) have caused in parallel, affecting the development of all germ cells [Herrmann et al., 1999]. An explanation of how the t complex-related *Smok1* gene exerts its specificity selectively for t-bearing sperm has only recently been obtained [Véron et al., 2009]. The consequence of this selective activity of *Smok1* is that t

Chapter 1: Introduction

sperm and wild type sperm differ in flagellar motility, with an advantage for t sperm regarding egg cell fertilization [Herrmann et al., 1999; Véron et al., 2009].

In humans, however, TD is not only of interest as a biological phenomenon, but is also of critical importance for numerous disease association studies that are currently performed. As discussed elsewhere [Greenwood et al., 2000; Paterson et al., 2003; 2009], TD can, if present in a given genomic region in the general population, introduce significant bias into association studies regarding that region when TD is disregarded. According to this notion, family-based association studies that assess only the affected offspring are prone to falsely conclude that a locus is linked with the disease under investigation, while it might actually be under TD in the general population [Greenwood et al., 2000; Paterson et al., 2003; 2009].

1.6. Aims and Scope of this Work.

As shown in this chapter, the major histocompatibility complex, linkage disequilibrium, MHC-linked olfactory receptor genes and allelic transmission distortion are subjects that are intimately related.

The specific objectives of the studies assessing OR genes were the following:

- 1. Investigate the genetic structure and phylogenetic relationships of MHC-linked OR genes among all animals for which enough sequence data has been produced and made available through public databases.
- 2. Investigate, through direct DNA sequencing and the use of publicly available sequence data, the LD structure and the presence of unknown polymorphisms within human MHC-linked OR genes, in order to generate an overview of human genotypic and phenotypic variation of this genomic region. Additionally, assess the possibility that new cases of loci can be found in which intact genes and pseudogenes segregate in different haplotypes.
- 3. Investigate the degree of association between polymorphisms within human MHC-linked OR genes with smoking habits, focusing on HLA haplotypes that were previously described to be associated with diseases that are strongly influenced by smoking.
- 4. Generate a panel of LD blocks and tagSNPs for the human MHC-linked OR genes, using population data available through public databases.

The specific objective of the study assessing the MHC was the following:

1. Investigate the possibility of increasing genotyping efficiency of HLA complex alleles through the description of high levels of TD between these alleles and microsatellites.

The specific objectives of the studies assessing TD were the following:

- 1. Investigate the presence of TD within the extended MHC and surrounding genomic regions, using population data available through public databases.
- 2. Seek for confirmation of TD, trough direct genotyping of an independent population cohort.
- 3. Investigate possible relationships between LD and TD.

2. MHC-linked Olfactory Receptor Genes and Smoking

2.1. Summary

The work published by Füst and co-workers [Füst et al., 2004] described a correlation between a specific haplotype of the HLA complex (A1-B8-DR3) with smoking habits in Caucasian women. As the genes assessed lacked any clear link to smoking, as they were neither involved in nicotine metabolism or predisposition to addiction, etc, the primary association responsible for the findings could in fact be due to genes that are part of this haplotype, but located in the telomeric vicinity of the HLA, namely on one or both the olfactory receptor gene clusters. The work described in the following article aimed to test this hypothesis, as well as the possible association of smoking with two other haplotypes involved in smoking-related diseases that are known to be influenced by the HLA complex. The methodology integrated publicly available SNP genotyping information from 180 Caucasian haplotypes (CEU population) from the international HapMap project, as well as traditional "in house" genotyping methods. It could be determined, in silico, which polymorphism, among the hundreds available, should be assessed. A sample from the Füst study [Füst et al., 2004] was then genotyped, and the results revealed that one single non-synonymous SNP within the gene OR12D3 was stronger correlated with smoking habits than the originally found association between smoking and the A1-B8-DR3 haplotype. For the first time, a human behaviour was found to be correlated to an olfactory receptor polymorphism.

2.2. Publication

Santos PS, Füst G, Prohászka Z, Volz A, Horton R, Miretti M, Yu CY, Beck S, Uchanska-Ziegler B, Ziegler A (2008): Association of smoking behavior with an odorant receptor allele telomeric to the human major histocompatibility complex. Genetic Testing 12: 481-486.

Pages 29-42

GENETIC TESTING Volume 12, Number 4, 2008 © Mary Ann Liebert, Inc. Pp. 481–486 DOI: 10.1089/gte.2008.0029

Association of Smoking Behavior with an Odorant Receptor Allele Telomeric to the Human Major Histocompatibility Complex

Pablo Sandro Carvalho Santos,¹ George Füst,² Zoltán Prohászka,^{2,3} Armin Volz,¹ Roger Horton,⁴ Marcos Miretti,⁴ Chack-Yung Yu,⁵ Stephan Beck,⁶ Barbara Uchanska-Ziegler,¹ and Andreas Ziegler¹

Smoking behavior has been associated in two independent European cohorts with the most common Caucasian human leukocyte antigen (HLA) haplotype (A1-B8-DR3). We aimed to test whether polymorphic members of the two odorant receptor (OR) clusters within the extended HLA complex might be responsible for the observed association, by genotyping a cohort of Hungarian women in which the mentioned association had been found. One hundred and eighty HLA haplotypes from Centre d'Etude du Polymorphisme Humain families were analyzed *in silico* to identify single-nucleotide polymorphisms (SNPs) within OR genes that are in linkage disequilibrium with the A1-B8-DR3 haplotype, as well as with two other haplotypes indirectly linked to smoking behavior. A nonsynonymous SNP within the *OR12D3* gene (rs3749971^T) was found to be linked to the A1-B8-DR3 haplotype. This polymorphism leads to a ⁹⁷Thr \rightarrow Ile exchange that affects a putative ligand binding region of the OR12D3 protein. Smoking was found to be associated in the Hungarian cohort with the rs3749971^T allele ($p = 1.05 \times 10^{-2}$), with higher significance than with A1-B8-DR3 ($p = 2.38 \times 10^{-2}$). Our results link smoking to a distinct OR allele, and demonstrate that the rs3749971^T polymorphism is associated with the HLA haplotype–dependent differential recognition of cigarette smoke components, at least among Caucasian women.

Introduction

HERE WERE NEARLY 1.3 BILLION SMOKERS WORLdwide in L the year 2003, and this number is expected to rise to 1.7 billion (~1.2 billion males and 500 million females) by 2025, with the number of female smokers contributing most to the increase (American Cancer Society, 2003). In nearly all investigated regions of the world, the ratio of female to male smokers among young people was found to be higher than the ratio among adults, suggesting a global trend for an increase in smoking habits among female adolescents and young women (Global Youth Tobacco Survey Collaborating Group, 2003). Smoking is associated with many serious health problems, including cancer of various organs, coronary artery disease, as well as several autoimmune disorders (Hegediüs et al., 2004; Klareskog et al., 2006; Warren et al., 2006; American Cancer Society, 2007; Koch et al., 2007; Hawkes, 2007), and it is thus considered a leading cause of death and disability worldwide. Although there is general

agreement that nicotine is the core addictive component of cigarette smoke (Jarvis, 2004), there are hundreds of further substances that may influence the initiation and continuation of tobacco abuse (Baker et al., 2004), independent of nicotine (Franklin et al., 2007). Smoking is also modulated by genetic factors, as demonstrated by epidemiological and twin studies (Sullivan and Kendler, 1999; Li et al., 2003). In support, a haplotype of the major histocompatibility (human leukocyte antigen, HLA) complex was found to be associated with smoking behavior, stronger in women (odds ratio: 13.6) than in men (odds ratio: 2.79) (Füst et al., 2004). This haplotype, -HLA-A1-B8-DR3-, the most common among Caucasians (Alper et al., 2006), is also associated with autoimmune disorders, of which some are clearly connected with tobacco abuse, such as Graves' ophthalmopathy (Weetman, 2000; Hunt et al., 2001; Hegediüs et al., 2004; Holm et al., 2005).

At least two further HLA haplotypes have also been linked to autoimmune diseases that are triggered or heavily influenced by tobacco smoking. The HLA-A3-B7-DR15 haplotype

¹Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Berlin, Germany.

²Third Department of Internal Medicine and Szentagothai János Knowledge Center, Semmelweis University, Budapest, Hungary.

³Research Group of Inflammation Biology and Immunogenomics, National Academy of Sciences, Budapest, Hungary.

⁴Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom.

⁵Center for Molecular and Human Genetics, Columbus Children's Research Institute and College of Medicine and Public Health, The Ohio State University, Columbus, Ohio.

⁶UCL Cancer Institute, University College London, London, United Kingdom.

482

is overrepresented in individuals with multiple sclerosis (Dyment *et al.*, 2004; Herrera *et al.*, 2006), while HLA-DR "Shared Epitope" (SE) haplotypes are overrepresented in individuals who smoke, possess antibodies against citrullinated proteins, and suffer from rheumatoid arthritis (Klareskog *et al.*, 2006; Linn-Rasker *et al.*, 2006). SE haplotypes are characterized by the presence of the HLA-DRB1*01, -DRB1*04, or -DRB1*10 alleles.

The exceptionally strong linkage disequilibrium (LD) that is typical for certain haplotypes of the xHLA encompasses a chromosomal segment with a length of about 7 Mb between the gene *HFE* and loci within the HLA class II region (Horton *et al.*, 2004). In case of the A1-B8-DR3 haplotype, LD is extreme over its entire length (Alper *et al.*, 2006), suggesting that an allele of any genes within the region of LD could in principle predispose to smoking. Therefore, polymorphic members of the two odorant receptor (OR) gene clusters within the telomeric xHLA (Ehlers *et al.*, 2000; Younger *et al.*, 2001; Ziegler and Uchańska-Ziegler, 2006) must be considered as plausible candidate genes.

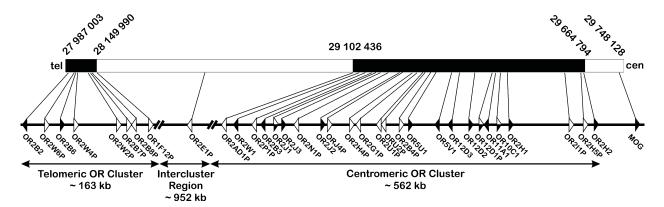
The Centre d'Etude du Polymorphisme Humain (CEPH) panel of families (Miretti *et al.*, 2005) offers unique opportunities for genetic association studies comprising the HLA region. The samples analyzed here comprise 180 founder chromosome 6 that have already been analyzed with regard to their single-nucleotide polymorphism (SNP) alleles and tagSNPs (representative SNPs for a genomic region exhibiting high LD) (Miretti *et al.*, 2005). Recently, the analysis has been extended to both OR gene clusters at the telomeric section of the xHLA, permitting the correlation with alleles within the HLA class I, II, and III regions (de Bakker *et al.*, 2006).

The present study was conducted in two steps: (i) *in silico*, we aimed to identify SNP alleles within the two HLA-linked OR gene clusters that are characteristic for the HLA haplo-types mentioned before; and (ii) *in vitro* we wanted to test whether their possible association with tobacco abuse is stronger or weaker than the one observed with A1-B8-DR3, by genotyping a subsample of the cohort in which an asso-

SANTOS ET AL.

ciation between smoking and loci at the HLA class III region had been found before.

Materials and Methods


In silico tagSNP selection and assessment of HLA haplotype–dependent OR SNP alleles

All in silico analyses were based on xHLA high-density SNP genotyping data from 180 founder chromosome 6 from the CEPH collection (Miretti et al., 2005). Details on marker selection, CEPH subjects, and on their genotypings are given elsewhere (Miretti et al., 2005; de Bakker et al., 2006). A total of 1170 SNPs spanning the region between OR2B2 and MOG (Fig. 1) were initially considered and analyzed with regard to their allelic diversity (supplemental Fig. S1, available online at www.liebertpub.com). A list of all 1170 SNPs with their genomic coordinates is given in the supplemental Table S1 (available online at www.liebertpub.com). From this set of markers, we chose 110 tagSNPs capturing the haplotypic information from the whole genomic region. SNP tagging was performed using a pairwise tagging algorithm (de Bakker et al., 2006), as implemented in HAPLOVIEW v. 4 (Barrett et al., 2005), and considering a maximum intermarker distance of 650 kb and an LD coefficient (r^2) threshold of ≥ 0.8 . Loci with a minor allele frequency of less than 1%, those not conforming to Hardy-Weinberg equilibrium, or not reported by the dbSNP database (http://www.ncbi.nlm.nih.gov/projects/ SNP) were excluded.

We tested the 110 tagSNPs characterizing the *OR2B2-MOG* segment for association with three groups of haplotypes (A1-B8-DR3, A3-B7-DR15, and SE), the aim being to determine which tagSNPs were characteristic for each of the three haplotype groups.

Genotyping of SNP rs3749971

The genotyping of the SNP *rs3749971* was performed by real-time PCR in a sample of 32 Hungarian female Caucasians (average age 46.75 years, ranging from 24 to 76 years), which

FIG. 1. Map (not to scale) of the region encompassing the two OR clusters on chromosome 6p. Above the figure, the NCBI 36 coordinates (bp) of the chromosomal segments analyzed here are depicted. The upper plot is filled in black for OR clusters and in white for regions outside the OR clusters, while the lower part of the figure shows the OR genes/pseudogenes at their relative chromosomal locations (suppressing most of the intercluster region). Triangles indicate transcriptional orientation, and are filled in black (genes), white (pseudogenes), or in both colors (haplotype-dependent genes/pseudogenes). tel: direction to the telomere; cen: direction to the centromere.

SMOKING, HLA, AND ODORANT RECEPTOR SNPs

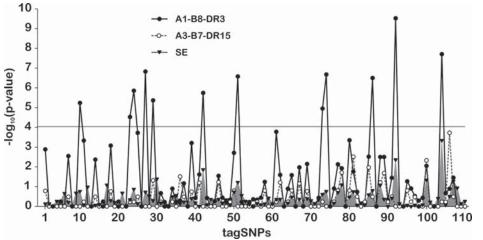
was a subsample of a cohort in which a correlation had previously been found between smoking and loci of the HLA class III region (Füst *et al.*, 2004). Based on LD, women who carried the C4A*Q0 (mono-S) genotype as well as the AGER-429C, HSPA1B-1267G, and TNF-308A alleles were considered carriers of the A1-B8-DR3 haplotype (Füst *et al.*, 2004). Other genotypings of these subjects, details on registration of smoking habits, preparation of genomic DNA, as well as informed consent from the cohort have been provided before (Füst *et al.*, 2004).

The PCR reactions were performed using a Stratagene realtime PCR instrument (Stratagene, Amsterdam, NL) with the following cycle conditions: 1 cycle of 94°C for 1 min and 80 cycles of 94°C for 20 s, 62°C for 20 s, 72°C for 30 s, and 78°C for 10 s. Fluorescence was measured during the 62°C (annealing) step. Twenty-microliter PCR reactions contained 100 ng of human genomic DNA; 1.5 pmol C- or T-specific reverse primers (details below); 3 pmol forward primer (rs3749971-For: AGCGAAGAGGATTGCAGATGGC); 2 µL Genetherm polymerase buffer; 0.7 mM each of dATP, dCTP, dGTP, and dTTP; 2 mM MgCl; and 2 U of GenTherm™ Taq Polymerase. Allele-specific primers were designed as molecular beacons (Jordens et al., 2000) (rs3749971-C: Fam-atacagc CTATATCTTTTCTAGGCTGTAT_{BHQ}CAC and rs3749971-T: Hex-atacagcCTATATCTTTTCTAGGCTGTAT_{BHO}CAT), labeled either with FAM (6-carboxyfluorescein) or Hex (4,7,2',4',5',7'-hexachloro-6-carboxyfluorescein), and quenched with Black Hole Quencher (BHQTM) attached to a Tnatively present within the primer binding site. Seven bases were added to the 5' end (displayed in lower-case letters) to allow the formation of a 29-bp "hairpin" with the 10-bp complementary region to ensure fluorescence quenching of the unused primers. To assess the reproducibility of this genotyping approach, control DNA of seven individuals (including three CEPH samples) was typed 15 times independently, with 100% reproducibility.

Statistical analyses

Nucleotide diversity (π) was calculated as described by Nei (1987), using the software DNAsp (Rozas and Rozas, 1999). The two-sided Fisher's exact test was employed for all asso-

ciation analyses, with a 1% level of significance. The Bonferroni correction for multiple comparisons was applied for *p*-values of the *in silico* analyses only.


Results

In silico analyses

The degree of nucleotide diversity as assessed by 1170 SNPs (elicited in the supplemental Table S1) was found to be highest between the genes *OR12D3* and *OR10C1* (supplemental Fig. S1), including the most polymorphic loci within this cluster (Ehlers *et al.*, 2000). The SNP diversity outside of the OR clusters did not differ substantially from that within the clusters. SNP densities within the telomeric (0.388/kb) and the centromeric OR clusters (0.877/kb) were relatively high when compared with other genomic regions (Zhao *et al.*, 2003).

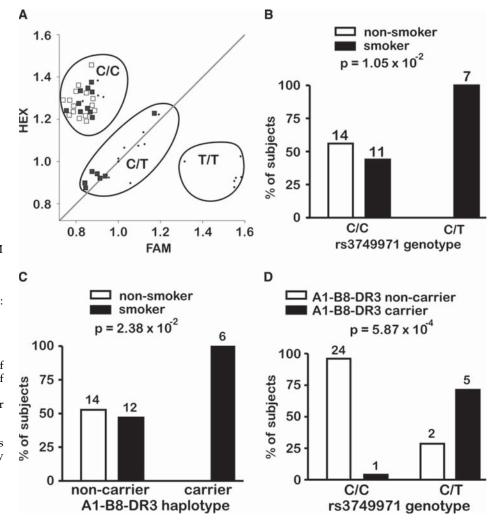
Within the panel of 180 xHLA haplotypes, 11 A1-B8-DR3, 5 A3-B7-DR15, and 59 HLA-DR SE haplotypes were found. No significant association between any of the tagSNPs and the 59 HLA-DR SE haplotypes was observed, as shown in Figure 2. A similar result was obtained with regard to the A3-B7-DR15 haplotypes, although this could be due to the low number of A3-B7-DR15 haplotypes (five) in the CEPH panel. In contrast, a significant correlation was found for 12 tagSNPs (representing 81 tagged SNPs displayed in supplemental Table S2, available online at www.liebertpub.com) when the 11 A1-B8-DR3 haplotypes were compared with the 169 non-A1-B8-DR3 haplotypes for association with the 110 tagSNPs (Fig. 2), and after setting a Bonferroni cutoff for multiple comparisons. Only one of the 81 captured SNPs is a coding, nonsynonymous SNP (rs3749971, tagged by tagSNP #51), within the gene OR12D3. In A1-B8-DR3 haplotypes, the respective allele (rs3749971^T) is responsible for a Thr \rightarrow Ile exchange at amino acid position 97 within the OR12D3 protein. The remaining 80 SNPs lead either to synonymous exchanges or are located in intergenic or in intronic regions. Because none of these are, to our knowledge, directly involved in any, so far known, biological process, they were not considered further.

Since the A1-B8-DR3 haplotype was reported in another independent European cohorts to be overrepresented in

FIG. 2. Allelic association of 110 tagSNPs from the region comprising both HLA-linked OR clusters with A1-B8-DR3, A3-B7-DR15, and SE haplotypes. The marker *rs3749971* is represented by tagSNP #51. The gray horizontal line marks the Bonferroni threshold for 110 tests with a significance level of 1%.

SANTOS ET AL.

smokers (Icelandic sample, Füst *et al.*, 2004), and is also associated with various autoimmune diseases, of which some correlate with this behavioral trait, as in Graves' disease (Hegediüs *et al.*, 2004; Holm *et al.*, 2005), this data demonstrate that these associations must also extend to the A1-B8-DR3–associated rs3749971^T allele.


Cohort genotyping

In order to validate this finding, comparing it to the previously found association, we genotyped rs3749971 in 32 female individuals from the same Hungarian cohort (Füst et al., 2004). These individuals differ in their smoking behavior and do not suffer from any autoimmune disease (Füst et al., 2004). Here we found that the correlation between smoking and rs3749971^T was slightly stronger ($p = 1.05 \times 10^{-2}$, Fig. 3b) than the correlation between this trait and A1-B8-DR3 ($p = 2.38 \times$ 10^{-2} , Fig. 3c). Seven and 25 subjects were rs3749971^{C/T} and rs3749971^{C/Ć} carriers, respectively. A strong association $(p = 5.87 \times 10^{-4})$ between the rs3749971^T allele and the A1-B8-DR3 haplotype was observed, as five out of seven of the rs3749971^T carriers but only 1/25 of the noncarriers were found to be A1-B8-DR3 positive (Fig. 3d). The group of rs3749971^{C/C} carriers includes both smokers and nonsmokers, as shown in Figure 3a and b.

Discussion

HLA-A1-positive individuals, in contrast to those with HLA-A2 or HLA-A3, have been reported to exhibit a preference for the odor of bergamot (Milinski and Wedekind, 2001). The existence of a relationship between rs3749971^T (or OR12D3^{97Ile}) and this predilection for a perfume ingredient is supported by the strong LD between HLA-A1 and rs3749971^T that is described here. The fact that many tobacco brands are scented with bergamot oil components (Baker et al., 2004) provides a plausible explanation for the correlation of rs3749971^T with smoking, and the identification of OR12-D3971le ligands will facilitate the design of volatiles that might be used as antidotes in individuals with a predisposition to tobacco abuse. The exchange of the hydrophilic amino acid threonine by isoleucine, a residue with a hydrophobic side chain, is expected to alter the physicochemical properties of the OR12D3 protein. However, as no X-ray crystallographic studies of ORs have been reported to date, the likely location of ⁹⁷Ile within the OR12D3 protein can only be inferred from models (Man et al., 2004; Katada et al., 2005; Abaffy et al., 2007; Schmiedeberg et al., 2007) that take the structure of rhodopsin (Palczewski et al., 2000) into account. Such models locate residue 97 at the end of the first extracellular loop or at the beginning of the third transmembrane domain, close to

FIG. 3. Association of smoking behavior with the rs3749971 genotype and the A1-B8-DR3 haplotype. (A) HEX and FAM are primer fluorophores marking the rs3749971 T and the C allele primers, respectively. Values indicate the normalized relative number of PCR cycles necessary to reach the genotyping threshold for each allele. HEX values around 1 (or below) are indicative for the presence of the T allele, and the same is true for FAM values, indicating the presence of the C allele. Filled squares: 17 smokers; open squares: 15 nonsmokers; dots: controls. (B) Association of smoking behavior with rs3749971 genotypes. (C) Association of smoking behavior with the carrier state of A1-B8-DR3. (D) Association of A1-B8-DR3 with rs3749971 genotypes. (**B–D**) The number of individuals in each category is indicated above the corresponding bars, as well as the *p*-values, as determined by Fisher's exact test.

SMOKING, HLA, AND ODORANT RECEPTOR SNPs

the ligand binding site. Keller et al. (2007) have recently demonstrated that a variant of an OR gene can substantially influence sensitivity (in both intensity and pleasantness) to specific odors in humans. They showed that a mutant allele of the OR7D4 gene encoding an OR with two amino acid substitutions (residues 88 and 133) as compared to the most common allele causes functional impairment of the receptor in vitro. These substitutions also alter the perception of the smell of androstenone and androstadienone in a significant manner. Residues 88 and 133 are located within the first extracellular and the second intracellular loop. At least residue 88 is close to the beginning of the third transmembrane domain, suggesting that the region in the vicinity of residue 97 in the OR12D3 protein might indeed be involved in ligand binding. Further support for a role of amino acids close to the residue 97 in ligand binding is provided by the recently published crystal structure of the human β_2 adrenergic G-protein– coupled receptor (Rasmussen et al., 2007).

Apart from social and psychological factors (Pomerleau et al., 1992; Barman et al., 2004; Lerer et al., 2006), it has been shown that the individual genetic constitution plays a role in initiating and continuing tobacco consumption (Sullivan and Kendler, 1999; Li et al., 2003). Genes within the xHLA contribute as well, as suggested by the finding of an HLA haplotype-dependent association of smoking in two independent European cohorts, with a clear-cut gender bias toward females (Füst et al., 2004). The present study confirms these results by identifying an HLA-linked OR allele that is associated with tobacco abuse. In addition, our work implies that the rs3749971^T allele is involved in the smoking-induced aggravation of certain autoimmune diseases that can be observed in patients carrying A1-B8-DR3 (Hegediüs et al., 2004; Holm et al., 2005). Given the fact that the A1-B8-DR3 haplotype occurs with a frequency of 5-10% in Caucasians (Alper et al., 2006), the rs3749971 polymorphism should be suitable for large-scale screening tests, particularly among young people. Studies of the isolated OR12D3 protein will be indispensable to evaluate the consequences of the Thr97Ile exchange within this receptor on its ligand specificity.

Acknowledgments

This work was supported by the Berliner Krebsgesellschaft and by the Senate of Berlin (Ernst-von-Leyden and NaFöG fellowships to P.S.C.S.), by the Wellcome Trust (R.H., M.M. and S.B) as well as by the Monika Kutzner-Stiftung Berlin, and by the National Office for Research and Technology, Hungary.

Disclosure Statement

The authors declare that no competing interests exist.

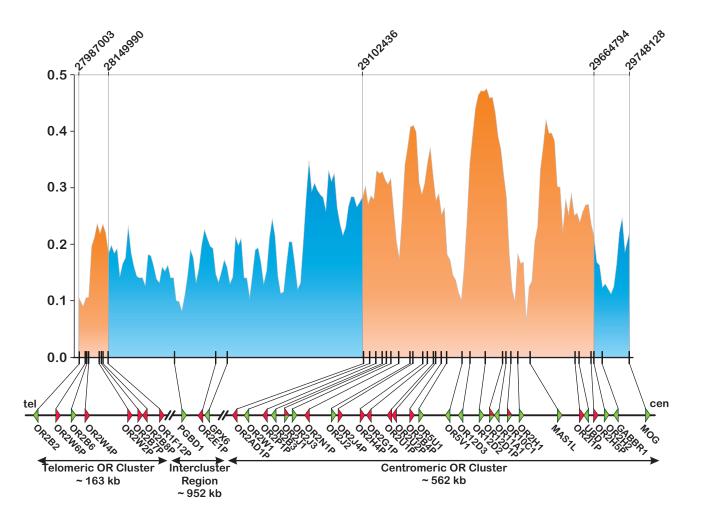
References

- Abaffy T, Malhotra A, Luetje CW (2007) The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J Biol Chem 282:1216–1224.
- Alper CA, Larsen CE, Dubey DP, *et al.* (2006) The haplotype structure of the human major histocompatibility complex. Hum Immunol 67:73–84.
- American Cancer Society (2003) 12th World Conference on Tobacco or Health. Tobacco Control Profiles. American Cancer Society, Atlanta.

- American Cancer Society (2007) Cancer facts and figures 2007. American Cancer Society, Atlanta.
- Baker RR, Pereira da Silva JR, Smith G (2004) The effect of tobacco ingredients on smoke chemistry. Part I: Flavorings and additives. Food Chem Toxicol 42:S3–S37.
- Barman SK, Pulkkinen L, Kaprio J, Rose RJ (2004) Inattentiveness, parental smoking and adolescent smoking initiation. Addiction 99:1049–1061.
- Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265.
- de Bakker PIW, McVean G, Sabeti PC, *et al.* (2006) A highresolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 38:1166–1172.
- Dyment DA, Ebers GC, Sadovnick AD (2004) Genetics of multiple sclerosis. Lancet Neurol 3:104–110.
- Ehlers A, Beck S, Forbes SA, *et al.* (2000) MHC-linked olfactory receptor loci exhibit polymorphism and contribute to extended HLA/OR-haplotypes. Genome Res 10:1968–1978.
- Franklin TR, Wang Z, Wang J, et al. (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion FMRI study. Neuropsychopharmacology 32:2301–2309.
- Füst G, Arason GJ, Kramer J, *et al.* (2004) Genetic basis of tobacco smoking: strong association of a specific major histocompatibility complex haplotype on chromosome 6 with smoking behavior. Int Immunol 16:1507–1514.
- Global Youth Tobacco Survey Collaborating Group (2003) Differences in worldwide tobacco use by gender: findings from the Global Youth Tobacco Survey. J Sch Health 73:207–215.
- Hawkes CH (2007) Smoking is a risk factor for multiple sclerosis: a metaanalysis. Mult Scler 13:610–615.
- Hegediüs L, Brix TH, Vestergaard P (2004) Relationship between cigarette smoking and Graves' ophthalmopathy. J Endocrinol Invest 27:265–271.
- Herrera BM, Cader MZ, Dyment DA, *et al.* (2006) Follow-up investigation of 12 proposed linkage regions in multiple sclerosis. Genes Immun 7:366–371.
- Holm IA, Manson JE, Michels KB, *et al.* (2005) Smoking and other lifestyle factors and the risk of Graves' hyperthyroidism. Arch Intern Med 165:1606–1611.
- Horton R, Wilming L, Rand V, *et al.* (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899.
- Hunt PJ, Marshall SE, Weetman AP, *et al.* (2001) Histocompatibility leucocyte antigens and closely linked immunomodulatory genes in autoimmune thyroid disease. Clin Endocrinol 55:491–499.
- Jarvis MJ (2004) Why people smoke. BMJ 328:277-279.
- Jordens JZ, Lanham S, Pickett MA, *et al.* (2000) Amplification with molecular beacon primers and reverse line blotting for the detection and typing of human papillomaviruses. J Virol Meth 89:29–37.
- Katada S, Hirokawa T, Oka Y, et al. (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815.
- Keller A, Zhuang H, Chi Q, *et al.* (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449: 468–472.
- Klareskog L, Stolt P, Lundberg K, *et al.* (2006) A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 54:38–46.
- Koch M, van Harten A, Uyttenboogaart M, de Keyser J (2007) Cigarette smoking and progression in multiple sclerosis. Neurology 69:1515–1520.

- Lerer E, Kanyas K, Karni O, et al. (2006) Why do young women smoke? II. Role of traumatic life experience, psychological characteristics and serotonergic genes. Mol Psychiatry 11:771–781.
- Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31.
- Linn-Rasker SP, van der Helm-van Mil AHM, van Gaalen FA, *et al.* (2006) Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann Rheum Dis 65:366–371.
- Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:240–254.
- Milinski M, Wedekind C (2001) Evidence for MHC-correlated perfume preferences in humans. Behav Ecol 12:140–149.
- Miretti MM, Walsh EC, Ke X, et al. (2005) A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 76:634–646.
- Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.
- Palczewski K, Kumasaka T, Hori T, et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745.
- Pomerleau CS, Pomerleau OF, Flessland KA, Basson SM (1992) Relationship of tridimensional personality questionnaire scores and smoking variables in female and male smokers. J Subst Abuse 4:143–154.
- Rasmussen SGF, Choi H, Rosenbaum DM, *et al.* (2007) Crystal structure of the human β 2 adrenergic G-protein-coupled receptor. Nature 450:383–387.
- Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175.

- Schmiedeberg K, Shirokova E, Weber HP, *et al.* (2007) Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J Struct Biol 159:400–412.
- Sullivan PF, Kendler KS (1999) The genetic epidemiology of smoking. Nicotine Tob Res 1:S51–S59.
- Warren CW, Jones NR, Eriksen MP, Asma S (2006) Global Tobacco Surveillance System (GTSS) collaborative group: patterns of global tobacco use in young people and implications for future chronic disease burden in adults. Lancet 367: 749–753.


Weetman AP (2000) Graves' disease. N Engl J Med 343:1236-1248.

- Younger RM, Amadou C, Bethel G, *et al.* (2001) Characterization of clustered MHC-linked olfactory receptor genes in human and mouse. Genome Res 11:519–530.
- Zhao Z, Fu YX, Hewett-Emmett D, Boerwinkle E (2003) Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene 312:207–213.
- Ziegler A, Uchańska-Ziegler B (2006) Rheumatoid arthritis etiology and HLA-linked odorant receptor gene polymorphisms: comment on the article by Klareskog *et al.* Arthritis Rheum 54:2705–2706.

Address reprint requests to: Prof. Dr. Andreas Ziegler Institut für Immungenetik Charité-Universitätsmedizin Berlin Thielallee 73 14195–Berlin Germany

E-mail: andreas.ziegler@charite.de

486

Supplementary Figure 1: Diversity of 1170 SNPs in a region of the xHLA complex

This region encompasses the two odorant receptor (OR) clusters on chromosome 6p, between the genes *OR2B2* and *MOG*). The average number of nucleotide differences per site () was determined based on sliding windows (18 bases wide, stepping 6 bases after each measurement). The regions of both OR clusters are plotted in orange, and blue is used for the regions outside them. The ticks under the graph mark the position of OR genes and pseudogenes in relation to the plot. Above the graph, the NCBI 36 coordinates (bp) of selected loci are depicted. The line underneath the graph shows OR genes and pseudogenes at their approximate chromosomal locations. Triangles indicate transcriptional orientation, and are filled in green (genes), red (pseudogenes) or in both colours (haplotype-dependent genes/pseudogenes).

tel: directon to the telomere; cen: direction to the centromere

Supplementary Table 1

Compilation of all 1170 SNPs assessed in the genomic region between *OR2B2* and *MOG*, with indication of ID at the dbSNP database, and genomic coordinates according to NCBI36. SNPs chosen as tagSNPs are indicated.

1 2 3 4 5	dbSNP ID rs2394015 rs200945	Coordinate (NCBI 36) 27978337	tagSNP	Order	dbSNP ID	Coordinate	tagSNP	Order	dbSNP ID	Coordinate	tagSNP
2 3 4 5	rs200945	27978337				(NCBI 36)	J			(NCBI 36)	
2 3 4 5	rs200945			83	rs10946952	28181443		165	rs3757183	28299838	
3 4 5		27989883		84	rs203885	28184865		166	rs9461443	28302608	
5	rs201910	27991536		85	rs203884	28185353		167	rs11751492	28303299	
	rs13218875	27991991		86	rs6924324	28190345		168	rs1150706	28304593	
	rs9468254	27992895		87	rs9368554	28190690		169	rs2299031	28304697	
6	rs1015075	27995254		88	rs1654775	28191404		170	rs1150707	28305584	
7	rs6927241	27997313		89	rs4713137	28191500		171	rs1679723	28307579	
8	rs6933825	27998610		90	rs6456807	28194055		172	rs1233663	28308211	
9	rs156737	28003192	tagSNP #1	91	rs1770132	28194644		173	rs7206	28309117	
10 11	rs9468256 rs12663899	28003483 28007558		92 93	rs478616 rs7747772	28196359 28198641		174 175	rs6918043 rs11752073	28309447 28312772	togSND #16
12	rs7760871	28009020	tagSNP #2	93 94	rs539474	28200285		175	rs7769054	28317176	tagSNP #16
12	rs7742529	28010848	taysivi #2	95	rs6922063	28202345		170	rs1736889	28317269	
14	rs7742858	28010971		96	rs1770129	28203125		178	rs967005	28318667	
15	rs10456357	28011446		97	rs4713140	28205172	tagSNP #10	179	rs7757215	28320468	
16	rs6910968	28012160		98	rs1383394	28205474		180	rs1150712	28321218	
17	rs2893937	28018029		99	rs6914592	28208091		181	rs13200462	28326178	
18	rs276366	28035460		100	rs4713141	28209657		182	rs1679732	28329243	
19	rs9295753	28036424	tagSNP #3	101	rs6941992	28214120		183	rs10456362	28329795	
20	rs276364	28039599		102	rs4713142	28214326	tagSNP #11	184	rs2185955	28330959	
21	rs276363	28041280		103	rs4713145	28214806		185	rs2394048	28331170	4**CND #17
22 23	rs7769416 rs9380031	28056553	togSND #4	104 105	rs3757188	28215336		186 187	rs7750106 rs12000	28331659	tagSNP #17
23	rs7748445	28062677 28069926	tagSNP #4 tagSNP #5	105	rs3757186 rs1904841	28215641 28216064		187	rs1635	28335415 28335583	
24	rs1143887	28072802	tagoivi #5	100	rs1904841	28216211		188	rs1679705	28337175	
26	rs149901	28073482		107	rs2791331	28216691		190	rs1778508	28337860	
27	rs156743	28075068		109	rs2277103	28217612		191	rs1778507	28338696	
28	rs12333142	28076983		110	rs868987	28218127		192	rs9468322	28339222	
29	rs149946	28078010		111	rs1890809	28218457		193	rs2799076	28340257	
30	rs6939591	28087157		112	rs2791333	28219093		194	rs4713154	28340648	
31	rs10484402	28087604	tagSNP #6	113	rs1225715	28221352		195	rs4713155	28342381	
32	rs9368540	28089652		114	rs4713149	28227777		196	rs2799077	28342576	
33	rs149971	28090131		115	rs2622318	28227865		197	rs1778484	28348777	
34 35	rs149972 rs149973	28091206 28091592		116 117	rs6908414 rs6932313	28229807 28230328		198 199	rs1419183 rs1150725	28350773 28351679	
36	rs149973	28093075		117	rs1225604	28230544		200	rs1150725	28358215	tagSNP #18
37	rs6456804	28093367		119	rs1150666	28231907		200	rs2142731	28358892	
38	rs2840222	28093541		120	rs1150667	28232042		202	rs11756111	28360838	tagSNP #19
39	rs2893947	28094129		121	rs6928131	28233428		203	rs1150722	28361511	
40	rs149975	28094319		122	rs1225603	28233606		204	rs12526248	28362667	
41	rs9368545	28107023		123	rs9393897	28235689		205	rs13211507	28365356	
42	rs1529749	28108340		124	rs1225618	28237692		206	rs2039813	28373455	
43	rs3926997	28108508		125	rs1150671	28239022		207	rs2142730	28374128	
44	rs149941	28109012		126	rs1564442	28240405	tagSNP #12	208	rs2223287	28375287	
45 46	rs149942 rs149943	28109589 28110367		127 128	rs1225713 rs9283884	28241091 28243639		209 210	rs2281043 rs6456811	28376476 28378026	tagSNP #20
40	rs185741	28111250		120	rs1144707	28243039		210	rs1062169	28378230	1ay311F #20
48	rs149897	28114629	tagSNP #7	130	rs3173443	28245006		212	rs1339899	28379581	
49	rs149896	28116503		131	rs4713152	28245433		213	rs4711166	28388516	
50	rs175954	28119564		132	rs9393902	28245709	tagSNP #13	214	rs6901990	28389327	
51	rs149900	28122576		133	rs1150675	28245996		215	rs7759855	28390842	
52	rs149962	28123897		134	rs1150677	28248113		216	rs13195487	28395454	
53	rs149965	28126668		135	rs1150678	28250255		217	rs742107	28398693	
54	rs9393879	28126923		136	rs2840214	28250520		218	rs707907	28399219	4**CND #21
55 56	rs203888 rs9468274	28129568 28134056		137 138	rs6904045 rs6904277	28252208 28252423		219 220	rs4711167 rs6902583	28402867 28403512	tagSNP #21
57	rs6903723	28135789		139	rs1233667	28254653		220	rs9468343	28407130	
58	rs13198131	28137003		140	rs9295761	28255966		222	rs6456812	28407861	
59	rs9380046	28138478		141	rs1225591	28256731		223	rs6910120	28408295	
60	rs7741570	28141484		142	rs1225593	28258498		224	rs7752721	28409146	
61	rs149952	28141864		143	rs1150683	28263293		225	rs4713161	28410483	
62	rs149957	28144999		144	rs12205680	28265083		226	rs1416920	28410763	
63	rs9380047	28145872		145	rs1237873	28266933		227	rs1416919	28410863	
64	rs203881	28146096		146	rs1233704	28274902		228	rs723476	28413083	
65	rs4713135 rs5021186	28147565		147	rs1233702	28275869		229	rs6908459	28413472	tagSND #22
66 67	rs5021186 rs6913038	28149070 28152735	tagSNP #8	148 149	rs1233701 rs768484	28276705 28277094		230 231	rs213244 rs2108926	28414887 28416726	tagSNP #22 tagSNP #23
68	rs3956922	28153995		149	rs1233698	28277602		231	rs1119211	28417115	tagSNP #23
69	rs172164	28154457		150	rs735765	28278276		232	rs6918631	28420435	
70	rs203876	28154652		152	rs1233708	28281198	tagSNP #14	234	rs6929449	28421781	
71	rs12211199	28155049		153	rs1150696	28283528	-	235	rs213240	28423854	
72	rs203877	28156603		154	rs1150697	28283615		236	rs9468346	28425693	
73	rs9393885	28157988		155	rs1233666	28284394		237	rs6921919	28433180	
74	rs427348	28166344	tagSNP #9	156	rs1150700	28290349		238	rs213233	28433654	
75	rs1853097	28166614		157	rs1150701	28291865		239	rs1555047	28436662	
76 77	rs175955 rs13197574	28167713		158	rs1233664 rs1736804	28293705	tagSNP #15	240	rs1555046	28437016	
77 78	rs13197574 rs3823180	28168218 28169723		159 160	rs1736894 rs1736892	28294533 28294957		241 242	rs213230 rs213229	28438243 28438666	
78	rs203893	28170045		160	rs1736891	28295080		242	rs213228	28439231	tagSNP #25
80	rs9380051	28172070		162	rs11967622	28296593		243	rs7773018	28439310	agon #20
81	rs169433	28172715		163	rs1736890	28297368		245	rs11751928	28443357	
82	rs203891	28175777		164	rs12211332	28298142		246	rs7773051	28448295	

		Coordinate				Coordinate				Coordinate	
Order	dbSNP ID	(NCBI 36)	tagSNP	Order	dbSNP ID	(NCBI 36)	tagSNP	Order	dbSNP ID	(NCBI 36)	tagSNP
247	rs7449675	28448851		338	rs384399	28621822		429	rs7751451	28860880	
247	rs6916243	28450900		339	rs4711173	28622562		429	rs1742753	28861643	
249	rs6938371	28451712		340	rs393414	28629295	tagSNP #37	431	rs4324813	28863574	
250	rs7769304	28453760		341	rs6456825	28630674		432	rs12665150	28867700	
251 252	rs7774981 rs2072319	28454889 28456639		342 343	rs414745 rs422089	28634634 28635385		433 434	rs878587 rs7745088	28869844 28872512	
253	rs7765637	28456876		344	rs418092	28641925		435	rs7454923	28874097	
254	rs1556957	28457905		345	rs454746	28645230		436	rs2765222	28875063	
255 256	rs3799500 rs7763846	28460636 28461760	tagSNP #26	346 347	rs12193707 rs420463	28650834 28664033		437 438	rs2765219 rs2754766	28878336 28878742	
250	rs2859379	28466174		347	rs7738979	28665291	tagSNP #38	438	rs1967743	28879041	
258	rs2232428	28467679		349	rs418914	28676507		440	rs9368576	28880337	
259	rs2232426	28468638	tagSNP #27	350	rs380914	28677928		441	rs11758303	28880678	
260 261	rs2232425 rs2041230	28468817 28473494		351 352	rs442439 rs7773645	28680985 28682285	tagSNP #39	442 443	rs2754767 rs3131343	28883228 28883551	
262	rs1005125	28475334		353	rs911178	28682394		444	rs4324798	28884104	
263	rs6907950	28478225		354	rs7381750	28683907		445	rs417919	28887410	
264 265	rs6908137 rs4254981	28478372 28479381		355 356	rs10223644 rs9501180	28686951 28687450		446 447	rs6928657 rs398795	28888296 28892018	tagSNP #45
265	rs2531828	28481769		357	rs13218450	28689302		447	rs386628	28892383	(ay5NF #45
267	rs2859361	28483586		358	rs4711176	28707007		449	rs377392	28892728	tagSNP #46
268	rs4382246	28488227		359	rs7742658	28708471		450	rs7762991	28893425	
269 270	rs6899389 rs3757181	28489119 28489875		360 361	rs6925972 rs6925044	28709913 28713410		451 452	rs172330 rs6902254	28894871 28896033	
271	rs2394098	28490731		362	rs6933018	28718340	tagSNP #40	453	rs10484543	28899189	
272	rs6922169	28490911		363	rs963937	28718713		454	rs209184	28899276	
273	rs10484540 rs7451680	28495422		364	rs7773193 rs7743296	28719313		455	rs209181 rs880157	28900470	
274 275	rs7451680 rs1024629	28497230 28498379		365 366	rs7743296 rs7382309	28722589 28728176		456 457	rs880157 rs11966708	28901772 28902266	
276	rs1015690	28498505	tagSNP #28	367	rs6910105	28731989		458	rs12660128	28908373	
277	rs3800328	28498822		368	rs12210398	28734376		459	rs3118357	28910142	
278 279	rs2859365 rs7740351	28499444 28507391		369 370	rs9295775	28735448 28735513		460 461	rs6928422 rs9257248	28910791 28911285	
279	rs7765989	28508274		370	rs3051146 rs9885928	28758332	tagSNP #41	461	rs209176	28912180	
281	rs2859366	28508416		372	rs4333411	28759712		463	rs422331	28918811	
282	rs6930745	28510082		373	rs2394123	28766679		464	rs3131335	28922440	
283 284	rs11752919 rs2531801	28511582 28512676		374 375	rs1319076 rs4143771	28770369 28772610		465 466	rs12180795 rs9501112	28930730 28932952	
285	rs11750984	28519426		376	rs12111360	28775427		467	rs9380095	28933814	
286	rs2859367	28522145		377	rs7383248	28776459		468	rs176461	28934399	tagSNP #47
287 288	rs6939966 rs2531808	28523864 28528763	tagSNP #29	378 379	rs6908726 rs2893974	28779322 28779877		469 470	rs9461483 rs3132388	28935352 28935873	
288	rs2531810	28529744		379	rs6901325	28783609		470	rs209166	28937066	
290	rs2531812	28532025		381	rs9368571	28785737		472	rs6456858	28938016	
291	rs7382749	28533734	4a=CND #20	382	rs7775835	28786336	tagSNP #42	473	rs3132389	28939015	
292 293	rs1041926 rs2021745	28534275 28534965	tagSNP #30	383 384	rs1539586 rs6937342	28787847 28789489		474 475	rs3131336 rs2187805	28939605 28940474	
294	rs2859372	28535109	tagSNP #31	385	rs9366725	28793960		476	rs3118370	28941095	
295	rs2859374	28536124	-	386	rs5029693	28795521		477	rs7775657	28943246	
296 297	rs9468379 rs2859376	28539163 28541699	tagSNP #32	387 388	rs6909960 rs1419094	28796900 28802371		478 479	rs209164 rs3131093	28944450 28945431	
297	rs2531816	28550085	tagSNP #33	389	rs2226184	28802875		479	rs3132392	28946623	
299	rs12526477	28550942		390	rs1954407	28803128		481	rs209160	28947873	
300	rs1029328	28555894		391	rs7772682	28803647		482	rs7763661	28951426	tagSNP #48
301 302	rs1015811 rs2531817	28556065 28556873		392 393	rs9393929 rs12176003	28804042 28805701		483 484	rs209153 rs209152	28954243 28954456	
303	rs2859350	28561132		394	rs7755641	28807348		485	rs209151	28954718	
304	rs6927023	28562200		395	rs10498733	28807670		486	rs9501154	28956347	
305 306	rs993998 rs13195077	28566341 28570852		396 397	rs6456834 rs7745385	28808331 28808857		487 488	rs172326 rs2006758	28957784 28958376	
306	rs6913125	28570852 28572692		397	rs6456835	28808857		488 489	rs2006758 rs1016472	28958376 28959361	
308	rs2859356	28573334	tagSNP #34	399	rs7766599	28811411		490	rs429369	28959902	tagSNP #49
309	rs12661782	28574421		400	rs2394130	28812754	tagSNP #43	491	rs6930087	28960419	
310 311	rs2191037 rs2531822	28574967 28576280		401 402	rs6905768 rs1233573	28813784 28814079		492 493	rs7750338 rs2032500	28961151 28962263	
312	rs6937042	28576408		402	rs3869043	28814513		494	rs3135309	28963799	
313	rs2071966	28581304	tagSNP #35	404	rs880638	28814890		495	rs2148008	28963825	
314	rs11755403	28581907 28586203		405	rs3905240 rs7764322	28819312 28823296		496	rs169679 rs200148	28964566 28965263	
315 316	rs2108925 rs6922986	28586203 28586574		406 407	rs7764322 rs2394128	28823296 28826851		497 498	rs209148 rs209147	28965263 28966160	tagSNP #50
317	rs434112	28588812		408	rs1233590	28828699		499	rs209146	28966844	
318	rs406113	28591461		409	rs1233591	28828969		500	rs7749527	28967913	
319 320	rs11757000 rs403774	28592848 28593258		410 411	rs1233596 rs1233597	28835668 28836324		501 502	rs6456867 rs381808	28968493 28970163	
320	rs423118	28593659		411	rs1233597	28839178		502	rs6942070	28971416	
322	rs9366720	28595070		413	rs6923801	28839751		504	rs3130838	28974518	
323	rs2215220	28596853		414	rs3852213	28840354		505	rs209131	28975745	
324 325	rs377514 rs6924526	28599929 28604293		415 416	rs1233603 rs1233606	28842021 28843503		506 507	rs209130 rs1536215	28975790 28975905	
326	rs13202071	28605748		417	rs1233610	28844978		508	rs209128	28977163	
327	rs769189	28608214		418	rs7741972	28846980		509	rs1056032	28978965	
328 329	rs448450 rs1159276	28608985 28609411		419 420	rs1233616 rs7771281	28847874 28849271		510 511	rs209126 rs209125	28980436 28980620	
329 330	rs426922	28609411 28610167		420	rs4398727	28849271 28851341		511	rs209125 rs209122	28980620 28983492	
331	rs451774	28610529	tagSNP #36	422	rs3888926	28853266		513	rs2269553	28984499	
332	rs413488	28611336		423	rs1233619	28853442		514	rs3135293	28985237	
333 334	rs4533983 rs389118	28613922 28615358		424 425	rs3891338 rs4248135	28854516 28854839		515 516	rs1794588 rs916284	28985763 28986621	
335	rs6940168	28618957		425	rs1233621	28855641		517	rs9295781	28987764	
336	rs454182	28619143		427	rs7758798	28857010	tagSNP #44	518	rs209121	28989650	
337	rs2394102	28619996		428	rs7751425	28860781		519	rs3132377	28993966	

Orden		Coordinate	to a CNID	Onder		Coordinate		Onden		Coordinate	
Order	dbSNP ID	(NCBI 36)	tagSNP	Order	dbSNP ID	(NCBI 36)	tagSNP	Order	dbSNP ID	(NCBI 36)	tagSNP
520	rs9468444	28995698		611	rs7755402	29110050		702	rs9468491	29248729	
521 522	rs6906867 rs9295782	28997289 28998211		612 613	rs9468471 rs9468473	29112079 29114238		703 704	rs3116855 rs3129157	29249624 29249735	
523	rs2230683	28999168		614	rs7743837	29114832		705	rs3129158	29249764	
524	rs1061625	28999450		615	rs7749435	29115835	tagSNP #56	706	rs3116856	29249841	
525 526	rs2765229 rs2894066	29000911 29001919		616 617	rs6919044 rs6924824	29117556 29118141		707 708	rs3129159 rs3130743	29250046 29250056	
527	rs3763338	29002303		618	rs6456886	29118575		709	rs2206042	29250468	
528	rs1237485	29002336		619	rs6456889	29118812		710	rs3116857	29252119	
529 530	rs12193226 rs2015436	29003331 29004906		620 621	rs7341218 rs9468474	29120104 29121121	tagSNP #57	711 712	rs3130745 rs3116817	29256611 29257553	
531	rs1233508	29005625		622	rs2143574	29122014		713	rs2006752	29259304	
532	rs3118361	29006279		623	rs6456890	29123114		714	rs3116820	29259663	
533 534	rs2182230 rs932776	29007688 29009026		624 625	rs9380106 rs6456891	29123969 29124575		715 716	rs3129171 rs3129173	29263745 29267640	
535	rs2032502	29009557		626	rs4713199	29125543		717	rs6904810	29269451	
536	rs1004062	29010125		627	rs7747023	29133668		718	rs1977074	29271850	tagSNP #62
537 538	rs6912843 rs3135329	29012154 29013096		628 629	rs12665818 rs6904527	29140172 29141041		719 720	rs3129093 rs760804	29278281 29279059	
539	rs3130895	29013783		630	rs2179648	29144516		721	rs6906270	29279872	tagSNP #63
540	rs3131070	29014523		631	rs6918175	29147218		722	rs2394546	29283619	
541 542	rs3130843 rs4713186	29016206 29017457		632 633	rs3131083 rs4713200	29147965 29148774		723 724	rs736466 rs1883329	29284316 29285120	tagSNP #64
543	rs7762289	29018227		634	rs999265	29149791		725	rs2206040	29286532	tugoru #01
544	rs6931968	29018868		635	rs2050231	29150377		726	rs2206041	29286624	
545 546	rs2071790 rs2071789	29019794 29020068		636 637	rs3130758 rs1159519	29150925 29151568	tagSNP #58	727 728	rs3130817 rs3129095	29287255 29288303	
547	rs2071788	29020299		638	rs3131085	29152689	tagoni #50	729	rs719746	29289617	
548	rs763009	29023100		639	rs9393941	29153620		730	rs2894083	29290325	
549 550	rs4947339 rs6456876	29024244 29026928		640 641	rs2064365 rs9348821	29154408 29155191		731 732	rs3129096 rs11758554	29291365 29291888	
551	rs9357074	29028080		642	rs3129787	29156677		733	rs3116837	29292679	
552	rs3131073	29028964		643	rs11758255	29158698		734	rs6933230	29293306	tagSNP #65
553 554	rs4947256 rs1476016	29029932 29030711		644 645	rs7740805 rs6903771	29159858 29160556	tagSNP #59	735 736	rs3130801 rs3130803	29296198 29297174	tagSNP #66
555	rs3130845	29031359	tagSNP #51	646	rs7752270	29161982	tagSNP #60	737	rs714470	29299430	
556	rs9380100	29031972	tagSNP #52	647	rs6456901	29163426	5	738	rs7757500	29300165	
557 558	rs3131075 rs12386522	29032618 29036159		648 649	rs9380109 rs2013972	29165955 29166981		739 740	rs3130811 rs3130812	29301281 29301804	
559	rs12110866	29046345	tagSNP #53	650	rs12665108	29170178		740	rs3130812	29303030	
560	rs4713190	29050823	J. J	651	rs6917293	29171042		742	rs6901837	29304156	
561 562	rs4713191 rs4713192	29051859 29051870		652 653	rs4538737 rs6907184	29172756 29173378		743 744	rs3130814 rs2207337	29304200 29308264	
563	rs3135322	29054910		654	rs4713201	29175247		745	rs10456369	29309134	
564	rs3130837	29056082		655	rs6905729	29176613		746	rs3117345	29310484	
565 566	rs9257445 rs968722	29057196 29057894		656 657	rs2394518 rs9295790	29177328 29178419		747 748	rs3130816 rs7742939	29311930 29313352	
567	rs9380102	29057894		658	rs3131090	29180277		748	rs7770244	29313352	
568	rs6904975	29060025		659	rs3131091	29181083		750	rs3129105	29321059	
569 570	rs12527531 rs3129791	29060379 29062282		660 661	rs6456908 rs11754944	29183061 29183651		751 752	rs7747464 rs3117330	29322936 29333788	
570	rs3135321	29063515		662	rs3130762	29185776		753	rs3117329	29335636	tagSNP #67
572	rs3129792	29064405		663	rs3116838	29186140		754	rs7761697	29338093	3
573 574	rs6934470 rs6934947	29064740 29064784		664 665	rs6456909 rs3749977	29187145 29188333		755 756	rs3117328 rs3130827	29338570 29338676	
575	rs10946966	29065572		666	rs3130764	29188338		757	rs10484545	29342503	
576	rs7776164	29066447		667	rs3129106	29189150		758	rs6904130	29343186	
577	rs6456879 rs2269555	29070593 29072836		668	rs3129109	29192219 29193215		759	rs3130829	29343893	
578 579	rs6908206	29072850		669 670	rs3129110 rs3130766	29193215 29194816		760 761	rs6942318 rs3117327	29346010 29347145	
580	rs9468459	29073680		671	rs2064162	29196802		762	rs3117326	29348372	
581 582	rs6920392 rs6006000	29075027 29076135		672	rs7740128	29202683		763	rs2394550 rs5875188	29356453	
582 583	rs6906909 rs9257453	29076135	tagSNP #54	673 674	rs6456913 rs7760364	29204982 29205923		764 765	rs5875188 rs6456942	29356556 29359392	tagSNP #68
584	rs6933976	29077511	0	675	rs6930603	29206817		766	rs9468508	29361748	
585	rs6456881	29078089		676	rs3130778	29207566		767	rs6901923	29361879	
586 587	rs3129793 rs6456883	29078165 29078358		677 678	rs7738990 rs3129119	29209108 29210847		768 769	rs7741086 rs1884123	29362358 29364431	tagSNP #69
588	rs6916645	29082925		679	rs12529022	29211556		770	rs1033569	29365783	tagorti #07
589	rs6923005	29084060		680	rs2223363	29212656		771	rs1033568	29365978	
590 591	rs3130891 rs9468461	29085206 29087035		681 682	rs9295794 rs7775256	29212919 29213780		772 773	rs3130835 rs4446587	29366874 29367634	
592	rs3130893	29088695		683	rs2267632	29214452		774	rs3117425	29368442	
593	rs6930903	29089232		684	rs9468487	29215036		775	rs4398768	29369046	
594 595	rs9357075 rs6916161	29090275 29091834		685 686	rs9468488 rs9393945	29215616 29216275		776 777	rs7383161 rs6899932	29372666 29374102	tagSNP #70
596	rs6916923	29092151		687	rs6917665	29217585		778	rs7754926	29377077	
597	rs9468464	29092500	tagSNP #55	688	rs3116846	29222605		779	rs3117424	29377294	
598 599	rs9380103 rs6909302	29093193 29094363		689 690	rs3130718 rs3130720	29222610 29223737		780 781	rs4594993 rs3117426	29378508 29380022	
600	rs6941946	29094303		691	rs3130724	29226518		782	rs7774255	29382366	
601	rs7768299	29098183		692	rs6902241	29227147		783	rs9257694	29382496	
602 603	rs1543796 rs2394512	29098606 29100172		693 694	rs3129126 rs7750858	29229623 29234658		784 785	rs1474859 rs9257697	29383595 29384190	
604	rs2394512 rs2394513	29100172		695	rs3130732	29234038		786	rs6910451	29388164	
605	rs9461497	29102115		696	rs2142906	29237975		787	rs9393954	29390362	
606 607	rs7741520 rs2269554	29102558 29102977		697 698	rs3130737 rs3918428	29243200 29244102		788 789	rs9257711 rs1535151	29391455 29392363	
607 608	rs2269554 rs3135320	29102977 29104537		698 699	rs3918428 rs2394520	29244102 29245212		789 790	rs1535151 rs720831	29392363 29392530	
609	rs4713197	29105573		700	rs3129151	29246307	tagSNP #61	791	rs9257712	29393201	tagSNP #71
610	rs6927986	29106722		701	rs3129154	29247778		792	rs4713209	29395301	

Order	dbSNP ID	Coordinate	tagSNP	Order	dbSNP ID	Coordinate	tagSNP	Order	dbSNP ID	Coordinate	tagSNP
793	rs9257718	(NCBI 36) 29399739		884	rs2894099	(NCBI 36) 29478724		975	rs9393967	(NCBI 36) 29577357	
793	rs9468515	29399739		885	rs1362061	29478724		975	rs1233486	29577520	
795	rs9257723	29403613		886	rs1362060	29479282		977	rs4711192	29578654	
796 797	rs12660111 rs9257726	29404160 29404935	tagSNP #72	887 888	rs429479 rs994321	29480190 29480223		978 979	rs3131019 rs11961013	29578853 29579802	
798	rs9357078	29405678		889	rs1419633	29481080		980	rs757256	29580784	
799	rs9257731	29407383		890	rs1419632	29481116		981	rs3130858	29581369	tagSNP #87
800 801	rs6930435 rs6903989	29409234 29410042	tagSNP #73	891 892	rs7453752 rs2097771	29484933 29486306		982 983	rs3130860 rs734960	29582253 29583010	
802	rs6917520	29412559		893	rs12192194	29487758		984	rs1002187	29583335	
803	rs6927977	29413965		894	rs1544403	29489773	tagSNP #79	985	rs1233482	29583550	
804 805	rs3130805 rs9348827	29414468 29416405		895 896	rs720497 rs1362074	29490300 29491126	tagSNP #80	986 987	rs3131020 rs3131021	29583770 29584010	
806	rs9257748	29417780		897	rs1362074	29491120		988	rs3131022	29584552	
807	rs1014258	29418692		898	rs3029487	29491488		989	rs1557820	29585108	
808 809	rs9257751 rs3117435	29419450 29420773		899 900	rs10807055 rs3131024	29491998 29493104		990 991	rs2158281 rs1233478	29585651 29585689	
810	rs7745768	29422975	tagSNP #74	900	rs1011985	29493639		992	rs2285791	29586169	
811	rs9257756	29424211		902	rs12207410	29494473		993	rs1010408	29587401	tagSNP #88
812 813	rs4321865 rs9257768	29424902	togSND #7E	903 904	rs6456947 rs2523421	29496173 29498307		994 995	rs12527641 rs3094572	29588293 29588861	
814	rs7356951	29430097 29430664	tagSNP #75	904 905	rs1419643	29498307		995 996	rs1362075	29589996	
815	rs9257769	29431087		906	rs7754054	29500368		997	rs2523433	29590300	
816	rs3117438	29431270		907	rs2074470	29502292	40 #CND #01	998	rs1592410	29591842	
817 818	rs9257770 rs6930033	29431849 29431916		908 909	rs7770592 rs7757269	29503612 29504082	tagSNP #81	999 1000	rs1015869 rs1015868	29592541 29593248	
819	rs7357041	29433110		910	rs10946990	29504511		1001	rs3094564	29594220	
820	rs4713210	29433444		911	rs6904456	29505417		1002	rs9257890	29594783	
821 822	rs3129685 rs9257777	29433613 29435169		912 913	rs2394609 rs6910208	29505865 29505948		1003 1004	rs2745400 rs724078	29596124 29596927	
823	rs7754402	29436845		914	rs3131025	29506680	tagSNP #82	1004	rs7752486	29600442	
824	rs16718	29443137		915	rs7349863	29506724		1006	rs2745403	29601050	
825	rs9380120	29443563		916	rs11754009	29514561		1007	rs7450360	29601862	
826 827	rs4713211 rs9295804	29444080 29444173		917 918	rs9468532 rs2074469	29515243 29515835		1008 1009	rs969931 rs1233427	29602775 29604542	
828	rs6934993	29445526		919	rs2074466	29516178		1010	rs9468549	29605447	
829	rs4713213	29446988		920	rs9468533	29516740		1011	rs1233426	29605980	
830 831	rs7772982 rs7753474	29449033 29449334	tagSNP #76	921 922	rs7765791 rs11752013	29517958 29518624	tagSNP #83	1012 1013	rs6908631 rs1233425	29606301 29606375	
832	rs7773534	29449390		923	rs6937718	29519614		1013	rs362546	29607294	
833	rs9380122	29450262		924	rs9368601	29520288		1015	rs909967	29607415	
834 835	<mark>rs3749971</mark> rs3749970	29450801 29450851		925 926	rs7738722 rs7738742	29522151 29522211		1016 1017	rs886381 rs362544	29608103 29608165	
836	rs5003264	29452015		920	rs7739243	29522478		1017	rs1233422	29608105	
837	rs2144425	29452965		928	rs6929603	29523517		1019	rs9968	29608915	
838	rs2144426	29453055		929 930	rs6935708 rs2523442	29524519		1020	rs2294748	29609060 29609392	togSND #90
839 840	rs238884 rs238880	29453703 29455070		930	rs3094574	29525684 29529959		1021 1022	rs1233421 rs1233420	29609392	tagSNP #89
841	rs1419640	29458879	tagSNP #77	932	rs1419647	29530551		1023	rs6930217	29611660	
842	rs238872	29459898		933	rs9257863	29533453		1024	rs6911709	29611821	
843 844	rs3117444 rs3094555	29460965 29461678		934 935	rs6456951 rs6903755	29534072 29534858		1025 1026	rs6911894 rs6912673	29611890 29612037	
845	rs3129681	29462403		936	rs7768854	29536699		1027	rs6935418	29612135	
846	rs3094549	29463168		937	rs2021729	29537260		1028	rs1233418	29613022	
847 848	rs1419638 rs1419637	29463539 29463578		938 939	rs2073148 rs3128854	29538038 29539566		1029 1030	rs419957 rs414282	29613647 29614138	
849	rs1419635	29463938		940	rs1345228	29540258	tagSNP #84	1030	rs422241	29614178	
850	rs4711185	29464066		941	rs2107191	29542163		1032	rs362514	29615188	
851 852	rs442694 rs9257813	29464707 29465382		942 943	rs2746149 rs1419646	29543223 29544310		1033 1034	rs6936699 rs10484548	29616108 29616151	
853	rs4713214	29466016		944	rs6937864	29545795		1035	rs414390	29617752	
854	rs7452887	29466696		945	rs11961170	29546973		1036	rs362541	29618128	
855 856	rs4452630 rs9257819	29466953 29468203		946 947	rs11966831 rs7751705	29548230 29549486		1037 1038	rs362540 rs3025657	29618203 29619094	
857	rs1362065	29468697		948	rs2746150	29550569		1030	rs2534795	29619219	
858	rs2022077	29469144		949	rs1233495	29551989		1040	rs6935895	29619639	1
859 860	rs9257823 rs1362063	29469755 29470313		950 951	rs7756110 rs6925408	29553363 29554438		1041 1042	rs2534794 rs407161	29619728 29621698	tagSNP #90
860	rs9257827	29470313	tagSNP #78	951	rs3094573	29554438 29554500	tagSNP #85	1042	rs3094576	29621698	
862	rs4713216	29472024		953	rs6925744	29554557		1044	rs376681	29624986	
863	rs4713217	29472202		954	rs7771335	29555906		1045	rs365488	29625851	
864 865	rs9257834 rs3128853	29472492 29472664		955 956	rs2107189 rs11756628	29559036 29559867		1046 1047	rs2745411 rs417374	29626338 29626368	
866	rs2073154	29472692		957	rs10484547	29560642		1048	rs7763501	29626830	
867	rs2073151	29472828		958	rs9501675	29561168		1049	rs5875195	29627328	
868 869	rs2073150 rs2073149	29473118 29473300		959 960	rs11965733 rs2066951	29562018 29562357		1050 1051	rs3052069 rs3906305	29627329 29627455	
870	rs4713218	29473851		960	rs9348832	29563889		1051	rs453658	29627455	
871	rs2158279	29474142		962	rs11756938	29564522		1053	rs446145	29628683	
872 873	rs1024470 rs1028411	29474254		963 964	rs1233493 rs1233492	29566109 29566345		1054 1055	rs11724 rs389419	29629215 29629341	
873	rs4713220	29475276 29475375		964 965	rs1233492 rs3128844	29565345		1055	rs7771629	29629341 29629845	
875	rs4711187	29475467		966	rs1233491	29569598		1057	rs3215532	29630014	tagSNP #91
876	rs4713221	29475619		967	rs1233490	29569782		1058	rs2294745	29630048	
877 878	rs1819784 rs9405124	29476152 29476682		968 969	rs6915084 rs1233489	29570049 29570911		1059 1060	rs6915177 rs2534791	29630484 29630608	
879	rs2394604	29470082 29477135		969 970	rs6926506	29570911		1060	rs7739536	29630808	
880	rs2394605	29477187		971	rs6932526	29572837		1062	rs444013	29631542	
	rs2394606	29477219		972	rs1345227	29574824		1063	rs8337	29631572	
881 882	rs2394607	29477386		973	rs7766082	29575874		1064	rs404240	29631853	tagSNP #92

Chapter2: MHC-linked Olfactory Receptor Genes and Smoking

Order	dbSNP ID	Coordinate (NCBI 36)	tagSNP	Order	dbSNP ID	Coordinate (NCBI 36)	tagSNP	Order	dbSNP ID	Coordinate (NCBI 36)	tagSNP
1066	rs2534790	29632064		1101	rs6912589	29669742		1136	rs3025626	29699757	
1067	rs12665228	29633487		1102	rs3095273	29674261		1137	rs2267635	29700324	
1068	rs362536	29634836		1103	rs3025644	29675815		1138	rs715044	29701681	
1069	rs64036	29635163		1104	rs3025643	29677847	tagSNP #100	1139	rs2021749	29706012	
1070	rs2272991	29635495		1105	rs2267633	29678733		1140	rs29243	29706995	
1071	rs362513	29636214		1106	rs2076483	29679437	tagSNP #101	1141	rs9257924	29711023	
1072	rs995185	29637033		1107	rs10946999	29679501		1142	rs9461540	29712152	
1073	rs1233405	29637650		1108	rs3025638	29680813		1143	rs444189	29713823	
1074	rs362531	29638351		1109	rs2076482	29681146		1144	rs3095267	29714937	tagSNP #104
1075	rs362512	29638524		1110	rs12193396	29682289		1145	rs3025623	29715638	
1076	rs422878	29638840		1111	rs5875197	29682488		1146	rs1233374	29716587	
1077	rs362527	29639714		1112	rs740884	29682523		1147	rs29236	29717102	
1078	rs2523447	29640631	tagSNP #93	1113	rs740882	29683348		1148	rs3117289	29717814	
1079	rs388234	29641187		1114	rs881284	29683939		1149	rs29273	29718882	tagSNP #105
1080	rs3094577	29641762		1115	rs29230	29684285	tagSNP #102	1150	rs29233	29719122	
1081	rs1119080	29644577		1116	rs2076489	29684329		1151	rs29232	29719324	
1082	rs1235162	29645116		1117	rs29263	29684482		1152	rs3131854	29719778	tagSNP #106
1083	rs1003582	29646295		1118	rs29262	29684484		1153	rs3129073	29723708	
1084	rs12527115	29647093		1119	rs29258	29685509		1154	rs439812	29724493	tagSNP #107
1085	rs1233399	29647374		1120	rs29257	29685922		1155	rs29269	29725632	
1086	rs1003581	29648096	tagSNP #94	1121	rs2076488	29686421		1156	rs29272	29726251	
1087	rs362509	29648753	tagSNP #95	1122	rs29255	29687436		1157	rs29228	29731622	
1088	rs6912437	29649286		1123	rs29253	29688328		1158	rs29234	29731995	tagSNP #108
1089	rs362525	29651538		1124	rs29227	29688480		1159	rs3130250	29732884	
1090	rs362524	29651665		1125	rs29226	29688903	tagSNP #103	1160	rs2535267	29733641	
1091	rs362522	29653100	tagSNP #96	1126	rs29225	29688933		1161	rs2252711	29734203	
1092	rs1233397	29653607	tagSNP #97	1127	rs29251	29689649		1162	rs2535260	29736767	
1093	rs4568477	29654804		1128	rs6927867	29690417		1163	rs2256266	29740203	
1094	rs1233391	29658510		1129	rs6919973	29695767		1164	rs6905408	29741707	tagSNP #109
1095	rs1233389	29660375		1130	rs29223	29696437		1165	rs2071652	29743249	
1096	rs1233388	29661619		1131	rs25629	29697294		1166	rs2071653	29743860	
1097	rs3129034	29663701		1132	rs29220	29697559		1167	rs2273192	29746111	
1098	rs362521	29664651	tagSNP #98	1133	rs3828923	29698608		1168	rs9357083	29747576	
1099	rs1233386	29666082	°	1134	rs6938190	29698760		1169	rs2535242	29748614	tagSNP #110
1100	rs1233384	29667187	tagSNP #99	1135	rs6938734	29698952		1170	rs9461544	29749235	-

Supplementary Table 2

List of SNPs captured by the 12 tagSNPs significantly associated with the haplotype A1-B8-DR3. Their number in supplementary Table 1 and their genomic position in relation to known or predicted genes are indicated.

tagSNP #10 - Representative for 9 SNPs:
97: intronic region of ZSCAN16
104: between ZSCAN16 and ZNF192
151: between the pseudogenes LOC222701 and LOC222699
181: intronic region of ZSCAN4
182: between ZSCAN4 and the predicted gene C6orf194
183: between <i>ZSCAN4</i> and the predicted gene <i>C6orf194</i>
190: between the predicted gene <i>C6orf194</i> and <i>ZNF187</i>
196: telomeric, within 2 kb of a mRNA transcript for <i>ZNF187</i>
198: intronic region of ZNF187 tagSNP #23 - Representative for 2 SNPs:
226: intronic region of ZNF323
231: intronic region of <i>ZNF323</i>
tagSNP #24 - Representative for 3 SNPs:
232: intronic region of ZNF323
237: within the 5' UTR of <i>ZSCAN3</i>
280: between ZSCAN12 and the pseudogene COX11P
tagSNP #27 - Representative for 6 SNPs:
259: intronic region of ZSCAN12
205: intronic region of <i>PGBD1</i>
77: centromeric, within 2 kb of a mRNA transcript for <i>ZNF165</i>
46: in the pseudogene <i>OR2W2P</i>
27: between the pseudogene <i>OR2W4P</i> and <i>LOC340192</i>
4: centromeric, within 2 kb of a mRNA transcript for <i>OR2B2</i>
tagSNP #29 - Representative for 2 SNPs:
283: between ZSCAN12 and COX11P
287: centromeric, within 2 kb of a mRNA transcript for <i>COX11P</i>
tagSNP #42 - Representative for 2 SNPs:
382: between LOC646160 and the pseudogene LOC442181
396: in the pseudogene LOC442181
tagSNP #51 - Representative for 34 SNPs:
378: between LOC646160 and LOC442181
392: between LOC646160 and LOC442181
398: between LOC442181 and LOC646192
417: between LOC442181 and LOC646192
423: between LOC442181 and LOC646192
430: intronic region of <i>LOC646192</i>
430: Infrome region of <i>LOC040192</i> 443: between <i>LOC646192</i> and hypothetical gene <i>LOC401242</i>
444: between LOC646192 and hypothetical gene LOC401242 459: between LOC646192 and hypothetical gene LOC401242
461: between LOC646192 and hypothetical gene LOC401242
464: between LOC646192 and hypothetical gene LOC401242
470: in the hypothetical gene LOC401242
473: in the hypothetical gene <i>LOC401242</i>
474: centromeric, within 2 kb of a mRNA transcript for the hypothetical gene <i>LOC401242</i>
476: between the hypothetical gene LOC401242 and TRIM27
479: between the hypothetical gene LOC401242 and TRIM27
480: between the hypothetical gene LOC401242 and TRIM27
494: between the hypothetical gene LOC401242 and TRIM27

3. Variation and Linkage Disequilibrium within Olfactory Receptor Gene Clusters Linked to the Human Major Histocompatibility Complex

3.1. Summary

The study published by Ehlers and co-workers [Ehlers et al., 2000] established, using a group of 10 human cell lines, a milestone for the MHC-linked OR research by sequencing 13 of its 34 loci and assessing their polymorphism. The following study aimed at completing the initiated investigation by sequencing all three remaining functional loci, in addition to further nine genes known so far only as pseudogenes. Moreover, integration with publicly available genomic information was performed through the inclusion of sequence data from the recently completed human MHC haplotype project [Horton et al., 2008], for which eight further (homozygous) human cell lines were sequenced. The gene *OR2B8P*, previously known only as a pseudogene, was found to have functional alleles, while *OR1F12*, previously known as a potentially functional gene, was found to present a truncated allele.

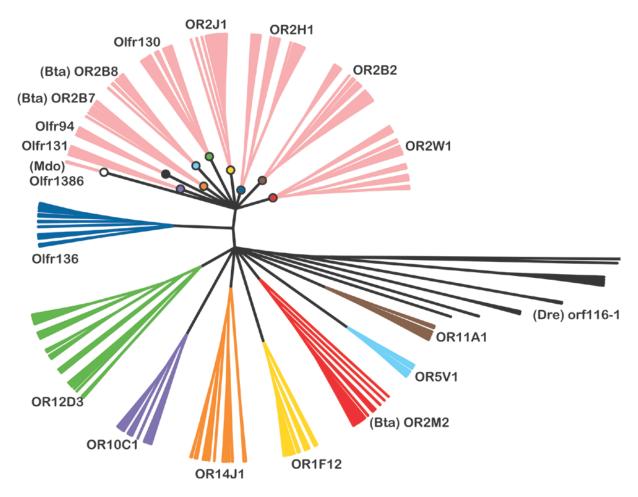
Questions about LD dynamics within the OR polymorphisms, as well as between the latter and the HLA complex, could be answered and discussed in this study. Moreover, based on phylogenetic and comparative analyses of the 18 cell lines, a comprehensive picture of the genotypic and phenotypic variability of both MHC-linked OR gene clusters was generated. Beyond its population genetics relevance, these results build the basis for the functional assessment of the participation of HLA-linked OR loci in reproduction.

3.2. Manuscript

Santos PSC, Uehara CJS, Ziegler A, Uchanska-Ziegler B, Bicalho MG: Variation and linkage disequilibrium within odorant receptor gene clusters linked to the human major histocompatibility complex. Hum Immunol. 2010, 71(9):843-50.

DOI:10.1016/j.humimm.2010.06.011

Pages 44-64


4. Comparative Genomic Analysis of MHC-linked Olfactory Receptor Repertoires among 14 Vertebrate Species

Comparative genomic analyses belong to the most powerful tools in evolutionary genetics. The recent sequencing of the genomes of different organisms has shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding olfactory receptors (OR) in close linkage to the MHC. A systematic comparison of the sequences of these receptors from different organisms has been, however, limited to humans and rodents. Additionally, a comparative analysis focusing on genomic morphology (i.e. linkage, position and transcriptional orientation of loci or gene clusters) of MHC-linked OR genes is, to the best of my knowledge, still absent. In this chapter, I present the so far most comprehensive comparison of protein sequence and genomic morphology of MHC-linked OR genes performed to date, among 14 vertebrates for which enough sequence information has been generated by different sequencing projects, and made available through internet-based databanks. 464 peptide sequences (Table 1) from human, chimpanzee, orangutan, rhesus macaque, dog, cat, cow, pig, horse, mouse, rat, opossum, frog and zebra fish were assessed.

Organism	Short	# Protein Seqs	Chr.	Length (Mb)
Homo sapiens (Human)	Hsa	34	6р	2,3
Pan troglodytes (Chimpanzee)	Ptr	13	6р	3,0
Pongo pygmaeus (Orangutan)	Рру	13	6	3,0
Macaca mulatta (Rhesus macaque)	Mamu	17	4	3,0
Canis familiaris (Dog)	Cfa	10	35	1,5
Felis catus (Cat)	Fca	8	B2	1,5
Bos taurus (Cow)	Bta	57	23	1,5
Sus scrofa (Pig)	Ssc	77	7	3,4
Equus caballus (Horse)	Eca	71	20	4,0
Mus musculus (Mouse)	Mumu	44	17	1,2
Rattus norvegicus (Rat)	Rno	59	20p	1,6
Monodelphis domestica (Opossum)	Mdo	38	2	9,0
Xenopus tropicalis (Frog)	Xtr	3	Scf_396	0,02
Danio rerio (Zebrafish)	Dre	20	15	0,3
Total		464		

Table 4.1: List of organisms analyzed for their MHC-linked OR genes, with indication of number of protein sequences assessed, the respective chromosome, as well as the approximate total length of the OR clusters

Phylogenetic analyses demonstrate that most OR families present in the two human MHClinked clusters are also present in the other species, although some are specifically expanded in certain taxa (Fig. 4.1). A map of the respective genomic regions was generated for each species, through which several morphological features such as the number of loci, the gene order and localization, as well as the presence of particular OR gene families could be identified as typical for each of the taxa assessed: primates, ungulates, carnivores, rodents, marsupial, amphibian and teleost (Fig. 4.2).

Figure 4.1: Phylogenetic tree depicting the evolutionary relationships of 464 MHC-linked OR amino acid sequences from 14 vertebrates. The colours used to identify each branch of sequences on the tree are the same used in the corresponding loci of all panels of Fig. 4.2. For each branch the name of one locus is given as representative of the group. The tree was inferred using the neighbour-joining method.

The genomes of humans, mouse, rat and zebra fish are the best established vertebrate genome assemblies available. Genome browsers like ENSEMBL (<u>www.ensembl.org/</u>) and VEGA

(<u>http://vega.sanger.ac.uk/</u>) gather information from different genome projects worldwide and make them available with official gene nomenclatures and coordinates. Obtaining their sequences involved finding the MHC through the literature or an electronic BLAST search against the whole genome, scanning its vicinity for OR genes, and downloading them manually.

In contrast, most genes of the remaining ten vertebrate genome assemblies still lack a nomenclature for OR genes, and the MHC cannot easily be identified through the respective genome browsers. Data mining in these cases involved, besides of literature research, several runs of BLAST searches for unequivocal localization of the MHC within a chromosome, with following BLAST searches for OR loci in a range of 10 Mb around the MHC. Additionally, InterPro (http://www.ebi.ac.uk/interpro/) protein signatures were used to locate OR genes. InterPro is an online database that integrates data from several institutions aiming at the classification and automatic annotation of proteins and genomes [Hunter et al., 2009]. It uses information from known amino acid sequence motifs in order to recognize the structure and predict the function or a large number of proteins. After testing the strategy of sequence capturing based on InterPro signatures on four well established genomes (human, mouse, rat and zebra fish) with 100% concordance, I used InterPro in order to obtain sequences from the remaining vertebrates. Signatures used were "IPR000725" (olfactory receptor), and in some cases "IPR000276" (seven transmembrane g-protein-coupled receptor, rhodopsin-like). Nucleotide or amino acid sequences were obtained from the web servers of the following institutions: **NCBI** (www.ncbi.nlm.nih.gov, pig and horse), LGD (http://home.ncifcrf.gov/ccr/lgd/, cat), JGI (http://genome.jgi-psf.org/, frog) and ENSEMBL (www.ensembl.org, all other organisms). In most cases, the electronic tool BioMart (www.biomart.org) could be used in order to identify InterPro OR signatures within the sequences.

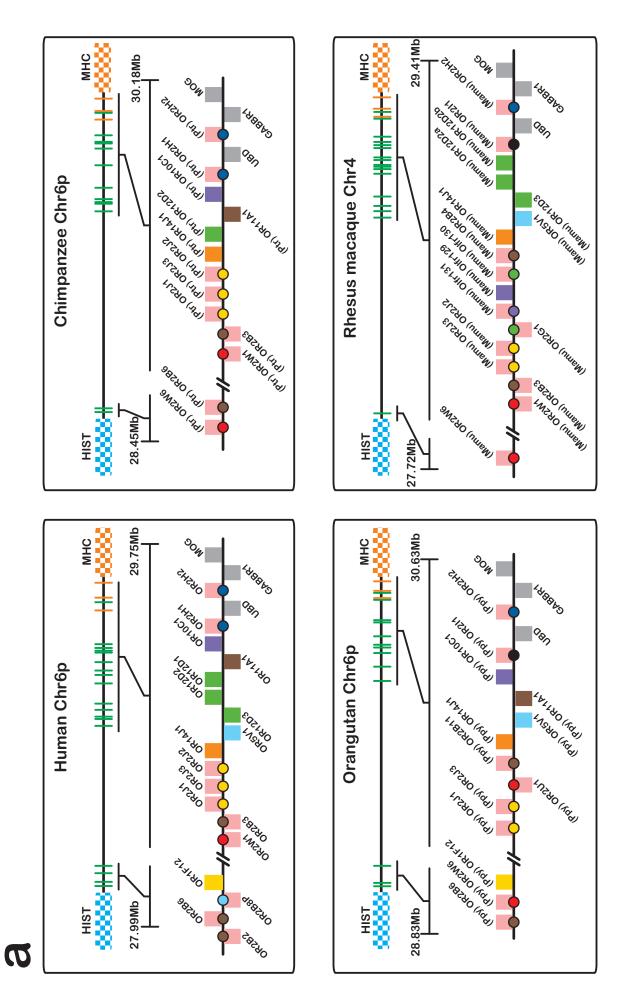
Primates (Fig. 4.2, panel a) exhibit two OR clusters telomeric to the MHC, with a large histone cluster flanking the distal OR cluster, and well conserved sub-organization of both clusters. The proximal OR cluster includes the framework genes gamma-aminobutyric acid (GABA) B receptor 1 (*GABBR1*), myelin oligodendrocyte glycoprotein (*MOG*) and ubiquitin D (*UBD*). As discussed in the article shown in chapter 4, apparently functional orthologs of the human gene *OR2W6P* are present within the MHC distal OR cluster, in the same position and transcriptional orientation. In the case of the macaque, the *OR2W6P* ortholog is the only locus that remained functional in that cluster. Orangutan is the only primate that seems to

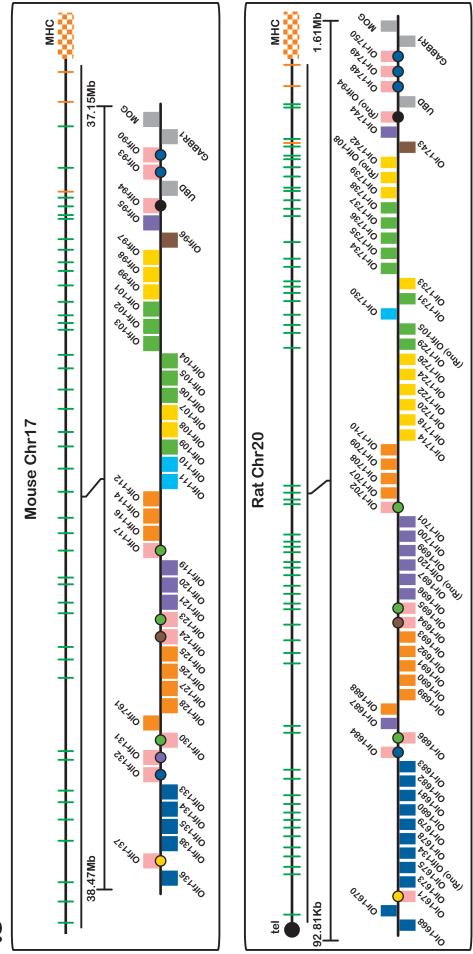
have "lost", through pseudogenization, all members of the OR12D family (discussed in chapters 2 and 3). Although the human loci *OR2B8P* and *OR12D1P* are widely considered as pseudogenes, they were included in Fig. 4.2 due to segregating functional alleles found in the study presented in the chapter 3.

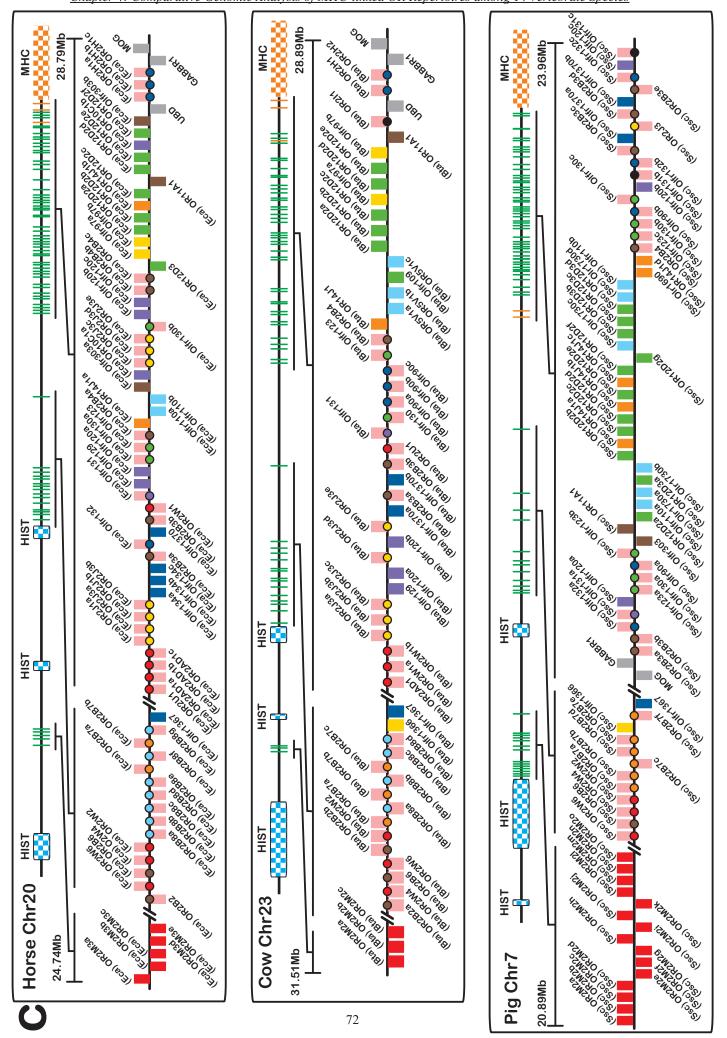
Rodents (mouse and rat, Fig. 4.2, panel b) exhibit a single OR cluster telomeric to the MHC, homologous to the centromeric MHC-linked OR cluster of primates. In both organisms, the homologous histone clusters are located on other chromosomes, which possess a syntenic region harbouring OR loci that are evolutionarily related to those of the telomeric OR cluster on human Chr6p. The basic organization is remarkably conserved between the two murine species, which have, as compared to the other organisms, the number of loci being homologous to the human families OR2N1, OR14J, OR1F and OR10C strongly expanded. The apparently obligatory framework genes are also present, close to the MHC.

In comparison to primates, ungulates (horse, cow and pig, Fig. 4.2, panel c) were found to have a third cluster of MHC-linked OR, with all loci being similar to human gene *OR2M3* (which is harboured within another large OR cluster on human Chr. 1q44). The histone genes of ungulates are split in three relatively short clusters, which have conserved positions between horse and cow, but not in pig. Another peculiarity of *Sus scrofa* refers to the MHC-proximal OR cluster: horse and cow have the three framework genes close to the MHC, whereas the pig has them neighbouring the telomeric side of the same OR cluster, in opposite transcriptional direction. This fact, as well as the positions and transcriptional orientations of the pig orthologs of *OR2J3* and neighbours, are suggestive of a chromosomal inversion that has probably taken place after the divergence of pigs from the ancestral ungulate.

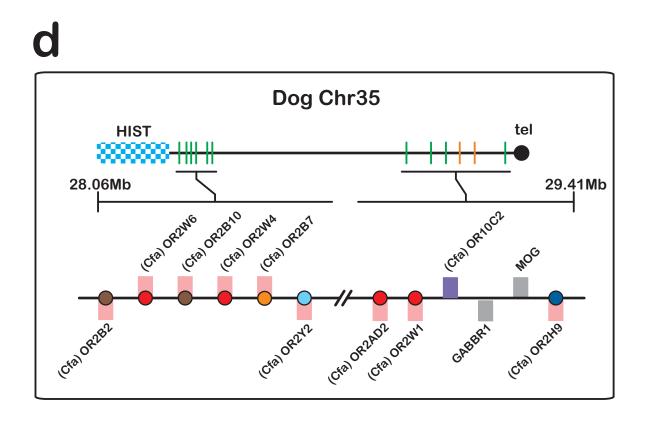
Carnivores (cat and dog, Fig. 4.2, panel d) were the only vertebrates in this analysis not found to have OR linked to the MHC, but only to the MHC framework genes *GABBR1* and *MOG*. As discussed elsewhere [Yuhki et al., 2007], a chromosomal break between the MHC and OR seems to have taken place before the evolutionary split of canine and feline groups. In both cases, the OR clusters are very close to the telomeres of ChrB2 (cat) and Chr35 (dog), and a large histone cluster is present linked to the OR clusters. Apart from chicken, these carnivores are so far the only vertebrates known to lack MHC-linked OR genes.

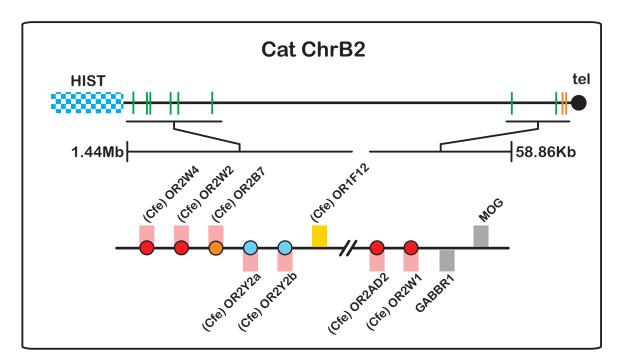

Opossum, the only marsupial that could be studied (Fig. 4.2, panel e), presents two relatively distant MHC-linked OR clusters, with the MHC-distal cluster harbouring an interspersed

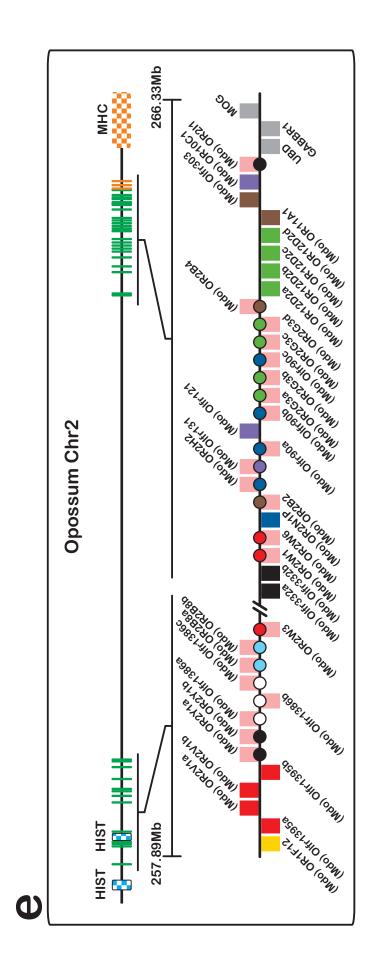

histone cluster. Similarly to ungulates, the opossum possesses also OR that cluster with members of the OR2M subfamily (Fig. 4.1) within the MHC-distal cluster. The framework genes are present in the MHC-proximal OR cluster. This species lacks loci of some gene families present in almost all other mammals (as OR5V and OR14J). On the other hand, the opossum is so far the only species in which homologs of the mouse Olfr1386 are MHC-linked. In all other organisms, including the mouse, this gene is not linked to the MHC.

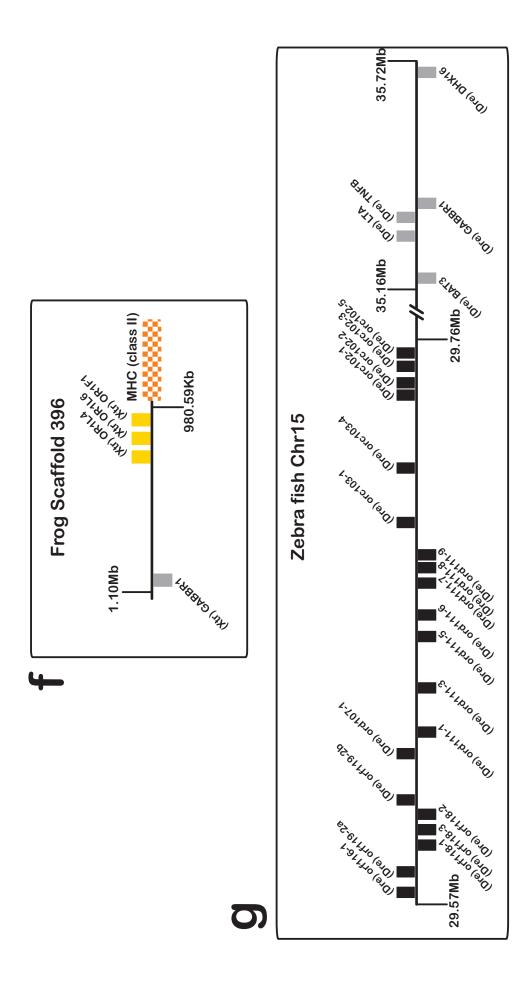

The genomic assembly of the frog (Fig. 4.2, panel f) is still incomplete for the MHC region and its vicinities. However, at least part of the MHC class II, three OR genes with sequence similarity to human *OR1F12*, and the framework gene *GABBR1* were confirmed to be linked so far, in a segment provisionally called "scaffold 396". It remains unclear whether further OR, framework or MHC loci are linked to this region.

Although all terrestrial vertebrates analyzed are characterized by MHC-linked OR loci belonging to a defined subgroup of families (Fig. 4.2, panels a to f), this is different in the only teleost included in the analysis: in the zebra fish, a distinct group of OR are linked to genes that in mammals are part of the MHC class I and III regions (Fig. 4.2, panel g).


Figure 4.2 (next six pages): Gene maps of the MHC-linked OR genes in 14 vertebrates grouped in seven taxa: primates (a), rodentia (b), ungulata (c), carnivora (d), marsupialia (e), amphibia (f) and teleostei (g). Within each species map, an overview of the region is given above and a detailed view is given below. In the overview, the MHC complex and histone clusters are shown when present (in orange and blue checked boxes, respectively), as well as the relative positions of each OR gene (green vertical ticks) and selected framework genes (orange vertical ticks). The names of each OR locus are depicted in the detailed view below, where only human, mouse, rat and zebra fish have widely accepted nomenclatures for these loci, and have the official gene symbols shown. For all other species, I assigned a name for each locus based on sequence similarity to known genes, having the human and the mouse genomes as references. A gene was considered homolog of the human or mouse locus with which its amino acid sequence had the highest identity, considering 75% identity as a minimum threshold. In these cases, the gene designation of the locus is preceded by the species code, and has an additional letter in cases of multiple homologs ("Bta OR2M2a" for instance, meaning the Bos taurus homolog of human OR2M2, fist copy). The colours of the boxes correspond to the clustering of the respective amino acid sequence in the phylogenetic tree (Fig. 4.1), and these are placed above or below the base line in order to indicate transcriptional orientation to the right or to the left, respectively. MHC framework genes are depicted in grey.







20.

5. Transmission Distortion in the Human Genome

In this chapter, I will present three manuscripts that describe the work performed focusing the phenomenon of allelic transmission distortion in humans. While two of them (5.1 and 5.2) address the TD problematic in phenomenon itself both in publicly available and in independently sampled populations, the third manuscript (5.3) addresses a technical problem associated with one of the most important online resources for human sequence variation today: the international HapMap project.

5.1. Transmission Distortion in the Human Chromosome 6p

5.1.1. Summary

The fact that the mouse t haplotypes are under extreme transmission distortion (TD, a departure from Mendel's law of independent segregation of alleles in a given heterozygous locus or region) affect a region syntenic to large parts of the short arm human chromosome 6 (Chr6p) – including the HLA complex and linked olfactory receptors – led us to investigate the same phenomenon in the populations genotyped through the international haplotype mapping consortium (HapMap). Beyond the 180 founder haplotypes of the CEU population assessed for the study described on chapter 2, the HapMap had, at that time, SNP data from 60 family trios (father-mother-adult child) available - 30 from the CEU and 30 from the YRI population. The study presented in the following article aimed at testing, in silico, the possibility that alleles of SNPs on Chr6p could be under TD. Both OR clusters and the MHC were found to segregate conforming to Mendelian expectation. However, a centromeric region of Chr6p harbouring, among others, the transcription-factor encoding locus RUNX2 was found to be under strong TD. Besides of discussing the importance of TD studies in healthy cohorts, and of giving examples of studies that could be biased because TD was not considered, the article describes a way to use linkage disequilibrium data in order to choose subsets of SNPs carrying haplotypic information and thus circumvent the statistical problem of multiple testing.

One additional result of this work concerns the data resource property of the international HapMap project. Scientists world-wide use the HapMap as a guide for study design and

interpretation, as an overview of genomic diversity can be interactively browsed by the user through the internet. The results of the following work were compiled in a code file (Supplemental File S3) that can be uploaded by readers into the HapMap genome browser and viewed within the genomic context. This is a first step towards a future genome-wide TD map, which should ideally be available for browsing by HapMap users investigating a genomic region. As we point out in the paper, TD is a feature that has to be taken into account during interpretation of results from phenotype association studies. In this sense, the ability to check, through an internet browser, if one given region of interest shows evidence of TD or not, would be extremely helpful.

5.1.2. Publication

Santos PS, Höhne J, Schlattmann P, König IR, Ziegler A, Uchanska-Ziegler B, Ziegler A (2009): Assessment of transmission distortion on chromosome 6p in healthy individuals using tagSNPs. European Journal of Human Genetics 17:1182-1189

DOI:10.1038/ejhg.2009.16

Pages 78-90

5.2. Transmission Distortion in Southern Brazilian Families 5.2.1. Summary

The work described in this chapter aimed at verifying, with a larger and independent cohort, the results obtained with the TD assessment of Chr6p using the HapMap families from the CEU and YRI populations (see 5.1). Even though results of that study were statistically significant, the fact that TD was observed among CEU but not among YRI trios left several questions open. Is TD an ethnicity-dependent feature? Is the YRI cohort an exception to the rule? Or is the TD observed just an artefact resulting from sample stratification within the CEU sample of families and inflated by linkage disequilibrium in the S-M-R region? The study shown in this section aimed at answering these questions. Genomic DNA from 239 individuals from 141 family trios from Curitiba, Southern Brazil, were obtained through a cooperation with a Brazilian immunogenetics laboratory that recruits volunteer bone marrow donors, which, in some cases, concur in participating in population genetics studies like the one presented here. All individuals were genotyped for SNPs covering the S-M-R region. An additional genome-wide search for SNPs showing evidence of TD, based on criteria from the International HapMap project was performed as well. The results of the first study (Section 5.1) were confirmed in Southern Brazilian trios, and TD could be established as a general feature of the S-M-R region among Caucasian populations. However, TD was not found for other SNPs in the genome, although suggestive results were obtained for the follistatin-like 1 (FSTL1) locus on chromosome 2.

5.2.2. Manuscript

Santos PS, Höhne J, Schlattmann P, Poerner F, Bicalho MG, Ziegler A, Uchanska-Ziegler B: Presence of Transmission Distortion on Human Chromosome 6p Revealed by SNP Genotyping of Southern Brazilian Families. Submitted.

Pages 92-112

Presence of Transmission Distortion on Human Chromosome 6p Revealed

by SNP Genotyping of Southern Brazilian Families

Pablo Sandro Carvalho Santos^{1,4}, Johannes Höhne^{2,4}, Peter Schlattmann², Fabiana Poerner³, Maria da Graça Bicalho³, Andreas Ziegler¹, and Barbara Uchanska-Ziegler¹

¹Institut für Immungenetik and ²Institut für Biometrie und klinische Epidemiologie, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany; ³LIGH/UFPR: Laboratório de Imunogenética e Histocompatibilidade, Departamento de Genética da Universidade Federal do Paraná, Curitiba, Brazil

⁴These authors contributed equally to this work.

E-mail addresses:

PSCS: pablo.santos@charite.de, JH: johannes.hoehne@charite.de, PS: peter.schlattmann@charite.de, FP: fpoerner11@gmail.com, MGB: ligh@ufpr.br, AZ: andreas.ziegler@charite.de, BU-Z: bziegler@charite.de

Corresponding author:

Andreas Ziegler, Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany. Tel: +49-30-450 564731, Fax:+49-30-450 564920, E-mail: andreas.ziegler@charite.de

Running Head: Transmission Distortion in Chr6p among Southern Brazilian Families

Abstract

Background. Transmission distortion (TD) is a statistically significant violation of Mendel's expected 1:1 allelic transmission ratio from heterozygous parents to their offspring. We have previously reported evidence for TD of single nucleotide polymorphisms (SNPs) within human chromosome 6p around the loci *SUPT3H, MIR586* and *RUNX2* (*S-M-R* region) among 30 HapMap family trios of European ancestry through a systematic *in silico* investigation. Several questions however, regarding the relatively small sample size, the differences between investigated populations, the haplotype phasing and the possibility of genotyping errors remained unanswered.

Results. We now report a search for TD in a fully independent cohort of 141 Southern Brazilian family trios of predominantly European ancestry by SNP genotyping. We primarily focused on the *S-M-R* region, but performed, in addition, a genome-wide search within the 30 CEU trios for markers for which paternal and maternal TD were reciprocally compensated within each family trio. The over four-fold increased sample size allowed us to dispense with the use of software-based haplotype phasing, and thus consider undisputable transmissions only, without losing statistical power. Strong evidence of TD however, was found only for the *S-M-R* region.

Conclusions. Although it still remains enigmatic why TD is present, and how a considerable degree of heterozygosity is retained in the corresponding loci, TD of the *S-M-R* region is clearly a phenomenon present in the general, "unaffected" population. As a consequence, TD has to be taken into account when assessing the outcome of linkage studies, especially in the case of the intensively investigated *RUNX2* locus.

Background

Transmission Distortion (TD) refers to the contravention of Mendel's law of independent assortment of characteristics. The best known example of TD, first described over 70 years ago, concerns the mouse t haplotypes, which are an extreme – yet not completely understood – example of distorted segregation of large segments of mouse chromosome 17. ¹ In the present study, we will refer to TD in a broad sense, denoting a statistically significant deviation from the generally expected 1:1 transmission ratio of alleles from heterozygous parents to their offspring, without regard to its molecular causes or mechanisms.

TD has already been described for different loci in many species, ^{1–4} including humans. ^{5–7} In humans, TD has traditionally been investigated among families selected for different diseases or phenotypic traits, but the focus of these studies has recently been extended also to families without a disease phenotype. ^{5,8–14} TD is not only interesting as a biological phenomenon, but the detailed identification of loci under TD in the general, healthy population, is a requirement for the correct interpretation of linkage and association studies based on allelic transmission within families. If ignored, the presence of TD can introduce serious bias into such studies. ^{5,9,12,15,16}

We recently reported evidence of TD in a region of the short arm of human chromosome 6 (Chr6p) harboring three genes: the microRNA locus MIR586 and the two transcription factorencoding *SUPT3H* and *RUNX2*.¹⁴ The close physical linkage of these two transcription factor loci is apparently an extreme case of phylogenetic conservation, which can be observed not only in all mammals, birds and reptiles studied so far, ¹⁷ but also amphibians, ¹⁸ fish, ¹⁹ and even in the demosponge Amphimedon queenslandica, indicating the existence of linkage between SUPT3H and RUNX2 for at least 700 million years.²⁰ Whereas little information is currently available for MIR586 and SUPT3H, this is not the case for RUNX2. The protein encoded by this gene is a master transcription factor crucially related to bone, cartilage and tooth morphogenesis.^{21–24} It was also shown to be expressed in non-skeletal tissues, ²⁵ and to be associated with many central processes such as cell growth, determination of cell fate, epigenetic regulation, ^{26,27} and hematopoiesis. ^{28,29} A recent query to the STRING database vielded 119 human proteins as functional partners of Runx2, with high confidence prediction. ³⁰ Additionally, its role on clinical conditions as osteoporosis, ^{31,32} cancers of breast, ³³ prostate, ³⁴ bone, ³⁵ and lymphoid tissues ^{36,37} makes Runx2 a promising target also for therapeutic interventions. ³⁸ It seems therefore essential to assess the possibility that the linkage disequilibrium (LD) block around *RUNX2*, *MIR586* and *SUPT3H* (the "*S-M-R* region") is under TD in the general, healthy population. Likewise, since TD in this chromosomal segment appears to be an ethnicity-dependent phenomenon, ¹⁴ an investigation of trios belonging to further ethnic groups is desirable.

The main limitation of many investigations addressing TD – including our own previous analysis ¹⁴ – was the small number of trios, and consequently the reduced statistical power. In the present investigation we analyzed the occurrence of TD in a sample of family trios over four times as large as previously. These trios belong to a completely independent population which is, however, ethnically related to the CEU sample. Additionally, we investigated whether it would be possible to detect TD among single nucleotide polymorphisms (SNPs) from the International HapMap Project using a group of criteria that considered not only a sex-compensatory version of the transmission/disequilibrium test (TDT), ³⁹ but also the LD shape of the respective region, and the number of SNPs involved. Following this rationale, we performed a genome-wide search for markers fulfilling those criteria, and genotyped a second group of SNPs in the larger, independent cohort mentioned above, looking for evidence of TD.

Results and Discussion

The analysis of SNPs from the *S-M-R* region allowed us to assess the existence of TD for that region in the Brazilian population. Considering only Euro-Brazilian trios (Fig. 1), TD was observed for rs12530016 and rs2038765 (parent-unspecific p-value = 0.0052 and 0.0086 respectively). While mothers and fathers seem to equally contribute to the effect observed for rs2038765, this is not the case for rs12530016. For this marker, mothers are driving the observed distortion (mother-specific p-value = 0.0236). The same analysis, considering all analyzed trios, is depicted in figure 2. TD is still observed for rs2038765 (parent-unspecific p-value = 0.024), but is only marginal for rs12530016 (parent-unspecific p-value = 0.0347).

Regarding the sex-compensatory analysis, the only locus with a marker showing relatively strong TD was rs4676781, in the follistatin-like 1 (*FSTL1*) locus. When only Euro-Brazilians were considered, the parent-unspecific p-value was 0.0072, and the mother specific p-value was 0.0186, whereas for all analyzed trios the parent-unspecific p-value was 0.0085, and the

mother specific p-value was 0.0133. However, these results did not withstand correction for multiple comparisons (Bonferroni).

Although all markers were genotyped together, the present study addressed two independent problems: (i) Is TD present in the *S-M-R* region of an unrelated population? and (ii) Are loci picked out of a genome-wide search from the HapMap CEU population according to a series of criteria including TD, sex-compensatory effects and LD, under TD in an independent population? While we could demonstrate the presence of TD in the S-M-R region also among Brazilian trios, we did not find unequivocal evidence for TD with regard to further loci.

The six markers analyzed for the S-M-R region were chosen as tagSNPs for a genomic segment spanning ~ 1.7 Mb, for which we had previously obtained evidence supporting the existence of TD in the CEU HapMap population.¹⁴ Two of these SNPs showed evidence of TD: one telomeric (rs12530016), in high LD with markers mapping to the SUPT3H and MIR586 loci, and one central SNP (rs2038765), in complete LD with at least 62 markers distributed over SUPT3H and the telomeric half of RUNX2, which is consistent with our previous findings. A list of SNPs tagged by rs12530016 and rs2038765, as well as a visual representation of their relative positions, are given in figure 3 and table 2. The sexes of the parents responsible for the observed TD seem to imply a difference between our present findings and those from the HapMap: while TD in the CEU population was largely a paternal effect, the distortion observed in the Brazilian population is an added effect from both sexes, even with mothers of European ancestry dominating in the case of rs12530016 (Fig. 2). The only explanation for this discrepancy which we regard as likely is the lack of statistical power in the previous HapMap analyses, ¹⁴ in which only thirty trios had been tested. Moreover, the relatively high number of trios available for the present study allowed us to dispense software-based phasing of haplotypes, which was necessary in the HapMap trios and is a possible source of bias. This means that we considered only undisputable transmissions (e.g. in the case of a heterozygous father and a homozygous mother) yet keeping high statistical power.

With the second analysis, we addressed a problem emerging from a genome-wide search for loci in the HapMap CEU population possessing several features (see methods) that can be taken as evidence of TD. Although some SNPs seemed to show evidence of TD (in particular, the loci *FSTL1*, neuroligin 1 (*NLGN1*), huntingtin (*HTT*) and the zinc finger protein 667 (*ZNF667*) deserve attention in follow-up studies), none withstood correction for multiple

testing. Having genotyped 48 markers, TD in any given SNP would have to yield a p-value lower than 10⁻³ in order to "survive" correction. Therefore, we cannot exclude the possibility that results are due to chance alone, even in suggestive cases as *FSTL1*: as in the case of the product of the *RUNX2* gene, the FSTL1 protein is involved with carcinogenesis, ⁴⁵ and is predicted to interact with the bone morphogenetic protein 2 and the noggin precursor, ³⁰ both essential for several developmental processes. Additionally, the *FSTL1* locus is associated with two sharp LD blocks in all populations (www.hapmap.org).

Whereas for most families of German, Polish, Ukrainian and Japanese ancestries the immigration to Southern Brazil is a relatively recent event (around 100 years ago), this is different for families with African, Portuguese, Italian and, of course, Amerindian ancestries. ⁴¹ A certain degree of ethnic admixture is therefore expected to be present in many families assessed here (Euro-Brazilians or not). Even so, genotyping of the *S-M-R* region still revealed evidence of TD for rs2038765 among all Brazilian families (Fig. 1, 75% of Euro-Brazilians). As expected, the restriction of the sample only to Euro-Brazilians (Fig. 2) yielded a picture more similar to the HapMap CEU population, with the emergence of one additional TD signal due to rs12530016. The fact that we are still able to detect TD, despite the assumed genetic admixture, reinforces its presence.

After performance of the genome-wide search for SNPs under TD that supported our sexcompensatory analysis, the HapMap entered a new phase with the release of HapMap3. This was an extreme improvement compared to HapMap2, as seven new populations were added to the project, and a new set of markers was genotyped, making inter-population comparisons easier to perform. However, it seems that many markers under TD have been preferentially excluded from the genotyping plates of HapMap3, possibly because of irregularities in Hardy-Weinberg equilibrium. As a result, TD is hardly detectable in HapMap3. Even so, mothers of a Maasai (MKK) population still show evidence of TD in the *S-M-R* region, while (HapMap3) CEU mothers exhibit strong evidence of TD on the rs4676781 marker within the *FSTL1* locus (results not shown).

The present study further substantiates the evidence that the *S-M-R* region is under TD not only in disease families, ⁷ but also in healthy individuals. ¹⁴ It remains unclear, however, what forces keep this region in a heterozygous state, and also what the biological significance of this phenomenon might be. As TD has sometimes been shown to relate to genotypes of maternal or paternal grandparents, ^{8,10} we believe that this kind of assessment is desirable for

future studies that address TD within the *S-M-R* region. The 1000 genomes project (<u>www.1000genomes.org</u>), once concluded for family trios, is expected to shed new light on these questions. Whereas a whole-genome search for loci under TD is expected to face strong statistical obstacles due to the principal problem of multiple testing (see Santos et *al.*¹⁴ for an extended discussion), the *S-M-R* region undoubtedly represents a set of genetic markers that are suitable to investigate not only the relationship between TD and LD, but also the reasons for continued TD despite the apparent absence of sex-compensatory effects.

Subjects and Methods

Study population

Our cohort was composed of 141 Southern Brazilian Family trios, from 49 unrelated families (49 mothers, 49 fathers and 141 children, totaling 239 individuals) with an average of 2.88 children per family. All subjects belonged to families recruited in the context of searching for compatible bone marrow donors for patients with a transplant indication. All family members were aged 18 or above, signed an informed consent allowing population studies and were residents of the city (or surroundings) of Curitiba, State of Paraná, Southern Brazil. Curitiba's ethnic composition is a result of immigration waves in the nineteenth Century from Europe (mainly from areas corresponding to today's Germany, Poland, Ukraine and Italy), as well as migration movements within Brazil (through which people of Portuguese, West African, Lebanese and Japanese ancestry settled in the region). ⁴⁰⁻⁴² All individuals were asked to reveal information about their ethnic origin and, accordingly, 36 families were of European origin (Portuguese, Italian, German or Polish backgrounds). The other families were of African (3), Japanese (1), Amerindian (3), or unknown (6) ancestry. There was no conflicting self-classification within family members. We excluded subjects for which the genotyping of more than 50% of markers failed, as well as those showing more than 1 Mendelian error (pointing at the possibility of an individual not being a biological child of both parents in the trio), which led to the exclusion of 19 individuals (11 for the former and 8 for the latter reason). DNA was extracted from 250 µl of fresh buffy coat by a salting out method.⁴³

Candidate SNPs

In order to assess the Brazilian sample for TD in the *S-M-R* region, we selected 10 SNPs from this segment for genotyping. Markers were selected as tagSNPs, and covered the area reported to be under TD ¹⁴: the entire reading frames of *SUPT3H* and *MIR586*, as well as the telomeric half of *RUNX2*. The tagging procedure was performed as previously described. ¹⁴ Additionally, we selected a second group of SNPs from throughout the genome, in order to shed light on a further problem: if a locus is under TD, one would expect it to be within a region of strong and well defined LD (strong LD block with sharp borders), and the reciprocal compensation of paternal and maternal TD could be an explanation why loci under TD remain heterozygous in a population. With this in mind, we performed a genome-wide search for markers under TD in the HapMap CEU population (results not shown) fulfilling the mentioned criteria, and selected fifty SNPs, from which twelve were coding for a non-synonymous amino acid exchange, and five had been reported as transcript-specific. ⁴⁴

All candidate SNPs were genotyped using the SNPlex[®] Genotyping System (experiments outsourced to GeneserviceTM, <u>www.geneservice.co.uk</u>). After genotyping, SNPs had to fulfill the following criteria in order to be kept for further analysis: less than two Mendelian errors, minor allele frequency of at least 10%, lack of complete LD with a neighboring SNP (in order to avoid redundancy), and successful genotyping in at least 50% of individuals. 49 SNPs (six from the *S-M-R* region and 43 from the genome-wide approach) passed all inclusion criteria and were considered further. Since only six SNPs (that do not segregate independently from each other) were tested in the first part of the study, p-values were not corrected for multiple testing. The second set of SNPs consisted of 43 SNPs, mostly independent from each other, and these tests underwent therefore statistical multiple testing correction. A list of the 49 SNP IDs with other details is given in table 1.

Statistical analyses

To investigate the parental specific TD in the *S-M-R* region, we computed the standard TDT ³⁹ for each SNP 3 times: We tested the father-specific, the mother-specific and the parentunspecific components. Under the null hypothesis (Mendelian transmission, $\theta = 0.5$) the TDT statistic follows a χ_1^2 distribution. The test statistic is computed in analogy to the McNemar test with $(b-c)^2 / (b+c)$, where *b* and *c* are given in the contingency table described by Spielman and colleagues. ³⁹ A modification of this test was used to quantify sexcompensatory effects in the genome-wide approach of this study. Sex-compensatory TD occurs if allelic transmission from both the father and the mother are non-Mendelian and compensate each other. The test statistic is computed with

$$\frac{((b_F + c_M) - (c_F + b_M))^2}{b_F + c_F + b_M + c_M}$$

Thereby we test if $\theta_F < 0.5 < \theta_M$ or $\theta_M < 0.5 < \theta_F$. Indices stand for father ('F') and mother ('M'). The derivation of this test is shown in the appendix.

List of abbreviations

CEU: Utah residents with ancestry from Northern and Western Europe (HapMap population), LD: linkage disequilibrium, MKK: Maasai in Kinyawa, Kenya (HapMap population), nsyn: non synonymous, *S-M-R* region: region on chromosome 6p including the loci *SUPT3H*, *MIR586* and *RUNX2*, SNP: single nucleotide polymorphism, TD: transmission distortion, TDT: transmission/disequilibrium test, trans: transcript specific.

Acknowledgements

We are grateful to C. Backhaus for excellent technical assistance. The Berliner Krebsgesellschaft e.V. supported this study (*Ernst-von-Leyden* fellowship to PSCS and a grant to BU-Z).

Conflict of interest

The authors declare that no competing interests exist.

Appendix

For a biallelic marker with alleles X and Y, heterozygote fathers transmit X more likely and heterozygous mothers transmit Y more likely – or vice versa. According to the contingency table described by Spielman and colleagues, ³⁹ b_F specifies the number of heterozygous fathers that transmit X, and c_F heterozygous fathers transmit Y. The same holds for mothers with b_M and c_M .

In terms of the Chi-square test, we have two observations:

$$O_1: b_F + c_M$$
$$O_2: c_F + b_M$$

If there is no sex-compensatory effect, we expect to observe

$$E_1 = E_2 = \frac{b_F + c_F + b_M + c_M}{2}$$

We can apply the χ^2 test

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

$$= \frac{\left(b_{F}+c_{M}-\frac{b_{F}+c_{F}+b_{M}+c_{M}}{2}\right)^{2}}{\frac{b_{F}+c_{F}+b_{M}+c_{M}}{2}} + \frac{\left(c_{F}+b_{M}-\frac{b_{F}+c_{F}+b_{M}+c_{M}}{2}\right)^{2}}{\frac{b_{F}+c_{F}+b_{M}+c_{M}}{2}}$$
$$= \frac{\left((b_{F}+c_{M})-(c_{F}+b_{M})\right)^{2}}{b_{F}+c_{F}+b_{M}+c_{M}}$$

Since we have two observations, the test statistic follows a χ^2 distribution with one degree of freedom.

.

References

- 1. Lyon MF (2003). Transmission ratio distortion in mice. Annu Rev Genet 37: 393-408.
- 2. Lyttle TW (1993). Cheaters sometimes prosper: distortion of Mendelian segregation by meiotic drive. Trends Genet. 9(6):205-210.
- 3. Wu G, Hao L, Han Z, Gao S, Latham KE, de Villena FP, Sapienza C (2005). Maternal transmission ratio distortion at the mouse Om locus results from meiotic drive at the second meiotic division. Genetics. 170(1):327-334.
- Aparicio JM, Ortego J, Calabuig G, Cordero PJ (2009). Evidence of subtle departures from Mendelian segregation in a wild lesser kestrel (*Falco naumanni*) population. Heredity. Article in press.
- Eaves IA, Bennett ST, Forster P, Ferber KM, Ehrmann D, Wilson AJ, Bhattacharyya S, Ziegler AG, Brinkmann B, Todd JA (1999). Transmission ratio distortion at the INS-IGF2 VNTR. Nat Genet. 22(4):324-325.
- Becker T, Jansen S, Tamm S, Wienker TF, Tümmler B, Stanke F (2007). Transmission ratio distortion and maternal effects confound the analysis of modulators of cystic fibrosis disease severity on 19q13. Eur J Hum Genet. 15(7):774-778.
- Sull JW, Liang KY, Hetmanski JB, Fallin MD, Ingersoll RG, Park J, Wu-Chou YH, Chen PK, Chong SS, Cheah F, Yeow V, Park BY, Jee SH, Jabs EW, Redett R, Jung E, Ruczinski I, Scott AF, Beaty TH (2008). Differential parental transmission of markers in RUNX2 among cleft case-parent trios from four populations. Genet Epidemiol. 32(6):505-512.
- Naumova AK, Leppert M, Barker DF, Morgan K, Sapienza C (1998). Parental origindependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet. 62(6):1493-1499.
- Paterson AD, Petronis A (1999). Transmission ratio distortion in females on chromosome 10p11-p15. Am J Med Genet. 88(6):657-661.
- Naumova AK, Greenwood CM, Morgan K (2001). Imprinting and deviation from Mendelian transmission ratios. Genome. 44(3):311-320.
- 11. Zöllner S, Wen X, Hanchard NA, Herbert MA, Ober C, Pritchard JK (2004). Evidence for extensive transmission distortion in the human genome. Am J Hum Genet. 74(1):62-72.
- 12. Friedrichs F, Brescianini S, Annese V, Latiano A, Berger K, Kugathasan S, Broeckel U, Nikolaus S, Daly MJ, Schreiber S, Rioux JD, Stoll M (2006). Evidence of transmission

ratio distortion of DLG5 R30Q variant in general and implication of an association with Crohn disease in men. Hum Genet. 119(3):305-311.

- Hanchard N, Rockett K, Udalova I, Wilson J, Keating B, Koch O, Nijnik A, Diakite M, Herbert M, Kwiatkowski D (2006). An investigation of transmission ratio distortion in the central region of the human MHC. Genes Immun. 7(1):51-58.
- Santos PS, Höhne J, Schlattmann P, König IR, Ziegler A, Uchanska-Ziegler B, Ziegler A (2009). Assessment of transmission distortion on chromosome 6p in healthy individuals using tagSNPs. Eur J Hum Genet, 17(9):1182-1189.
- 15. Greenwood CM, Morgan K (2000). The impact of transmission-ratio distortion on allele sharing in affected sibling pairs. Am J Hum Genet. 66(6):2001-2004.
- Evans DM, Morris AP, Cardon LR, Sham PC (2006). A note on the power to detect transmission distortion in parent-child trios via the transmission disequilibrium test. Behav Genet. 36(6):947-950.
- 17. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009). Ensembl 2009. Nucleic Acids Res. 37(Database issue):D690-7.
- Bowes JB, Snyder KA, Segerdell E, Gibb R, Jarabek C, Noumen E, Pollet N, Vize PD (2008). Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Res. 36(Database issue):D761-7.
- 19. Glusman G, Kaur A, Hood L, Rowen L (2004). An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution. BMC Evol Biol. 4:43.
- Robertson AJ, Larroux C, Degnan BM, Coffman JA (2009). The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge. BMC Res Notes;2:59.
- 21. Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T (2002). Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet. 32(4):633-638.

- 22. Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM (2004). Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23(24):4315-4329.
- 23. Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M (2009). Runx2, osx, and dspp in tooth development. J Dent Res. 88(10):904-909.
- 24. Javed A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009). Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs. 189(1-4):133-137.
- 25. Jeong JH, Jin JS, Kim HN, Kang SM, Liu JC, Lengner CJ, Otto F, Mundlos S, Stein JL, van Wijnen AJ, Lian JB, Stein GS, Choi JY (2008). Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain. J Cell Physiol. 217(2):511-517.
- 26. Young DW, Hassan MQ, Pratap J, Galindo M, Zaidi SK, Lee SH, Yang X, Xie R, Javed A, Underwood JM, Furcinitti P, Imbalzano AN, Penman S, Nickerson JA, Montecino MA, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2007). Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature. 445(7126):442-446.
- 27. Young DW, Hassan MQ, Yang XQ, Galindo M, Javed A, Zaidi SK, Furcinitti P, Lapointe D, Montecino M, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2007). Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proc Natl Acad Sci USA. 104(9):3189-3194.
- 28. de Bruijn MF, Speck NA (2004). Core-binding factors in hematopoiesis and immune function. Oncogene. 24;23(24):4238-4248.
- 29. Okumura AJ, Peterson LF, Lo MC, Zhang DE (2007). Expression of AML/Runx and ETO/MTG family members during hematopoietic differentiation of embryonic stem cells. Exp Hematol. 35(6):978-988.
- 30. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009). STRING 8 a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37(Database issue):D412-6.
- Doecke JD, Day CJ, Stephens AS, Carter SL, van Daal A, Kotowicz MA, Nicholson GC, Morrison NA (2006). Association of functionally different RUNX2 P2 promoter alleles with BMD. J Bone Miner Res. (2):265-273.

- 32. Lee HJ, Koh JM, Hwang JY, Choi KY, Lee SH, Park EK, Kim TH, Han BG, Kim GS, Kim SY, Lee JY (2009). Association of a RUNX2 promoter polymorphism with bone mineral density in postmenopausal Korean women. Calcif Tissue Int. 84(6):439-445.
- 33. Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB, Stein GS, Gerstenfeld LC (2004). Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 64(13):4506-4513.
- 34. Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA, van Wijnen AJ, Stein JL, Languino LR, Altieri DC, Pratap J, Keller E, Stein GS, Lian JB (2009). Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. Article in press.
- 35. Sadikovic B, Yoshimoto M, Chilton-MacNeill S, Thorner P, Squire JA, Zielenska M (2009). Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet. 18(11):1962-1975.
- 36. Blyth K, Vaillant F, Hanlon L, Mackay N, Bell M, Jenkins A, Neil JC, Cameron ER (2006). Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res. 66(4):2195-2201.
- 37. Kuo YH, Zaidi SK, Gornostaeva S, Komori T, Stein GS, Castilla LH (2009). Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood. 113(14):3323-3332.
- 38. Chua CW, Chiu YT, Yuen HF, Chan KW, Man K, Wang X, Ling MT, Wong YC (2009). Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform. Clin Cancer Res. 15(13):4322-4335.
- 39. Spielman RS, McGinnis RE, Ewens WJ (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 52(3):506-516.
- 40. Probst CM, Bompeixe EP, Pereira NF, de O Dalalio MM, Visentainer JE, Tsuneto LT, Petzl-Erler ML (2000). HLA polymorphism and evaluation of European, African and Amerindian contribution to the White and Mulatto populations from Parana, Brazil. Human Biology, 72:597.
- Wachowicz, R. 2002. A História do Paraná. 10th edition. Imprensa Oficial do Paraná, Curitiba.

- Sens-Abuázar C, Santos PS, Bicalho MG, Petzl-Erler ML, Sperandio-Roxo V (2009). MHC microsatellites in a Southern Brazilian population. Int J Immunogenet, 36(5):269-274.
- 43. Lahiri DK and Nurnberger JI Jr (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 19(19):5444.
- 44. Kwan T, Benovoy D, Dias C, Gurd S, Provencher C, Beaulieu P, Hudson TJ, Sladek R, Majewski J (2008). Genome-wide analysis of transcript isoform variation in humans. Nat Genet, 40(2):225-231.
- 45. Chan QK, Ngan HY, Ip PP, Liu VW, Xue WC, Cheung AN (2009). Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis: a differential expression and functional analysis. Carcinogenesis. 30(1):114-121.

Table 1. List of the 49 analyzed SNPs, the loci or region they belong to, and the sums of transmission events of both alleles from heterozygous parents to their offspring. nsyn: non synonymous coding SNPs; trans: transcript specific SNPs. Region 1 includes loci *ARHGAP29* and *ABCD3*; region 2 includes loci *GHR* and *SEPP1*; region 3 includes loci *GDF9*, *UQCRQ*, *LEAP2*, and *AFF4*; region 4 includes loci *PLAC9* and *ANXA11*; and region 5 includes the loci *KIF21A* and *ABCD2*.

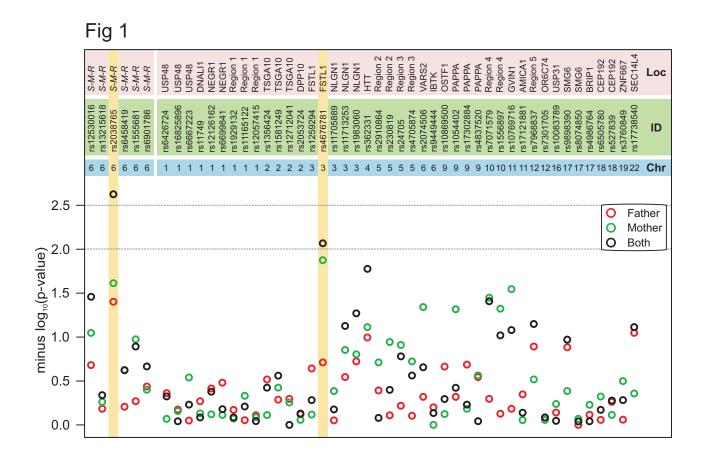
		S-M-R and	alysis		
	T	All Bra	azilians	Euro-B	razilians
SNP ID	Locus -	Fathers	Mothers	Fathers	Mothers
rs12530016	S-M-R	12:19	19:31	10:19	10:23
rs13215618	S-M-R	21:24	20:24	19:21	19:17
rs2038765	S-M-R	11:23	20:37	7:16	17:30
rs6458419	S-M-R	17:20	14:21	15:17	13:15
rs1555681	S-M-R	23:19	20:11	20:18	15:10
rs6901786	S-M-R	19:25	15:20	14:17	15:17
	(Genome-wide	approach		
SNP ID	-	All Brazilians		Euro-Brazilians	
	Locus -	Fathers	Mothers	Fathers	Mothers
rs6426724	USP48	23:18	15:14	13:15	11:9
rs16825896 (nsyn)	USP48	23:26	14:12	19:16	9:10
rs6667223	USP48	26:27	19:13	22:16	12:11
rs11749 (nsyn)	DNALII	19:23	19:17	11:17	15:12
rs12126162	NEGR1	19:14	22:20	15:12	16:16
rs6699841	NEGR1	16:22	24:22	14:16	23:19
rs1929132	Region 1	27:24	13:14	25:21	9:9
rs11165122	Region 1	24:23	10:7	20:19	9:7
rs12057415	ABCD3	24:26	10:9	21:22	10:8
rs1356424	TSGA10	20:14	25:23	16:11	21:18
rs1581249	TSGA10	21:17	26:20	13:11	23:17
rs12712041	TSGA10	16:20	25:21	13:13	22:19
rs2053724 (nsyn)	DPP10	22:20	21:20	16:15	15:17
rs1259294	FSTL1	18:26	23:21	14:23	17:19
rs4676781	FSTL1	15:23	9:23	13:22	7:19
rs11705889	NLGN1	25:24	16:21	24:23	12:16
rs11713253	NLGN1	24:32	18:28	21:24	14:22
rs1983060	NLGN1	28:19	30:20	25:16	26:14
rs362331 (nsyn)	HTT	28:17	21:11	20:14	18:10
rs2910864	Region 2	23:29	23:15	17:20	19:11
rs230819	Region 2	24:26	25:15	17:18	22:11
rs24705	Region 3	32:28	26:16	22:13	24:15
rs4705874	Region 3	28:26	28:19	19:12	26:18

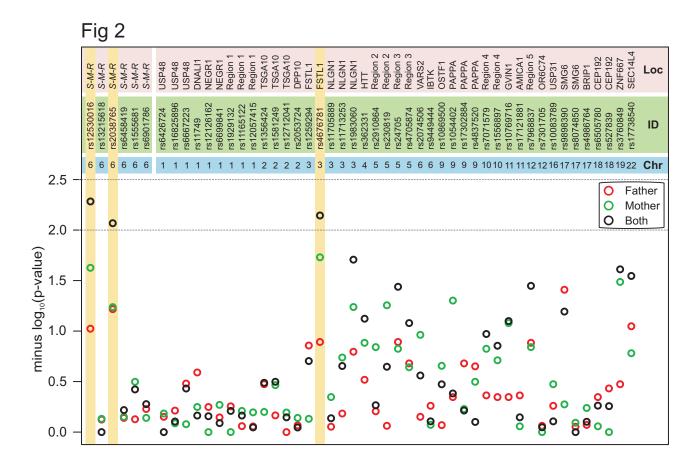
Chapter 5: Transmission Distortion in the Human Genome

rs2074506 (nsyn)	VARS2	5:3	4:12	4:3	4:10
rs9449444 (nsyn)	IBTK	18:21	19:19	11:14	14:13
rs10869500 (trans)	OSTF1	17:25	21:19	15:14	15:9
rs1054402	PAPPA	14:18	21:10	12:16	18:8
rs17302884	PAPPA	24:16	21:24	19:12	14:17
rs4837520	PAPPA	18:25	18:12	13:20	15:10
rs7071579	Region 4	20:16	37:21	15:11	24:15
rs1556897	Region 4	20:18	28:15	16:12	23:15
rs10769716 (nsyn)	GVIN1	24:21	21:9	16:12	18:9
rs17121881 (nsyn)	AMICA1	12:16	23:22	11:15	21:20
rs7968837	Region 5	22:13	20:14	18:10	19:11
rs7301705 (nsyn)	OR6C74	20:21	18:19	17:18	12:12
rs10083789 (nsyn)	USP31	17:15	13:16	14:11	11:16
rs9898390	SMG6	10:18	16:21	5:14	10:13
rs8074850	SMG6	28:28	14:15	23:24	9:8
rs4986764 (nsyn)	BRIP1	24:22	14:17	14:13	13:16
rs6505780 (trans)	CEP192	20:21	27:22	16:12	21:20
rs527839 (trans)	CEP192	24:20	24:22	18:13	20:20
rs3760849 (nsyn)	ZNF667	20:19	21:28	11:16	12:25
rs17738540 (nsyn)	SEC14L4	5:12	6:9	5:12	4:9

Table 2. List of markers tagged by each of the two SNPs found to be under TD amongSouthern Brazilian family trios (*rs2038765* and *rs12530016*).

SNPs tagged by	rs2038765	SNPs tagged by rs12530016		
Marker ID	Coordinate	Marker ID	Coordinate	
rs2023311	44786284	rs12530016	44974300	
rs12205657	44788593	rs13206526	44924159	
rs6924185	45125206	rs16869119	44922870	
rs11961316	45137576	rs3799972	44931251	
rs11970412	45145494	rs3799974	44932926	
rs2038765	45184472	rs3823252	44918396	
rs12198982	45185892	rs9296450	45061764	
rs12193720	45211340	rs9472414	45054484	
rs12209161	45212299			
rs10456542	45215557			
rs1324536	45224239			
rs12193812	45248739			
rs11965706	45249419			
rs17209636	45250495			
rs12206568	45260725			
rs12213735	45260826			
rs12198376	45261659			
rs10948212	45264911			
rs12205860	45265301			


rs10948213 45266493	
rs6919813 45267155	
rs6919998 45267267	
rs6919873 45267314	
rs6920046 45267409	
rs12191566 45267980	
rs12211519 45268508	
rs10456122 45271035	
rs17209678 45271579	
rs12212745 45274236	
rs10948214 45278444	
rs12193030 45283188	
rs2093900 45284661	
rs10456543 45286885	
rs12192890 45290412	
rs12206561 45290787	
rs17288250 45300000	
rs17288257 45301054	
rs6927213 45314261	
rs10456549 45333739	
rs12191262 45334994	
rs4443508 45343930	
rs10948220 45344632	
rs4400216 45345933	
rs4479922 45356349	
rs11964690 45366046	
rs10948223 45381899	
rs12191751 45390089	
rs17209741 45400416	
rs12201555 45402378	
rs12205523 45404596	
rs12201899 45406182	
rs10948226 45407152	
rs12199256 45411471	
rs17209769 45429183	
rs11966878 45436243	
rs12194628 45437354	
rs12203466 45438241	
rs10807321 45438952	
rs17288320 45446681	
rs12216308 45450283	
rs12210230 45452832	
rs17288327 45457855	


Figure Titles and Legends:

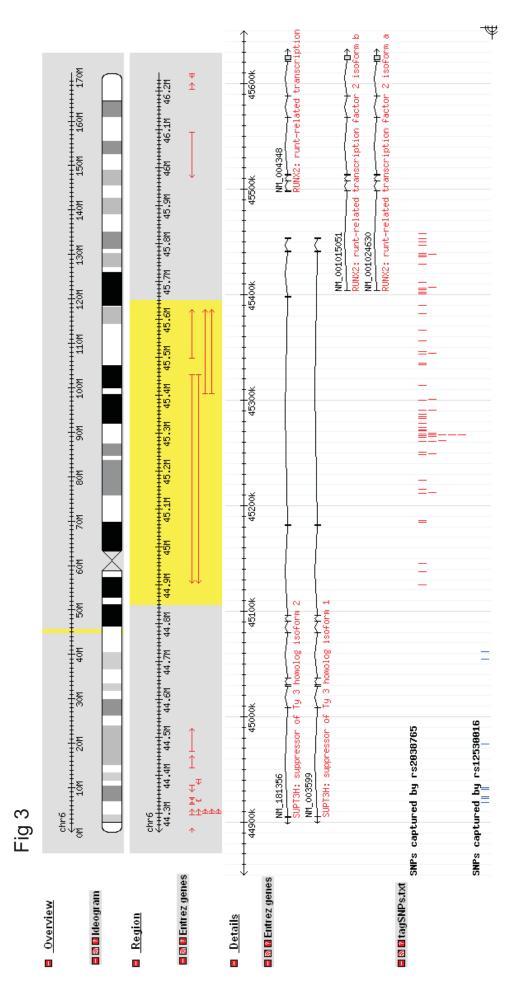

Figure 1. TD plot of the 49 genotyped SNPs among all Brazilian family trios analyzed in this study (N = 122). For each marker, the pink, green and blue bars contain information regarding the corresponding loci, rs number and chromosome, respectively. Yellow vertical bars are used to indicate those for which TD was found with a p-value below 10^{-2} , while two horizontal lines indicate p-value thresholds of 10^{-2} and $10^{-2.5}$. Green circles correspond to TD measured among fathers, red for mothers, while black circles indicate parent-unspecific TD. Regions 1 to 5 contain more than one locus, and their codes are given in table 1.

Figure 2. TD plot of the 49 genotyped SNPs among Euro-Brazilian family trios (N = 98). For each marker, the pink, green and blue bars contain information regarding the corresponding loci, rs number and chromosome, respectively. Yellow vertical bars are used to indicate those for which TD was found with a p-value below 10^{-2} , while two horizontal lines indicate p-value thresholds of 10^{-2} and $10^{-2.5}$. Green circles correspond to TD measured among fathers, red for mothers, while black circles indicate parent-unspecific TD. Regions 1 to 5 contain more than one locus, and their codes are given in table 1.

Figure 3. Screen shot of the HapMap genome browser displaying the positions of each group of tagged SNPs within the *S-M-R* region. Red ticks are used for SNPs tagged by rs2038765 and blue for those tagged by rs12530016. The reading frames of *SUPT3H* and *RUNX2* can be seen under the tagSNP tracks. Relative exon and intron positions of alternative transcripts, as well as transcriptional orientations are indicated.

6. Linkage Disequilibrium between Microsatellites and MHC loci

6.1. Summary

The HLA complex of a large number of individuals is routinely genotyped in forensic institutes and for tissue transplantation purposes. In these cases, a detailed knowledge of the LD patterns of the MHC in different human populations has not only a scientific or medical, yet also economic relevance. Because microsatellite markers are relatively easy (and also cheaper) to genotype than entire HLA alleles, a detailed knowledge of the LD profile between HLA alleles and microsatellites of the HLA complex seems very opportune. The study shown in the following article aimed at describing the LD patterns between three generally genotyped HLA loci (HLA-B, HLA-DQB1 and HLA-DRB1) and four known microsatellite markers harboured in the HLA complex. The results point at high confidence LD values for some allele combinations. While microsatellite genotyping cannot substitute direct MHC genotyping, it can clearly be used as an alternative to test repetitions in the case of incomplete genotyping or as a guide for ambiguity solving.

6.2. Publication

Sens-Abuázar C, Santos PS, Bicalho MG, Petzl-Erler ML, Sperandio-Roxo V (2009): MHC microsatellites in a Southern Brazilian population. International Journal of Immunogenetics 36:269-274.

DOI:10.1111/j.1744-313X.2009.00864.x

Pages 114-119

7. Final Discussion and Conclusions

Apart from the results presented in chapter 4, all other analyses are part of manuscripts which have either been published or are currently under review. For this reason, the results of the analyses provided in chapters 2, 3, 5 and 6 have already been discussed within the manuscripts and will not be repeated here. In this chapter, I aim to outline the implications of the results from this thesis, and discuss those from chapter 4.

7.1. MHC-linked Olfactory Receptor Genes

All three studies addressing MHC-linked OR genes in this thesis (Chapters 2, 3 and 4) take advantage of online resources in order to complete the analyzed data and serve their argumentation. While the comparison of MHC-linked OR genes among different species (Chapter 4) was performed exclusively based on publicly available data, the two other studies focusing on these genes in humans were based on a combination of the use of electronic data (HapMap genotypings for chapter 2 and MHCHP resequencing for chapter 3) with laboratory-generated data (genotyping of Hungarian cohort in chapter 2, and sequencing of ten cell lines in chapter 3).

The main result of the study shown in chapter 2 was the linkage of a polymorphism in an OR gene to smoking, which is, to my knowledge, the first time a human behaviour was associated to an OR gene. One amino acid exchange on the *OR12D3* gene – found to be in strong LD with the ancient HLA haplotype HLA A1-B8-DR3 – was found to correlate with smoking habits in Hungarian women. This finding has possible implications for the early identification of individuals with increased risk to become smokers. However, the ethical aspects of such testing, and the risk that people carrying the relevant allele become subject of genetic discrimination (in cases of health or life insurances for instance), are apparently still unresolved [Mould et al., 2003; Hall et al., 2008; Aymé et al., 2008]. In addition, this study also provided a panel of 110 tagSNPs covering both MHC-linked OR gene clusters (Chapter 2, supplementary tables 1 and 2). These markers capture almost all of the variation present in the region for the HapMap CEU population with high confidence ($r^2 \ge 0.8$), and can be utilized as a resource in future studies. As shown before [Mueller et al., 2005; Xing et al., 2008], tagSNPs are expected to be transferrable among cohorts of related ancestry.

The analyses from chapters 2 and 3 intersect each other at the LD assessment of the region encompassing both MHC-linked OR gene clusters. While the first study (Chapter 2) builds on the high levels of LD in order to define tagSNPs and polymorphisms typical for different HLA haplotypes, the results of the second study (Chapter 3) indicate the presence of recombination between OR clusters and the MHC, as well as limited LD among functional OR gene polymorphisms. However, these results are not contradictory, since the HapMap cohort (ninety unrelated persons were included in the first study) is widely considered a population sample, with the corresponding high frequencies of common HLA haplotypes (eleven times A1-B8-DR3 and 5 times A3-B7-DR15, for instance), while this is radically different for the 18 cell lines assessed in the second study. Both, the ten Berlin cell lines as well as the eight MHCHP cell lines, were specifically chosen based on their MHC diversity [Ziegler et al., 1985; Volz et al., 1992; Ehlers et al., 2000; Horton et al., 2008].

Another intersection among analyses from chapters 2 and 3 regards the *OR12D3* polymorphism found to be in high LD with the haplotype HLA-A1-B8-DR3 and associated with smoking habits in the first study. Assessing the cell lines, the mentioned polymorphism was shown, for the first time, to be also linked to a different HLA haplotype: A32-B44-DR4, from the Caucasian cell line SSTO [Horton et al., 2008], indicating one probable recombination event between *OR12D3* and the HLA complex. Also here, this finding has no implications for population genetics, as the sample in which it was found is especially prone to unexpected combinations.

The work presented in chapter 4 was dedicated to the description and phylogenetic analysis of OR gene families linked to the MHC in all vertebrate species that have been sufficiently sequenced to date, and from which genomic data is available through internet-based databanks. The comparison of the structure and sequences from the MHC-linked OR gene clusters among fourteen vertebrates described here is, so far, the most comprehensive study regarding this region among different organisms.

The phylogenetic tree (Chapter 4, Fig. 4.1) suggests a common ancestry of all these loci among terrestrial vertebrates, as most gene families (branches with different colours in the tree) contain at least one gene from almost each species. This is different only for zebra fish, for which the products of these OR genes present sequences that are more similar to each other than to any other MHC-linked OR sequence from any other vertebrates, and therefore cluster in the phylogenetic analysis (Chapter 4, Fig. 4.1, black branches), suggesting an

independent origin. If this is correct, at least two independent evolutionary events must have led to the linkage between OR genes and MHC genes, a fact that reinforces the biological relevance of the linkage between MHC and OR genes that is seen in all vertebrates so far, except dog and cat.

The apparently obligatory linkage of certain MHC framework genes with MHC-linked OR genes is a remarkable finding of this investigation. Even in the case of carnivores, the genes *GABBR1* and *MOG* "kept" linked to the OR genes after the presumed chromosomal segmentation that split these from the MHC [Yuhki et al., 2007]. In this context, the fact that the split between MHC and OR clusters coincides with a strong reduction in the number of functional OR loci, may be seen as suggestive of a functional relationship that may have lost importance after the split. Moreover, possible effects of domestication and high levels of inbreeding of these two species on the genomic "architecture" of the MHC and surrounding regions still need to be studied. This aspect is also relevant for the other domesticated animals that were assessed here: cow, pig and horse.

The framework gene *GABBR1* encodes the subunit 1 of the gamma-aminobutyric acid (GABA) B receptor (GABA_B), a seven transmembrane receptor of GABA, which is one of the main inhibitory neurotransmitters in the vertebrate central nervous system [Grifa et al., 1998; Goei et al., 1998]. This tissue is a probable background of interaction between the products of OR genes and *GABBR1*: an influence of GABA_B in the behaviour of olfactory receptor neurons of zebra fish [Tabor et al., 2008], turtle [Wachowiak et al., 1999], frog [Duchamp-Viret et al., 2000], rat [Panzanelli et al., 2004], and mouse [Vucinić et al., 2006] has been reported.

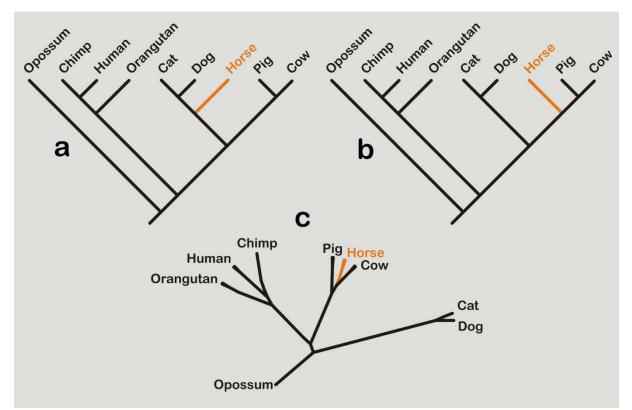
Apart from being an inhibitory neurotransmitter, GABA (also through its receptor $GABA_B$) plays a central role in the sperm acrosome reaction [Hu et al., 2002; Burrello et al., 2004]. The known sperm specific expression of OR genes (discussed in chapter 3) indicates an additional probable background for interaction between OR genes and *GABBR1* products.

It must remain an open question whether the interaction of gene products, common regulation or epistatic effects of either OR gene or framework genes can explain the apparently obligatory genomic linkage observed between these loci. Interestingly, a search within the Drosophila genome browser (<u>http://flybase.org/</u>) revealed that even in this arthropod, which diverged from vertebrates approximately 990 million years ago [Blair Hedges & Kumar,

2003], the ortholog of human *GABBR1* (named "GABA-B-R1") is linked to at least four OR genes (Or33a, Or33b, Or33c and Or35a) on Drosophila chromosome 2L. Since OR genes from Drosophila and vertebrates are evolutionarily unrelated [Bargmann, 2006; Nozawa and Nei, 2007], apart from the fact that both are GPCR, this linkage is additionally suggestive of an important functional relationship between OR and the GABA receptor genes, which, for some as yet unknown reason, requires these genes to be physically close to each other. Considering that there are only \sim 60 OR genes in the Drosophila genome [Robertson et al., 2003], it is rather improbable that the linkage discussed here is due to chance alone.

The phylogenetic tree of the MHC-linked OR genes (Chapter 4, Fig. 4.1) indicates a common ancestry of all these loci, at least in terrestrial vertebrates, while the genomic structure depicted on the gene maps (Chapter 4, Fig. 4.2) reflects the close relationship among the different species within each assessed taxon. The case of the horse is, in this context, of special interest: Although they lack members of most mammal orders, the gene maps presented here corroborate the common understanding that horse, pig and cow (ungulates) are closely related, building a group that is apart from the one including cat and dog (Carnivora). In fact, the phylogenetic relationships between the orders Cetartiodactila (even-toed ungulates, including pigs, cows and whales), Perissodactila (odd-toed ungulates, including horses, tapirs and rhinoceroses) and Carnivora (including cats, dogs and hyenas) have long been subject of debate with contradictory results [Novacek, 1992; Graur et al., 1997; Cao et al., 2000; Murphy et al., 2001; Nishihara et al., 2006; Kitazoe et al., 2007], and have apparently not yet been resolved, although the monophyly of each of these three taxa is undisputed [Murphy et al., 2004].

According to one view [Murphy et al., 2001; Nishihara et al., 2006], Perissodactila and Carnivora are closely related to each other, building a sister group of Cetartiodactila. A phylogenetic tree based on these results is given in Fig. 7.1, panel a. In line with this notion, one recent study based on sequence analysis of genomic retroposon insertions suggests the name "Pegasoferae" for designating the alleged monophyletic clade that incorporates odd-toed ungulates, Carnivora and Chiroptera (bats) [Nishihara et al., 2006].


The competing view [Kitazoe et al., 2007] coincides with the classical "family trees" of mammals, which are based on the morphology of fossils and extant species, and suggests that Perissodactila and Cetartiodactila belong to one monophyletic taxon (here called Ungulata), a clade apart from Carnivora [Archibald, 1998; Shoshani and McKenna, 1998]. Fig. 7.1, panel b

presents a phylogenetic tree based on these results. A recent molecular analysis reinforcing this notion [Kitazoe et al., 2007] considered abrupt changes of the rate of molecular evolution that are likely to have taken place at the time of the divergence of these three orders, around the Cretaceous-Paleogene extinction event [Rohde and Muller, 2005; Kitazoe et al., 2007]. This geological "moment", also known as the K-T (Cretaceous to Tertiary) boundary, is associated with abrupt climate changes and the mass extinction of plants and animals, with the sudden extinction of land dinosaurs as its best known feature [Labandeira et al., 2002; Rohde and Muller, 2005; Krug et al., 2009; Keller et al., 2009]. The Cretaceous-Paleogene extinction event is also associated with an accelerated rate of molecular evolution that had, so far, not been taken into consideration by other phylogenetic reconstructions based on molecular data [Kitazoe et al., 2007].

The recent studies supporting the two competing models for the phylogenetic history among the clades Cetartiodactila, Perissodactila, and Carnivora are based on diverging methodologies, but have the fact in common that they are built on sequence comparisons (nuclear DNA, mitochondrial DNA, amino acid, or retroposons). In contrast, the analysis presented here (Chapter 4) uses an alternative approach in order to provide strong support for the second view (horse, pig and cow belonging to a group apart of cat and dog): instead of considering many individual sequences of the different organisms, I compare the "genomic anatomy" of relatively long, syntenic genomic regions, considering the presence or absence of gene classes (OR, histones, MHC, framework), their positions relative to each other, as well as their transcriptional orientations. The presence of three orthologous histone clusters interspersed by three orthologous OR clusters in which the families, positions and transcriptional orientations are widely conserved, provides evidence for the stronger similarity of horses to Cetartiodactila than to Carnivora (Fig. 4.2, panels c and d, and Fig. 7.1, panel c).

Phylogenetic inferences are known to be more prone to bias related to convergent evolution when they are based on classical anatomic analyses, as compared to studies based on nucleic acid or amino acid sequences comparisons [Shoshani and McKenna, 1998]. On the other side, sequences are also susceptible to convergent evolution, as recently shown specifically for odorant receptor amino acid sequences [Hayden et al., 2010]. In that investigation, Hayden and collaborators analyzed around 50 thousand individual OR gene sequences in the genomes of fifty aquatic, semi-aquatic, terrestrial and flying mammals, and observed that sequence similarities between OR genes tended to depend more on the habitat and other ecological traits of the assessed animals than on the phylogenetic relationships between the species.

Since there is currently no genomic assembly available for most of the vertebrates assessed in that study, no assumption can be made about the role of MHC-linked OR genes. It is additionally interesting to observe that Hayden and co-workers [Hayden et al., 2010] assumes the notion that groups Perissodactila, Carnivora and Chiroptera under one single clade, apart from Cetartiodactila, as proposed by Nishihara and colleagues [Nishihara et al., 2006], to be part of the "consensus" phylogenetic tree of mammals.

Fig. 7.1: Three phylogenetic trees of nine organisms which had their MHC-linked OR genes assessed (see Chapter 4). The tree on panel a represents the phylogenetic history of these clades as found by Murphy, Nishihara and colleagues [Murphy et al., 2001; Nishihara et al., 2006]. The tree on panel b represents the phylogenetic history of these clades as found by Kitazoe and colleagues [Kitazoe et al., 2007]. The tree on panel c represents the phylogenetic history of these clades as it can be inferred from the results regarding the genomic structure of organisms from Chapter 4. Since no assumptions of relationships between the four groups could be made, an unrooted tree was generated. The horse branches are highlighted, as they are subject to debate (see text).

In contrast both to classical anatomy and to sequence analysis, the approach described here represents a view into the genome from an intermediate distance. The size of the genomic region analyzed here, as well as the number of assessed species are certainly small, in order to provide steady evidence for resolving the debate around the evolutionary history of eutherians. For example, the series of chromosomal inversions as well as the expansion of the

genes belonging to the OR2M family, which seem to have taken place specifically in the pig genome, make horse and cow seem more similar to each other than to pig (Fig. 4.2, panels c and d, and Fig. 7.1, panel c). This artificial similarity is probably related to the insufficient number of species and genomic regions assessed. It remains an interesting question whether the genomic architecture of segments as the one assessed here is also prone to convergent evolution. As for today, there is, to the best of my knowledge, no reason to believe so.

7.2. Linkage Disequilibrium and Transmission Distortion

In human genetics, LD is generally understood from a genealogical point of view: ancestral haplotypes have been broken and shuffled by means of recombination events throughout evolutionary history [Ardlie et al., 2002; Slatkin, 2008]. Because of population constraints such as bottlenecks and genomic drift, the linkage of some segments was maintained and, according to this view, also these will be shuffled through meiotic recombination with time.

Nevertheless, the assessment of TD described here (Chapter 5), can shed new light on the traditional understanding of LD creation and maintenance. Besides its possible biological implications that are discussed in the manuscripts, TD can be interpreted as one of the evolutionary forces shaping the LD landscape of the human genome, although it has apparently been widely ignored. If present in a given genomic region, TD will not only protect LD blocks from the "erosive" work of recombination by conserving LD blocks through the prevention of recombination events, but also by actively generating such LD blocks. If TD is an ethnically-specific phenomenon, as described in the two manuscripts of chapter 5, it should be expected to be an additional force responsible for the distinct LD profiles observed in different populations. Moreover, recombination hotspots are expected to be found flanking the LD block (which could be, in this case, called a TD block). The observed correspondence between LD and TD from the results of this thesis (see section 5.1, Fig. 1), as well as from other reports (see section 5.1, supplementary Fig. S5) support this point of view. This proposition remains a hypothesis which needs extensive further testing in order to be proven, but this idea has, to the best of my knowledge, not been suggested before.

Based on HapMap data, several studies found a high correspondence between the LD profiles among ethnically related populations [Mueller et al., 2005; Xing et al., 2008; Hu et al., 2008].

A detailed knowledge of LD data has practical consequences that include haplotype tagging (shown in chapter 2), lowering the number of markers in order to avoid statistical burdens linked to multiple testing (chapter 5), and increasing the efficiency of genotyping (chapter 6). The work with microsatellites presented in chapter 6 describes an approach that takes advantage of the LD present between relevant HLA alleles and neighbouring microsatellite loci within the MHC in order optimize the genotyping of HLA alleles (for example through resolving ambiguities and avoiding repetition of experiments). According to studies suggesting the transferability of tagSNPs among related populations [Mueller et al., 2005; Xing et al., 2008; Hu et al., 2008], the results shown in this article (Chapter 6) should also be valid for other populations of European ancestry.

Finally, taking the existence of several new internet-based resources into account, and the increased relevance that these databases and tools for data mining have reached for life sciences research within the last years [Buckingham, 2004; Krallinger et al., 2008; Hubbard et al., 2009; Sayers et al., 2010], the implementation of a web-based visual databank for integrating results from different studies relevant to TD on the human genome seems very appropriate. The works presented in the chapter 5 are initial steps towards this goal. In fact, one recently published study [Deng et al., 2009] builds on the published suggestion of the first of the two LD investigations presented here (Section 5.1), describing a first large scale map of transmission distortion (for all human autosomes), based on HapMap data. The article by Deng and colleagues [Deng et al., 2009] cites the paper presented in section 5.1 several times, and reports the use of a similar strategy to detect SNPs with evidence of TD.

The studies presented in the chapter 5 had two of the HapMap populations as a reference – CEU and YRI – because these consisted, in contrast to the others, of family trios and were therefore suitable also for investigating TD (see also sections 1.4.2 and 1.5). As briefly mentioned in section 1.4.2, the international HapMap project has recently reached a historical milestone with the release of genotyping data from the Phase III samples in November 2008. With this release (Public Release #26), the HapMap increased data richness through the inclusion of seven new populations to the original four genotyping panels, totalling eleven populations that can now be compared to each other in the context of genotypic and haplotypic variation. Three of the new populations (ASW, MEX and MKK) are structured in the form of family trios, as originally only the CEU and YRI panels. This allows scientists to perform a very reliable phasing of the genotypings, as well as to assess allelic and haplotypic

transmission within families in a way that has never been possible before. Moreover, a series of new quality control (QC) checks for both samples and markers were introduced.

Nevertheless, when the investigation reported in section 5.1 was repeated using data from the latest HapMap release, we observed that TD was now completely absent in Chr6p, and generally lower in the rest of the genome. At first glance, this would suggest that the section 5.1 analyses are flawed, disappearing with the new HapMap data. However, three important facts suggest an alternative explanation:

- 1. Most SNPs exhibiting TD in the article (section 5.1) were not included in the Phase III genotyping panels. While around 50% of the SNPs from phase II "survived" QC and were kept in the Phase III release (taking the whole chromosome 6 as an example), this was the case for only ~25% of the SNPs from genomic areas with evidence of TD. As discussed in both TD studies (sections 5.1 and 5.2), TD seems to be an ethnicity-related property. Therefore, the stringency of QC may have led, unintentionally, to the systematic exclusion of markers that show skewed allele segregation rates, as they are less likely to fulfil Hardy-Weinberg expectancy thresholds at least in one of the eleven populations analyzed. As currently given in the HapMap page from the Sanger Centre (http://www.sanger.ac.uk/humgen/hapmap3/), SNPs had to pass QC apparently in all populations in order to be included in the Phase III. Another recent report [Fardo et al., 2009] discusses and reinforces the fact that the exclusion of SNPs not in Hardy-Weinberg equilibrium might be counterproductive (or unnecessary) in the context of disease association studies.
- TD for markers residing in the SUPT3H area could undoubtedly be confirmed, in an independent population, through the results from the second TD study (section 5.2). Although all twelve SUPT3H markers assessed in that study had been taken from the HapMap Phase II SNP set, only four of these were kept and genotyped in the Phase III release.
- 3. The possibility that the reason for exclusion of markers shown to be under TD could have been duplicated identification numbers, mapping problems or other inconsistencies was checked and found not to be the case for any of the investigated markers, at least on Chr6p. The possibility that the fathers responsible for TD observed using the Phase II data were those excluded due to QC proceedings was also investigated, and again this

was not the case: TD can still be observed around *SUPT3H* among the CEU fathers belonging to family trios kept in the Phase III release.

It seems therefore that the criteria for SNP inclusion in the latest HapMap Phase III data set were too stringent, as SNPs with deviations from the expected transmission ratio like the one we reported (section 5.1) were preferentially excluded from the data set. As a consequence, it becomes very difficult to compare data using the Phase II release with those from Phase III in the context of allelic segregation distortion, since investigations focusing on TD with the Phase III data are expected to have their results artificially distorted. The current status of the HapMap website (http://hapmap.ncbi.nlm.nih.gov/) lists HapMap3 as the newest update of the HapMap resources, and unadvised users have no reason to prefer the earlier release, which is still available.

7.3. Concluding Remarks

The results from the analyses focusing on the MHC-linked OR genes carried out as part of this work contribute to the understanding of human variation regarding this genomic region, and have implications for the conservation of genomic structure among vertebrates. The region is characterized by high LD with the MHC, a feature used in the other studies as the basis for the selection of tagSNPs, genotyping optimization and the first TD analysis.

While most results obtained and discussed represent the descriptive answers to a the series of questions raised throughout this work, two new ideas (both originated from unexpected "side effects" of the analyses) that were suggested here remained without further testing, and will be subject of future work: the use of genomic anatomy for phylogenetic inferences, and the role of TD as a force shaping the LD landscape of the human genome.

8. Bibliography

- 1. Aloni R, Olender T, Lancet D. Ancient genomic architecture for mammalian olfactory receptor clusters. Genome Biol. 2006, 7(10):R88.
- Alper CA, Awdeh ZL, Yunis EJ. Complotypes and extended haplotypes in laboratory medicine. Complement Inflamm. 1989, 6(1):8-18.
- Alper CA, Awdeh Z, Yunis EJ. Conserved, extended MHC haplotypes. Exp Clin Immunogenet. 1992, 9(2):58-71.
- Alper CA, Larsen CE, Dubey DP, Awdeh ZL, Fici DA, Yunis EJ. The haplotype structure of the human major histocompatibility complex. Hum Immunol. 2006, 67(1-2):73-84.
- Amadou C, Younger RM, Sims S, Matthews LH, Rogers J, Kumanovics A, Ziegler A, Beck S, Lindahl KF. Co-duplication of olfactory receptor and MHC class I genes in the mouse major histocompatibility complex. Hum Mol Genet. 2003, 12(22):3025-40.
- Aparicio JM, Ortego J, Calabuig G, Cordero PJ. Evidence of subtle departures from Mendelian segregation in a wild lesser kestrel (*Falco naumanni*) population. Heredity. 2010, article in press.
- Archibald JD. Fossil Evidence for a Late Cretaceous Origin of "Hoofed" Mammals. Science. 1996, 272(5265):1150-3.
- 8. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002, 3(4):299-309.
- Axelsson E, Albrechtsen A, van AP, Li L, Megens HJ, Vereijken AL, Crooijmans RP, Groenen MA, Ellegren H, Willerslev E, Nielsen R. Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds. Heredity. 2010, article in press.
- 10. Aymé S, Matthijs G, Anastasiadou V, Fatmahan A, Braga S, Burn J, Cassiman JJ, Cornel M, Coviello D, Evers-Kiebooms G, Gorry P, Hodgson S, Kääriäinen H, Kosztolányi G, Kristoffersson U, Macek M Jr, Patch C, Schmidtke J, Sequeiros J, Stoppa-Lyonnet D, Tranebjaerg L, Heyningen V, van Ommen GJ. Patenting and licensing in genetic testing: recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2008, 16 Suppl 1:S10-9.
- Bargmann CI. Comparative chemosensation from receptors to ecology. Nature. 2006, 444(7117):295-301.
- 12. Bennett D. The T-locus of the mouse. Cell. 1975, 6:441-54.

- Blair Hedges S, Kumar S. Genomic clocks and evolutionary timescales. Trends Genet. 2003, 19(4):200-6.
- 14. Blomhoff A, Olsson M, Johansson S, Akselsen HE, Pociot F, Nerup J, Kockum I, Cambon-Thomsen A, Thorsby E, Undlien DE, Lie BA. Linkage disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype specific manner assessed mainly by DRB1*03 and DRB1*04 haplotypes. Genes Immun. 2006, 7(2):130-40.
- 15. Bosch E, Laayouni H, Morcillo-Suarez C, Casals F, Moreno-Estrada A, Ferrer-Admetlla A, Gardner M, Rosa A, Navarro A, Comas D, Graffelman J, Calafell F, Bertranpetit J. Decay of linkage disequilibrium within genes across HGDP-CEPH human samples: most population isolates do not show increased LD. BMC Genomics. 2009, 10:338.
- Brown RE, Roser B, Singh PB. Class I and class II regions of the major histocompatability complex both contribute to individual odors in congenic inbred strains of rats. Behav Genet. 1989, 19:659-674.
- Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991, 65(1):175-87.
- 18. Buckingham S. Bioinformatics: data's future shock. Nature. 2004, 428(6984):774-7.
- Burrello N, Vicari E, D'Amico L, Satta A, D'Agata R, Calogero AE. Human follicular fluid stimulates the sperm acrosome reaction by interacting with the gammaaminobutyric acid receptors. Fertil Steril. 2004, 82 Suppl 3:1086-90.
- Cao Y, Fujiwara M, Nikaido M, Okada N, Hasegawa M. Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene. 2000, 259(1-2):149-58.
- Carroll LS, Meagher S, Morrison L, Penn DJ, Potts WK. Fitness effects of a selfish gene (the Mus t complex) are revealed in an ecological context. Evolution. 2004, 58(6):1318-28.
- Chakraborty R, Stivers DN, Deka R, Yu LM, Shriver MD, Ferrell RE. Segregation distortion of the CTG repeats at the myotonic dystrophy locus. Am J Hum Genet. 1996, 59(1):109-18.
- Chesley P, Dunn LC. The Inheritance of Taillessness (Anury) in the House Mouse. Genetics. 1936, 21(5):525-36.
- 24. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet. 2001, 29(2):229-32.
- 25. Dausset J. The major histocompatibility complex in man. Science. 1981, 213:1469-74.

- 26. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, Ke X, Monsuur AJ, Whittaker P, Delgado M, Morrison J, Richardson A, Walsh EC, Gao X, Galver L, Hart J, Hafler DA, Pericak-Vance M, Todd JA, Daly MJ, Trowsdale J, Wijmenga C, Vyse TJ, Beck S, Murray SS, Carrington M, Gregory S, Deloukas P, Rioux JD. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet. 2006, 38(10):1166-72.
- Dean NL, Loredo-Osti JC, Fujiwara TM, Morgan K, Tan SL, Naumova AK, Ao A. Transmission ratio distortion in the myotonic dystrophy locus in human preimplantation embryos. Eur J Hum Genet. 2006, 14(3):299-306.
- Deng L, Zhang D, Richards E, Tang X, Fang J, Long F, Wang Y. Constructing an initial map of transmission distortion based on high density HapMap SNPs across the human autosomes. J Genet Genomics. 2009, 36(12):703-9.
- 29. Duchamp-Viret P, Delaleu JC, Duchamp A. GABA(B)-mediated action in the frog olfactory bulb makes odor responses more salient. Neuroscience. 2000, 97(4):771-7.
- Eaves IA, Bennett ST, Forster P, Ferber KM, Ehrmann D, Wilson AJ, Bhattacharyya S, Ziegler AG, Brinkmann B, Todd JA. Transmission ratio distortion at the INS-IGF2 VNTR. Nat Genet. 1999, 22(4):324-5.
- Ehlers A, Beck S, Forbes SA, Trowsdale J, Volz A, Younger R, Ziegler A. MHC-linked olfactory receptor loci exhibit polymorphism and contribute to extended HLA/ORhaplotypes. Genome Res. 2000, 10(12):1968-78.
- Eizaguirre C, Yeates SE, Lenz TL, Kalbe M, Milinski M. MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol Ecol. 2009, 18(15):3316-29.
- Eklund AC, Belchak MM, Lapidos K, Raha-Chowdhury R, Ober C. Polymorphisms in the HLA-linked olfactory receptor genes in the Hutterites. Hum Immunol. 2000, 61(7):711-7.
- Evans K, Fryer A, Inglehearn C, Duvall-Young J, Whittaker JL, Gregory CY, Butler R, Ebenezer N, Hunt DM, Bhattacharya S. Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion. Nat Genet. 1994, 6(2):210-3.
- 35. Fardo DW, Becker KD, Bertram L, Tanzi RE, Lange C: Recovering unused information in genome-wide association studies: the benefit of analyzing SNPs out of Hardy-Weinberg equilibrium. Eur J Hum Genet. 2009, 17:1676-82.
- 36. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS,

Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, Wolff RK. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. 1996, Nat Genet. 1996, 13(4):399-408.

- Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM, Vyse TJ, Rioux JD. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008, 4(4):e1000024.
- Fishman L, Aagaard J, Tuthill JC. Toward the evolutionary genomics of gametophytic divergence: patterns of transmission ratio distortion in monkeyflower (Mimulus) hybrids reveal a complex genetic basis for conspecific pollen precedence. Evolution. 2008, 62(12):2958-70.
- Fukuda N, Yomogida K, Okabe M, Touhara K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci. 2004, 117(24):5835-45.
- 40. Füst G, Arason GJ, Kramer J, Szalai C, Duba J, Yang Y, Chung EK, Zhou B, Blanchong CA, Lokki ML, Bödvarsson S, Prohászka Z, Karádi I, Vatay A, Kovács M, Romics L, Thorgeirsson G, Yu CY. Genetic basis of tobacco smoking: strong association of a specific major histocompatibility complex haplotype on chromosome 6 with smoking behavior. Int Immunol. 2004, 16(10):1507-14.
- Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science. 2002, 296(5576):2225-9.
- Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. Genetics. 1977, 86(2 Pt. 1):321-55.
- 43. Girirajan S, Elsea SH. Distorted Mendelian transmission as a function of genetic background in Rai1-haploinsufficient mice. Eur J Med Genet. 2009, 52(4):224-8.
- 44. Glusman G, Yanai I, Rubin I, Lancet D. The complete human olfactory subgenome. Genome Res. 2001, 11:685-702.
- 45. Goei VL, Choi J, Ahn J, Bowlus CL, Raha-Chowdhury R, Gruen JR. Human gammaaminobutyric acid B receptor gene: complementary DNA cloning, expression, chromosomal location, and genomic organization. Biol Psychiatry. 1998, 44(8):659-66.

- 46. Graur D, Gouy M, Duret L. Evolutionary affinities of the order Perissodactyla and the phylogenetic status of the superordinal taxa Ungulata and Altungulata. Mol Phylogenet Evol. 1997, 7(2):195-200.
- 47. Greenwood CM, Morgan K. The impact of transmission-ratio distortion on allele sharing in affected sibling pairs. Am J Hum Genet. 2000, 66(6):2001-4.
- Grifa A, Totaro A, Rommens JM, Carella M, Roetto A, Borgato L, Zelante L, Gasparini P. GABA (gamma-amino-butyric acid) neurotransmission: identification and fine mapping of the human GABAB receptor gene. Biochem Biophys Res Commun. 1998, 250(2):240-5.
- 49. Gu CC, Yu K, Rao DC. Characterization of LD structures and the utility of HapMap in genetic association studies. Adv Genet. 2008, 60:407-35.
- 50. Hall WD, Gartner CE, Carter A. The genetics of nicotine addiction liability: ethical and social policy implications. Addiction. 2008, 103(3):350-9.
- 51. Hanchard N, Rockett K, Udalova I, Wilson J, Keating B, Koch O, Nijnik A, Diakite M, Herbert M, Kwiatkowski D. An investigation of transmission ratio distortion in the central region of the human MHC. Genes Immun. 2006, 7(1):51-8.
- Haston CK, Humes DG, Lafleur M. X chromosome transmission ratio distortion in Cftr +/- intercross-derived mice. BMC Genet. 2007, 8:23.
- Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res. 2010, 20(1):1-9.
- Herrmann BG, Koschorz B, Wertz K, McLaughlin KJ, Kispert A. A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature. 1999, 402(6758):141-6.
- Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 1968, 38:226:31.
- Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC Jr, Wright MW, Wain HM, Trowsdale J, Ziegler A, Beck S. Gene map of the extended human MHC. Nat Rev Genet. 2004, 5(12):889-99.
- 57. Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J, Forbes S, Gilbert JG, Halls K, Harrow JL, Hart E, Howe K, Jackson DK, Palmer S, Roberts AN, Sims S, Stewart CA, Traherne JA, Trevanion S, Wilming L, Rogers J, de Jong PJ, Elliott JF, Sawcer S, Todd JA, Trowsdale J, Beck S. Variation analysis and gene annotation of

eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics. 2008, 60(1):1-18.

- 58. Hu C, Jia W, Zhang W, Wang C, Zhang R, Wang J, Ma X; International Type 2 Diabetes 1q Consortium, Xiang K. An evaluation of the performance of HapMap SNP data in a Shanghai Chinese population: analyses of allele frequency, linkage disequilibrium pattern and tagging SNPs transferability on chromosome 1q21-q25. BMC Genet. 2008, 9:19.
- 59. Hu JH, He XB, Wu Q, Yan YC, Koide SS. Biphasic effect of GABA on rat sperm acrosome reaction: involvement of GABA(A) and GABA(B) receptors. Arch Androl. 2002, 48(5):369-78.
- Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009). Ensembl 2009. Nucleic Acids Res. 37(Database issue):D690-7.
- 61. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009, 37(Database issue):D211-5.
- 62. IMGT/HLA Database, 2010. Available from http://hla.alleles.org/
- 63. International HapMap Consortium. The International HapMap Project. Nature. 2003, 426: 789-796.
- 64. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005, 437:1299-1320.
- International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007, 449(7164):851-61.

- 66. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2004, 409:860-921.
- 67. Jacob S, McClintock MK, Zelano B, Ober C. Paternally inherited HLA alleles are associated with women's choice of male odor. Nat Genet. 2002, 30(2):175-9.
- 68. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nat Genet. 2001, 29(2):233-7.
- Ke X, Hunt S, Tapper W, Lawrence R, Stavrides G, Ghori J, Whittaker P, Collins A, Morris AP, Bentley D, Cardon LR, Deloukas P. The impact of SNP density on finescale patterns of linkage disequilibrium. Hum Mol Genet. 2004, 13(6):577-88.
- Keller G, Sahni A, Bajpai S. Deccan volcanism, the KT mass extinction and dinosaurs. J Biosci. 2009, 34(5):709-28.
- Kitazoe Y, Kishino H, Waddell PJ, Nakajima N, Okabayashi T, Watabe T, Okuhara Y. Robust time estimation reconciles views of the antiquity of placental mammals. PLoS ONE. 2007, 2:e384.
- Krallinger M, Valencia A, Hirschman L. Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol. 2008, 9 Suppl 2:S8.
- 73. Kriz V, Mares J, Wentzel P, Funa NS, Calounova G, Zhang XQ, Forsberg-Nilsson K, Forsberg M, Welsh M. Shb null allele is inherited with a transmission ratio distortion and causes reduced viability in utero. Dev Dyn. 2007, 236(9):2485-92.
- 74. Krug AZ, Jablonski D, Valentine JW. Signature of the end-Cretaceous mass extinction in the modern biota. Science. 2009, 323(5915):767-71.
- 75. Labandeira CC, Johnson KR, Wilf P. Impact of the terminal Cretaceous event on plantinsect associations. Proc Natl Acad Sci U S A. 2002, 99(4):2061-6.
- Lancet D, Pace U. The molecular basis of odor recognition. Trends Biochem Sci. 1987, 12:63.
- 77. Lane RP, Cutforth T, Young J, Athanasiou M, Friedman C, Rowen L, Evans G, Axel R, Hood L, Trask B. Genomic analysis of orthologous mouse and human olfactory receptor loci. Proc. Natl Acad. Sci. USA. 2001, 98:7390-7395.

- 78. Lemire M, Roslin NM, Laprise C, Hudson TJ, Morgan K. Transmission-ratio distortion and allele sharing in affected sib pairs: a new linkage statistic with reduced bias, with application to chromosome 6q25.3. Am J Hum Genet. 2004, 75(4):571-86.
- 79. Lewontin RC, Kojiana K. The evolutionary dynamics of complex polymorphisms. Evolution. 1960, 14:458-72.
- Lewontin RC. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964, 49(1):49-67.
- 81. Lie BA, Thorsby E. Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr Opin Immunol. 2005, 17:526-31
- Lyon MF, Zenthon J, Evans EP, Burtenshaw MD, Willison KR. Extent of the mouse tcomplex and its inversions shown by in situ hybridization. Immunogenetics. 1988, 27:375-82.
- 83. Lyon MF. Transmission ratio distortion in mice. Annu Rev Genet. 2003, 37:393-408.
- Lyttle TW. Cheaters sometimes prosper: distortion of Mendelian segregation by meiotic drive. Trends Genet. 1993, 9(6):205-10.
- 85. Mägi R, Pfeufer A, Nelis M, Montpetit A, Metspalu A, Remm M. Evaluating the performance of commercial whole-genome marker sets for capturing common genetic variation. BMC Genomics. 2007, 8:159.
- Malnic B, Godfrey PA, Buck LB. The human olfactory receptor gene family. Proc Natl Acad Sci U S A. 2004, 101(8):2584-9.
- Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008, 118(5):1590-605.
- 88. Milinski M. The Major Histocompatibility Complex, Sexual Selection, and Mate Choice. Annual Review of Ecology, Evolution, and Systematics. 2006, 37(1): 159-186.
- 89. Miretti MM, Walsh EC, Ke X, Delgado M, Griffiths M, Hunt S, Morrison J, Whittaker P, Lander ES, Cardon LR, Bentley DR, Rioux JD, Beck S, Deloukas P. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005, 76(4):634-46.
- Mombaerts P. Seven-transmembrane proteins as odorant and chemosensory receptors. Science. 1999, 286(5440):707-11.
- Mould A. Implications of genetic testing: discrimination in life insurance and future directions. J Law Med. 2003, 10(4):470-87.

- 92. Mueller JC, Lõhmussaar E, Mägi R, Remm M, Bettecken T, Lichtner P, Biskup S, Illig T, Pfeufer A, Luedemann J, Schreiber S, Pramstaller P, Pichler I, Romeo G, Gaddi A, Testa A, Wichmann HE, Metspalu A, Meitinger T. Linkage disequilibrium patterns and tagSNP transferability among European populations. Am J Hum Genet. 2005, 76(3):387-98.
- 93. Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science. 2001, 294(5550):2348-51.
- Murphy WJ, Pevzner PA, O'Brien SJ. Mammalian phylogenomics comes of age. Trends Genet. 2004, 20(12):631-9.
- 95. Murphy AM, Meade KG, Hayes PA, Park SD, Evans AC, Lonergan P, MacHugh DE. Transmission ratio distortion at the growth hormone gene (GH1) in bovine preimplantation embryos: An in vitro culture-induced phenomenon? Mol Reprod Dev. 2008, 75(5):715-22.
- 96. Naumova AK, Leppert M, Barker DF, Morgan K, Sapienza C. Parental origindependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet. 1998, 62(6):1493-9.
- 97. Naumova AK, Greenwood CM, Morgan K. Imprinting and deviation from Mendelian transmission ratios. Genome. 2001, 44(3):311-20.
- 98. Nei M, Niimura Y, Nozawa M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet. 2008, 9(12):951-63.
- 99. Ngai J, Dowling MM, Buck L, Axel R, Chess A. The family of genes encoding odorant receptors in the channel catfish. Cell. 1993, 72(5):657-66.
- Nishihara H, Hasegawa M, Okada N. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci USA. 2006, 103(26):9929-34.
- Nordborg M, Tavaré S. Linkage disequilibrium: what history has to tell us. Trends Genet. 2002, 18(2):83-90.
- 102. Novacek MJ. Mammalian phylogeny: shaking the tree. Nature. 1992, 356(6365):121-5.
- 103. Nozawa M, Nei M. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci U S A. 2007, 104(17):7122-7.
- 104. Ober C, Weitkamp LR, Cox N, Dytch H, Kostyu D, Elias S. HLA and mate choice in humans. Am J Hum Genet. 1997, 61:497-504.

- 105. Olsson M, Madsen T, Nordby J, Wapstra E, Ujvari B, Wittsell H. Major histocompatibility complex and mate choice in sand lizards. Proc Biol Sci. 2003, 270 Suppl 2:S254-6.
- 106. Panzanelli P, López-Bendito G, Luján R, Sassoé-Pognetto M. Localization and developmental expression of GABA(B) receptors in the rat olfactory bulb. J Neurocytol. 2004, 33(1):87-99.
- 107. Pardo-Manuel de Villena F, Sapienza C. Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome. 2001, 12(5):331-9.
- 108. Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, Ledent C, Mollereau C, Gérard C, Perret J, Grootegoed A, Vassart G. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature. 1992, 355(6359):453-5.
- 109. Paterson AD, Sun L, Liu XQ; Framingham Heart Study. Transmission ratio distortion in families from the Framingham Heart Study. BMC Genet. 2003, 4 Suppl 1:S48.
- Paterson AD, Waggott D, Schillert A, Infante-Rivard C, Bull SB, Yoo YJ, Pinnaduwage D. Transmission-ratio distortion in the Framingham Heart Study. BMC Proc. 2009, 3 Suppl 7:S51.
- 111. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science. 2001, 294(5547):1719-23.
- 112. Purushothaman D, Elliott RW, Ruvinsky A. A search for transmission ratio distortions in offspring from crosses between inbred mice. J Genet. 2008, 87(2):127-31.
- Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES. Linkage disequilibrium in the human genome. Nature. 2001, 411(6834):199-204.
- 114. Reusch TB, Häberli MA, Aeschlimann PB, Milinski M. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature. 2001, 414(6861):300-2.
- 115. Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2003, 100 Suppl 2:14537-42.
- 116. Rohde RA, Muller RA. Cycles in fossil diversity. Nature. 2005, 434(7030):208-10.

- 117. Ryder LP, Svejgaard A, Dausset J. Genetics of HLA disease association. Annu Rev Genet. 1981, 15:169-87.
- 118. Santos PS, Schinemann JA, Gabardo J, Bicalho Mda G. New evidence that the MHC influences odor perception in humans: a study with 58 Southern Brazilian students. Horm Behav. 2005, 47(4):384-8.
- 119. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, John Wilbur W, Yaschenko E, Ye J. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2010, 38(Database issue):D5-16.
- 120. Schulze TG, Zhang K, Chen YS, Akula N, Sun F, McMahon FJ. Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome. Hum Mol Genet. 2004, 13(3):335-42.
- 121. Schwensow N, Eberle M, Sommer S. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc Biol Sci. 2008, 275(1634):555-64.
- 122. Shoshani J, McKenna MC. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol Phylogenet Evol. 1998, 9(3):572-84.
- Singh PB, Brown RE, Roser B. MHC antigens in urine as olfactory recognition cues. Nature. 1987, 14-20;327(6118):161-4.
- 124. Skelding KA, Gerhard GS, Simari RD, Holmes DR Jr. The effect of HapMap on cardiovascular research and clinical practice. Nat Clin Pract Cardiovasc Med. 2007, 4(3):136-42.
- Slatkin M. Linkage disequilibrium understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008, 9(6):477-85.
- 126. Snell GD. Methods for the study of histocompatibility genes. J Genet. 1948, 49:87-108.
- 127. Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005, 2:16.
- 128. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science. 2003, 299(5615):2054-8.

- 129. Tabor R, Yaksi E, Friedrich RW. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb. Eur J Neurosci. 2008, 28(1):117-27.
- Tatsura H, Nagao H, Tamada A, Sasaki S, Kohri K, Mori K. Developing germ cells in mouse testis express pheromone receptors. FEBS Lett. 2001, 488(3):139-44.
- 131. Thompson EE, Haller G, Pinto JM, Sun Y, Zelano B, Jacob S, McClintock MK, Nicolae DL, Ober C. Sequence variations at the human leukocyte antigen-linked olfactory receptor cluster do not influence female preferences for male odors. Hum Immunol. 2010, 71(1):100-3.
- Trowsdale J. HLA genomics in the third millennium. Curr Opin Immunol. 2005, 17:498-504.
- 133. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Olfactory receptors are displayed on dog mature sperm cells. J Cell Biol. 1993, 123(6):1441-52.
- 134. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Molecular cloning and chromosomal mapping of olfactory receptor genes expressed in the male germ line: evidence for their wide distribution in the human genome. Biochem Biophys Res Commun. 1997a, 237(2):283-7.
- 135. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics. 1997b, 39(3):239-46.
- 136. Vandiedonck C, Knight JC. The human Major Histocompatibility Complex as a paradigm in genomics research. Brief Funct Genomic Proteomic. 2009, 8(5):379-94.
- 137. VanLiere JM, Rosenberg NA. Mathematical properties of the r2 measure of linkage disequilibrium. Theor Popul Biol. 2008, 74(1):130-7.
- 138. Véron N, Bauer H, Weisse AY, Lüder G, Werber M, Herrmann BG. Retention of gene products in syncytial spermatids promotes non-Mendelian inheritance as revealed by the t complex responder. Genes Dev. 2009, 23(23):2705-10.
- 139. Volz A, Fonatsch C, Ziegler A. Regional mapping of the gene for autosomal dominant spinocerebellar ataxia (SCA1) by localizing the closely linked D6S89 locus to 6p24.2p23.05. Cytogenet Cell Genet. 1992, 60(1):37-9.
- 140. Volz A, Ehlers A, Younger R, Forbes S, Trowsdale J, Schnorr D, Beck S, Ziegler A. Complex transcription and splicing of odorant receptor genes. J Biol Chem. 2003, 278(22):19691-701.

- Vucinić D, Cohen LB, Kosmidis EK. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo. J Neurophysiol. 2006, 95(3):1881-7.
- Wachowiak M, Cohen LB. Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle. J Neurosci. 1999, 19(20):8808-17.
- 143. Walensky LD, Ruat M, Bakin RE, Blackshaw S, Ronnett GV, Snyder SH. Two novel odorant receptor families expressed in spermatids undergo 5'-splicing. J Biol Chem. 1998, 273(16):9378-87.
- Wedekind C, Seebeck T, Bettens F, Paepke AJ. MHC-dependent mate preferences in humans. Proc Biol Sci. 1995, 260(1359):245-9.
- Willison KR, Lyon MF. A UK-centric history of studies on the mouse t-complex. Int. J. Dev. Biol. 2000, 44:57-63.
- 146. Woelfing B, Traulsen A, Milinski M, Boehm T. Does intra-individual major histocompatibility complex diversity keep a golden mean? Philos Trans R Soc Lond B Biol Sci. 2009, 364(1513):117-28.
- 147. Wu G, Hao L, Han Z, Gao S, Latham KE, de Villena FP, Sapienza C. Maternal transmission ratio distortion at the mouse Om locus results from meiotic drive at the second meiotic division. Genetics. 2005, 170(1):327-34.
- 148. Xing J, Witherspoon DJ, Watkins WS, Zhang Y, Tolpinrud W, Jorde LB. HapMap tagSNP transferability in multiple populations: general guidelines. Genomics. 2008, 92(1):41-51.
- 149. Yamazaki K, Boyse EA, Miké V, Thaler HT, Mathieson BJ, Abbott J, Boyse J, Zayas ZA, Thomas L. Control of mating preferences in mice by genes in the major histocompatibility complex. J Exp Med. 1976, 144(5):1324-35.
- 150. Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet. 2002 Mar 1;11(5):535-46.
- 151. Younger RM, Amadou C, Bethel G, Ehlers A, Lindahl KF, Forbes S, Horton R, Milne S, Mungall AJ, Trowsdale J, Volz A, Ziegler A, Beck S. Characterization of clustered MHC-linked olfactory receptor genes in human and mouse. Genome Res. 2001, 11(4):519-30.
- 152. Yuhki N, Beck T, Stephens R, Neelam B, O'Brien SJ. Comparative genomic structure of human, dog, and cat MHC: HLA, DLA, and FLA. J Hered. 2007, 98(5):390-9.

- 153. Yunis EJ, Larsen CE, Fernandez-Viña M, Awdeh ZL, Romero T, Hansen JA, Alper CA. Inheritable variable sizes of DNA stretches in the human MHC: conserved extended haplotypes and their fragments or blocks. Tissue Antigens. 2003, 62(1):1-20.
- 154. Zaykin DV, Pudovkin A, Weir BS. Correlation-based inference for linkage disequilibrium with multiple alleles. Genetics. 2008, 180(1):533-45.
- 155. Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F. Haplotype block partitioning and tag SNP selection using genotype data and their applications to association studies. Genome Res. 2004, 14(5):908-16.
- 156. Zhang X, Firestein S. The olfactory receptor gene superfamily of the mouse. Nat Neurosci. 2002, 5(2):124-33.
- 157. Ziegler A, Müller C, Heinig J, Radka SF, Kömpf J, Fonatsch C. Monosomy 6 in a human lymphoma line induced by selection with a monoclonal antibody. Immunobiology. 1985, 169(5):455-60.
- 158. Ziegler A. Biology of chromosome 6. DNA Seq. 1997, 8(3):189-201.
- 159. Ziegler A EA, Forbes S, Trowsdale J, Uchanska-Ziegler B, Volz A, Younger R, Beck S. Polymorphic olfactory receptor genes and HLA loci constitute extended haplotypes. In: Kasahara M (ed.) *major histocompatibility complex – evolution, structure, and function*. Springer Verlag: Tokyo, 2000a, pp 110-130.
- 160. Ziegler A, Ehlers A, Forbes S, Trowsdale J, Volz A, Younger R, Beck S. Polymorphisms in olfactory receptor genes: a cautionary note. Hum Immunol. 2000b, 61(12):1281-4.
- 161. Ziegler A, Dohr G, Uchanska-Ziegler B. Possible roles for products of polymorphic MHC and linked olfactory receptor genes during selection processes in reproduction. Am J Reprod Immunol. 2002, 48(1):34-42. 19.
- Ziegler A, Kentenich H, Uchanska-Ziegler B. Female choice and the MHC. Trends Immunol. 2005, 26(9):496-502.
- 163. Zöllner S, Wen X, Hanchard NA, Herbert MA, Ober C, Pritchard JK. Evidence for extensive transmission distortion in the human genome. Am J Hum Genet. 2004, 74(1):62-72.
 - Zozulya S, Echeverri F, Nguyen T. The human olfactory receptor repertoire. Genome Biol. 2001, 2:0018.1-0018.12.

9. Oral Communications and Posters

- 1. **Santos PSC**, Beck S, Füst G, Horton R, Miretti M, Uchanska-Ziegler B, Ziegler A. Analysis of the Genomic Variation at the two HLA-linked Odorant Receptor Clusters in different extended HLA Haplotypes. 8th International Meeting on Human Genome Variation and Complex Genome Analysis. Hong Kong, China, Sep 2006 (Poster).
- 2. **Santos, PSC.** A Map of Transmission Distortion in the Human extended MHC (xMHC). 2nd Göttingen Workshop on Immunogenetics. Göttingen, Germany, Feb 2007 (Talk).
- 3. **Santos PSC**, Uchanska-Ziegler B, Ziegler A. A Map of Transmission Ratio Distortion on chromosome 6p. 12th Human Genome Organisation Meeting. Montreal, Canada, May 2007 (Talk and Poster).
- 4. **Santos, PSC.** Assessment of Transmission Distortion on Human Chromosome 6p in healthy individuals using tagSNPs. 16. Jahrestagung der Deutschen Gesellschaft für Immungenetik. Essen, Germany, Sep 2008 (Talk).
- 5. **Santos PSC**, Höhne J, Schlattmann P, König IR, Ziegler A, Uchanska-Ziegler B, Ziegler A. Assessment of transmission distortion on chromosome 6p in healthy individuals using tagSNPs. 10th Human Genome Variation Meeting 2008. Toronto, Canada, October 2008 (Poster).
- Santos PSC, Kellermann T, Uchanska-Ziegler B, Ziegler A. Comparison of MHClinked odorant receptor repertoires among 14 vertebrates. 23rd European Immunogenetics and Histocompatibility Conference (EFI). Ulm, Germany, May 2009 (Poster)
- Santos PSC. Confirmation of Transmission Distortion in the Human Genome through SNP Genotyping. 11th Human Genome Variation Meeting 2009. Tallinn, Estonia, Sep 2009 (Talk)